1
|
Li Y, Duan X, Wang Y, Deng Y, Zhang J. Structural characterization and in vitro hepatoprotective activity of an acidic polysaccharide from Dendrobium nobile Lindl. flower. Int J Biol Macromol 2025; 284:138100. [PMID: 39608518 DOI: 10.1016/j.ijbiomac.2024.138100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
This study aimed to investigate the structural characterization, conformational properties, and hepatoprotectiveactivity of acidic polysaccharide (DNLPS-3) from Dendrobium nobile flower. DNLPS-3 with molecular weights of 15.65 KDa was composed of Fuc: Rha: Ara: Gal: Glc: Xyl: GalA: GlcA in a molar ratio of 0.26%: 2.38%: 4.47%: 3.55%: 0.43%: 17.84%: 69.80%: 1.26%. Structural analysis with methylation indicated that DNLPS-3 mainly contained T-Ara(f), T-Xyl(p), T-Gal(p)A, 3-Gal(p)A, 4-Gal(p)A, 3,4-Gal(p)A, 3,4-Glc(p), 2,4-Gal(p)A, 2,3,4-Gal(p), 4,6-Gal(p), 3,4,6-Gal(p). NMR results show that DNLPS-3 may be a pectin polysaccharide with →4)-α-Gal(p)A-(→main chain. In vitro experiments showed that DNLPS-3 exhibited significant hepatoprotective effects. The effect was achieved by reducing the activities of ALT and AST, suppressing the production of LDH and MDA, and enhancing the anti-oxidant activities of SOD and GSH, and the specific mechanism of its hepatoprotective effect is that DNLPS-3 up-regulates Nrf2/HO-1 pathway protein expression.
Collapse
Affiliation(s)
- Yao Li
- School of pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Xiaotong Duan
- School of pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yueyue Wang
- Hospital of Stomatology, Zunyi Medical University, Zunyi 563000, China
| | - Yong Deng
- School of pharmacy, Zunyi Medical University, Zunyi 563000, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.
| | - Jianyong Zhang
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
2
|
Chen W, Ma X, Jin W, Cheng H, Xu G, Wen H, Xu P. Shellfish polysaccharides: A comprehensive review of extraction, purification, structural characterization, and beneficial health effects. Int J Biol Macromol 2024; 279:135190. [PMID: 39216565 DOI: 10.1016/j.ijbiomac.2024.135190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Global food systems are currently facing great challenges, such as food sources, food safety, and environmental crises. Alternative nutritional resources have been proposed as part of the solution to meeting future global food demand. In the natural resources, shellfish are the major component of global aquatic animals. Although most studies focus on the allergy, toxin, and contamination of shellfish, it is also a delicious food to the human diet rich in proteins, polysaccharides, minerals, and omega-3. Among the functional ingredients, shellfish polysaccharides possess nutritional and medicinal values that arouse the great interest of researchers. The selection of the extraction approach and the experimental condition are the key factors that influence the extraction efficiency of shellfish polysaccharides. Importantly, the purification of crude polysaccharides comprises the enrichment of shellfish polysaccharides and isolation of fractions, also resulting in various structural characteristics and physicochemical properties. Chemical modification is also an efficient method to further improve the biological activities of shellfish polysaccharides. This review summarizes the extraction, purification, structural characterization, and chemical modification methods for shellfish polysaccharides. Additionally, the beneficial health effects of shellfish polysaccharides are highlighted, with an emphasis on their potential mechanism. Finally, current challenges and perspectives on shellfish polysaccharides are also spotlighted.
Collapse
Affiliation(s)
- Wanwen Chen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Xueyan Ma
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Wu Jin
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Hao Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Haibo Wen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| | - Pao Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| |
Collapse
|
3
|
Wang T, Liu Y, An C, Mueed A, Wu T, Jia Z, Li S, Ma H, Su L, Liu SY. Auricularia auricula polysaccharide alleviates cyclophosphamide-induced liver injury in mice involving remodeling of the gut bacteriome, mycobiome, and metabolome. Int J Biol Macromol 2024; 281:136703. [PMID: 39427797 DOI: 10.1016/j.ijbiomac.2024.136703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
In this study, a novel polysaccharide (AHP) from Auricularia auricula was isolated and purified, showing protective effects against CTX-induced liver injury in mice. To study the action mechanism of AHP, a liver injury model was established by intraperitoneally injection 80 mg/kg of CTX for 3 consecutive days. The focus was on how AHP regulated the gut bacteriome and mycobiome to help alleviate metabolic disorders associated with liver injury. Results showed that AHP amended liver injury by improving liver function, stabilizing oxidative stress homeostasis, reducing inflammatory invasion and activating Akt/GSK3β/Nrf-2/HO-1 signaling pathway. The 16S ribosomal DNA (16S rDNA) and Internal Transcribed Spacer-1 (ITS1) sequencing results demonstrated that AHP supplementation significantly restored the gut bacteriome and mycobiome composition in CTX-induced liver injury mice, by enriching the abundance of beneficial bacteriome (unclassified_Muribaculaceae, Faecalibaculum and Alloprevotella) and mycobiome (Fusarium), reducing the abundance of harmful bacteriome (Akkermanisa) and mycobiome (Fusicolla and Cladosporium). Analysis of untargeted metabolomics indicated that AHP altered the levels of metabolites associated with both bile acid and arachidonic acid metabolism, showing a significant connection to the AHP-regulated bacteriome and mycobiome. To conclude, the findings suggested that AHP was a viable and secure candidate for use as a hepatoprotective medication.
Collapse
Affiliation(s)
- Tianci Wang
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, Jilin Province, China; College of Mycology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yaqing Liu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, Jilin Province, China; College of Mycology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Canghai An
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, Jilin Province, China; College of Mycology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Tianxiang Wu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, Jilin Province, China; College of Mycology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Zikun Jia
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, Jilin Province, China; College of Mycology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Shunling Li
- College of Mycology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - He Ma
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, Jilin Province, China; College of Mycology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Ling Su
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, Jilin Province, China; College of Mycology, Jilin Agricultural University, Changchun 130118, Jilin, China.
| | - Shu-Yan Liu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, Jilin Province, China; College of Mycology, Jilin Agricultural University, Changchun 130118, Jilin, China.
| |
Collapse
|
4
|
Zhao Y, Han C, Wu Y, Sun Q, Ma M, Xie Z, Sun R, Pei H. Extraction, structural characterization, and antioxidant activity of polysaccharides from three microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172567. [PMID: 38643871 DOI: 10.1016/j.scitotenv.2024.172567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Microalgal polysaccharides have received much attention due to their potential value in preventing and regulating oxidative damage. This study aims to reveal the mechanisms of regulating oxidative stress and the differences in the yield, structure, and effect of polysaccharides extracted from three microalgae: Golenkinia sp. polysaccharides (GPS), Chlorella sorokiniana polysaccharides (CPS), and Spirulina subsalsa polysaccharides (SPS). Using the same extraction method, GPS, CPS, and SPS were all heteropoly- saccharides composed of small molecular fraction: the monosaccharides mainly comprised galactose (Gal). Among the three, SPS had a higher proportion of small molecular fraction, and a higher proportion of Gal; thus it had the highest yield and antioxidant activity. GPS, CPS, and SPS all showed strong antioxidant activity in vitro, and showed strong ability to regulate oxidative stress, among which SPS was slightly higher. From the analysis of gene expression, the Nrf2-ARE signalling pathway was an important pathway for GPS, CPS, and SPS to regulate cellular oxidative stress. This study provides a theoretical foundation for further research on the utilization of microalgae polysaccharides and product development.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Chun Han
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yangyingdong Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qianchen Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Meng Ma
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Xie
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Rong Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Haiyan Pei
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China.
| |
Collapse
|
5
|
Liu J, Song J, Chen W, Sun L, Zhao Y, Zong Y, He Z, Du R. Assessment of cytotoxicity, acute, subacute toxicities and antioxidant activities (in vitro) of Sanghuangporus vaninii crude polysaccharide. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117284. [PMID: 37844741 DOI: 10.1016/j.jep.2023.117284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Sanghuangporus vaninii (S. vaninii), as a traditional large medicinal fungus, has a history of more than 2000 years in Chinese history and has been widely used to treat female diseases such as vaginal discharge, amenorrhea, and uterine bleeding, and recent pharmacological studies have also found that it has antioxidant, anti-inflammatory, and anti-tumor physiological activity, which has received more and more attention. AIM OF THE STUDY The objective was to evaluate cytotoxicity and the acute, subacute toxicity, and in vitro antioxidant activity of S. vaninii crude polysaccharide (SVP). MATERIALS AND METHODS The monosaccharide composition of SVP was determined by HPLC (high-performance liquid chromatography). The cytotoxicity of different concentrations of SVP on three types of cells (HT-22, Kupffer macrophages, HEK293) was assessed using CCk-8. The acute toxicity in vivo was evaluated for 14 days after the administration of SVP (2500,5000, or 10,000 mg/mL). For the evaluation of subacute toxicity, mice were daily treated for 28 days with SVP (2500,5000, or 10,000 mg/mL). In addition, DPPH, hydroxyl radical, and superoxide anion radical were used to evaluate the in vitro antioxidant activity of SVP. RESULTS SVP was not toxic in all three cell lines tested. In vitro antioxidant tests on the extracts showed that SVP possessed a strong antioxidant capacity in vitro. In the acute study, the no-observed-adverse-effect level (NOAEL) in male and female rats was 10,000 mg/kg body weight. There were also no deaths or severe toxicity associated with SVP in subacute studies. However, SVP treatment had a decreasing effect on body weight in mice of both sexes (2500, 5000, and 10000 mg/kg). At doses (5000 and 10,000 mg/kg), SVP had a reduced effect on food intake in both male and female mice. In addition, there were significant effects on organ coefficients of the liver, lung, and kidney. Hematological analysis showed significantly lower LYM (%) values in mice of both sexes, with significantly lower MCH (pg) values obtained in males (5000 mg/kg and 10000 mg/kg) and higher GRAN (%) values in females. In addition, the RDW-SD (fL) values were significantly lower in the male mice given the highest dose. Biochemical tests showed that there were no significant changes in ALT, AST, TP, and Cr levels after SVP treatment. In histopathological analysis, mild liver toxicity was observed in both female mice treated with 10,000 mg/kg SVP. CONCLUSION The extract of SVP showed a predominance of polysaccharide compounds, with non-toxic action in vivo. Our approach revealed SVP on the chemical composition and suggests a high margin of safety in the popular use of medicinal fungi. In conclusion, our results suggest that SVP is safe, and can be used as health care products and food.
Collapse
Affiliation(s)
- Jinze Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Jinyue Song
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - WeiJia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Li Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China; China Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer of China, Changchun, Jilin, 130118, China.
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China; China Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer of China, Changchun, Jilin, 130118, China
| |
Collapse
|
6
|
Hammad M, Raftari M, Cesário R, Salma R, Godoy P, Emami SN, Haghdoost S. Roles of Oxidative Stress and Nrf2 Signaling in Pathogenic and Non-Pathogenic Cells: A Possible General Mechanism of Resistance to Therapy. Antioxidants (Basel) 2023; 12:1371. [PMID: 37507911 PMCID: PMC10376708 DOI: 10.3390/antiox12071371] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The coordinating role of nuclear factor erythroid-2-related factor 2 (Nrf2) in cellular function is undeniable. Evidence indicates that this transcription factor exerts massive regulatory functions in multiple signaling pathways concerning redox homeostasis and xenobiotics, macromolecules, and iron metabolism. Being the master regulator of antioxidant system, Nrf2 controls cellular fate, influencing cell proliferation, differentiation, apoptosis, resistance to therapy, and senescence processes, as well as infection disease success. Because Nrf2 is the key coordinator of cell defence mechanisms, dysregulation of its signaling has been associated with carcinogenic phenomena and infectious and age-related diseases. Deregulation of this cytoprotective system may also interfere with immune response. Oxidative burst, one of the main microbicidal mechanisms, could be impaired during the initial phagocytosis of pathogens, which could lead to the successful establishment of infection and promote susceptibility to infectious diseases. There is still a knowledge gap to fill regarding the molecular mechanisms by which Nrf2 orchestrates such complex networks involving multiple pathways. This review describes the role of Nrf2 in non-pathogenic and pathogenic cells.
Collapse
Affiliation(s)
- Mira Hammad
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
| | - Mohammad Raftari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Rute Cesário
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Rima Salma
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
| | - Paulo Godoy
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - S Noushin Emami
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
- Natural Resources Institute, University of Greenwich, London ME4 4TB, UK
| | - Siamak Haghdoost
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
- Advanced Resource Center for HADrontherapy in Europe (ARCHADE), 14000 Caen, France
| |
Collapse
|
7
|
Mohamed OS, Abdel Baky NA, Sayed-Ahmed MM, Al-Najjar AH. Lactoferrin alleviates cyclophosphamide induced-nephropathy through suppressing the orchestration between Wnt4/β-catenin and ERK1/2/NF-κB signaling and modulating klotho and Nrf2/HO-1 pathway. Life Sci 2023; 319:121528. [PMID: 36828132 DOI: 10.1016/j.lfs.2023.121528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
AIMS Cyclophosphamide is an alkylating agent with vast arrays of therapeutic activity. Currently, its medical use is limited due to its numerous adverse events, including nephrotoxicity. This study aimed to follow the molecular mechanisms behind the potential renoprotective action of lactoferrin (LF) against cyclophosphamide (CP)-induced renal injury. MATERIALS AND METHODS For fulfillment of our aim, Spragw-Dwaly rats were orally administrated LF (300 mg/kg) for seven consecutive days, followed by a single intraperitoneal injection of CP (150 mg/kg). KEY FINDINGS Treatment of CP-injured rats with LF significantly reduced the elevated creatinine and blood urea nitrogen (BUN), markedly upregulated Nrf2/HO-1 signaling with consequent increase in renal total antioxidant capacity (TAC) and decrease in renal malondialdehyde (MDA) level. Furthermore, LF treatment significantly reduced the elevated renal p-ERK1/2 expression, tumor necrosis factor-α (TNFα), interleukin-6 (IL-6), nuclear factor-kappa B (NF-κB) levels in CP-treated animals. Interestingly, LF treatment downregulated Wnt4/β-catenin signaling and increased both renal klotho gene expression and serum klotho level. Furthermore, LF treatment reduced apoptosis in kidney tissue via suppressing GSK-3β expression and modulating caspase-3 and Bcl2 levels. Histopathological examination of kidney tissue confirmed the protective effect of LF against CP-induced renal injury. SIGNIFICANCE The present findings document the renoprotective effect of LF against CP-induced nephropathy, which may be mediated via suppressing ERK1/2/ NF-κB and Wnt4/β-catenin trajectories and enhancing klotho expression and Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Ola S Mohamed
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Nayira A Abdel Baky
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| | - Mohamed M Sayed-Ahmed
- Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Aya H Al-Najjar
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
8
|
Luo JH, Li J, Shen ZC, Lin XF, Chen AQ, Wang YF, Gong ES, Liu D, Zou Q, Wang XY. Advances in health-promoting effects of natural polysaccharides: Regulation on Nrf2 antioxidant pathway. Front Nutr 2023; 10:1102146. [PMID: 36875839 PMCID: PMC9978827 DOI: 10.3389/fnut.2023.1102146] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Natural polysaccharides (NPs) possess numerous health-promoting effects, such as liver protection, kidney protection, lung protection, neuroprotection, cardioprotection, gastrointestinal protection, anti-oxidation, anti-diabetic, and anti-aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway is an important endogenous antioxidant pathway, which plays crucial roles in maintaining human health as its protection against oxidative stress. Accumulating evidence suggested that Nrf2 antioxidant pathway might be one of key regulatory targets for the health-promoting effects of NPs. However, the information concerning regulation of NPs on Nrf2 antioxidant pathway is scattered, and NPs show different regulatory behaviors in their different health-promoting processes. Therefore, in this article, structural features of NPs having regulation on Nrf2 antioxidant pathway are overviewed. Moreover, regulatory effects of NPs on this pathway for health-promoting effects are summarized. Furthermore, structure-activity relationship of NPs for health-promoting effects by regulating the pathway is preliminarily discussed. Otherwise, the prospects on future work for regulation of NPs on this pathway are proposed. This review is beneficial to well-understanding of underlying mechanisms for health-promoting effects of NPs from the view angle of Nrf2 antioxidant pathway, and provides a theoretical basis for the development and utilization of NPs in promoting human health.
Collapse
Affiliation(s)
- Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jing Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Zi-Chun Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiao-Fan Lin
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Ao-Qiu Chen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yi-Fei Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Er-Sheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Boulaka A, Mantellou P, Stanc GM, Souka E, Valavanis C, Saxami G, Mitsou E, Koutrotsios G, Zervakis GI, Kyriacou A, Pletsa V, Georgiadis P. Genoprotective activity of the Pleurotus eryngii mushrooms following their in vitro and in vivo fermentation by fecal microbiota. Front Nutr 2022; 9:988517. [PMID: 36082029 PMCID: PMC9445615 DOI: 10.3389/fnut.2022.988517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Pleurotus eryngii mushrooms are commercially cultivated and widely consumed due to their organoleptic properties, and the low caloric and high nutritional value. In addition, they contain various biologically active and health-promoting compounds; very recently, their genoprotective effect in Caco-2 cells after their fermentation by the human fecal microbiota was also documented. In the current study, the effect of P. eryngii pre- and post-fermentation supernatants in micronuclei formation was evaluated in human lymphocytes. In addition, the genoprotective properties of increasing concentrations of aqueous extracts from P. eryngii mushrooms (150, 300, 600 mg/kg) against the cyclophosphamide-induced DNA damage were studied in young and elderly female and male mice in bone marrow and whole blood cells. The ability of the highest dose (600 mg/kg) to regulate the main cellular signaling pathways was also evaluated in gut and liver tissues of female animals by quantifying the mRNA expression of NrF2, Nfkβ, DNMT1, and IL-22 genes. P. eryngii post-fermentation, but not pre-fermentation, supernatants were able to protect human lymphocytes from the mitomycin C-induced DNA damage in a dose-dependent manner. Similarly, genoprotection was also observed in bone marrow cells of mice treated by gavage with P. eryngii extract. The effect was observed in all the experimental groups of mice (young and elderly, male and female) and was more potent in young female mice. Overexpression of all genes examined was observed in both tissues, mainly among the elderly animals. In conclusion, P. eryngii mushrooms were shown to maintain genome integrity through protecting cells from genotoxic insults. These beneficial effects can be attributed to their antioxidant and immunomodulatory properties, as well as their ability to regulate the cell's epigenetic mechanisms and maintain cell homeostasis.
Collapse
Affiliation(s)
- Athina Boulaka
- Laboratory of Environment and Health, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Panagiota Mantellou
- Laboratory of Environment and Health, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Gabriela-Monica Stanc
- Department of Pathology, Molecular Pathology Unit, Metaxa Cancer Hospital, Piraeus, Greece
| | - Efthymia Souka
- Department of Pathology, Molecular Pathology Unit, Metaxa Cancer Hospital, Piraeus, Greece
| | - Christoς Valavanis
- Department of Pathology, Molecular Pathology Unit, Metaxa Cancer Hospital, Piraeus, Greece
| | - Georgia Saxami
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Evdokia Mitsou
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Georgios Koutrotsios
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Athens, Greece
| | - Georgios I. Zervakis
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Athens, Greece
| | | | - Vasiliki Pletsa
- Laboratory of Environment and Health, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Panagiotis Georgiadis
- Laboratory of Environment and Health, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
10
|
Gao Y, Cao QQ, Chen YH, Granato D, Wang JQ, Yin JF, Zhang XB, Wang F, Chen JX, Xu YQ. Effects of the Baking Process on the Chemical Composition, Sensory Quality, and Bioactivity of Tieguanyin Oolong Tea. Front Nutr 2022; 9:881865. [PMID: 35651510 PMCID: PMC9150783 DOI: 10.3389/fnut.2022.881865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Tieguanyin oolong tea (TOT), a semi-oxidized tea originating from Anxi county in China, is categorized into jade TOT, medium-baked TOT, and deep-baked TOT, based on different baking processes. To study the effects of baking, chemical analysis, sensory evaluation, and bioactivity assessments of the three TOTs were conducted. The results indicated that the baking process promoted the formation of colored macromolecules (e.g., theabrownins), which affected the color of tea infusion. Free amino acids underwent the Maillard reaction and generated specific Maillard reaction products, such as 5-hydroxymethylfurfural and furfural, which modified the taste and aroma. Floral and fresh volatiles were remarkably reduced, while multiple new volatiles were produced, forming a typically baked aroma. The antioxidant activity and antibacterial activity were reduced after baking, which might be associated with the decrease of monomeric catechins. These results provide a scientific basis for understanding the changes caused by the baking process.
Collapse
Affiliation(s)
- Ying Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| | - Qing-Qing Cao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| | - Yu-Hong Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| | - Daniel Granato
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Jie-Qiong Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| | - Jun-Feng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
- Jun-Feng Yin,
| | - Xue-Bo Zhang
- National Tea Quality Supervision and Inspection Center, Fujian, China
| | - Fang Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| | - Jian-Xin Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
- *Correspondence: Yong-Quan Xu,
| |
Collapse
|
11
|
Qian L, Yang F, Lin X, Jiang S, Zhang Y, Tang Y. Pyrroloquinoline quinone ameliorates liver injury in mice induced by cyclophosphamide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30383-30393. [PMID: 34997497 DOI: 10.1007/s11356-021-17990-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The current study aimed to investigate the potential ameliorative effects of pyrroloquinoline quinone (PQQ) on cyclophosphamide (CTX)-induced liver injury in mice. The liver injury model was established by injecting mice with CTX (80 mg/kg/day). Liver function indices, antioxidant enzyme activities, and inflammatory cytokines were evaluated. In addition, protein expression levels of the nuclear factor E2-related factor 2 (Nrf2) and nuclear factor kappa-B (NF-κB) pathways in the liver tissues were determined using western blot. The results indicated that PQQ decreased the serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and the malondialdehyde (MDA), interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α) levels in the liver tissues. Moreover, PQQ enhanced the activities of oxidative stress markers to alleviate CTX induced oxidative stress. Furthermore, the expression levels of heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H quinone oxidoreductase 1 (NQO1) were significantly increased, and the expression levels of NF-κB p50, NF-κB p65, and inhibitor of NF-κB kinase alpha (IKKα) were significantly decreased after PQQ administration, suggesting that PQQ alleviated CTX-induced liver injury via activating the Nrf2-mediated antioxidant response pathway, and inhibiting the NF-κB-mediated inflammation pathway. Therefore, PQQ can be potentially used as a dietary supplement or functional foods for alleviating the CTX-induced liver injury.
Collapse
Affiliation(s)
- Li Qian
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Fei Yang
- Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Neonatal Intensive Care Unit, Hangzhou, 310008, People's Republic of China
| | - Xinhui Lin
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Su Jiang
- ECA Healthcare Inc, Shanghai, 201101, People's Republic of China
| | - Yun Zhang
- Qianjiang College, Hangzhou Normal University, Hangzhou, 310012, People's Republic of China.
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China.
| |
Collapse
|
12
|
Mesona chinensis Benth polysaccharides alleviates liver injury by beneficial regulation of gut microbiota in cyclophosphamide-induced mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Zhou Y, Wang J, Zhang D, Liu J, Wu Q, Chen J, Tan P, Xing B, Han Y, Zhang P, Xiao X, Pei J. Mechanism of drug-induced liver injury and hepatoprotective effects of natural drugs. Chin Med 2021; 16:135. [PMID: 34895294 PMCID: PMC8665608 DOI: 10.1186/s13020-021-00543-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/21/2021] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) is a common adverse drug reaction (ADR) and a serious threat to health that affects disease treatments. At present, no targeted clinical drugs are available for DILI. Traditional natural medicines have been widely used as health products. Some natural medicines exert specific hepatoprotective effects, with few side effects and significant clinical efficacy. Thus, natural medicines may be a promising direction for DILI treatment. In this review, we summarize the current knowledge, common drugs and mechanisms of DILI, as well as the clinical trials of natural drugs and their bioactive components in anticipation of the future development of potential hepatoprotective drugs.
Collapse
Affiliation(s)
- Yongfeng Zhou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137 Sichuan China
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, 100#, West 4th Ring Middle Rd., Fengtai, Beijing, 10039 China
| | - Junnan Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488 China
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, 100#, West 4th Ring Middle Rd., Fengtai, Beijing, 10039 China
| | - Dingkun Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137 Sichuan China
| | - Jiaxin Liu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, 100#, West 4th Ring Middle Rd., Fengtai, Beijing, 10039 China
| | - Qinghua Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137 Sichuan China
| | - Jiang Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137 Sichuan China
| | - Peng Tan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137 Sichuan China
| | - Boyu Xing
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, 100#, West 4th Ring Middle Rd., Fengtai, Beijing, 10039 China
| | - Yanzhong Han
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137 Sichuan China
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, 100#, West 4th Ring Middle Rd., Fengtai, Beijing, 10039 China
| | - Ping Zhang
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, 100#, West 4th Ring Middle Rd., Fengtai, Beijing, 10039 China
| | - Xiaohe Xiao
- Department of Liver Disease, Fifth Medical Center of PLA General Hospital, 100#, West 4th Ring Middle Rd., Fengtai, Beijing, 10039 China
| | - Jin Pei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137 Sichuan China
| |
Collapse
|
14
|
Tian JS, Zhao HL, Gao Y, Wang Q, Xiang H, Xu XP, Huang S, Yan DL, Qin XM. Branched-Chain Amino Acids Catabolism Pathway Regulation Plays a Critical Role in the Improvement of Leukopenia Induced by Cyclophosphamide in 4T1 Tumor-Bearing Mice Treated With Lvjiaobuxue Granule. Front Pharmacol 2021; 12:657047. [PMID: 34759816 PMCID: PMC8573099 DOI: 10.3389/fphar.2021.657047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023] Open
Abstract
Background: Cyclophosphamide is a common tumor chemotherapy drug used to treat various cancers. However, the resulting immunosuppression leads to leukopenia, which is a serious limiting factor in clinical application. Therefore, the introduction of immunomodulators as adjuvant therapy may help to reduce the hematological side effects of cyclophosphamide. Lvjiaobuxue granule has been widely used in the clinical treatment of gynecological diseases such as anemia and irregular menstruation. Recently, it has been found to increase the function of white blood cells, but its mechanism of action is still unclear. We aimed to reveal the mechanisms of Lvjiaobuxue granule against acute leukopenia by an integrated strategy combining metabolomics with network pharmacology. Methods: Subcutaneously inoculated 4T1 breast cancer cells to prepare tumor-bearing mice, intraperitoneal injection of cyclophosphamide to establish a 4T1 tumor-bearing mice leukopenia animal model, using pharmacodynamic indicators, metabolomics, network pharmacology and molecular biology and other technical methods. To comprehensively and systematically elucidate the effect and mechanism of Lvjiaobuxue granule in improving cyclophosphamide-induced leukopenia in 4T1 tumor-bearing mice. Results: Lvjiaobuxue granule can improve the blood routine parameters and organ index levels of the leukopenia model of 4T1 tumor-bearing mice. Metabolomics studies revealed that 15 endogenous metabolites in the spleen of mice were considered as potential biomarkers of Lvjiaobuxue granule for their protective effect. Metabonomics and network pharmacology integrated analysis indicated that Lvjiaobuxue granule exerted the leukocyte elevation activity by inhibiting the branched-chain amino acids (BCAAs) degradation pathway and increasing the levels of valine, leucine and isoleucine. The results of molecular biology also showed that Lvjiaobuxue granule can significantly regulate the key enzymes in the catabolism of BCAAs, which further illustrates the importance of BCAAs in improving leukopenia. Conclusion: Lvjiaobuxue granule exerts obvious pharmacological effects on the leukopenia model of 4T1 tumor-bearing mice induced by cyclophosphamide, which could be mediated by regulating the branched-chain amino acid degradation pathway and the levels of valine, leucine and isoleucine.
Collapse
Affiliation(s)
- Jun-sheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Jiuzhitang Co. Ltd., Changsha, China
| | - Hui-liang Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Yao Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Qi Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Huan Xiang
- School of Physical Education, Shanxi University, Taiyuan, China
| | | | - Sheng Huang
- Jiuzhitang Co. Ltd., Changsha, China
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | | | - Xue-mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| |
Collapse
|
15
|
Castañeda-Yslas IY, Torres-Bugarín O, García-Ramos JC, Toledano-Magaña Y, Radilla-Chávez P, Bogdanchikova N, Pestryakov A, Ruiz-Ruiz B, Arellano-García ME. AgNPs Argovit™ Modulates Cyclophosphamide-Induced Genotoxicity on Peripheral Blood Erythrocytes In Vivo. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2096. [PMID: 34443926 PMCID: PMC8399516 DOI: 10.3390/nano11082096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022]
Abstract
Silver nanoparticles (AgNPs) have been studied worldwide for their potential biomedical applications. Specifically, they are proposed as a novel alternative for cancer treatment. However, the determination of their cytotoxic and genotoxic effects continues to limit their application. The commercially available silver nanoparticle Argovit™ has shown antineoplastic, antiviral, antibacterial, and tissue regenerative properties, activities triggered by its capacity to promote the overproduction of reactive oxygen species (ROS). Therefore, in this work, we evaluated the genotoxic and cytotoxic potential of the Argovit™ formulation (average size: 35 nm) on BALB/c mice using the micronucleus in a peripheral blood erythrocytes model. Besides, we evaluated the capability of AgNPs to modulate the genotoxic effect induced by cyclophosphamide (CP) after the administration of the oncologic agent. To achieve this, 5-6-week-old male mice with a mean weight of 20.11 ± 2.38 g were treated with water as negative control (Group 1), an single intraperitoneal dose of CP (50 mg/kg of body weight, Group 2), a daily oral dose of AgNPs (6 mg/kg of weight, Group 3) for three consecutive days, or a combination of these treatment schemes: one day of CP doses (50 mg/kg of body weight) followed by three doses of AgNPs (one dose per day, Group 4) and three alternate doses of CP and AgNPs (six days of exposure, Group 5). Blood samples were taken just before the first administration (0 h) and every 24 h for seven days. Our results show that Argovit™ AgNPs induced no significant cytotoxic or acute genotoxic damage. The observed cumulative genotoxic damage in this model could be caused by the accumulation of AgNPs due to administered consecutive doses. Furthermore, the administration of AgNPs after 24 h of CP seems to have a protective effect on bone marrow and reduces by up to 50% the acute genotoxic damage induced by CP. However, this protection is not enough to counteract several doses of CP. To our knowledge, this is the first time that the exceptional chemoprotective capacity produced by a non-cytotoxic silver nanoparticle formulation against CP genotoxic damage has been reported. These findings raise the possibility of using AgNPs as an adjuvant agent with current treatments, reducing adverse effects.
Collapse
Affiliation(s)
- Idalia Yazmin Castañeda-Yslas
- Programa de Maestría y Doctorado en Ciencias e Ingeniería (MyDCI), Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada 22860, Baja California, Mexico;
| | - Olivia Torres-Bugarín
- Departamento de Ciclo de Vida y Medicina Interna II, Decanato Ciencias de la Salud, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico;
| | - Juan Carlos García-Ramos
- Escuela de Ciencias de la Salud Unidad Valle Dorado, Universidad Autónoma de Baja California, Ensenada 22890, Baja California, Mexico; (Y.T.-M.); (P.R.-C.)
| | - Yanis Toledano-Magaña
- Escuela de Ciencias de la Salud Unidad Valle Dorado, Universidad Autónoma de Baja California, Ensenada 22890, Baja California, Mexico; (Y.T.-M.); (P.R.-C.)
| | - Patricia Radilla-Chávez
- Escuela de Ciencias de la Salud Unidad Valle Dorado, Universidad Autónoma de Baja California, Ensenada 22890, Baja California, Mexico; (Y.T.-M.); (P.R.-C.)
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada 22860, Baja California, Mexico;
| | - Alexey Pestryakov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | - Balam Ruiz-Ruiz
- Departamento de Ciencias de la Salud, Unidad Regional Los Mochis, Universidad Autónoma de Occidente, Los Mochis 81223, Sinaloa, Mexico;
| | | |
Collapse
|
16
|
Sun D, Sun C, Qiu G, Yao L, Yu J, Al Sberi H, Fouda MS, Othman MS, Lokman MS, Kassab RB, Abdel Moneim AE. Allicin mitigates hepatic injury following cyclophosphamide administration via activation of Nrf2/ARE pathways and through inhibition of inflammatory and apoptotic machinery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39625-39636. [PMID: 33763830 DOI: 10.1007/s11356-021-13392-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Treatment with anti-neoplastic agents, including cyclophosphamide (CP), is associated with several adverse reactions. Here, we distinguished the potential protective effect of allicin against CP-mediated hepatotoxicity in rats. To assess the effect of allicin, four experimental groups were used, with 7 rats per group, including control, allicin (10 mg/kg), CP (200 mg/kg), and allicin + CP-treated groups. All groups were treated for 10 days. Blood and liver samples were collected for biochemical, molecular, and histological analyses. Treatment with CP led to deformations in the liver tissue that were associated with higher liver function markers (alanine transaminase, aspartate transaminase, and alkaline phosphatase). Additionally, a disturbance in the redox balance was observed after CP exposure, as indicated by increased levels of oxidants, including malondialdehyde and nitric oxide, and the decreased levels of endogenous antioxidants, including glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase. At the molecular level, CP treatment resulted in reduced expression of the Nrf2/ARE pathway and other genes related to this pathway, including NAD(P)H quinone dehydrogenase 1 and glutamate-cysteine ligase catalytic subunit. CP also led to a hyper-inflammatory response in hepatic tissue, with increased production of pro-inflammatory cytokines, including tumor necrosis factor-alpha and interlukin-1beta, and upregulation of nitric oxide synthase 2. CP also enhanced the immunoreactivity of the profibrogenic cytokine, transforming growth factor-beta, in liver tissue. Upregulation of caspase 3 and Bcl-2-associated X protein and downregulation of B-cell lymphoma 2 were also observed in response to CP treatment. Treatment with allicin reversed the molecular, biochemical, and histological changes that occurred with CP exposure. These results suggest that allicin can be used in combination with CP to avoid hepatotoxicity.
Collapse
Affiliation(s)
- Dongsheng Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chen Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gongcai Qiu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Yao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jian Yu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, China.
| | - Hassan Al Sberi
- Basic Medical Science, Histopathology Department, National Organization for Drug Control and Research, Giza, Egypt
- Department of Biology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Manar S Fouda
- Chemistry Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt
| | - Mohamed S Othman
- Basic Sciences Department, Preparatory Year, University of Ha'il, Hail, Saudi Arabia
- Chemistry Department, Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza, Egypt
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam Bin Abdul Aziz University, Alkharj, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Biology Department, Faculty of Science and Arts, Al Baha University, Almakhwah Branch, Al Baha, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
17
|
Chen W, Lu Y, Hu D, Mo J, Ni J. Black mulberry (Morus nigra L.) polysaccharide ameliorates palmitate-induced lipotoxicity in hepatocytes by activating Nrf2 signaling pathway. Int J Biol Macromol 2021; 172:394-407. [PMID: 33450344 DOI: 10.1016/j.ijbiomac.2021.01.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 01/05/2023]
Abstract
Black mulberry (Morus nigra L.) has shown health benefits against metabolic disorders. Lipotoxicity is considered as a potentially cause of metabolic syndrome, and there is no effective treatment. However, the protective effect and its mechanism of black mulberry against lipotoxicity are unclear. In this study, three polysaccharide fractions (BP1, BP2, BP3) were isolated from black mulberry by stepwise precipitation with 30%, 60%, and 90% of ethanol and analyzed by GPC, HPLC and FT-IR methods. BP1 exhibited a better protective effect than BP2 and BP3 on palmitic acid (PA)-induced lipotoxicity in HepG2 cells. BP1 effectively reduced PA-induced lipotoxicity by eliminating accumulation of ROS, improving mitochondrial function, reversing glutathione depletion and enhancing antioxidant enzyme activities. Mechanistically, BP1 activated the Nrf2 signaling pathway, a master regulator of the antioxidant defense system, through increasing Nrf2 nuclear translocation and phosphorylation. Collectively, these results demonstrate that BP1 has the great potential for applications in lipid disorders.
Collapse
Affiliation(s)
- Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| | - Yang Lu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Dongwen Hu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Jianling Mo
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medcine, Zhejiang University, Hangzhou 310016, China
| | - Jingdan Ni
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medcine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
18
|
Antioxidant potential of Carica papaya Linn (Caricaceae) leaf extract in mice with cyclophosphamide induced oxidative stress. SCIENTIA MEDICA 2020. [DOI: 10.15448/1980-6108.2020.1.34702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
AIMS: This study aimed to investigate the effects of crude extract of Carica papaya leaves on oxidative stress in mice induced by cyclophosphamide, as well as phytochemical profile characterization of this extract.METHODS: The male Swiss mice received 15 days of treatment with the extract (500 mg kg-1, via gavage) and intraperitoneal injection of cyclophosphamide (75 mg kg-1) or saline (0.9%) on the 15th day. After 24 h the last treatment, the animals were anesthetized for blood withdrawal, sacrificed and removal of the organs for analyses (liver, kidney and heart). In the biochemical tests were determined: hematological parameters in blood, aminotransferases, alkaline phosphatase, glucose and total cholesterol dosages in plasma, enzymatic and non-enzymatic antioxidants and lipid damage marker were evaluated in different tissues, besides genotoxic and histopathological analyzes.RESULTS: In the extract of Carica papaya leaves, the flavonoids quercetin-3β-D-glucoside and rutin were identified, besides present positive results for alkaloids, saponins and tannins. This extract increased the activity of glutathione-S-transferase and catalase enzymes in the liver and reduced the levels of reduced glutathione in the kidneys and hematocrit levels, red cell count, and hemoglobin. It promoted the decrease of the reactive species of thiobarbituric acid (TBARS) in the kidneys and the activity of enzyme aspartate aminotransferase in the plasma and was antimutagenic in the micronucleus test.CONCLUSIONS: The study showed that extract of Carica papaya was beneficial against oxidative events and prevented DNA damage. The extract also showed hepatotoxicity, therefore prolonged infusion of papaya leaves is not advisable.
Collapse
|
19
|
Lin X, Yang F, Huang J, Jiang S, Tang Y, Li J. Ameliorate effect of pyrroloquinoline quinone against cyclophosphamide-induced nephrotoxicity by activating the Nrf2 pathway and inhibiting the NLRP3 pathway. Life Sci 2020; 256:117901. [PMID: 32504759 DOI: 10.1016/j.lfs.2020.117901] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
AIMS Cyclophosphamide (CTX) is an effective anti-tumor and immunosuppressive agent, but it induces nephrotoxicity in clinical applications. The present study aimed to evaluate the protective effect of pyrroloquinoline quinone (PQQ) on CTX-induced nephrotoxicity. MAIN METHODS We injected male ICR mice with CTX (80 mg/kg/day), and determined nephrotoxicity indices, MDA and antioxidant defenses, inflammatory cytokines, and the levels of main proteins in the Nrf2-HO-1 and NLRP3 signaling pathways. KEY FINDINGS PQQ has significantly decreased the serum levels of creatinine and urea compared to Model group. When treated with PQQ, MDA, IL-1β, IL-6, and TNF-α levels have decreased, and SOD, GSH-Px, and CAT activity have increased in the kidney tissues of CTX-induced mice. PQQ activated the Nrf2-mediated signaling pathway, as indicated by the increased expression of Nrf2, HO-1, GCLM, and NQO1. Moreover, PQQ inhibited the NLRP3 inflammatory pathway, as indicated by the reduced expression of NLRP3, ASC, and Caspase-1. SIGNIFICANCE Our results suggest that PQQ protects against CTX-induced nephrotoxicity, probably by activating the Nrf2-mediated antioxidant pathway and inhibiting the NLRP3 inflammatory pathway.
Collapse
Affiliation(s)
- Xinhui Lin
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Fei Yang
- Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Neonatal Intensive Care Unit, Hangzhou 310008, China
| | - Ju Huang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Su Jiang
- ECA Healthcare Inc., Shanghai 201101, China
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, No. 19 Keji Road, Jinzhou 121013, China..
| |
Collapse
|
20
|
First phytochemical study and biological activity of the leaves ethanolic extract from Cissus spinosa Cambess. SCIENTIA MEDICA 2020. [DOI: 10.15448/1980-6108.2020.1.34860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
AIMS: The objective of this study was to identify the phytochemical profile and to evaluate the biological effects of the crude ethanolic extract (EE) and the ethanolic fraction (EF) of leaves of the species Cissus spinosa Cambess, after oxidative stress induced by cyclophosphamide (CP) in mice.METHODS: Phytochemical profile was performed detecting functional groups and, analysis of total flavonoids and phenols concentration, as well as the antiradical activity in EE and EF. The phytochemical characterization was done for the identification of flavonoids present in the leaves of the plant. In the biochemical tests, hematological parameters, glucose and total cholesterol dosages in plasma, enzymatic and non-enzymatic antioxidants and lipid damage marker were evaluated in different tissues (liver, kidney and heart), besides genotoxic and immunological analyzes. The animals received 15 days of treatment, via gavage, with EE (50 mg kg-1) or EF (50 mg kg-1) and on the 15th day, an intraperitoneal injection of CP (100 mg kg-1) or saline (0.9%). After 24 h the last treatment, the animals were anesthetized for blood withdrawal, sacrificed and removal of the organs.RESULTS: In the phytochemical analyzes, the presence of alkaloids, flavonoids and phenols was identified, the latter presented a higher concentration for EF. Eight flavonoids were identified - Rutin, Quercetin-3-β-D-glucoside, Quercitrin, Taxifolin, Quercetin, Canferol, Luteolin and Apigenin. In the biochemical analyzes, in general, EE showed a better antioxidant action against oxidative damages, hypoglycemic and antitilipemic action when comparing with EF, probably due to the synergism caused by flavonoids. It was observed the reduction and an increase of micronucleated polychromatic erythrocytes, due to the action of antioxidant compounds and alkaloids present in the plant, also considering the question of the seasonal period that directly interferes in the production of these compounds. In the immunological analysis, the extracts did not stimulate the spontaneous production of oxygen peroxide (H2O2) and nitric oxide (NO•). CONCLUSIONS: Other studies, such as the variation of the chemical composition of the plant by local seasonality, hypoglycemic and antilipemic action, should be carried out to better delineate the biological action present in this plant.
Collapse
|
21
|
Ahn MY, Joo HJ, Kim JS, Yeon Y, Ryu HY, Choi BG, Song KS, Kim SH, Park MK, Jo YY. Toxicity assessment of Gryllus bimaculatus (a type of cricket) glycosaminoglycan. Toxicol Res 2020; 36:319-328. [PMID: 33005591 DOI: 10.1007/s43188-020-00037-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/18/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023] Open
Abstract
We performed general toxicity studies of Gryllus bimaculatus (two-spotted cricket) glycosaminoglycan (GbG), including a single, 4-week repeated oral dose toxicity test in ICR mice, and short-term genotoxicity tests. The mutagenic potential of the purified GbG was non-genotoxic when it was evaluated using short-term genotoxicity tests, namely Ames, chromosome aberration (CA), and micronuclei (MN) tests. In Salmonella typhimurium and Escherichia coli assays, GbG did not produce any mutagenic response in the absence or presence of S9 mix with five bacterial strains (TA98, TA100, TA1535, TA1537, and WP2uvrA). Chromosome aberration test showed that GbG had no significant effect on Chinese hamster ovary (CHO) cells. In mouse micronuclei tests after twice oral treatments per day for two days, no significant alteration in the occurrence of micronucleated polychromatic erythrocytes was observed in ICR male mice intraperitoneally administered with GbG at doses of 15.63, 31.25, or 62.50 mg/kg. These results indicate that GbG has no mutagenic potential in these in vitro and in vivo systems. After GbG was orally administered at doses of 20, 40, 80, and 160 mg/kg for a single oral dose toxicity study and at 0, 40, 80, and 160 mg/kg bw/day for 4-week oral dose toxicity study, there were no observed clinical signs or deaths related to treatment in any group tested. Therefore, the approximate lethal oral dose of GbG was considered to be higher than 160 mg/kg in mice. Throughout the administration period, no significant changes in diet consumption, ophthalmologic findings, organ weight, clinical pathology (hematology, clinical chemistry, coagulation, and urinalysis), or gross pathology were detected. Microscopic examination did not identify any treatment-related histopathologic changes in organs of GbG-treated mice in the high dose group. These results indicate that the no-observed adverse effect level (NOAEL) of GbG is higher than 160 mg/kg bw/day in mice.
Collapse
Affiliation(s)
- Mi Young Ahn
- Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA, 166 Nongsaengmyung-Ro, Iseo-Myun, Wanju-Gun, 55365 Korea
| | - Hyo Jin Joo
- Korea Conformity Labortories, Incheon, Korea
| | - Jin Sik Kim
- Korea Conformity Labortories, Incheon, Korea
| | - Yong Yeon
- Korea Conformity Labortories, Incheon, Korea
| | | | | | | | - Sang Ho Kim
- Korea Testing & Research Institute, Hwasun, Korea
| | | | - You Young Jo
- Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA, 166 Nongsaengmyung-Ro, Iseo-Myun, Wanju-Gun, 55365 Korea
| |
Collapse
|
22
|
Lin S, Hao G, Lai D, Tian Y, Long M, Lai F, Xiong Y, Ji C, Zang Y. Effect of Oyster Meat Preload on Postmeal Glycemic Control in Healthy Young Adults. J Am Coll Nutr 2019; 39:511-517. [PMID: 31880993 DOI: 10.1080/07315724.2019.1699475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective: Evidence suggests that food preload improves postmeal glycemic profiles, but the effects of marine food are poorly understood. Our study aims to verify the regulating effects of premeal oyster meat (OM) on postprandial blood glucose.Method: Edible parts of the flesh of oyster were prepared for a randomized crossover experiment. After overnight fasting, 20 healthy young men consumed 300 mL of preload drinks with 0 g/kg body weight (BW) (control), 0.1 g/kg BW, and 0.2 g/kg BW. Peripheral blood concentrations of glucose and gastrointestinal hormones were measured before preloading at baseline (0 minutes) and at intervals after the preload and after a preset rice meal. The nutrient composition of OM was analyzed.Results: Compared with other doses, 0.2 g/kg BW OM preload induced higher plasma premeal insulin (p < 0.05), C-peptide (p < 0.05), and glucagon-like peptide-1 (GLP-1; p < 0.05) without altering the glucose concentrations during premeal times. By contrast, 0.2 g/kg BW OM induced less secretion of glucose (p < 0.05) and gastric inhibitory peptide (GIP; p < 0.05), but higher secretion of GLP-1 (p < 0.05) than 0.1 g/kg BW of OM after a meal. During the entire experiment (0-170 minutes), OM reduced the blood glucose (p < 0.05) and GIP (p < 0.05), but increased GLP-1 (p < 0.05). OM was rich in protein (78.4%) and low in fat (6%). Glutamic acid, aspartic acids, glycine, and taurine are the amino acids with high content found in OM.Conclusions: OM preload reduces postmeal glycemia in healthy young people with associated changes in gastrointestinal hormone responses. This effect may be attributed to the rich contents of protein and amino acids of OM.
Collapse
Affiliation(s)
- Shuting Lin
- Central Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Gengxin Hao
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Dong Lai
- Central Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Yan Tian
- Central Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Min Long
- Central Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Fei Lai
- Central Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Yongmei Xiong
- Central Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Changfu Ji
- Central Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Yuan Zang
- Central Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| |
Collapse
|
23
|
Ghareeb MA, Sobeh M, El-Maadawy WH, Mohammed HS, Khalil H, Botros S, Wink M. Chemical Profiling of Polyphenolics in Eucalyptus globulus and Evaluation of Its Hepato-Renal Protective Potential Against Cyclophosphamide Induced Toxicity in Mice. Antioxidants (Basel) 2019; 8:E415. [PMID: 31546777 PMCID: PMC6769961 DOI: 10.3390/antiox8090415] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 12/23/2022] Open
Abstract
Cyclophosphamide (CP) is a potent anti-neoplastic and immunosuppressive agent; however, it causes multi-organ toxicity. We elucidated the protective activities of Eucalyptus globulus (EG) leaf extract against CP-induced hepato-renal toxicity. Mice were treated with EG for 15 days plus CP on day 12 and 13 of the experiment. Using HPLC-DAD-ESI-MS/MS, 26 secondary metabolites were identified in EG leaf extract. Out of them, 4 polyphenolic compounds were isolated: (1) 4-(O-β-d-xylopyranosyloxy)-3,5-di-hydroxy-benzoic acid, (2) 4-(O-α-l-rhamnopyranosyloxy)-3,5-di-hydroxy-benzoic acid, (3) gallic acid, and (4) methyl gallate. Effects of EG extract on biochemical parameters, gene expression, and immune-histopathological changes were assessed in comparison to mesna positive control. Results showed that EG improved CP-increased serum ALT, AST, creatinine, and blood urea nitrogen levels. The hepatic and renal tissue levels of MDA, nitric oxide, protein carbonyl, TNF-α, IL-6, and immunohistochemical expression of nuclear factor kappa-B (NF-kB) and caspase-3 were reduced. Also, hepatic and renal GSH contents, and nuclear factor E2-related factor 2 (NRf2)/ hemoxygenase-1 (HO-1) signaling levels were increased. Histopathological findings supported our findings where hepatic and renal architecture were almost restored. Results revealed the protective effects of EG against CP-induced hepato-renal toxicity. These effects may be related to EG antioxidant, anti-inflammatory, and anti-apoptotic properties coupled with activation of Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Mosad A Ghareeb
- Medicinal Chemistry Department, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Hadar, Imbaba (P.O. 30), Giza 12411, Egypt.
| | - Mansour Sobeh
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 44883-2462 Heidelberg, Germany.
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, Lot 660-Hay MoulayRachid, 43150 Ben-Guerir, Morocco.
| | - Walaa H El-Maadawy
- Pharmacology Department, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Hadar, Imbaba (P.O. 30), Giza 12411, Egypt.
| | - Hala Sh Mohammed
- Department of Pharmacognosy, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11311, Egypt.
| | - Heba Khalil
- Pathology Department, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Hadar, Imbaba (P.O. 30), Giza 12411, Egypt.
| | - Sanaa Botros
- Pharmacology Department, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Hadar, Imbaba (P.O. 30), Giza 12411, Egypt.
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 44883-2462 Heidelberg, Germany.
| |
Collapse
|
24
|
Cai B, Wan P, Chen H, Chen D, Chen X, Sun H, Pan J. Composition characterization of oyster polysaccharides from Crassostrea hongkongensis and their protective effect against H2O2-induced oxidative damage in IEC-6 cells. Int J Biol Macromol 2019; 124:246-254. [DOI: 10.1016/j.ijbiomac.2018.11.154] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 01/07/2023]
|
25
|
Xiong Q, Song Z, Hu W, Liang J, Jing Y, He L, Huang S, Wang X, Hou S, Xu T, Chen J, Zhang D, Shi Y, Li H, Li S. Methods of extraction, separation, purification, structural characterization for polysaccharides from aquatic animals and their major pharmacological activities. Crit Rev Food Sci Nutr 2018; 60:48-63. [PMID: 30285473 DOI: 10.1080/10408398.2018.1512472] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The further development of fishery resources is a hotspot in the development of the fishery industry. However, how to develop aquatic animal resources deeply is a key point to be solved in the fishery industry. Over the past decades, numerous aquatic animals have gained great attention in the development and utilization of their bioactive molecules which are of therapeutic applications as nutraceuticals and pharmaceuticals. Recent research revealed that aquatic animals are composed of many vital moieties, such as polysaccharides and proteins, which provide health benefits beyond basic nutrition. In particular, aquatic animal polysaccharides are gaining worldwide popularity owing to their high content, ease of extraction, specific structure, few side effects, prominent therapeutic potential and incorporation in functional foods and dietary supplements. Thus, tremendous research on the isolation, identification and bioactivities of polysaccharides has been carried out. This review presents comprehensive viewpoints on extraction, separation, purification, structural characterization and bioactivity of various polysaccharides from aquatic animals, such as sea cucumber, abalone, oyster and mussels. In addition, this review profiled a brief knowledge on both current challenges and future scope in aquatic animal polysaccharides field. The review will be a direction of deep processing in fishery resources, which is a hotspot, but technical bottleneck. Furthermore, the review could be served as a useful reference material for further investigation, production and application of polysaccharides from aquatic animals in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Qingping Xiong
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China.,Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China.,Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Zhuoyue Song
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Weihui Hu
- Division of Life Science, Center for Chinese Medicine, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, PR China
| | - Jian Liang
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yi Jing
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Lian He
- School of Nursing, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong, PR China
| | - Song Huang
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Xiaoli Wang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Shaozhen Hou
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Tingting Xu
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Jing Chen
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Danyan Zhang
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yingying Shi
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Hailun Li
- Nephrological Department, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, PR China
| | - Shijie Li
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| |
Collapse
|