1
|
Jeevitha CM, Ravichandiran K, Tanuja T, Parani M. Transcriptome sequencing and identification of full-length genes involved in the biosynthesis of anticancer compounds Oleanolic acid and Ursolic acid in Achyranthes aspera L. Gene 2025; 933:148964. [PMID: 39341517 DOI: 10.1016/j.gene.2024.148964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/08/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Achyranthes aspera is renowned for its rich medicinal properties since the Ayurvedic era. This plant is known for the presence of experimentally validated anticancer compounds like oleanolic acid (OA) and ursolic acid (UA). Our study involved sequencing the RNA from the root tissue of A. aspera to elucidate the genes responsible for synthesizing these two critical secondary metabolites. Through RNA-Seq analysis, we assembled approximately 167,698 transcripts, averaging 847 base pairs in length, with an N50 value of 1509 bp. From this data, we mapped 604 sequences involved in the metabolism of terpenoids and polyketide pathways. Among them, 241 transcripts were mapped to the triterpenoid biosynthesis pathway, which included 127 transcripts involved in OA and UA biosynthesis. From these transcripts, we identified 22 full-length genes coding for all the 21 enzymes required for OA and UA biosynthesis. Identifying these full-length genes will lead to a better understanding of the pathway and adopting genetic engineering approaches.
Collapse
Affiliation(s)
- C M Jeevitha
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India
| | - Kumar Ravichandiran
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India
| | - Tanuja Tanuja
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India
| | - Madasamy Parani
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India.
| |
Collapse
|
2
|
Verma N, Raghuvanshi DS, Singh RV. Recent advances in the chemistry and biology of oleanolic acid and its derivatives. Eur J Med Chem 2024; 276:116619. [PMID: 38981335 DOI: 10.1016/j.ejmech.2024.116619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/01/2024] [Accepted: 06/22/2024] [Indexed: 07/11/2024]
Abstract
The pentacyclic triterpenes represent a significant class of plant bioactives with a variety of structures and a wide array of biological activities. These are biosynthetically produced via the mevalonate pathway although occasionally mixed pathways may also occur to introduce structural divergence. Oleanolic acid is one of the most explored bioactive from this class of compounds and possesses a broad spectrum of pharmacological and biological activities including liver protection, anti-cancer, atherosclerosis, anti-inflammation, antibacterial, anti-HIV, anti-oxidative, anti-diabetic etc. This review provides an overview of the latest research findings, highlighting the versatile medicinal and biological potential of oleanolic and its future prospects.
Collapse
Affiliation(s)
- Narsingh Verma
- R&D, Technology, and Innovation, Merck-Life Science, Jigani, Bangalore, 560100, India
| | | | - Ravindra Vikram Singh
- R&D, Technology, and Innovation, Merck-Life Science, Jigani, Bangalore, 560100, India.
| |
Collapse
|
3
|
Khwaza V, Aderibigbe BA. Potential Pharmacological Properties of Triterpene Derivatives of Ursolic Acid. Molecules 2024; 29:3884. [PMID: 39202963 PMCID: PMC11356970 DOI: 10.3390/molecules29163884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Ursolic acid (UA) and its derivatives have garnered significant attention due to their extensive pharmacological activity. UA is a pentacyclic triterpenoid found in a variety of plants, such as apples, rosemary, thyme, etc., and it possesses a range of pharmacological properties. Researchers have synthesized various derivatives of UA through structural modifications to enhance its potential pharmacological properties. Various in vitro and in vivo studies have indicated that UA and its derivatives possess diverse biological activities, such as anticancer, antifungal, antidiabetic, antioxidant, antibacterial, anti-inflammatory and antiviral properties. This review article provides a review of the biological activities of UA and its derivatives to show their valuable therapeutic properties useful in the treatment of different diseases, mainly focusing on the relevant structure-activity relationships (SARs), the underlying molecular targets/pathways, and modes of action.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa
| | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa
| |
Collapse
|
4
|
Similie D, Minda D, Bora L, Kroškins V, Lugiņina J, Turks M, Dehelean CA, Danciu C. An Update on Pentacyclic Triterpenoids Ursolic and Oleanolic Acids and Related Derivatives as Anticancer Candidates. Antioxidants (Basel) 2024; 13:952. [PMID: 39199198 PMCID: PMC11351203 DOI: 10.3390/antiox13080952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/01/2024] Open
Abstract
Cancer is a global health problem, with the incidence rate estimated to reach 40% of the population by 2030. Although there are currently several therapeutic methods, none of them guarantee complete healing. Plant-derived natural products show high therapeutic potential in the management of various types of cancer, with some of them already being used in current practice. Among different classes of phytocompounds, pentacyclic triterpenoids have been in the spotlight of research on this topic. Ursolic acid (UA) and its structural isomer, oleanolic acid (OA), represent compounds intensively studied and tested in vitro and in vivo for their anticancer and chemopreventive properties. Since natural compounds can rarely be used in practice as such due to their characteristic physico-chemical properties, to tackle this problem, their derivatization has been attempted, obtaining compounds with improved solubility, absorption, stability, effectiveness, and reduced toxicity. This review presents various UA and OA derivatives that have been synthesized and evaluated in recent studies for their anticancer potential. It can be observed that the most frequent structural transformations were carried out at the C-3, C-28, or both positions simultaneously. It has been demonstrated that conjugation with heterocycles or cinnamic acid, derivatization as hydrazide, or transforming OH groups into esters or amides increases anticancer efficacy.
Collapse
Affiliation(s)
- Diana Similie
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Daliana Minda
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Larisa Bora
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Vladislavs Kroškins
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Jevgeņija Lugiņina
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Māris Turks
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Cristina Adriana Dehelean
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
5
|
Fontana G, Badalamenti N, Bruno M, Maggi F, Dell’Annunziata F, Capuano N, Varcamonti M, Zanfardino A. Biological Properties of Oleanolic Acid Derivatives Bearing Functionalized Side Chains at C-3. Int J Mol Sci 2024; 25:8480. [PMID: 39126048 PMCID: PMC11312724 DOI: 10.3390/ijms25158480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Triterpene acids are a class of pentacyclic natural carboxylic compounds endowed with a variety of biological activities including antitumor, antimicrobial, and hepatoprotective effects. In this work, several oleanolic acid derivatives were synthesized by structurally modifying them on the C-3 position. All synthesized derivatives were evaluated for possible antibacterial and antiviral activity, and among all the epimers, 6 and 7 demonstrated the best biological activities. Zone-of-inhibition analyses were conducted against two strains, E. coli as a Gram-negative and S. aureus as a Gram-positive model. Subsequently, experiments were performed using the microdilution method to determine the minimum inhibitory concentration (MIC). The results showed that only the derivative with reduced hydrogen bonding ability on ring A possesses remarkable activity toward E. coli. The conversion from acid to methyl ester implies a loss of activity, probably due to a reduced affinity with the bacterial membrane. Before the antiviral activity, the cytotoxicity of triterpenes was evaluated through a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Samples 6 and 7 showed less than 50% cytotoxicity at 0.625 and 1 mg/mL, respectively. The antiviral activity against SARS-CoV-2 and PV-1 did not indicate that triterpene acids had any inhibitory capacity in the sub-toxic concentration range.
Collapse
Affiliation(s)
- Gianfranco Fontana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.F.); (N.B.); (M.B.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.F.); (N.B.); (M.B.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.F.); (N.B.); (M.B.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
- Centro Interdipartimentale di Ricerca “Riutilizzo Bio-Based degli Scarti da Matrici Agroalimentari” (RIVIVE), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Center, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Federica Dell’Annunziata
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (F.D.); (N.C.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Nicoletta Capuano
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (F.D.); (N.C.)
| | - Mario Varcamonti
- Department of Biology, University of Naples, Federico II, Via Cinthia, 80126 Naples, Italy; (M.V.); (A.Z.)
| | - Anna Zanfardino
- Department of Biology, University of Naples, Federico II, Via Cinthia, 80126 Naples, Italy; (M.V.); (A.Z.)
| |
Collapse
|
6
|
Wang Y, Liu K. Therapeutic potential of oleanolic acid in liver diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4537-4554. [PMID: 38294504 DOI: 10.1007/s00210-024-02959-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Liver-associated diseases affect millions of individuals worldwide. In developed countries, the incidence of viral hepatitis is reducing due to advancements in disease prevention, diagnosis, and treatment. However, with improvements in living standards, the prevalence of metabolic liver diseases, such as non-alcoholic fatty liver disease and alcohol-related liver disease, is expected to increase; notably, this rise in the prevalence of metabolic liver disease can lead to the development of more severe liver diseases, including liver failure, cirrhosis, and liver cancer. The growing demand for natural alternative therapies for chronic diseases has highlighted the importance of studying the pharmacology of bioactive compounds in plants. One such compound is oleanolic acid (OA), a pentacyclic triterpenoid known for its antioxidant, anti-inflammatory, anti-ulcer, antibacterial, antiviral, antihypertensive, anti-obesity, anticancer, anti-diabetic, cardioprotective, hepatoprotective, and anti-neurodegenerative properties. Recent studies have demonstrated that OA treatment can reduce the risk of pathological liver damage, ultimately alleviating liver dysregulation and restoring overall liver function. This review aims to explore the latest research on the biological effects of OA and its derivatives. Notably, it explores the mechanisms of action of these compounds in both in vitro and in vivo research models and, ultimately, highlights OA as a promising candidate for alternative therapies in the treatment and management of chronic liver disease.
Collapse
Affiliation(s)
- Yongxin Wang
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
7
|
Elhrech H, Aguerd O, El Kourchi C, Gallo M, Naviglio D, Chamkhi I, Bouyahya A. Comprehensive Review of Olea europaea: A Holistic Exploration into Its Botanical Marvels, Phytochemical Riches, Therapeutic Potentials, and Safety Profile. Biomolecules 2024; 14:722. [PMID: 38927125 PMCID: PMC11201932 DOI: 10.3390/biom14060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Human health is now inextricably linked to lifestyle choices, which can either protect or predispose people to serious illnesses. The Mediterranean diet, characterized by the consumption of various medicinal plants and their byproducts, plays a significant role in protecting against ailments such as oxidative stress, cancer, and diabetes. To uncover the secrets of this natural treasure, this review seeks to consolidate diverse data concerning the pharmacology, toxicology, phytochemistry, and botany of Olea europaea L. (O. europaea). Its aim is to explore the potential therapeutic applications and propose avenues for future research. Through web literature searches (using Google Scholar, PubMed, Web of Science, and Scopus), all information currently available on O. europaea was acquired. Worldwide, ethnomedical usage of O. europaea has been reported, indicating its effectiveness in treating a range of illnesses. Phytochemical studies have identified a range of compounds, including flavanones, iridoids, secoiridoids, flavonoids, triterpenes, biophenols, benzoic acid derivatives, among others. These components exhibit diverse pharmacological activities both in vitro and in vivo, such as antidiabetic, antibacterial, antifungal, antioxidant, anticancer, and wound-healing properties. O. europaea serves as a valuable source of conventional medicine for treating various conditions. The findings from pharmacological and phytochemical investigations presented in this review enhance our understanding of its therapeutic potential and support its potential future use in modern medicine.
Collapse
Affiliation(s)
- Hamza Elhrech
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| | - Oumayma Aguerd
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| | - Chaimae El Kourchi
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco;
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 4, 80126 Naples, Italy;
| | - Imane Chamkhi
- Geo-Biodiversity and Natural Patrimony Laboratory (GeoBio), Geophysics, Natural Patrimony, Research Center (GEOPAC), Scientific Institute, Mohammed V University in Rabat, Rabat 10106, Morocco;
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| |
Collapse
|
8
|
Xue Y, Ruan Y, Wang Y, Xiao P, Xu J. Signaling pathways in liver cancer: pathogenesis and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:20. [PMID: 38816668 PMCID: PMC11139849 DOI: 10.1186/s43556-024-00184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Liver cancer remains one of the most prevalent malignancies worldwide with high incidence and mortality rates. Due to its subtle onset, liver cancer is commonly diagnosed at a late stage when surgical interventions are no longer feasible. This situation highlights the critical role of systemic treatments, including targeted therapies, in bettering patient outcomes. Despite numerous studies on the mechanisms underlying liver cancer, tyrosine kinase inhibitors (TKIs) are the only widely used clinical inhibitors, represented by sorafenib, whose clinical application is greatly limited by the phenomenon of drug resistance. Here we show an in-depth discussion of the signaling pathways frequently implicated in liver cancer pathogenesis and the inhibitors targeting these pathways under investigation or already in use in the management of advanced liver cancer. We elucidate the oncogenic roles of these pathways in liver cancer especially hepatocellular carcinoma (HCC), as well as the current state of research on inhibitors respectively. Given that TKIs represent the sole class of targeted therapeutics for liver cancer employed in clinical practice, we have particularly focused on TKIs and the mechanisms of the commonly encountered phenomena of its resistance during HCC treatment. This necessitates the imperative development of innovative targeted strategies and the urgency of overcoming the existing limitations. This review endeavors to shed light on the utilization of targeted therapy in advanced liver cancer, with a vision to improve the unsatisfactory prognostic outlook for those patients.
Collapse
Affiliation(s)
- Yangtao Xue
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yeling Ruan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yali Wang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Peng Xiao
- Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Junjie Xu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.
- Zhejiang University Cancer Center, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
9
|
Martins-Gomes C, Nunes FM, Silva AM. Linking Variability in Phytochemical Composition with Safety Profile of Thymus carnosus Boiss. Extracts: Effect of Major Compounds and Evaluation of Markers of Oxidative Stress and Cell Death. Int J Mol Sci 2024; 25:5343. [PMID: 38791385 PMCID: PMC11120720 DOI: 10.3390/ijms25105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Natural products are generally considered safe for human consumption, but this classification is often based on ethnobotanical surveys or their use in traditional medicine over a long period of time. However, edaphoclimatic factors are known to produce different chemotypes, which may affect the safety profile and bioactivities, and are not commonly considered for plants exploited as crops worldwide. Thymus carnosus Boiss., a thyme species with various health-promoting effects, has potential pharmaceutical applications, but edaphoclimatic factors were found to significantly impact its phytochemical composition. Thus, we aimed to assess the safety profile of T. carnosus extracts obtained from plants harvested in two locations over three consecutive years and to establish an association with specific components, an essential study in the search for new sources of nutraceuticals. Thus, the antiproliferative effect of an aqueous decoction (AD), hydroethanolic (HE) extracts, and major extracts' components of T. carnosus was evaluated on intestinal (Caco-2) and hepatic (HepG2) cell models, revealing effects dependent on extract type, cell line, and tested compounds. Flavonoids induced different cytotoxic patterns, which could be attributed to molecular structural differences. Flow cytometry analysis showed apoptosis and necrosis induction, mediated by the modulation of intracellular reactive oxygen species and mitochondrial membrane potential, effects that were dependent on the cell line and phytochemical composition and on the synergism between extracts components, rather than on the activity of an isolated compound. While ursolic acid was the component with the strongest impact on the difference between extraction methods, flavonoids assumed a pivotal role in the response of different cell lines to the extracts. We report for the first time, for Thymus spp. extracts, that variations in the phytochemical composition clearly influence the cellular response, thus highlighting the need for extract standardization for medicinal applications.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Department of Chemistry, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4gro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
10
|
Galaiko NV, Beloglazova YA, Grishko VV. Synthesis and Intramolecular Cyclization of 2,3-Seco-Lupane Triterpenoids with an Ethylketone Fragment. Chem Nat Compd 2023. [DOI: 10.1007/s10600-023-03925-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
Targeting Nrf2 and NF-κB Signaling Pathways in Cancer Prevention: The Role of Apple Phytochemicals. Molecules 2023; 28:molecules28031356. [PMID: 36771023 PMCID: PMC9919881 DOI: 10.3390/molecules28031356] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Plant secondary metabolites, known as phytochemicals, have recently gained much attention in light of the "circular economy", to reutilize waste products deriving from agriculture and food industry. Phytochemicals are known for their onco-preventive and chemoprotective effects, among several other beneficial properties. Apple phytochemicals have been extensively studied for their effectiveness in a wide range of diseases, cancer included. This review aims to provide a thorough overview of the main studies reported in the literature concerning apple phytochemicals, mostly polyphenols, in cancer prevention. Although there are many different mechanisms targeted by phytochemicals, the Nrf2 and NF-κB signaling pathways are the ones this review will be focused on, highlighting also the existing crosstalk between these two systems.
Collapse
|
12
|
He B, Dai L, Jin L, Liu Y, Li X, Luo M, Wang Z, Kai G. Bioactive components, pharmacological effects, and drug development of traditional herbal medicine Rubus chingii Hu (Fu-Pen-Zi). Front Nutr 2023; 9:1052504. [PMID: 36698464 PMCID: PMC9868258 DOI: 10.3389/fnut.2022.1052504] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Rubus chingii Hu (Chinese Raspberry), known as Fu-Pen-Zi in Chinese, a woody perennial plant of the genus Rubus in the Rosaceae family, has specific nutritional and medicinal values, which is considered food-medicine herb in China for thousands of years to treat impotence, premature ejaculation, enuresis, frequent urination, and other diseases. This review aims to summarize recent advances in the bioactive components, pharmacological effects, and drug development and utilization of Rubus chingii Hu, hoping to provide useful support for its further research and clinical application. The bioactive components in Rubus chingii Hu contain mainly terpenoids, flavonoids, alkaloids, phenolic acids, polysaccharides, and steroids. The main pharmacological effects are their anti-oxidant, anti-inflammatory, and anti-tumor capacity on human health. Rubus chingii Hu is a very valuable food-medicine herb. The development of Rubus chingii Hu-related drugs is relatively single, which is limited to traditional Chinese medicine and prescriptions. Therefore, it is vital to pay interest to Rubus chingii Hu and its bioactive components in the future and extend its scientific application.
Collapse
Affiliation(s)
- Beihui He
- The First Affiliated Hospital, Zhejiang Provincial Hospital of Chinese Medicine, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Linghao Dai
- The First Affiliated Hospital, Zhejiang Provincial Hospital of Chinese Medicine, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Li Jin
- The First Affiliated Hospital, Zhejiang Provincial Hospital of Chinese Medicine, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuan Liu
- The First Affiliated Hospital, Zhejiang Provincial Hospital of Chinese Medicine, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaojuan Li
- The First Affiliated Hospital, Zhejiang Provincial Hospital of Chinese Medicine, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Minmin Luo
- The First Affiliated Hospital, Zhejiang Provincial Hospital of Chinese Medicine, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhian Wang
- Zhejiang Research Institute of Traditional Chinese Medicine Co., Ltd., Hangzhou, China
| | - Guoyin Kai
- The First Affiliated Hospital, Zhejiang Provincial Hospital of Chinese Medicine, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Ursolic Acid Analogs as Potential Therapeutics for Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248981. [PMID: 36558113 PMCID: PMC9785537 DOI: 10.3390/molecules27248981] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Ursolic acid (UA) is a pentacyclic triterpene isolated from a large variety of vegetables, fruits and many traditional medicinal plants. It is a structural isomer of Oleanolic Acid. The medicinal application of UA has been explored extensively over the last two decades. The diverse pharmacological properties of UA include anti-inflammatory, antimicrobial, antiviral, antioxidant, anti-proliferative, etc. Especially, UA holds a promising position, potentially, as a cancer preventive and therapeutic agent due to its relatively non-toxic properties against normal cells but its antioxidant and antiproliferative activities against cancer cells. Cell culture studies have shown interference of UA with multiple pharmacological and molecular targets that play a critical role in many cells signaling pathways. Although UA is considered a privileged natural product, its clinical applications are limited due to its low absorption through the gastro-intestinal track and rapid elimination. The low bioavailability of UA limits its use as a therapeutic drug. To overcome these drawbacks and utilize the importance of the scaffold, many researchers have been engaged in designing and developing synthetic analogs of UA via structural modifications. This present review summarizes the synthetic UA analogs and their cytotoxic antiproliferative properties reported in the last two decades.
Collapse
|
14
|
Yang YH, Dai SY, Deng FH, Peng LH, Li C, Pei YH. Recent advances in medicinal chemistry of oleanolic acid derivatives. PHYTOCHEMISTRY 2022; 203:113397. [PMID: 36029846 DOI: 10.1016/j.phytochem.2022.113397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Oleanolic acid (OA), a ubiquitous pentacyclic oleanane-type triterpene isolated from edible and medicinal plants, exhibits a wide spectrum of pharmacological activities and tremendous therapeutic potential. However, the undesirable pharmacokinetic properties limit its application and development. Numerous researches on structural modifications of OA have been carried out to overcome this limitation and improve its pharmacokinetic and therapeutic properties. This review aims to compile and summarize the recent progresses in the medicinal chemistry of OA derivatives, especially on structure-activity relationship in the last few years (2010-2021). It gives insights into the rational design of bioactive derivatives from OA scaffold as promising therapeutic agents.
Collapse
Affiliation(s)
- Yi-Hui Yang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Si-Yang Dai
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Fu-Hua Deng
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Li-Huan Peng
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Chang Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| | - Yue-Hu Pei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| |
Collapse
|
15
|
Gao CX, Tang CH, Wu TJ, Hu Y, Peng YL, Liu ML, Liu QW, Chen HF, Yang ZH, Zheng X. Anticancer activity of oleanolic acid and its derivatives modified at A-ring and C-28 position. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022:1-14. [PMID: 36151896 DOI: 10.1080/10286020.2022.2120863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Oleanolic acid (OA) is a five-ring triterpenoid compound, which is widely present in plants. Due to a wide range of pharmacological activities, oleanolic acid has attracted more and more attention. However, oleanolic acid is insoluble in water and has low bioavailability, which limits its clinical application. In this review, we focus on summarizing the anti-cancer activity and mechanism of the A ring or C-28 carboxyl modified derivatives of OA since 2015, to determine the strength of its anti-cancer effectiveness and evaluate whether it could be used as a clinical anti-cancer drug.
Collapse
Affiliation(s)
- Cong-Xi Gao
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medicinal School, University of South China, Hengyang 421001, China
| | - Cai-Hong Tang
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medicinal School, University of South China, Hengyang 421001, China
| | - Ting-Juan Wu
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medicinal School, University of South China, Hengyang 421001, China
| | - Yue Hu
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medicinal School, University of South China, Hengyang 421001, China
| | - Ya-Ling Peng
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medicinal School, University of South China, Hengyang 421001, China
| | - Mei-Ling Liu
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medicinal School, University of South China, Hengyang 421001, China
| | - Qian-Wen Liu
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medicinal School, University of South China, Hengyang 421001, China
| | - Hong-Fei Chen
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medicinal School, University of South China, Hengyang 421001, China
| | - Ze-Hua Yang
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medicinal School, University of South China, Hengyang 421001, China
| | - Xing Zheng
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medicinal School, University of South China, Hengyang 421001, China
| |
Collapse
|
16
|
Synthesis, In Vitro and In Silico Analysis of New Oleanolic Acid and Lupeol Derivatives against Leukemia Cell Lines: Involvement of the NF-κB Pathway. Int J Mol Sci 2022; 23:ijms23126594. [PMID: 35743037 PMCID: PMC9223357 DOI: 10.3390/ijms23126594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 12/02/2022] Open
Abstract
Oleanolic acid (OA) and Lupeol (LU) belong to the class of natural triterpenes and are endowed with a wide range of biological activities, including cytotoxicity toward several cancer cell lines. In this context, we investigated a set of compounds obtained from the two natural precursors for the cytotoxicity against leukemia HL60 cells and the multidrug-resistant (MDR) variant HL60R. Six new semi-synthetic triterpenes have been synthetized, fully characterized, and were investigated together with other triterpenes compounds for their pharmacological mechanism of action. The interaction of the more cytotoxic compounds with the nuclear factor kappa B (NF-κB) pathway has been also evaluated with the aid of docking. The lupane-like compounds were more active than the precursor, while the oleane-like compounds showed more complex behavior. Both OA and LU derivatives possess a similar interaction pattern with the p65 subunit of NF-κB, justifying the similar trend in their ability to inhibit the binding of p65 to DNA. Further, some of the derivatives tested were able to increase IκB-α levels preventing the translocation of NF-κB to the nucleus. In conclusion, this study offers a deeper insight on the pharmacological action of triterpenes toward leukemia cells, and it improves the background useful for the development of new anti-cancer drugs.
Collapse
|
17
|
Shen M, Wang D, Sennari Y, Zeng Z, Baba R, Morimoto H, Kitamura N, Nakanishi T, Tsukada J, Ueno M, Todoroki Y, Iwata S, Yonezawa T, Tanaka Y, Osada Y, Yoshida Y. Pentacyclic triterpenoid ursolic acid induces apoptosis with mitochondrial dysfunction in adult T-cell leukemia MT-4 cells to promote surrounding cell growth. Med Oncol 2022; 39:118. [PMID: 35674939 DOI: 10.1007/s12032-022-01707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
We investigated the antitumor effects of oleanolic acid (OA) and ursolic acid (UA) on adult T-cell leukemia cells. OA and UA dose-dependently inhibited the proliferation of adult T-cell leukemia cells. UA-treated cells showed caspase 3/7 and caspase 9 activation. PARP cleavage was detected in UA-treated MT-4 cells. Activation of mTOR and PDK-1 was inhibited by UA. Autophagosomes were detected in MT-4 cells after UA treatment using electron microscopy. Consistently, mitophagy was observed in OA- and UA-treated MT-4 cells by confocal microscopy. The mitochondrial membrane potential in MT-4 cells considerably decreased, and mitochondrial respiration and aerobic glycolysis were significantly reduced following UA treatment. Furthermore, MT-1 and MT-4 cells were sorted into two regions based on their mitochondrial membrane potential. UA-treated MT-4 cells from both regions showed high activation of caspase 3/7, which were inhibited by Z-vad. Interestingly, MT-4 cells cocultured with sorted UA-treated cells showed enhanced proliferation. Finally, UA induced cell death and ex vivo PARP cleavage in peripheral blood mononuclear cells from patients with adult T-cell leukemia. Therefore, UA-treated MT-4 cells show caspase activation following mitochondrial dysfunction and may produce survival signals to the surrounding cells.
Collapse
Affiliation(s)
- Mengyue Shen
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Duo Wang
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yusuke Sennari
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Zirui Zeng
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Ryoko Baba
- Department of Anatomy (II), School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hiroyuki Morimoto
- Department of Anatomy (II), School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Noriaki Kitamura
- Department of Hematology, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Tsukasa Nakanishi
- Department of Hematology, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Junichi Tsukada
- Department of Hematology, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Masanobu Ueno
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yasuyuki Todoroki
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Shigeru Iwata
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Tomo Yonezawa
- Division of Functional Genomics and Therapeutic Innovation, Research Center for Advanced Genomics, Graduate School of Biomedical Sciences,, Nagasaki University, 1-12-14 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yoshio Osada
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yasuhiro Yoshida
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
18
|
Phytol and Heptacosane Are Possible Tools to Overcome Multidrug Resistance in an In Vitro Model of Acute Myeloid Leukemia. Pharmaceuticals (Basel) 2022; 15:ph15030356. [PMID: 35337153 PMCID: PMC8952646 DOI: 10.3390/ph15030356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/19/2022] Open
Abstract
Drug resistance is the ability of cancer cells to gain resistance to both conventional and novel chemotherapy agents, and remains a major problem in cancer therapy. Resistance mechanisms are multifactorial and involve more strictly pharmacological factors, such as P-glycoprotein (P-gp) and biological factors such as inhibitor of apoptosis proteins (IAPs) and the nuclear factor-kappa B (NF-κB) pathway. Possible therapeutic strategies for the treatment of acute myeloid leukemia (AML) have increased in recent years; however, drug resistance remains a problem for most pa-tients. Phytol and heptacosane are the major compounds of Euphorbia intisy essential oil (EO) which were demonstrated to inhibit P-gp in a multidrug resistant in vitro model of AML. This study investigated the mechanism by which phytol and heptacosane improve P-gp-mediated drug transport. Phytol suppresses the P-gp expression via NF-κB inhibition and does not seem to act on the efflux system. Heptacosane acts as a substrate and potent P-gp inhibitor, demonstrating the ability to retain the substrate doxorubicin inside the cell and enhancing its cytotoxic effects. Our results suggest that these compounds act as non-toxic modulators of P-gp through different mechanisms and are able to revert P-gp-mediated drug resistance in tumor cells.
Collapse
|
19
|
Tang ZY, Li Y, Tang YT, Ma XD, Tang ZY. Anticancer activity of oleanolic acid and its derivatives: Recent advances in evidence, target profiling and mechanisms of action. Biomed Pharmacother 2021; 145:112397. [PMID: 34798468 DOI: 10.1016/j.biopha.2021.112397] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Oleanolic acid (OA, 3 β - hydroxyoleanolic acid-12-en-28-oic acid) is a pentacyclic triterpenoid present in many plants. As a new framework for development of semi synthetic triterpenoids, OA is of great significance in the discovery of anticancer drugs. Some of these derivatives, such as CDDO (2-cyano-3,12-dioxooleana-1, 9 (11)-dien-28-oic acid) have been verified in clinical trials, while other derivatives studied previously, such as SZC014, SZC015 and SZC017 (OA derivatives respectively), are also candidate drugs for cancer treatment. This paper reviews the preclinical studies, literature evidence, target analysis and anticancer mechanism of OA and its derivatives. The mechanism of action of its derivatives mainly includes anti-cancer cell proliferation, inducing tumor cell apoptosis, inducing autophagy, regulating cell cycle regulatory proteins, inhibiting vascular endothelial growth, anti angiogenesis, inhibiting tumor cell migration and invasion. In recent years, the molecular mechanism of OA and its derivatives has been elucidated. These effects seem to be mediated by the alterations in a variety of signaling pathways induced by OA and its derivatives. In conclusion, OA and its derivatives are considered as important candidate drugs for the treatment of cancer, indicating that OA and its derivatives have the potential to be used as anticancer drugs in practice.
Collapse
Affiliation(s)
- Zhong-Yuan Tang
- Department of Orthodontics, School of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, Jilin, PR China
| | - Yang Li
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Yu-Ting Tang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Xiao-Dong Ma
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Ze-Yao Tang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China.
| |
Collapse
|
20
|
Gupta N. A Review on Recent Developments in the Anticancer Potential of Oleanolic acid and its analogs (2017-2020). Mini Rev Med Chem 2021; 22:600-616. [PMID: 35135459 DOI: 10.2174/1389557521666210810153627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
Oleanolic acid (OA) is a pentacyclic triterpenoid class of natural product known to possess a broad range of biological activities, specifically, anticancer. Considering the anticancer potential of OA, a large number of analogs have been prepared by several researchers through modifications at C-3, C-12 and C-28 -COOH to develop the potent anticancer agents with improved cytotoxicity and pharmaceutical properties. Some of the synthesized derivatives have been assessed in clinical trials also. This review summarizes the most recent synthetic and biological efforts in the development of oleanolic acid and its analogs during the period 2017-2020. Reports published during this period revealed that both OA and its analogs possess a remarkable potential for the development of effective anticancer agents along with several others such as anti-inflammatory, anti-viral, anti-microbial and anti-diabetic agents.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Pharmaceutical Sciences, MM College of Pharmacy, M. M. University, Mullana, Ambala, Haryana. India
| |
Collapse
|
21
|
Sureda A, Martorell M, Capó X, Monserrat-Mesquida M, Quetglas-Llabrés MM, Rasekhian M, Nabavi SM, Tejada S. Antitumor Effects of Triterpenes in Hepatocellular Carcinoma. Curr Med Chem 2021; 28:2465-2484. [PMID: 32484765 DOI: 10.2174/0929867327666200602132000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Triterpenes are a large group of secondary metabolites mainly produced by plants with a variety of biological activities, including potential antitumor effects. Hepatocellular carcinoma (HCC) is a very common primary liver disease spread worldwide. The treatment can consist of surgical intervention, radiotherapy, immunotherapy and chemotherapeutic drugs. These drugs mainly include tyrosine multikinase inhibitors, although their use is limited by the underlying liver disease and displays side effects. For that reason, the utility of natural compounds such as triterpenes to treat HCC is an interesting line of research. No clinical studies are reported in humans so far. OBJECTIVE The aim of the present work is to review the knowledge about the effects of triterpenes as a possible coadjuvant tool to treat HCC. RESULTS In vitro and xenograft models have pointed out the cytotoxic and anti-proliferative effects as well as improvements in tumor growth and development of many triterpenes. In addition, they have also shown to be chemosensitizing agents when co-administered with chemotherapeutic agents. The mechanisms of action are diverse and involve the participation of mitogen-activated protein kinases, including JNK, p38 MAPK and ERK, and the survival-associated PI3K / Akt signaling pathway. However, no clinical studies are still reported in humans. CONCLUSION Triterpenes could become a future strategy to address HCC or at least improve results when administered in combination with chemotherapeutic agents.
Collapse
Affiliation(s)
- Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, Health Research Institute of Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Balearic Islands, E-07122 Palma, Spain
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Centre for Healthy Living, University of Concepcion, 4070386 Concepcion, Chile
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress, Health Research Institute of Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Balearic Islands, E-07122 Palma, Spain
| | - Margalida Monserrat-Mesquida
- Research Group in Community Nutrition and Oxidative Stress, Health Research Institute of Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Balearic Islands, E-07122 Palma, Spain
| | - Maria Magdalena Quetglas-Llabrés
- Research Group in Community Nutrition and Oxidative Stress, Health Research Institute of Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Balearic Islands, E-07122 Palma, Spain
| | - Mahsa Rasekhian
- Pharmaceutical Sciences Research Center Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| | - Silvia Tejada
- Laboratory of Neurophysiology, Biology Department, Health Research Institute of Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, Balearic Islands, E-07122 Palma, Spain
| |
Collapse
|
22
|
Wang Y, Luo Z, Zhou D, Wang X, Chen J, Gong S, Yu Z. Nano-assembly of ursolic acid with platinum prodrug overcomes multiple deactivation pathways in platinum-resistant ovarian cancer. Biomater Sci 2021; 9:4110-4119. [PMID: 33949442 DOI: 10.1039/d1bm00087j] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As the most common cause of gynecological cancer-related deaths worldwide, ovarian cancer requires novel therapy strategies. Pt(ii)-Based antitumor drugs (e.g. cisplatin) are one of the most successful and frequently used drugs in ovarian cancer chemotherapy at present. However, drug resistance and severe side effects are the major problems in cancer treatment. Herein, the design of a reduction responsive platinum(iv) (Pt(iv))/ursolic acid (UA)/polyethylene glycol (PEG) dual prodrug amphiphile (Pt(iv)-UA-PEG) to treat cisplatin-resistant ovarian cancer is reported for the first time. Pt(iv)-UA-PEG could self-assemble into nanoparticles (Pt(iv)-UA NPs) with a fixed and precise Pt/UA ratio, and a constantly high content of drugs. Pt(iv)-UA NPs could be efficiently taken up by cisplatin-resistant ovarian cancer cells and release the drug in intracellular reductive and acidic environments. In vitro studies show that the released UA and cisplatin have different anticancer mechanisms, and their synergistic effects overcome the detoxification and anti-apoptotic mechanisms of cancer cells. Furthermore, the in vivo results indicate that Pt(iv)-UA NPs have a prolonged blood circulation time, enhanced tumor accumulation, and significantly improved antitumor efficacy in A2780/DDP tumor-bearing mice, without causing any side effects. In summary, our results demonstrate that the development of the stimuli-responsive dual prodrug amphiphile nano-assembly provides a new strategy to overcome drug resistance.
Collapse
Affiliation(s)
- Yupeng Wang
- Department of Pharmacy, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, P. R. China.
| | - Zhijian Luo
- A School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Dongfang Zhou
- A School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jianjun Chen
- Department of Pharmacy, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, P. R. China. and A School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Shipeng Gong
- Department of Pharmacy, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, P. R. China. and Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Zhiqiang Yu
- Department of Pharmacy, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, P. R. China. and A School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
23
|
Wang D, Wang J, Zhang J, Yi X, Piao J, Li L, Wang J, Zhang P, He Q. Decrease of ABCB1 protein expression and increase of G 1 phase arrest induced by oleanolic acid in human multidrug-resistant cancer cells. Exp Ther Med 2021; 22:735. [PMID: 34055052 PMCID: PMC8138263 DOI: 10.3892/etm.2021.10167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/15/2021] [Indexed: 01/07/2023] Open
Abstract
Oleanolic acid (OA) is a natural compound that can be found in a number of edible and medicinal plants and confers diverse biological actions. However, the direct target of OA in human tumor cells remains poorly understood, preventing its application in clinical and health settings. A previous study revealed that overexpression of caveolin-1 in human leukemia HL-60 cells can increase its sensitivity to OA. The present study aimed to investigate the effects of OA on the doxorubicin-resistant human breast cancer MCF-7 cell line (MCF-7/DOX), harringtonine-resistant human leukemia HL-60 cells (HL-60/HAR) and their corresponding parental cell lines. Western blotting was performed to measure protein expression levels, whilst Cell Counting Kit-8 (CCK-8) assays, cell cycle analysis (by flow cytometry) and apoptosis assays (with Annexin V/PI staining) were used to assess drug sensitivity. CCK-8 assay results suggested that MCF-7/DOX cells, which overexpress the caveolin-1 protein, have similar OA susceptibility to their parent line. In addition, sensitivity of MCF-7/DOX cells to OA was not augmented by knocking down caveolin-1 using RNA interference. HL-60/HAR cells exhibited a four-fold increased sensitivity to OA compared with that in their parental HL-60 cells according to CCK-8 assay. Both of the resistant cell lines exhibited higher numbers of cells at G1 phase arrest compared with those in their parent lines, as measured via flow cytometry. Treatment of both MCF-7 cell lines with 100 µM OA for 48 h induced apoptosis, with increased effects observed in resistant cells. However, no PARP-1 or caspase-3 cleavage was observed, with some positive Annexin V staining found after HL-60/HAR cells were treated with OA, suggesting that cell death occurred via non-classical apoptosis or through other cell death pathways. It was found that OA was not a substrate of ATP-binding cassette subfamily B member 1 (ABCB1) in drug-resistant cells, as indicated by the accumulation of rhodamine 123 assessed using flow cytometry. However, protein expression of ABCB1 in both of the resistant cell lines was significantly decreased after treatment with OA in a concentration-dependent manner. Collectively, these results suggest that OA could reduce ABCB1 protein expression and induce G1 phase arrest in multidrug-resistant cancer cells. These findings highlight the potential of OA for cancer therapy.
Collapse
Affiliation(s)
- Didi Wang
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Jincai Wang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P.R. China
| | - Juan Zhang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P.R. China
| | - Xin Yi
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China.,Department of Clinical Medicine, Heilongjiang Nursing College, Harbin, Heilongjiang 150086, P.R. China
| | - Jinhua Piao
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Li Li
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Jianjie Wang
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Pengxia Zhang
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Qiyang He
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P.R. China
| |
Collapse
|
24
|
Naß J, Efferth T. Ursolic acid ameliorates stress and reactive oxygen species in C. elegans knockout mutants by the dopamine Dop1 and Dop3 receptors. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153439. [PMID: 33352493 DOI: 10.1016/j.phymed.2020.153439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/16/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Depression and stress-related disorders are leading causes of death worldwide. Standard treatments elevating serotonin or noradrenaline levels are not sufficiently effective and cause adverse side effects. A connection between dopamine pathways and stress-related disorders has been suggested. Compounds derived from herbal medicine could be a promising alternative. We examined the neuroprotective effects of ursolic acid (UA) by focusing on dopamine signalling. METHODS Trolox equivalent capacity assay was used to determine the antioxidant activities of UA in vitro. C. elegans N2 wildtype and dopamine receptor-knockout mutants (dop1-deficient RB665 and dop3-deficient LX703 strains) were used as in vivo models. H2DCFDA and acute juglone assays were applied to determine the antioxidant activity in dependency of dopamine pathways in vivo. Stress was assessed by heat and acute osmotic stress assays. The influence of UA on overall survival was analyzed by a life span assay. The dop1 and dop3 mRNA expression was determined by real time RT-PCR. We also examined the binding affinity of UA towards C. elegans Dop1 and Dop3 receptors as well as human dopamine receptors D1 and D3 by molecular docking. RESULTS Antioxidant activity assays showed that UA exerts strong antioxidant activity. UA increased resistance towards oxidative, osmotic and heat stress. Additionally, UA increased life span of nematodes. Moreover, dop1 and dop3 gene expression was significantly enhanced upon UA treatment. Docking analysis revealed stronger binding affinity of UA to C. elegans and human dopamine receptors than the natural ligand, dopamine. Binding to Dop1 was stronger than to Dop3. CONCLUSION UA reduced stress-dependent ROS generation and acted through Dop1 and to a lesser extent through Dop3 to reduce stress and prolong life span in C. elegans. These results indicate that UA could be a promising lead compound for the development of new antidepressant medications.
Collapse
MESH Headings
- Animals
- Antioxidants/pharmacology
- Caenorhabditis elegans/drug effects
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/physiology
- Caenorhabditis elegans Proteins/chemistry
- Caenorhabditis elegans Proteins/genetics
- Caenorhabditis elegans Proteins/metabolism
- Dopamine/metabolism
- Gene Knockout Techniques
- Humans
- Longevity/drug effects
- Molecular Docking Simulation
- Mutation
- Reactive Oxygen Species/metabolism
- Receptors, Dopamine D1/chemistry
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/chemistry
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3/chemistry
- Receptors, Dopamine D3/metabolism
- Signal Transduction/drug effects
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Triterpenes/chemistry
- Triterpenes/pharmacology
- Ursolic Acid
Collapse
Affiliation(s)
- Janine Naß
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
25
|
Liu G, Li J, Shi L, Liu M, Cai B. Advances in the Study of Structural Modification and Biological Activities of Ursolic Acid. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Son J, Lee SY. Therapeutic Potential of Ursonic Acid: Comparison with Ursolic Acid. Biomolecules 2020; 10:E1505. [PMID: 33147723 PMCID: PMC7693102 DOI: 10.3390/biom10111505] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022] Open
Abstract
Plants have been used as drugs to treat human disease for centuries. Ursonic acid (UNA) is a naturally occurring pentacyclic triterpenoid extracted from certain medicinal herbs such as Ziziphus jujuba. Since the pharmacological effects and associated mechanisms of UNA are not well-known, in this work, we attempt to introduce the therapeutic potential of UNA with a comparison to ursolic acid (ULA), a well-known secondary metabolite, for beneficial effects. UNA has a keto group at the C-3 position, which may provide a critical difference for the varied biological activities between UNA and ULA. Several studies previously showed that UNA exerts pharmaceutical effects similar to, or stronger than, ULA, with UNA significantly decreasing the survival and proliferation of various types of cancer cells. UNA has potential to exert inhibitory effects in parasitic protozoa that cause several tropical diseases. UNA also exerts other potential effects, including antihyperglycemic, anti-inflammatory, antiviral, and antioxidant activities. Of note, a recent study highlighted the suppressive potential of UNA against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Molecular modifications of UNA may enhance bioavailability, which is crucial for in vivo and clinical studies. In conclusion, UNA has promising potential to be developed in anticancer and antiprotozoan pharmaceuticals. In-depth investigations may increase the possibility of UNA being developed as a novel reagent for chemotherapy.
Collapse
Affiliation(s)
| | - Sang Yeol Lee
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi 13120, Korea;
| |
Collapse
|
27
|
Khwaza V, Oyedeji OO, Aderibigbe BA. Ursolic Acid-Based Derivatives as Potential Anti-Cancer Agents: An Update. Int J Mol Sci 2020; 21:E5920. [PMID: 32824664 PMCID: PMC7460570 DOI: 10.3390/ijms21165920] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Ursolic acid is a pharmacologically active pentacyclic triterpenoid derived from medicinal plants, fruit, and vegetables. The pharmacological activities of ursolic acid have been extensively studied over the past few years and various reports have revealed that ursolic acid has multiple biological activities, which include anti-inflammatory, antioxidant, anti-cancer, etc. In terms of cancer treatment, ursolic acid interacts with a number of molecular targets that play an essential role in many cell signaling pathways. It suppresses transformation, inhibits proliferation, and induces apoptosis of tumor cells. Although ursolic acid has many benefits, its therapeutic applications in clinical medicine are limited by its poor bioavailability and absorption. To overcome such disadvantages, researchers around the globe have designed and developed synthetic ursolic acid derivatives with enhanced therapeutic effects by structurally modifying the parent skeleton of ursolic acid. These structurally modified compounds display enhanced therapeutic effects when compared to ursolic acid. This present review summarizes various synthesized derivatives of ursolic acid with anti-cancer activity which were reported from 2015 to date.
Collapse
Affiliation(s)
| | | | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa; (V.K.); (O.O.O.)
| |
Collapse
|
28
|
Wang YS, Li GL, Zhu SB, Jing FC, Liu RD, Li SS, He J, Lei JD. A Self-assembled Nanoparticle Platform Based on Amphiphilic Oleanolic Acid Polyprodrug for Cancer Therapy. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2401-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Sen A. Prophylactic and therapeutic roles of oleanolic acid and its derivatives in several diseases. World J Clin Cases 2020; 8:1767-1792. [PMID: 32518769 PMCID: PMC7262697 DOI: 10.12998/wjcc.v8.i10.1767] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/27/2020] [Accepted: 04/30/2020] [Indexed: 02/05/2023] Open
Abstract
Oleanolic acid (OA) and its derivatives are widely found in diverse plants and are naturally effective pentacyclic triterpenoid compounds with broad prophylactic and therapeutic roles in various diseases such as ulcerative colitis, multiple sclerosis, metabolic disorders, diabetes, hepatitis and different cancers. This review assembles and presents the latest in vivo reports on the impacts of OA and OA derivatives from various plant sources and the biological mechanisms of OA activities. Thus, this review presents sufficient data proposing that OA and its derivatives are potential alternative and complementary therapies for the treatment and management of several diseases.
Collapse
Affiliation(s)
- Alaattin Sen
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri 38080, Turkey
| |
Collapse
|
30
|
Labbozzetta M, Notarbartolo M, Poma P. Can NF-κB Be Considered a Valid Drug Target in Neoplastic Diseases? Our Point of View. Int J Mol Sci 2020; 21:ijms21093070. [PMID: 32349210 PMCID: PMC7246796 DOI: 10.3390/ijms21093070] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
Multidrug resistance (MDR), of the innate and acquired types, is one of major problems in treating tumor diseases with a good chance of success. In this review, we examine the key role of nuclear factor-kappa B (NF-κB) to induce MDR in three tumor models characterized precisely by innate or acquired MDR, in particular triple negative breast cancer (TNBC), hepatocellular carcinoma (HCC), and acute myeloid leukemia (AML). We also present different pharmacological approaches that our group have employed to reduce the expression/activation of this transcriptional factor and thus to restore chemo-sensitivity. Finally, we examine the latest scientific evidence found by other groups, the most significant clinical trials regarding NF-κB, and new perspectives on the possibility to consider this transcriptional factor a valid drug target in neoplastic diseases.
Collapse
|
31
|
Poma P, Labbozzetta M, McCubrey JA, Ramarosandratana AV, Sajeva M, Zito P, Notarbartolo M. Antitumor Mechanism of the Essential Oils from Two Succulent Plants in Multidrug Resistance Leukemia Cell. Pharmaceuticals (Basel) 2019; 12:ph12030124. [PMID: 31454963 PMCID: PMC6789815 DOI: 10.3390/ph12030124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 01/09/2023] Open
Abstract
Drug resistance remains a major challenge in the treatment of cancer. The multiplicity of the drug resistance determinants raises the question about the optimal strategies to deal with them. Essential oils showed to inhibit the growth of different tumor cell types. Essential oils contain several chemical classes of compounds whose heterogeneity of active moieties can help prevent the development of drug resistance. In the present paper, we analyzed, by gas chromatography-mass spectrometry the chemical composition of the essential oil of the leaves of Kalanchoebeharensis obtained by hydrodistillation and compared the chemical composition of its essential oil with that of Cyphostemma juttae. Our results demonstrated the anticancer and proapoptotic activities of both species against acute myeloid leukemia on an in vitro model and its multidrug resistant variant involving NF-κB pathway. The essential oils of both species produced a significant decrease in many targets of NF-κB both at mRNA and protein levels. The results corroborate the idea that essential oils may be a good alternative to traditional drugs in the treatment of cancer, especially in drug resistant cancer.
Collapse
Affiliation(s)
- Paola Poma
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Manuela Labbozzetta
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Aro Vonjy Ramarosandratana
- Department of Plant Biology and Ecology, University of Antananarivo, P.O. Box 906, Antananarivo 101, Madagascar
| | - Maurizio Sajeva
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Pietro Zito
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Monica Notarbartolo
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| |
Collapse
|
32
|
Yang Y, Long L, Zhang X, Song K, Wang D, Xiong X, Gao H, Sha L. 16-Tigloyl linked barrigenol-like triterpenoid from Semen Aesculi and its anti-tumor activity in vivo and in vitro. RSC Adv 2019; 9:31758-31772. [PMID: 35527978 PMCID: PMC9072715 DOI: 10.1039/c9ra06015d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/25/2019] [Indexed: 01/11/2023] Open
Abstract
Barrigenol-like triterpenoids (BATs) showed promising anti-tumor, anti-inflammatory and anti-Alzheimer's activities, while, the inhibitory strength was usually affected by their states with aglycones or glycosides. In order to find more BATs as new anti-tumor agents with much more efficiency, the chemical and pharmaceutical studies were carried out on the acid hydrolysate product (AHP) of Semen Aesculi crude extract. Thirteen BATs, including three new aglycones (1–3), two new glycosides (4, 5) and eight known glycosides (6–13) were obtained. Compound 1, as the main product in AHP, with a tigloyl unit linked at the C-16 position was an unusual aglycone. All compounds exhibited various degrees of inhibitory activity against human breast cell line (MCF-7) and cervical cancer cell line (HeLa) growth, moreover, new aglycones 1 and 2, and the known glycoside 6 (escin Ia) and 9 were found to exhibit potent inhibitory activity which were similar to the positive control (doxorubicin hydrochloride). Compound 1, named 16-tigloyl-O-protoaescigenin, could suppress tumor progression and decreased lung metastasis focuses in mice, and no pathological change was observed at the end of the treatment course. Besides that, the hemolysis experiment between 1 and 6 revealed that the hemolysis toxicity of 1 was much less than that of 6. According to these results, 16-tigloyl-O-protoaescigenin, with the powerful anti-tumor activity and cancer cell apoptosis induction, might be considered as a new promising anti-tumor agent. Barrigenol-like triterpenoids (BATs) showed promising anti-tumor, anti-inflammatory and anti-Alzheimer's activities, while, the inhibitory strength was usually affected by their states with aglycones or glycosides.![]()
Collapse
Affiliation(s)
- Yiren Yang
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Benxi 117004
- People's Republic of China
| | - Liping Long
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Benxi 117004
- People's Republic of China
| | - Xinxin Zhang
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Benxi 117004
- People's Republic of China
| | - Kairu Song
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Benxi 117004
- People's Republic of China
| | - Da Wang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
| | - Xin Xiong
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Benxi 117004
- People's Republic of China
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Benxi 117004
- People's Republic of China
| | - Luping Sha
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Benxi 117004
- People's Republic of China
| |
Collapse
|