1
|
Tan L, Wu S, Liu L, Wu S, Wang Q, Wang C, Li Y, Zhao B, Li G. Bacterial cellulose based gel of glycyrrhizic acid gel for atopic dermatitis: Design, optimization, in vitro and in vivo investigation. Int J Biol Macromol 2025; 286:138425. [PMID: 39647759 DOI: 10.1016/j.ijbiomac.2024.138425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
It has been evidenced that water retention effect is very important in the treatment of eczema and one carrier of medicines, bacterial cellulose is accordance with the demand. However, this carrier is seldomly used as the carrier of medicines due to its inertia structure unless modified. As glycyrrhizic acid is a naturally amphiphilic and triterpenoid compound with anti-inflammatory effects and is a potential compound for treating eczema and it is naturally amphiphilic, a characteristic that may make bacterial cellulose one suitable carrier of the glycyrrhizic acid delivery system. Therefore, the main purpose of this study is to prepare and evaluate glycyrrhizic acid hydrogels with no-modified bacterial cellulose as the carrier. The bacterial cellulose glycyrrhizic acid hydrogel was prepared by physical crosslinking method, and the formulation was optimized through single factor investigation and orthogonal experiment. The optimized hydrogel was characterized in vitro to evaluate the skin permeability, skin irritation and efficacy on DNCB induced acute eczema in mice. In vitro characterization data supported the formation of hydrogels. GA-BC hydrogel has good skin permeability and no obvious irritation to animal skin. GA-BC hydrogel can significantly promote the recovery of skin lesions and has a certain effect on eczema as compared with GA hydrogel.
Collapse
Affiliation(s)
- Liangjun Tan
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Shumin Wu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lixiu Liu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pharmacy, Guangzhou Chest Hospital, Guangzhou 510515, China
| | - Sheng Wu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiong Wang
- Hongqing Flowery Biotech (Guangzhou) CO., LTD, China
| | - Chunxia Wang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yilei Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Boxin Zhao
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guofeng Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China; School of Health and Hygiene, Guangzhou Huaxia Vocational College, China.
| |
Collapse
|
2
|
Prakash Kamath P, Devanand Bangera P, Dhatri Kara D, Roychowdhury R, Tippavajhala VK, Rathnanand M. Formulation and evaluation of ibrutinib-loaded glycyrrhizic acid conjugated ovalbumin nanoparticles and ibrutinib-glycyrrhizic acid complex for improved oral bioavailability. Pharm Dev Technol 2024; 29:1185-1198. [PMID: 39642037 DOI: 10.1080/10837450.2024.2436190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/29/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024]
Abstract
The study aimed at enhancing the oral bioavailability of the BCS class 2 drug Ibrutinib (IBR), which exhibits low solubility (0.002 mg/mL) and high permeability (3.9% oral bioavailability). This was achieved through the formulation and evaluation of Ibrutinib-loaded Glycyrrhizic acid conjugated egg ovalbumin nanoparticles (IBR-GA-EA NPs) and Ibrutinib-Glycyrrhizic acid complex (IBR-GA-COMP). The formulation of Ibrutinib-Glycyrrhizic acid complex aimed to enhance the oral bioavailability of Ibrutinib. Lyophilized Ibrutinib-Glycyrrhizic acid complex was prepared and characterized through various studies including DSC, FTIR, in vitro release, and in vivo pharmacokinetics studies. DSC and FTIR confirmed successful formulation development. The nanoparticles exhibited spherical morphology with favourable characteristics: particle size of 194.10 nm, PDI of 0.22, and zeta potential of -33.96 mV. Encapsulation efficiency was 82.88%. In vitro release study displayed major improvement in drug release pattern compared to the free drug suspension. In vivo pharmacokinetic studies demonstrated 3.21-fold and 3.41-fold increase in the oral bioavailability of IBR-GA-EA NPs and IBR-GA-COMP, respectively, compared to IBR suspension alone. The formulated IBR-GA-EA NPs and IBR-GA-COMP are promising drug delivery methods as they successfully improve the solubility and oral bioavailability of Ibrutinib.
Collapse
Affiliation(s)
- Prateeksha Prakash Kamath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Pragathi Devanand Bangera
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Divya Dhatri Kara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | | | - Vamshi Krishna Tippavajhala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
3
|
Xiao M, Guo Z, Yang Y, Hu C, Cheng Q, Zhang C, Wu Y, Cheng Y, Benson WLM, Shamay SMN, Leung GPH, Li J, Gao H, Zhang J. Glycyrrhizic acid-based multifunctional nanoplatform for tumor microenvironment regulation. Chin J Nat Med 2024; 22:1089-1099. [PMID: 39725510 DOI: 10.1016/s1875-5364(24)60685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Indexed: 12/28/2024]
Abstract
Natural compounds demonstrate unique therapeutic advantages for cancer treatment, primarily through direct tumor suppression or interference with the tumor microenvironment (TME). Glycyrrhizic acid (GL), a bioactive ingredient derived from the medicinal herb Glycyrrhiza uralensis Fisch., and its sapogenin glycyrrhetinic acid (GA), have been recognized for their ability to inhibit angiogenesis and remodel the TME. Consequently, the combination of GL with other therapeutic agents offers superior therapeutic benefits. Given GL's amphiphilic structure, self-assembly capability, and liver cancer targeting capacity, various GL-based nanoscale drug delivery systems have been developed. These GL-based nanosystems exhibit angiogenesis suppression and TME regulation properties, synergistically enhancing anti-cancer effects. This review summarizes recent advances in GL-based nanosystems, including polymer-drug micelles, drug-drug assembly nanoparticles (NPs), liposomes, and nanogels, for cancer treatment and tumor postoperative care, providing new insights into the anti-cancer potential of natural compounds. Additionally, the review discusses existing challenges and future perspectives for translating GL-based nanosystems from bench to bedside.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhiqing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yating Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chuan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanfen Cheng
- School of Medicine, Chengdu University, Chengdu 610106, China
| | - Wui Lau Man Benson
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Sheung Mei Ng Shamay
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong 999077, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong 999077, China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hong Kong 999077, China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
4
|
Villalaín J. Localization, aggregation, and interaction of glycyrrhizic acid with the plasma membrane. J Biomol Struct Dyn 2024:1-11. [PMID: 39601256 DOI: 10.1080/07391102.2024.2434037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/07/2024] [Indexed: 11/29/2024]
Abstract
Glycyrrhizic acid (GLA) is the most important bioactive constituent of licorize root and exhibits antiviral, antimicrobial, anti-oxidant, anti-inflammatory, anti-allergic, and antitumor activities. GLA has an amphiphilic nature consisting of two hydrophilic and one hydrophobic part, and its mechanism of action could be mediated by its incorporation into the membrane. Furthermore, GLA presents two different forms, protonated (GLA) and deprotonated (GLAD), and has been suggested that their location inside the membrane could be different. Since GLA could be a source against many types of diseases, we have localized the GLA molecule in the presence of a complex membrane and established the detailed interactions of GLA with lipids using all-atom molecular dynamics. Our outcomes sustain that GLA/GLAD tend to locate amid the CHOL oxygen atom and the phospholipid phosphates, preferably perpendicular to the membrane surface, increasing membrane fluidity. Interestingly, GLA and GLAD tend to be surrounded by specific phospholipids, different for each type of molecule. Outstandingly, both GLA and GLAD tend to spontaneously associate in solution forming aggregates, precluding them from inserting into the membrane and, therefore, interacting with it. Consequently, some of the biological properties of GLA/GLAD could be credited to the alteration of the membrane biophysical properties by interacting with specific lipids. However, the formation of an aggregate in solution could hinder its bioactive properties and should be considered a suited vehicle when prepared to be used in biological or clinical assays.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad 'Miguel Hernández', Elche-Alicante, Spain
| |
Collapse
|
5
|
Zhong G, Wang X, Zhang Q, Zhang X, Fang X, Li S, Pan Y, Ma Y, Wang X, Wan T, Wang Q. Exploring the therapeutic implications of natural compounds modulating apoptosis in vascular dementia. Phytother Res 2024; 38:5270-5289. [PMID: 39223915 DOI: 10.1002/ptr.8316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Vascular dementia (VaD) is a prevalent form of dementia stemming from cerebrovascular disease, manifesting in memory impairment and executive dysfunction, thereby imposing a substantial societal burden. Unfortunately, no drugs have been approved for the treatment of VaD due to its intricate pathogenesis, and the development of innovative and efficacious medications is urgently needed. Apoptosis, a programmed cell death process crucial for eliminating damaged or unwanted cells within an organism, assumes pivotal roles in embryonic development and tissue homeostasis maintenance. An increasing body of evidence indicates that apoptosis may significantly influence the onset and progression of VaD, and numerous natural compounds have demonstrated significant therapeutic potential. Here, we discuss the molecular mechanisms underlying apoptosis and its correlation with VaD. We also provide a crucial reference for developing innovative pharmaceuticals by systematically reviewing the latest research progress concerning the neuroprotective effects of natural compounds on VaD by regulating apoptosis. Further high-quality clinical studies are imperative to firmly ascertain these natural compounds' clinical efficacy and safety profiles in the treatment of VaD.
Collapse
Affiliation(s)
- Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Wang
- Department of Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xueying Zhang
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, China
| | - Xiaoling Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuting Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaru Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujie Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuejing Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Wan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
6
|
Sun Y, Liang J, Zhang Z, Sun D, Li H, Chen L. Extraction, physicochemical properties, bioactivities and application of natural sweeteners: A review. Food Chem 2024; 457:140103. [PMID: 38905824 DOI: 10.1016/j.foodchem.2024.140103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Natural sweeteners generally refer to a sweet chemical component directly extracted from nature or obtained through appropriate modifications, mainly secondary metabolites of plants. Compared to the first-generation sweeteners represented by sucrose and the second-generation sweeteners represented by sodium cyclamate, natural sweeteners usually have high sweetness, low-calorie content, good solubility, high stability, and rarely toxic side effects. Historically, researchers mainly focus on the function of natural sweeteners as substitutes for sugars in the food industry. This paper reviews the bioactivities of several typical natural sweeteners, including anti-cancer, anti-inflammatory, antioxidant, anti-bacterial, and anti-hyperglycemic activities. In addition, we have summarized the extraction, physicochemical properties, and application of natural sweeteners. The article aimed to comprehensively collate vital information about natural sweeteners and review the potentiality of tapping bioactive compounds from natural products. Hopefully, this review provides insights into the further development of natural sweeteners as therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Yanyu Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhiruo Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
7
|
Zhang W, Li J, Yue L, Ji C. Targeted Delivery of Celastrol by GA-Modified Liposomal Calcium Carbonate Nanoparticles to Enhance Antitumor Efficacy Against Breast Cancer. Pharmaceutics 2024; 16:1382. [PMID: 39598506 PMCID: PMC11597737 DOI: 10.3390/pharmaceutics16111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Breast cancer, a leading health threat affecting millions worldwide, requires effective therapeutic interventions. Celastrol (CEL), despite its antitumor potential, is limited by poor solubility and stability. This study aimed to enhance CEL's efficacy by encapsulating it within glycyrrhizic acid (GA)-modified lipid calcium carbonate (LCC) nanoparticles for targeted breast cancer therapy. METHODS The 4T1 mouse breast cancer cells were used for the study. GA-LCC-CEL nanoparticles were prepared using a gas diffusion method and a thin-film dispersion method. GA-LCC-CEL were characterized using the zeta-potential, dynamic light scattering and transmission electron microscope (TEM). The in vitro release behavior of nanoparticles was assessed using the in vitro dialysis diffusion method. Cellular uptake was examined using flow cytometry and confocal microscopy. Intracellular ROS and Rhodamine 123 levels were observed under fluorescence microscopy. MTT and colony formation assays assessed cytotoxicity and proliferation, and apoptosis was analyzed by Annexin V-FITC/PI staining. Wound healing and transwell assays evaluated migration, and Western blotting confirmed protein expression changes related to apoptosis and migration. RESULTS GA-LCC-CEL nanoparticles displayed a well-defined core-shell structure with a uniform size distribution. They showed enhanced anti-proliferative and pro-apoptotic effects against 4T1 cells and significantly reduced breast cancer cell invasion and migration. Additionally, GA-LCC-CEL modulated epithelial-mesenchymal transition (EMT) protein expression, downregulating Snail and ZEB1, and upregulating E-cadherin. CONCLUSIONS GA-LCC-CEL nanoparticles represent a promising targeted drug delivery approach for breast cancer, enhancing CEL's antitumor efficacy and potentially inhibiting cancer progression by modulating EMT-related proteins.
Collapse
Affiliation(s)
- Wei Zhang
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150028, China;
| | - Jiping Li
- School of Public Health, Qiqihar Medical University, Qiqihar 161006, China;
| | - Liling Yue
- Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China;
| | - Chenfeng Ji
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150028, China;
| |
Collapse
|
8
|
Meneses-Sagrero SE, Rascón-Valenzuela LA, Arellano-García ME, Toledano-Magaña Y, García-Ramos JC. Natural compounds combined with imatinib as promising antileukemic therapy: An updated review. Fitoterapia 2024; 178:106185. [PMID: 39142530 DOI: 10.1016/j.fitote.2024.106185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Natural products (NP) have been an alternative therapy for several diseases for centuries, and they also serve as an essential source of bioactive molecules, enhancing our drug discovery capacity. Among these NP, some phytochemicals have shown multiple biological effects, including anticancer activity, with higher effectiveness and less toxicity than actual treatments, suggesting their possible use on resilient human malignancies such as leukemia. Imatinib mesylate (Im) is a selective tyrosine kinase inhibitor widely used as an anticancer drug, the gold standard to attend chronic myeloid leukemia (CML). Nevertheless, resistance to this drug in patients with CML renders it insufficient to eliminate cells with Philadelphia chromosome (BCR/ABL+). Moreover, recent studies show that imatinib can induce genotoxic and chromosomic damage in some in vitro and in vivo models. These facts urge finding new therapeutic alternatives to increase the effectiveness of antileukemic treatment. Recent research has shown that the combined effects of phytochemicals with imatinib can improve the cytotoxicity or resensitized the resistant cells to this drug in diverse leukemia cell lines. Independent mechanisms of action among phytochemicals and imatinib include BCR/ABL regulation, downregulation of transcription factors, inhibition of anti-apoptotic and activation of pro-apoptotic proteins, apoptosis induction dependent- and independent of ROS-overproduction, membrane functions disruption, induction of cell cycle arrest, and cell death. This review summarizes and discusses the synergic effect of some phytochemicals combined with imatinib on leukemia cells and the mechanism of action proposed for these combinations, looking to contribute to developing new effective alternatives for leukemia treatment.
Collapse
Affiliation(s)
| | - Luisa Alondra Rascón-Valenzuela
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo, Sonora, Mexico
| | - María Evarista Arellano-García
- Facultad de Ciencias, Universidad Autónoma de Baja California, Ctra. Transpeninsular No. 3917, Col. Playitas, Ensenada, Baja California, Mexico
| | - Yanis Toledano-Magaña
- Instituto Tecnológico de Ensenada, Tecnológico Nacional de México, Blvd. Tecnológico #150, Ex Ejido Chapultepec, Ensenada, Baja California, Mexico; Centro de Bachillerato Tecnológico Industrial y de Servicios No. 41. Dirección General de Educación Tecnológica Industrial y de Servicios, Carr. Transpeninsular km 115, Ex-Ejido Chapultepec, Ensenada, Baja California, Mexico.
| | - Juan Carlos García-Ramos
- Instituto Tecnológico de Ensenada, Tecnológico Nacional de México, Blvd. Tecnológico #150, Ex Ejido Chapultepec, Ensenada, Baja California, Mexico; Centro de Bachillerato Tecnológico Industrial y de Servicios No. 41. Dirección General de Educación Tecnológica Industrial y de Servicios, Carr. Transpeninsular km 115, Ex-Ejido Chapultepec, Ensenada, Baja California, Mexico.
| |
Collapse
|
9
|
Zhang S, Du R, Li Q, Xu M, Yang Y, Fang S, Wan Z, Yang X. Food-grade emulsion gels and oleogels prepared by all-natural dual nanofibril system from citrus fiber and glycyrrhizic acid. Food Res Int 2024; 192:114830. [PMID: 39147519 DOI: 10.1016/j.foodres.2024.114830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
The natural dual nanofibril system consisting of the rigid semicrystalline nanofibrils disintegrated from citrus fiber (CF) and soft semiflexible nanofibrils self-assembled from glycyrrhizic acid (GA) has been recently shown to be effective structural building blocks for fabrication of emulsion gels. In this work, the effect of the CF nanofibrils prepared by different mechanical disintegration approaches (i.e., high-pressure microfluidization and hydrodynamic cavitation) on the interfibrillar CF-GA interactions and the subsequent formation and properties of emulsion gels were investigated, with the aim of evaluating the potential of the dual nanofibril-stabilized emulsion gels as templates for synthesizing all-natural edible oleogels. The obtained results demonstrate that compared to the cavitation, the high-pressure microfluidization is more capable of generating CF nanofibrils with a higher degree of nanofibrillation and individualization, thus forming a denser CF-GA gel network with higher viscoelasticity and structural stability due to the stronger multiple intrafibrillar and interfibrillar interactions. The emulsion gels stabilized by the dual nanofibril system are demonstrated to be an efficient template to fabricate solid-like oleogels, and the structural properties of the oleogels can be well tuned by the mechanical disintegration of CF and the GA nanofibril concentration. The prepared oleogels possess high oil loading capacity, dense network microstructure, superior rheological and large deformation compression performances, and satisfactory thermal stability, which is attributed to the compact and ordered CF-GA dual nanofibrillar network via multiple hydrogen-bonding interactions in the continuous phase as well as at the droplet surface. This study highlights the unique use of all-natural dual nanofibrils to develop oil structured soft materials for sustainable applications.
Collapse
Affiliation(s)
- Shiqi Zhang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Ruijie Du
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qing Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Mengyue Xu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands
| | - Yunyi Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | | | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
10
|
Wang Z, Liu J, Zheng Y, Zhang B, Hu Y, Wu Y, Li Y, Liu L, Zhu H, Liu Q, Yang B. Copper Ion-Inspired Dual Controllable Drug Release Hydrogels for Wound Management: Driven by Hydrogen Bonds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401152. [PMID: 38593320 DOI: 10.1002/smll.202401152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/10/2024] [Indexed: 04/11/2024]
Abstract
Bacterial infections and inflammation progression yield huge trouble for the management of serious skin wounds and burns. However, some hydrogel dressing exhibit poor wound-healing capabilities. Additionally, little information is given on the molecular theory of hydrogel gelation mechanisms and drug release performance from drug-polymer network in the water environment. Herein, cationic guar gum (CG) is first mixed with dipotassium glycyrrhizinate (DG), and then crosslinked Cu2+ to strengthen the mechanical strength followed by encapsulating mussel adhesive protein (MAP) as composite dressings. Intriguingly, CG-Cu2+ 0.5-DG10 possessed proper rheological properties and mechanical strength predominantly driven by strong CG-H2O-Cu2+ and Cu2+-CG hydrogen bonding interaction. Weak DG-CG hydrogen bonding only controlled DG release in the initial 4 h, while strong hydrogen bonding is the main force regulating the sustained release of Cu2+ within 48 h. The incorporation of MAP further loosened the tight crosslinking of CG-Cu2+ 0.5-DG10. The screened CG-Cu2+ 0.5-DG10/MAP possessed excellent self-healing, injectability, antibacterial, anti-inflammatory, cell proliferation-promotion activities with high biocompatibility. Therefore, CG-Cu2+ 0.5-DG10/MAP hydrogel expedited wound closure on S. aureus-infected full-thickness skin wound model and lowered necrosis progression to the unburned interspaces on a rat burn model. The results highlight the promising translational potential of Cu2+-inspired hydrogels for the management of burns and infected wounds.
Collapse
Affiliation(s)
- Zhuxian Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Jun Liu
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Yixin Zheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Bohai Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yamei Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hongxia Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qiang Liu
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| |
Collapse
|
11
|
Chen RY, Shi JJ, Liu YJ, Yu J, Li CY, Tao F, Cao JF, Yang GJ, Chen J. The State-of-the-Art Antibacterial Activities of Glycyrrhizin: A Comprehensive Review. Microorganisms 2024; 12:1155. [PMID: 38930536 PMCID: PMC11206003 DOI: 10.3390/microorganisms12061155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Licorice (Glycyrrhiza glabra) is a plant of the genus Glycyrrhiza in the family Fabaceae/Leguminosae and is a renowned natural herb with a long history of medicinal use dating back to ancient times. Glycyrrhizin (GLY), the main active component of licorice, serves as a widely utilized therapeutic agent in clinical practice. GLY exhibits diverse medicinal properties, including anti-inflammatory, antibacterial, antiviral, antitumor, immunomodulatory, intestinal environment maintenance, and liver protection effects. However, current research primarily emphasizes GLY's antiviral activity, while providing limited insight into its antibacterial properties. GLY demonstrates a broad spectrum of antibacterial activity via inhibiting the growth of bacteria by targeting bacterial enzymes, impacting cell membrane formation, and altering membrane permeability. Moreover, GLY can also bolster host immunity by activating pertinent immune pathways, thereby enhancing pathogen clearance. This paper reviews GLY's inhibitory mechanisms against various pathogenic bacteria-induced pathological changes, its role as a high-mobility group box 1 inhibitor in immune regulation, and its efficacy in combating diseases caused by pathogenic bacteria. Furthermore, combining GLY with other antibiotics reduces the minimum inhibitory concentration, potentially aiding in the clinical development of combination therapies against drug-resistant bacteria. Sources of information were searched using PubMed, Web of Science, Science Direct, and GreenMedical for the keywords "licorice", "Glycyrrhizin", "antibacterial", "anti-inflammatory", "HMGB1", and combinations thereof, mainly from articles published from 1979 to 2024, with no language restrictions. Screening was carried out by one author and supplemented by others. Papers with experimental flaws in their experimental design and papers that did not meet expectations (antifungal papers, etc.) were excluded.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China (J.-J.S.); (Y.-J.L.); (J.Y.); (C.-Y.L.); (F.T.); (J.-F.C.)
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China (J.-J.S.); (Y.-J.L.); (J.Y.); (C.-Y.L.); (F.T.); (J.-F.C.)
| |
Collapse
|
12
|
Jeong Y, Han X, Vyas K, Irudayaraj J. Microbial β-Glucuronidase Hydrogel Beads Activate Chemotherapeutic Prodrug. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28093-28103. [PMID: 38775441 PMCID: PMC11164065 DOI: 10.1021/acsami.4c02568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
Bacteria-assisted chemotherapeutics have been highlighted as an alternative or supplementary approach to treating cancer. However, dynamic cancer-microbe studies at the in vitro level have remained a challenge to show the impact and effectiveness of microbial therapeutics due to the lack of relevant coculture models. Here, we demonstrate a hydrogel-based compartmentalized system for prodrug activation of a natural ingredient of licorice root, glycyrrhizin, by microbial β-glucuronidase (GUS). Hydrogel containment with Lactococcus lactis provides a favorable niche to encode GUS enzymes with excellent permeability and can serve as an independent ecosystem in the transformation of pro-apoptotic materials. Based on the confinement system of GUS expressing microbes, we quantitatively evaluated chemotherapeutic effects enhanced by microbial GUS enzyme in two dynamic coculture models in vitro (i.e., 2D monolayered cancer cells and 3D tumor spheroids). Our findings support the processes of prodrug conversion mediated by bacterial GUS enzyme which can enhance the therapeutic efficacy of a chemotherapy drug under dynamic coculture conditions. We expect our in vitro coculture platforms can be used for the evaluation of pharmacological properties and biological activity of xenobiotics as well as the potential impact of microbes on cancer therapeutics.
Collapse
Affiliation(s)
- Yoon Jeong
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 60801, United States
- Cancer
Center at Illinois, Carle-Illinois College
of Medicine, University of Illinois at Urbana−Champaign, Urbana, Illinois 60801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 60801, United States
| | - Xiaoxue Han
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 60801, United States
- Cancer
Center at Illinois, Carle-Illinois College
of Medicine, University of Illinois at Urbana−Champaign, Urbana, Illinois 60801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 60801, United States
| | - Khushali Vyas
- School
of Molecular and Cellular Biology, University
of Illinois at Urbana−Champaign, Urbana, Illinois 60801, United States
| | - Joseph Irudayaraj
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 60801, United States
- Cancer
Center at Illinois, Carle-Illinois College
of Medicine, University of Illinois at Urbana−Champaign, Urbana, Illinois 60801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 60801, United States
- Carl
R. Woese Institute for Genomic Biology, Beckman Institute, Holonyak Micro and Nanotechnology Laboratory, Urbana, Illinois 60801, United States
| |
Collapse
|
13
|
Yang G, Liu Y, Hu Y, Yuan Y, Qin Y, Li Q, Ma S. Bio-soft matter derived from traditional Chinese medicine: Characterizations of hierarchical structure, assembly mechanism, and beyond. J Pharm Anal 2024; 14:100943. [PMID: 39005842 PMCID: PMC11246065 DOI: 10.1016/j.jpha.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/03/2024] [Accepted: 01/31/2024] [Indexed: 07/16/2024] Open
Abstract
Structural and functional explorations on bio-soft matter such as micelles, vesicles, nanoparticles, aggregates or polymers derived from traditional Chinese medicine (TCM) has emerged as a new topic in the field of TCM. The discovery of such cross-scaled bio-soft matter may provide a unique perspective for unraveling the new effective material basis of TCM as well as developing innovative medicine and biomaterials. Despite the rapid rise of TCM-derived bio-soft matter, their hierarchical structure and assembly mechanism must be unambiguously probed for a further in-depth understanding of their pharmacological activity. In this review, the current emerged TCM-derived bio-soft matter assembled from either small molecules or macromolecules is introduced, and particularly the unambiguous elucidation of their hierarchical structure and assembly mechanism with combined electron microscopic and spectroscopic techniques is depicted. The pros and cons of each technique are also discussed. The future challenges and perspective of TCM-derived bio-soft matter are outlined, particularly the requirement for their precise in situ structural determination is highlighted.
Collapse
Affiliation(s)
- Guiya Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yue Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yuying Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yue Yuan
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yunan Qin
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Quan Li
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangcheng Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| |
Collapse
|
14
|
Hu Y, Luo Z, Cai S, Xie Q, Zheng S. Glycyrrhizic acid attenuates sorafenib resistance by inducing ferroptosis via targeting mTOR signaling in hepatocellular carcinoma. Scand J Gastroenterol 2024; 59:730-736. [PMID: 38426342 DOI: 10.1080/00365521.2024.2315317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most malignant cancer worldwide. Sorafenib (SRF) is a common therapeutic drug used for patients with advanced HCC. Nevertheless, drug resistance frequently occurs in patients treated with sorafenib. Glycyrrhizic acid (GRA) is a natural compound that is identified to exhibit anti-cancer effects. In this work, we aimed to investigate the effects of GRA on SRF-resistant HCC cells and the potential regulatory mechanisms. METHODS We established SRF-resistant HCC cell lines and administrated GRA treatment. We performed CCK-8 and colony formation experiments to detect cell proliferation. The accumulation of lipid reactive oxygen species (ROS) and iron levels were measured to evaluate ferroptosis. The protein levels of ferroptosis suppressor glutathione peroxidase 4 (GPX4) and SLC7A11, and the activation of AKT and mTOR were measured with western blotting assay. RESULTS GRA treatment notably suppressed the viability and proliferation of SRF-resistant HCC cells. SRF-resistant HCC cells exhibited repressed ferroptosis level activated AKT/mTOR cascade, and GRA treatment reversed these effects. Inhibition of ferroptosis and activation of mTOR reversed the anti-proliferation effects of GRA on SRF-resistant HCC cells. CONCLUSION Treatment with GRA could effectively reverse the SRF resistance of HCC cells via inducing ferroptosis and inactivating the AKT/mTOR cascade.
Collapse
Affiliation(s)
- Yiting Hu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, Zhejiang Province, China
- Department of Hepatobiliary and Pancreatic Surgery, Jinjiang Municipal Hospital, Quanzhou, Fujian Province, China
| | - Zhongfei Luo
- Department of Hepatobiliary and Pancreatic Surgery, Jinjiang Municipal Hospital, Quanzhou, Fujian Province, China
| | - Siyi Cai
- Department of Hepatobiliary and Pancreatic Surgery, Jinjiang Municipal Hospital, Quanzhou, Fujian Province, China
| | - Qinfen Xie
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, Zhejiang Province, China
| | - Shusen Zheng
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, Zhejiang Province, China
| |
Collapse
|
15
|
Jia Y, Yao D, Bi H, Duan J, Liang W, Jing Z, Liu M. Salvia miltiorrhiza Bunge (Danshen) based nano-delivery systems for anticancer therapeutics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155521. [PMID: 38489891 DOI: 10.1016/j.phymed.2024.155521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND The ancient Chinese herb Salvia miltiorrhiza Bunge (Danshen), plays the important role in cardiovascular and cerebrovascular disease. Furthermore, Danshen could also be used for curing carcinogenesis. Up to now, the anti-tumor effects of the main active constituents of Danshen have made great progress. However, the bioavailability of the active constituents of Danshen were restricted by their unique physical characteristics, like low oral bioavailability, rapid degradation in vivo and so on. PURPOSE With the leap development of nano-delivery systems, the shortcomings of the active constituents of Danshen have been greatly ameliorated. This review tried to summarize the recent progress of the active constituents of Danshen based delivery systems used for anti-tumor therapeutics. METHODS A systematic literature search was conducted using 5 databases (Embase, Google scholar, PubMed, Scopus and Web of Science databases) for the identification of relevant data published before September 2023. The words "Danshen", "Salvia miltiorrhiza", "Tanshinone", "Salvianolic acid", "Rosmarinic acid", "tumor", "delivery", "nanomedicine" and other active ingredients contained in Danshen were searched in the above databases to gather information about pharmaceutical decoration for the active constituents of Danshen used for anti-tumor therapeutics. RESULTS The main extracts of Danshen could inhibit the proliferation of tumor cells effectively and a great deal of studies were conducted to design drug delivery systems to ameliorate the anti-tumor effect of the active contents of Danshen through different ways, like improving bioavailability, increasing tumor targeting ability, enhancing biological barrier permeability and co-delivering with other active agents. CONCLUSION This review systematically represented recent progress of pharmaceutical decorations for the active constituents of Danshen used for anti-tumor therapeutics, revealing the diversity of nano-decoration skills and trying to inspire more designs of Danshen based nanodelivery systems, with the hope that bringing the nanomedicine of the active constituents of Danshen for anti-tumor therapeutics from bench to bedside in the near future.
Collapse
Affiliation(s)
- Yiyang Jia
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Dandan Yao
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Hui Bi
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Jing Duan
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Wei Liang
- Department of Traditional Chinese Medicine, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Ziwei Jing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Mei Liu
- Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing, 210002, China.
| |
Collapse
|
16
|
Esmaeili H, Mirjalili MH, Karami A, Nejad Ebrahimi S. Introducing the glycyrrhizic acid and glabridin rich genotypes from the cultivated Iranian licorice (Glycyrrhiza glabra L.) populations to exploit in production systems. Sci Rep 2024; 14:11034. [PMID: 38744977 PMCID: PMC11094143 DOI: 10.1038/s41598-024-61711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Currently, the stable, uniform, and highly efficient production of raw materials for pharmaceutical companies has received special attention. To meet these criteria and reduce harvesting pressure on the natural habitats of licorice (Glycyrrhiza glabra L.), cultivation of this valuable plant is inevitable. In the present study, to introduce the glycyrrhizic acid (GA)- and glabridin-rich genotypes from cultivated Iranian licorice, forty genotypes from eight high-potential wild populations were cultivated and evaluated under the same environmental conditions. The GA content varied from 5.00 ± 0.04 mg/g DW (TF2 genotype) to 23.13 ± 0.02 mg/g DW (I5 genotype). The highest and lowest glabridin content were found in the K2 (0.72 ± 0.021 mg/g DW) and M5 (0.02 ± 0.002 mg/g DW) genotypes, respectively. The rutin content in the leaves of the studied genotypes varied from 1.27 ± 0.02 mg/g DW in E4 to 3.24 ± 0.02 mg/g DW in BO5 genotypes. The genotypes from the Ilam population were characterized by higher vegetative growth and yield traits in the aerial parts and roots. The average root dry yield was 2.44 tons per hectare (t/ha) among the studied genotypes and a genotype from Ilam (I5) yielded the maximum value (3.08 ± 0.034 t/ha). The highest coefficient of variation among the genotypes was observed for leaf width (CV = 34.9%). The GA and glabridin-rich genotypes introduced in this study can be used in the future breeding programs to release new bred licorice cultivars.
Collapse
Affiliation(s)
- Hassan Esmaeili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | - Akbar Karami
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Samad Nejad Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| |
Collapse
|
17
|
He MT, Park G, Park DH, Choi M, Ku S, Go SH, Lee YG, Song SJ, Ahn CW, Jang YP, Kang KS. So Shiho Tang Reduces Inflammation in Lipopolysaccharide-Induced RAW 264.7 Macrophages and Dextran Sodium Sulfate-Induced Colitis Mice. Biomolecules 2024; 14:451. [PMID: 38672468 PMCID: PMC11047977 DOI: 10.3390/biom14040451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
So Shiho Tang (SSHT) is a traditional herbal medicine commonly used in Asian countries. This study evaluated the anti-inflammatory effect of SSHT and the associated mechanism using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and murine dextran sodium sulfate (DSS)-induced ulcerative colitis models. Pre-treatment of RAW 264.7 macrophages with SSHT significantly reduced LPS-induced inflammation by decreasing nitrite production and regulating the mitogen-activated protein kinase pathway. Meanwhile, in mice, DSS-induced colitis symptoms, including colon shortening and body weight loss, were attenuated by SSHT. Moreover, representative compounds of SSHT, including glycyrrhizic acid, ginsenoside Rb1, baicalin, saikosaponin A, and saikosaponin B2, were quantified, and their effects on nitrite production were measured. A potential anti-inflammatory effect was detected in LPS-induced RAW 264.7 cells. Our findings suggest that SSHT is a promising anti-inflammatory agent. Its representative components, including saikosaponin B2, ginsenoside Rb1, and baicalin, may represent the key active compounds responsible for eliciting the anti-inflammatory effects and can, therefore, serve as quality control markers in SSHT preparations.
Collapse
Affiliation(s)
- Mei Tong He
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (M.T.H.); (D.H.P.)
| | - Geonha Park
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Do Hwi Park
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (M.T.H.); (D.H.P.)
| | - Minsik Choi
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Sejin Ku
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Seung Hyeon Go
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Yun Gyo Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Seok Jun Song
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
| | - Chang-Wook Ahn
- Dr. Ahn’s Surgery Clinic, Osan 18144, Republic of Korea;
| | - Young Pyo Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.C.); (S.K.); (S.H.G.); (Y.G.L.); (S.J.S.)
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (M.T.H.); (D.H.P.)
| |
Collapse
|
18
|
Li Q, Lianghao Y, Shijie G, Zhiyi W, Yuanting T, Cong C, Chun-Qin Z, Xianjun F. Self-assembled nanodrug delivery systems for anti-cancer drugs from traditional Chinese medicine. Biomater Sci 2024; 12:1662-1692. [PMID: 38411151 DOI: 10.1039/d3bm01451g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Traditional Chinese medicine (TCM) is a combination of raw herbs and herbal extracts with a plethora of documented beneficial bioactivities, which has unique advantages in anti-tumor therapy, and many of its major bioactive molecules have been identified in recent years due to advances in chemical separation and structural analysis. However, the major chemical classes of plant-derived bioactive compounds frequently possess chemical properties, including poor water solubility, stability, and bioavailability, that limit their therapeutic application. Alternatively, natural small molecules (NSMs) containing these components possess modifiable groups, multiple action sites, hydrophobic side chains, and a rigid skeleton with self-assembly properties that can be exploited to construct self-assembled nanoparticles with therapeutic effects superior to their individual constituents. For instance, the construction of a self-assembled nanodrug delivery system can effectively overcome the strong hydrophobicity and poor in vivo stability of NSMs, thereby greatly improving their bioavailability and enhancing their anti-tumor efficacy. This review summarizes the self-assembly methods, mechanisms, and applications of a variety of NSMs, including terpenoids, flavonoids, alkaloids, polyphenols, and saponins, providing a theoretical basis for the subsequent research on NSMs and the development of SANDDS.
Collapse
Affiliation(s)
- Qiao Li
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Yuan Lianghao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Gao Shijie
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Wang Zhiyi
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Tang Yuanting
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Chen Cong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China.
| | - Zhao Chun-Qin
- Academy of Chinese Medicine Literature and Culture, Key Laboratory of Classical Theory of Traditional Chinese Medicine, Ministry of Education, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Fu Xianjun
- Marine Traditional Chinese Medicine Research Centre, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, P. R. China.
| |
Collapse
|
19
|
Chen L, Zhao L, Han J, Xiao P, Zhao M, Zhang S, Duan J. Biosynthesis of Chryseno[2,1,c]oxepin-12-Carboxylic Acid from Glycyrrhizic Acid in Aspergillus terreus TMZ05-2, and Analysis of Its Anti-inflammatory Activity. J Microbiol 2024; 62:113-124. [PMID: 38411880 DOI: 10.1007/s12275-024-00105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 02/28/2024]
Abstract
Glycyrrhizic acid, glycyrrhetinic acid, and their oxo, ester, lactone, and other derivatives, are known for their anti-inflammatory, anti-oxidant, and hypoglycemic pharmacological activities. In this study, chryseno[2,1-c]oxepin-12-carboxylic acid (MG) was first biosynthesized from glycyrrhizic acid through sequential hydrolysis, oxidation, and esterification using Aspergillus terreus TMZ05-2, providing a novel in vitro biosynthetic pathway for glycyrrhizic acid derivatives. Assessing the influence of fermentation conditions and variation of strains during culture under stress-induction strategies enhanced the final molar yield to 88.3% (5 g/L glycyrrhizic acid). CCK8 assays showed no cytotoxicity and good cell proliferation, and anti-inflammatory experiments demonstrated strong inhibition of NO release (36.3%, low-dose MG vs. model), transcriptional downregulation of classical effective cellular factors tumor necrosis factor-α (TNF-α; 72.2%, low-dose MG vs. model), interleukin-6 (IL-6; 58.3%, low-dose MG vs. model) and interleukin-1β (IL-1β; 76.4%, low-dose MG vs. model), and decreased abundance of P-IKK-α, P-IKB-α, and P-P65 proteins, thereby alleviating inflammatory responses through the NF-κB pathway in LPS-induced RAW264.7 cells. The findings provide a reference for the biosynthesis of lactone compounds from medicinal plants.
Collapse
Affiliation(s)
- Liangliang Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Lin Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Ju Han
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China.
| | - Mingzhe Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Sen Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China.
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
| |
Collapse
|
20
|
Ando K, Uchiyama H, Minoura K, Kadota K, Tozuka Y. The Impact of Adding a Cationic Metal Salt and Curcumin to Monoammonium Glycyrrhizic Acid on Its Solubilizing Capacity and Gelation. Chem Pharm Bull (Tokyo) 2024; 72:838-844. [PMID: 39343537 DOI: 10.1248/cpb.c24-00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Monoammonium glycyrrhizic acid (MAG), a glycyrrhizic acid monoammonium salt, is a naturally derived low-molecular-weight gelling agent with surface-active properties. It has the capacity to individually facilitate the preparation of gel-solubilized drugs. As MAG is an anionic surfactant with carboxyl groups, the addition of counterions may affect micelle formation and gelation. In this study, the solubilization and gelling properties of MAG were investigated following the addition of metal salts (NaCl and KCl). The addition of metal salts resulted in a decrease in the critical micelle concentration and an increase in gel hardness. Supersaturation of curcumin (CUR) was maintained by the addition of metal salts because of increased micelle number and viscosity. When the gel hardness was compared between formulations with and without CUR, a significant reduction in hardness was observed with the solubilization of CUR. The addition of KCl prevented the decrease in the hardness of gels containing CUR compared to the addition of NaCl. Put together, the addition of metal salts had a noteworthy impact on micelle and gel formation of MAG. In particular, the addition of KCl was more effective in the preparation of gel-solubilized CUR.
Collapse
Affiliation(s)
- Kenta Ando
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| | - Katsuhiko Minoura
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| | - Kazunori Kadota
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| |
Collapse
|
21
|
Zhao Z, Pei X, Li Q, Zhang H, Wang Y, Qin J, He Y. Pectin-based double network hydrogels as local depots of celastrol for enhanced antitumor therapy. Int J Biol Macromol 2024; 256:128442. [PMID: 38035968 DOI: 10.1016/j.ijbiomac.2023.128442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
In this study, A double-network (DN) hydrogel composed of a physical glycyrrhizic acid (GA) network and a chemically crosslinked pectin-based network was fabricated as a local depot of celastrol (CEL) for cancer treatment. The obtained DN hydrogel possessed excellent mechanical performance, flexibility, biocompatibility, biodegradability and self-healing property. Furthermore, the release profile of CEL loaded DN hydrogel maintained a controlled and sustained release of CEL for a prolonged period. Finally, in vivo animal experiments demonstrated that the DN hydrogel could significantly enhance the therapeutic efficiency of CEL in CT-26 tumor-bearing mice upon intratumoral injection while effectively alleviate the toxicity of the CEL. In summary, this injectable pectin-based double network hydrogels are ideal delivery vehicle for tumor therapy.
Collapse
Affiliation(s)
- Zihao Zhao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050200, China
| | - Xiaocui Pei
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050200, China
| | - Qiushuai Li
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050200, China
| | - Huaxing Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Yong Wang
- Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China
| | - Jianglei Qin
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China.
| | - Yingna He
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province 050200, China; Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, Hebei Province 050200, China.
| |
Collapse
|
22
|
Omidi F, Shahbazi S, Reiisi S, Azhdari S, Karimzadeh MR. Glycyrrhizic acid enhances the anticancer activity of cisplatin in the human ovarian cancer cell line. Toxicol In Vitro 2023; 93:105687. [PMID: 37659683 DOI: 10.1016/j.tiv.2023.105687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
This study aimed to investigate the effects of glycyrrhizic acid (GL) on the anticancer activity of cisplatin in A2780 ovarian cancer cells. Cultured A2780 cells were treated with different concentrations of GL and cisplatin individually and in combination. The MTT assay, flow cytometry, wound-healing, and clonogenic assay, were used to determine cell viability, apoptosis, migration, and colony formation, respectively. The effects on superoxide dismutase (SOD) activity were also evaluated. QPCR was used to study the effects of individual and combined treatments with GL and cisplatin on the expression levels of migration genes (MMP2 and MMP9), and some apoptosis pathway genes (caspase-3, -8, -9, and BCL2). A synergistic effect was observed between GL and cisplatin (CI < 1). Combination therapy was significantly more effective in reducing cell viability, suppressing migration and colony formation, inducing apoptosis, and altering gene expression compared to single therapies. GL significantly increased SOD activity. The relative expression of caspase -3, -8, and - 9 increased significantly, and the expression levels of MMP2 and MMP9 decreased significantly in the treated cells. Our results indicate that GL enhances the anticancer activity of cisplatin in the A2780 cell line. Therefore, the combination of GL and cisplatin can be proposed as a promising therapeutic strategy for ovarian cancer.
Collapse
Affiliation(s)
- Fereshteh Omidi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Shahrzad Shahbazi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
| | - Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
23
|
Wang Q, Wang Y, Jian X, Wang N, Li C, Liu H. Site-specific crosslinking and assembly of tetrameric β-glucuronidase improve glycyrrhizin hydrolysis. Biotechnol Bioeng 2023; 120:3570-3584. [PMID: 37707439 DOI: 10.1002/bit.28556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
In this study, eight nonconserved residues with exposed surfaces and flexible conformations of the homotetrameric PGUS (β-glucuronidase from Aspergillus oryzae Li-3) were identified. Single-point mutation into cysteine enabled the thiol-maleimide reaction and site-specific protein assembly using a two-arm polyethylene glycol (PEG)-maleimide crosslinker (Mal2 ). The Mal2 (1k) (with 1 kDa PEG spacer)-crosslinked PGUS assemblies showed low crosslinking efficiency and unimproved thermostability except for G194C-Mal2 (1k). To improve the crosslinking efficiency, a lengthened crosslinker Mal2 (2k) (with 2 kDa PEG spacer) was used to produce PGUS assembly and a highly improved thermostability was achieved with a half-life of 47.2-169.2 min at 70°C, which is 1.04-3.74 times that of wild type PGUS. It is found that the thermostability of PGUS assembly was closely associated with the formation of inter-tetramer assembly and intratetramer crosslinking, rather than the PEGylation of the enzyme. Therefore, the four-arm PEG-maleimide crosslinker Mal4 (2k) (with 2 kDa PEG spacer) was employed to simultaneously increase the inter-tetramer assembly and intratetramer crosslinking, and the resulting PGUS assemblies showed further improved thermostabilities compared with Mal2 (2k)-crosslinked assemblies. Finally, the application of PGUS assemblies with significantly improved thermostability to the bioconversion of GL proved that the PGUS assembly is a strong catalyst for glycyrrhizin (GL) hydrolysis in industrial applications.
Collapse
Affiliation(s)
- Qibin Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P.R. China
| | - Yingying Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P.R. China
| | - Xing Jian
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P.R. China
| | - Ning Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P.R. China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P.R. China
- Key Laboratory for Industrial Biocatalysis, Department of Chemical Engineering, Ministry of Education, Tsinghua University, Beijing, P.R. China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, P.R. China
| | - Hu Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P.R. China
| |
Collapse
|
24
|
Wu X, Yang Y, Zhang H. Microbial fortification of pharmacological metabolites in medicinal plants. Comput Struct Biotechnol J 2023; 21:5066-5072. [PMID: 37867972 PMCID: PMC10589376 DOI: 10.1016/j.csbj.2023.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023] Open
Abstract
Medicinal plants are rich in secondary metabolites with beneficial pharmacological effects. The production of plant secondary metabolites is subjected to the influences by environmental factors including the plant-associated microbiome, which is crucial to the host's fitness and survival. As a result, research interests are increasing in exploiting microbial capacities for enhancing plant production of pharmacological metabolites. A growing body of recent research provides accumulating evidence in support of developing microbe-based tools for achieving this objective. This mini review presents brief summaries of recent studies on medicinal plants that demonstrate microbe-augmented production of pharmacological terpenoids, polyphenols, and alkaloids, followed by discussions on some key questions beyond the promising observations. Explicit molecular insights into the underlying mechanisms will enhance microbial applications for metabolic fortification in medicinal plants.
Collapse
Affiliation(s)
- Xiaoxuan Wu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Yang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- Nanchang Institute of Industrial Innovation, Chinese Academy of Sciences, Nanchang 330224, China
- Jiangxi Center for Innovation and Incubation of Industrial Technologies, Chinese Academy of Sciences, Nanchang 330200, China
| |
Collapse
|
25
|
Li Q, Yu X, Zhang S, Xu M, Yang Y, Wan Z, Yang X. All-Natural, Robust, and pH-Responsive Glycyrrhizic Acid-Based Double Network Hydrogels for Controlled Nutrient Release. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43633-43647. [PMID: 37695942 DOI: 10.1021/acsami.3c10407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Supramolecular hydrogels self-assembled from naturally occurring small molecules (e.g., glycyrrhizic acid, GA) are promising materials for controlled bioactive delivery due to their facile fabrication processes, excellent biocompatibility, and versatile stimuli-responsive behaviors. However, most of these natural hydrogels suffer from poor mechanical strength and processability for practical applications. In this work, through adopting a multicomponent gel approach, we developed a novel mechanically robust GA-based hydrogel with an interpenetrating double network (DN) that is composed of a Ca2+-enhanced hydrogen-bond supramolecular GA nanofibril (GN) network and a Ca2+cross-linked natural polysaccharide sodium alginate (ALG) network. Compared to the single GN network (SN) hydrogel, the GN-ALG hybrid hydrogels (GN-ALG-DN) with the hierarchical double-network structure possess excellent mechanical properties and shaping adaptation, encouraging small and large amplitude oscillatory shear (SAOS and LAOS) rheological performances, better thermal stability, higher resistance to large compression deformations, and lower swelling behaviors. Furthermore, the GN-ALG-DN hydrogels exhibit a pH-responsive and sustained release behavior of nutrients (i.e., vitamin B12, VB12), showing a faster VB12 release rate with a higher swelling ratio in an alkaline condition (pH 7.5) than in an acidic condition (pH 2.5). This is ascribed to the fact that the higher dissociation degree of carboxylic groups in GA and ALG molecules in an alkaline environment induces the erosion and looseness of the self-assembled GN network and the ionic-cross-linked ALG network, which can lead to the decomposition of the hybrid hydrogels and thereby increases the release of nutrients. Cytotoxicity tests further demonstrate the excellent biocompatibility of the GN-ALG-DN hydrogels. This study highlights the design of robust shaped and structured supramolecular hydrogels from natural herb small molecules, which can serve as solid, edible, and stimuli-responsive active cargo delivery platforms for food, biomedical, and sustainable applications.
Collapse
Affiliation(s)
- Qing Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Xinke Yu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Shiqi Zhang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Mengyue Xu
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, Wageningen 6708WG, The Netherlands
| | - Yunyi Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
26
|
Zhang Y, Sheng Z, Xiao J, Li Y, Huang J, Jia J, Zeng X, Li L. Advances in the roles of glycyrrhizic acid in cancer therapy. Front Pharmacol 2023; 14:1265172. [PMID: 37649893 PMCID: PMC10463042 DOI: 10.3389/fphar.2023.1265172] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
Since the first 70 years of reporting cancer chemotherapy, malignant tumors have been the second most common cause of death in children and adults. Currently, the commonly used anti-cancer methods include surgery, chemotherapy, radiotherapy, and immunotherapy. Although these treatment methods could alleviate cancer, they lead to different forms of side effects and have no particularly significant effect on prolonging the patients' life span. Glycyrrhizic acid (GL), a native Chinese herbal extract, has a wide range of pharmacological effects, such as anti-cancer, anti-inflammatory, antioxidant, and immune regulation. In this review, the anti-cancer effects and mechanisms of GL are summarized in various cancers. The inhibition of GL on chemotherapy-induced side effects, including hepatotoxicity, nephrotoxicity, genotoxicity, neurotoxicity and pulmonary toxicity, is highlighted. Therefore, GL may be a promising and ideal drug for cancer therapy.
Collapse
Affiliation(s)
- Yuqian Zhang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Zixuan Sheng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Jing Xiao
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Yang Li
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Jie Huang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
- Department of Physiology, Jiaxing University Medical College, Jiaxing, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
- Department of Biochemistry and Molecular Biology, Jiaxing University Medical College, Jiaxing, China
| | - Li Li
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
- Department of Physiology, Jiaxing University Medical College, Jiaxing, China
| |
Collapse
|
27
|
Olchowik-Grabarek E, Czerkas K, Matchanov AD, Esanov RS, Matchanov UD, Zamaraeva M, Sekowski S. Antibacterial and Antihemolytic Activity of New Biomaterial Based on Glycyrrhizic Acid and Quercetin (GAQ) against Staphylococcus aureus. J Funct Biomater 2023; 14:368. [PMID: 37504863 PMCID: PMC10381813 DOI: 10.3390/jfb14070368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
The goal of this study is to obtain and characterize the complex of quercetin with glycyrrhizic acid, which is known to serve as a drug delivery system. Quercetin is a flavonoid with a wide range of biological activities, including an antimicrobial effect. However, quercetin instability and low bioavailability that limits its use in medical practice makes it necessary to look for new nanoformulations of it. The formation of the GAQ complex (2:1) was confirmed by using UV and FT-IR spectroscopies. It was found that the GAQ exhibited antimicrobial and antihemolytical activities against S. aureus bacteria and its main virulent factor-α-hemolysin. The IC50 value for the antihemolytical effect of GAQ was 1.923 ± 0.255 µg/mL. Using a fluorescence method, we also showed that the GAQ bound tightly to the toxin that appears to underlie its antihemolytic activity. In addition, another mechanism of the antihemolytic activity of the GAQ against α-hemolysin was shown, namely, its ability to increase the rigidity of the outer layer of the erythrocyte membrane and thus inhibit the incorporation of α-hemolysin into the target cells, increasing their resistance to the toxin. Both of these effects of GAQ were observed at concentrations below the MIC value for S. aureus growth, indicating the potential of the complex as an antivirulence agent.
Collapse
Affiliation(s)
- Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-254 Bialystok, Poland
| | - Krzysztof Czerkas
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-254 Bialystok, Poland
| | | | - Rahmat Sulton Esanov
- Institute of Bioorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100143, Uzbekistan
- National University of Uzbekistan, Tashkent 700174, Uzbekistan
| | | | - Maria Zamaraeva
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-254 Bialystok, Poland
| | - Szymon Sekowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-254 Bialystok, Poland
| |
Collapse
|
28
|
Yang Y, Fu X, Xia B, Zhou L, Zhang H, Li C, Ye X, Liu T. Glycyrrhizic acid glycosides reduces extensive tripterygium glycosides-induced lipid deposition in hepatocytes. Heliyon 2023; 9:e17891. [PMID: 37483744 PMCID: PMC10362073 DOI: 10.1016/j.heliyon.2023.e17891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023] Open
Abstract
Aim Tripterygium glycosides (TG) extracted from the plant Tripterygium wilfordii Hook F has been used to treat chronic kidney diseases for many years. However, hepatotoxicity limits its clinical application. Glycyrrhizic acid glycosides (GA) can reduce TG hepatotoxicity, however, further investigation into the underlying molecular mechanisms by which GA attenuates TG-induced hepatotoxicity is required. Methods Sprague‒Dawley rats were randomly divided into the control group, the TG groups (TG189 mg/kg group, TG472.5 mg/kg group), and the TG + GA groups (TG189 mg/kg + GA20.25 mg/kg group, TG472.5 mg/kg + GA20.25 mg/kg group). After 21 consecutive days of intragastric administration, structural and molecular changes in hepatocytes were detected. Results After 21 days of TG treatment, the serum level of the total bilirubin, triglyceride, total cholesterol, and low-density lipoprotein cholesterol increased in the TG189 mg/kg and TG472.5 mg/kg groups when compared to the control group. High-density lipoprotein cholesterol levels were reduced in both TG groups. The ultrastructure of hepatocytes and the structural integrity of the liver were compromised. In addition, the relevant molecular level of the peroxisome proliferators-activated receptor α (PPARα) and acyl-CoA synthetase long-chain family members (ACSLs) pathway was modulated. With the addition of 20.25 mg/kg GA, the serum biochemical indexes and liver tissue structure ultrastructure of hepatocytes were improved, and the PPARα-ACSLs pathway was corrected. Conclusion The combined application of GA and TG improved abnormal lipid metabolism, repaired liver structure, reduced lipid deposition in hepatocytes, and reduced TG-induced hepatotoxicity.
Collapse
|
29
|
Polyakov NE, Focsan AL, Gao Y, Kispert LD. The Endless World of Carotenoids-Structural, Chemical and Biological Aspects of Some Rare Carotenoids. Int J Mol Sci 2023; 24:9885. [PMID: 37373031 PMCID: PMC10298575 DOI: 10.3390/ijms24129885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Carotenoids are a large and diverse group of compounds that have been shown to have a wide range of potential health benefits. While some carotenoids have been extensively studied, many others have not received as much attention. Studying the physicochemical properties of carotenoids using electron paramagnetic resonance (EPR) and density functional theory (DFT) helped us understand their chemical structure and how they interact with other molecules in different environments. Ultimately, this can provide insights into their potential biological activity and how they might be used to promote health. In particular, some rare carotenoids, such as sioxanthin, siphonaxanthin and crocin, that are described here contain more functional groups than the conventional carotenoids, or have similar groups but with some situated outside of the rings, such as sapronaxanthin, myxol, deinoxanthin and sarcinaxanthin. By careful design or self-assembly, these rare carotenoids can form multiple H-bonds and coordination bonds in host molecules. The stability, oxidation potentials and antioxidant activity of the carotenoids can be improved in host molecules, and the photo-oxidation efficiency of the carotenoids can also be controlled. The photostability of the carotenoids can be increased if the carotenoids are embedded in a nonpolar environment when no bonds are formed. In addition, the application of nanosized supramolecular systems for carotenoid delivery can improve the stability and biological activity of rare carotenoids.
Collapse
Affiliation(s)
- Nikolay E. Polyakov
- Institute of Chemical Kinetics & Combustion, Institutskaya Str. 3, 630090 Novosibirsk, Russia;
| | - A. Ligia Focsan
- Department of Chemistry, Valdosta State University, Valdosta, GA 31698, USA;
| | - Yunlong Gao
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| | - Lowell D. Kispert
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
30
|
Cui J, Wang X, Li J, Zhu A, Du Y, Zeng W, Guo Y, Di L, Wang R. Immune Exosomes Loading Self-Assembled Nanomicelles Traverse the Blood-Brain Barrier for Chemo-immunotherapy against Glioblastoma. ACS NANO 2023; 17:1464-1484. [PMID: 36626296 DOI: 10.1021/acsnano.2c10219] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Effective drug delivery and prevention of postoperative recurrence are significant challenges for current glioblastoma (GBM) treatment. Poor drug delivery is mainly due to the presence of the blood-brain barrier (BBB), and postoperative recurrence is primarily due to the resistance of GBM cells to chemotherapeutic drugs and the presence of an immunosuppressive microenvironment. Herein, a biomimetic nanodrug delivery platform based on endogenous exosomes that could efficiently target the brain without targeting modifications and co-deliver pure drug nanomicelles and immune adjuvants for safe and efficient chemo-immunotherapy against GBM is prepared. Inspired by the self-assembly technology of small molecules, tanshinone IIA (TanIIA) and glycyrrhizic acid (GL), which are the inhibitors of signal transducers and activators of transcription 3 from traditional Chinese medicine (TCM), self-assembled to form TanIIA-GL nanomicelles (TGM). Endogenous serum exosomes are selected to coat the pure drug nanomicelles, and the CpG oligonucleotides, agonists of Toll-like receptor 9, are anchored on the exosome membrane to obtain immune exosomes loaded with TCM self-assembled nanomicelles (CpG-EXO/TGM). Our results demonstrate that CpG-EXO/TGM can bind free transferrin in blood, prolong blood circulation, and maintain intact structures when traversing the BBB and targeting GBM cells. In the GBM microenvironment, the strong anti-GBM effect of CpG-EXO/TGM is mainly attributed to two factors: (i) highly efficient uptake by GBM cells and sufficient intracellular release of drugs to induce apoptosis and (ii) stimulation of dendritic cell maturation and induction of tumor-associated macrophages polarization by CpG oligonucleotides to generate anti-GBM immune responses. Further research found that CpG-EXO/TGM can not only produce better efficacy in combination with temozolomide but also prevent a postoperative recurrence.
Collapse
Affiliation(s)
- Jiwei Cui
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Xue Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Jinge Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Anran Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Yingjiang Du
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Wei Zeng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Yumiao Guo
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Liuqing Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| | - Ruoning Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing210023, China
| |
Collapse
|
31
|
Wang Q, Lu D, Liu H, Li C. Tetramerization of GH2 β-Glucuronidases is Essential for Catalyzing the Hydrolysis of the Large Substrate Glycyrrhizin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16286-16297. [PMID: 36516995 DOI: 10.1021/acs.jafc.2c06859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, structural analysis was employed to identify three hotspot residues that contribute most to the tetramer formation of a glycoside hydrolase family 2 (GH2) β-glucuronidase (GUS) from Aspergillus oryzae Li-3. Single-point mutation at these sites completely disrupted the tetramer structure and abolished the glycyrrhizin (GL)-hydrolyzing activity. Then, the W522A dimer was refactored into a tetramer by disulfide bonding, and partial GL activity was restored. Further saturated mutation showed a strong correlation between the GL activity of the mutants and their tetramer ratios. Molecular simulations were employed to illustrate the critical role of the tetramer interface in maintaining a functional active-site structure. The three highly conserved tetramer-forming residues were finally applied to two other GH2 GUSs for tetramer dissociation and demonstrated the significance of the homotetramerization for GL-hydrolyzing activity of GH2 GUSs. This study lays foundation for engineering GL-hydrolyzing GUSs at the quaternary structure level for function regulations.
Collapse
Affiliation(s)
- Qibin Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, PR China
| | - Dingyuan Lu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, PR China
| | - Hu Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, PR China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, PR China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 10084, PR China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing 10084, PR China
| |
Collapse
|
32
|
Tuli HS, Garg VK, Mehta JK, Kaur G, Mohapatra RK, Dhama K, Sak K, Kumar A, Varol M, Aggarwal D, Anand U, Kaur J, Gillan R, Sethi G, Bishayee A. Licorice ( Glycyrrhiza glabra L.)-Derived Phytochemicals Target Multiple Signaling Pathways to Confer Oncopreventive and Oncotherapeutic Effects. Onco Targets Ther 2022; 15:1419-1448. [PMID: 36474507 PMCID: PMC9719702 DOI: 10.2147/ott.s366630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/18/2022] [Indexed: 09/10/2023] Open
Abstract
Cancer is a highly lethal disease, and its incidence has rapidly increased worldwide over the past few decades. Although chemotherapeutics and surgery are widely used in clinical settings, they are often insufficient to provide the cure for cancer patients. Hence, more effective treatment options are highly needed. Although licorice has been used as a medicinal herb since ancient times, the knowledge about molecular mechanisms behind its diverse bioactivities is still rather new. In this review article, different anticancer properties (antiproliferative, antiangiogenic, antimetastatic, antioxidant, and anti-inflammatory effects) of various bioactive constituents of licorice (Glycyrrhiza glabra L.) are thoroughly described. Multiple licorice constituents have been shown to bind to and inhibit the activities of various cellular targets, including B-cell lymphoma 2, cyclin-dependent kinase 2, phosphatidylinositol 3-kinase, c-Jun N-terminal kinases, mammalian target of rapamycin, nuclear factor-κB, signal transducer and activator of transcription 3, vascular endothelial growth factor, and matrix metalloproteinase-3, resulting in reduced carcinogenesis in several in vitro and in vivo models with no evident toxicity. Emerging evidence is bringing forth licorice as an anticancer agent as well as bottlenecks in its potential clinical application. It is expected that overcoming toxicity-related obstacles by using novel nanotechnological methods might importantly facilitate the use of anticancer properties of licorice-derived phytochemicals in the future. Therefore, anticancer studies with licorice components must be continued. Overall, licorice could be a natural alternative to the present medication for eradicating new emergent illnesses while having just minor side effects.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, India
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab, India
| | - Jinit K Mehta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal, Narsee Monjee Institute of Management Studies, Mumbai, Maharashtra, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal, Narsee Monjee Institute of Management Studies, Mumbai, Maharashtra, India
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | | | - Ajay Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jagjit Kaur
- Centre of Excellence in Nanoscale Biophotonics, Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, Australia
| | - Ross Gillan
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
33
|
Yang YH, Dai SY, Deng FH, Peng LH, Li C, Pei YH. Recent advances in medicinal chemistry of oleanolic acid derivatives. PHYTOCHEMISTRY 2022; 203:113397. [PMID: 36029846 DOI: 10.1016/j.phytochem.2022.113397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Oleanolic acid (OA), a ubiquitous pentacyclic oleanane-type triterpene isolated from edible and medicinal plants, exhibits a wide spectrum of pharmacological activities and tremendous therapeutic potential. However, the undesirable pharmacokinetic properties limit its application and development. Numerous researches on structural modifications of OA have been carried out to overcome this limitation and improve its pharmacokinetic and therapeutic properties. This review aims to compile and summarize the recent progresses in the medicinal chemistry of OA derivatives, especially on structure-activity relationship in the last few years (2010-2021). It gives insights into the rational design of bioactive derivatives from OA scaffold as promising therapeutic agents.
Collapse
Affiliation(s)
- Yi-Hui Yang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Si-Yang Dai
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Fu-Hua Deng
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Li-Huan Peng
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Chang Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| | - Yue-Hu Pei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| |
Collapse
|
34
|
Zheng J, Song X, Yang Z, Tan Y, Yin C, Yin J, Lu Y, Yang Y, Liu C, Yi L, Zhang Y. Self-assembling glycyrrhizic acid micellar hydrogels as encapsulant carriers for delivery of curcumin. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Lin TY, Wu TH, Tzou RD, Hsu YC, Lee KT, Tsai TH. Radix Glycyrrhizae Preparata Induces Cell Cycle Arrest and Induced Caspase-Dependent Apoptosis in Glioblastoma Multiforme. Neurol Int 2022; 14:804-823. [PMID: 36278690 PMCID: PMC9590052 DOI: 10.3390/neurolint14040066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive and devastating brain tumor characterized by poor prognosis and high rates of recurrence. Despite advances in multidisciplinary treatment, GBM constinues to have a poor overall survival. The Radix Glycyrrhizae Preparata (RGP) has been reported to possess anti-allergic, neuroprotective, antioxidative, and anti-inflammatory activities. However, it not clear what effect it may have on tumorigenesis in GBM. This study demonstrated that RGP reduced glioma cell viability and attenuated glioma cell locomotion in GBM8401 and U87MG cells. RGP treated cells had significant increase in the percentage of apoptotic cells and rise in the percentage of caspase-3 activity. In addition, the results of study's cell cycle analysis also showed that RGP arrested glioma cells at G2/M phase and Cell failure pass the G2 checkpoint by RGP treatment in GBM8401 Cells. Based on the above results, it seems to imply that RGP activated DNA damage checkpoint system and cell cycle regulators and induce apoptosis in established GBM cells. In conclusion, RGP can inhibit proliferation, cell locomotion, cell cycle progression and induce apoptosis in GBM cells in vitro.
Collapse
Affiliation(s)
- Tsung-Ying Lin
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Tung-Hsuan Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 812, Taiwan
| | - Rong-Dar Tzou
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Yi-Chiang Hsu
- School of Medicine, I-Shou University, Kaohsiung 840, Taiwan
| | - Kuan-Ting Lee
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
36
|
Ageeva AA, Kruppa AI, Magin IM, Babenko SV, Leshina TV, Polyakov NE. New Aspects of the Antioxidant Activity of Glycyrrhizin Revealed by the CIDNP Technique. Antioxidants (Basel) 2022; 11:1591. [PMID: 36009310 PMCID: PMC9405345 DOI: 10.3390/antiox11081591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Electron transfer plays a crucial role in ROS generation in living systems. Molecular oxygen acts as the terminal electron acceptor in the respiratory chains of aerobic organisms. Two main mechanisms of antioxidant defense by exogenous antioxidants are usually considered. The first is the inhibition of ROS generation, and the second is the trapping of free radicals. In the present study, we have elucidated both these mechanisms of antioxidant activity of glycyrrhizin (GL), the main active component of licorice root, using the chemically induced dynamic nuclear polarization (CIDNP) technique. First, it was shown that GL is capable of capturing a solvated electron, thereby preventing its capture by molecular oxygen. Second, we studied the effect of glycyrrhizin on the behavior of free radicals generated by UV irradiation of xenobiotic, NSAID-naproxen in solution. The structure of the glycyrrhizin paramagnetic intermediates formed after the capture of a solvated electron was established from a photo-CIDNP study of the model system-the dianion of 5-sulfosalicylic acid and DFT calculations.
Collapse
Affiliation(s)
- Aleksandra A. Ageeva
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia
| | - Alexander I. Kruppa
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia
| | - Ilya M. Magin
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia
| | - Simon V. Babenko
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia
- International Tomography Center, 630090 Novosibirsk, Russia
| | - Tatyana V. Leshina
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia
| | - Nikolay E. Polyakov
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia
| |
Collapse
|
37
|
Tu Y, Li L, Fan W, Liu L, Wang Z, Yang L. Development of Green and Efficient Extraction of Bioactive Ginsenosides from Panax ginseng with Deep Eutectic Solvents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144339. [PMID: 35889211 PMCID: PMC9315546 DOI: 10.3390/molecules27144339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
The extraction of active constituents from natural sources in a green and efficient manner is considered an important field in the pharmaceutical industry. In recent years, deep eutectic solvents (DESs), a new type of green solvent, have attracted increasing attention. Therefore, we aimed to establish a green and high-efficiency extraction method for ginsenosides based on DESs. This study takes Panax ginseng as a model sample. Eighteen different DESs were produced to extract polar ginsenosides. Ultrasound-assisted extraction (UAE) was applied for simplicity and efficiency. A binary DES synthesized using choline chloride and urea at a proportion of 1:2 prepared by a heating stirring method is proven to be more effective than other solvents, such as the widely used 70% ethanol for the extraction of ginsenosides. Three variables that might affect the extraction, including the DES content in the extraction solvent, liquid/solid ratio, and ultrasound extraction time, were evaluated for optimization. The optimum extraction conditions for ginsenosides were determined as follows: DES water content of 20 wt%, liquid/solid ratio of 15 mL g−1, and an ultrasonic extraction time of 15 min. The extraction yield for the optimized method is found to be 31% higher than that for 70% ethanol, which achieves efficient extraction. This study shows that DESs are available to extract ginsenosides for use in traditional Chinese medicine. The discovery also contributes to further research into the green extraction of ginsenosides.
Collapse
Affiliation(s)
- Yujia Tu
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.T.); (W.F.); (L.L.); (Z.W.)
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicines, Shanghai 201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.T.); (W.F.); (L.L.); (Z.W.)
- Correspondence: (L.L.); (L.Y.); Tel.: +86-021-51322506 (L.L.); +86-021-51322506 (L.Y.)
| | - Wenxiang Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.T.); (W.F.); (L.L.); (Z.W.)
| | - Longchan Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.T.); (W.F.); (L.L.); (Z.W.)
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.T.); (W.F.); (L.L.); (Z.W.)
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, The SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.T.); (W.F.); (L.L.); (Z.W.)
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicines, Shanghai 201203, China
- Correspondence: (L.L.); (L.Y.); Tel.: +86-021-51322506 (L.L.); +86-021-51322506 (L.Y.)
| |
Collapse
|
38
|
Gao L, Wang N, Jiang Y, Hu J, Ma B, Wu T. Glycyrrhizic Acid Inhibits Core Fucosylation Modification Modulated EMT and Attenuates Bleomycin-Induced Pulmonary Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5943322. [PMID: 35845568 PMCID: PMC9279030 DOI: 10.1155/2022/5943322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal and incurable chronic interstitial lung disease with an unknown etiology. Recent evidence suggests that epithelial-mesenchymal transition (EMT) is one of the possible factors in the pathogenesis of pulmonary fibrosis. Glycyrrhizic acid (GA) is a natural active ingredient extracted from the root of the traditional Chinese herb licorice, which has been shown in previous studies to have the effect of alleviating lung injury. In this study, our objective was to investigate whether GA could ameliorate pulmonary fibrosis by altering EMT, as well as the therapeutic potential of changing core fucosylation (CF) to target EMT-related pathways. First, we verified that GA partially reverses EMT in a rat model of bleomycin-induced lung interstitial fibrosis, alleviating pulmonary fibrosis, and implying that GA has antifibrotic potential. Next, we discovered that GA attenuated lung interstitial fibrosis by reducing CF modifications to some extent. Interestingly, we found that GA therapy reduced the expression of phosphorylated Smad2/3 (p-Smad2/3) and β-catenin in the EMT pathway and that GA inhibited the modification of TGF-βR and WNT receptor proteins by CF, suggesting that GA may interfere with the EMT process by modulating TGF-βR, WNT core fucosylation modifications to attenuate pulmonary fibrosis. In conclusion, these findings indicate that GA could be a potential therapeutic agent for IPF, and further support the idea that targeting CF alterations could be a novel technique for the treatment of diseases involving EMT.
Collapse
Affiliation(s)
- Lili Gao
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Nan Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yu Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jinying Hu
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Baojie Ma
- Department of Anesthesia, Dalian Women and Children's Medical Group, Dalian 116000, China
| | - Taihua Wu
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
39
|
Zhang B, Yu X, Li J, Wei K, Gao L, Hu J. Four-armed biobased glycyrrhizic acid-tailored AIE fluorescent gelator. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Zhu D, Zhang Q, Chen Y, Xie M, Li J, Yao S, Li M, Lou Z, Cai Y, Sun X. Mechanochemical preparation of triptolide-loaded self-micelle solid dispersion with enhanced oral bioavailability and improved anti-tumor activity. Drug Deliv 2022; 29:1398-1408. [PMID: 35532137 PMCID: PMC9090408 DOI: 10.1080/10717544.2022.2069879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Triptolide (TP), a compound isolated from a Chinese medicinal herb, possesses potent anti-tumor, immunosuppressive, and anti-inflammatory properties, but was clinically limited due to its poor solubility, bioavailability, and toxicity. Considering the environment-friendly, low-cost mechanochemical techniques and potential dissolution enhancement ability of Na2GA, an amorphous solid dispersion (Na2GA&TP-BM) consisting of TP and Na2GA were well-prepared to address these issues. The performance of Na2GA&TP-BM was improved through ball milling, such as from crystalline state to an amorphous solid dispersion, suitable nano micelle size and surface potential, and increased solubility. This change had a significant improvement of pharmacokinetic behavior in mice and could be able to extend the blood circulation time of the antitumor drug. Moreover, in vitro and in vivo anti-tumor study showed that Na2GA&TP-BM displayed more potent cytotoxicity to tumor cells. The work illustrated an environment-friendly and safe preparation of the TP formulation, which was promising to enhance the oral bioavailability and antitumor ability of TP, might be considered for efficient anticancer therapy.
Collapse
Affiliation(s)
- Dabu Zhu
- First People's Hospital of Linping District, Hangzhou, China
| | - Qiuqin Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yifang Chen
- First People's Hospital of Linping District, Hangzhou, China
| | - Minghua Xie
- First People's Hospital of Linping District, Hangzhou, China
| | - Jianbo Li
- First People's Hospital of Linping District, Hangzhou, China
| | - Shen Yao
- First People's Hospital of Linping District, Hangzhou, China
| | - Ming Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhao Lou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
41
|
Yue L, Uwaremwe C, Tian Y, Liu Y, Zhao X, Zhou Q, Wang Y, Zhang Y, Liu B, Cui Z, Dun C, Wang R. Bacillus amyloliquefaciens Rescues Glycyrrhizic Acid Loss Under Drought Stress in Glycyrrhiza uralensis by Activating the Jasmonic Acid Pathway. Front Microbiol 2022; 12:798525. [PMID: 35368293 PMCID: PMC8966401 DOI: 10.3389/fmicb.2021.798525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/16/2021] [Indexed: 01/25/2023] Open
Abstract
Drought is a major factor limiting the production of the perennial medicinal plant Glycyrrhiza uralensis Fisch. (Fabaceae) in Northwest China. In this study, 1-year-old potted plants were inoculated with the strain Bacillus amyloliquefaciens FZB42, using a gradient of concentrations (CFU), to test for microbe-induced host tolerance to drought condition treatments in a greenhouse experiment. At the concentration of 108 CFU ml-1, FZB42 had significant growth-promoting effect on G. uralensis: the root biomass was 1.52, 0.84, 0.94, and 0.38 times that under normal watering and mild, moderate, and severe drought stress conditions, respectively. Under moderate drought, the positive impact of FZB42 on G. uralensis growth was most pronounced, with both developing axial and lateral roots strongly associated with indoleacetic acid (IAA) accumulation. An untargeted metabolomic analysis and physiological measurements of mature roots revealed that FZB42 improved the antioxidant system of G. uralensis through the accumulation of proline and sucrose, two osmotic adjustment solutes, and by promoting catalase (CAT) activity under moderate drought stress. Furthermore, significantly higher levels of total flavonoids, liquiritin, and glycyrrhizic acid (GA), the pharmacologically active substances of G. uralensis, were found in the roots of inoculated plants after FZB42 inoculation under all imposed drought conditions. The jasmonic acid (JA) content, which is closely related to plant defense responses and secondary metabolites' production, was greatly increased in roots after the bacterial inoculations, indicating that FZB42 activated the JA pathway. Taken together, our results demonstrate that inoculation with FZB42 alleviates the losses in production and pharmacological metabolites of G. uralensis caused by drought via the JA pathway's activation. These results provide a developed prospect of a microbial agent to improve the yield and quality of medical plants in arid and semi-arid regions.
Collapse
Affiliation(s)
- Liang Yue
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Constantine Uwaremwe
- University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Yuan Tian
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xia Zhao
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qin Zhou
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yun Wang
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Yubao Zhang
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bailong Liu
- Gansu Institute for Drug Control, Lanzhou, China
| | - Zengtuan Cui
- The General Station of Construction and Protection for The Cultivated Land and Quality of Gansu Province, Lanzhou, China
| | - Chengchao Dun
- School of Management, Lanzhou University, Lanzhou, China
| | - Ruoyu Wang
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
|
43
|
Jain R, Hussein MA, Pierce S, Martens C, Shahagadkar P, Munirathinam G. Oncopreventive and oncotherapeutic potential of licorice triterpenoid compound glycyrrhizin and its derivatives: Molecular insights. Pharmacol Res 2022; 178:106138. [PMID: 35192957 PMCID: PMC8857760 DOI: 10.1016/j.phrs.2022.106138] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023]
Abstract
Licorice (Glycyrrhiza glabra) is a well-known natural herb used to treat different ailments since ancient times. Glycyrrhizin (GL), which is the primary triterpenoid compound of licorice extract, has been known to have broad-spectrum pharmacological effects. GL is cleaved into glucuronide and the aglycone, glycyrrhetinic acid (GA), which exists in two stereoisomeric forms: 18α- and 18β-GA. It is well documented that GL and GA have great potential as anti-inflammatory, anticancer, antiviral, anti-diabetic, antioxidant, and hepatoprotective agents. Studies undertaken during the coronavirus disease 2019 pandemic suggest that GL is effective at inhibiting the viral replication of severe acute respiratory syndrome coronavirus 2. The anticancer effects of GL and GA involve modulating various signaling pathways, such as the phosphatase and tensin homolog/phosphatidylinositol 3-kinase/protein kinase B pathway, the mitogen-activated protein kinase, and the mammalian target of rapamycin/signal transducer and activator of transcription 3, which are mainly involved in regulating cancer cell death, oxidative stress, and inflammation. The potential of GL and GA in preventing cancer development and suppressing the growth and invasion of different cancer types has been reviewed in this paper. This review also provides molecular insights on the mechanism of action for the oncopreventive and oncotherapeutic effects of GL and its derivative, GA, which could help develop more specific forms of these agents for clinical use.
Collapse
|
44
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:730-739. [DOI: 10.1093/jpp/rgab180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/17/2021] [Indexed: 11/14/2022]
|
45
|
Yamamoto Y, Uchiyama M, Iguchi K, Kawai K, Imazuru T, Kawamura M, Shimokawa T. Effects of Glycyrrhizic Acid in Licorice on Prolongation of Murine Cardiac Allograft Survival. Transplant Proc 2022; 54:476-481. [DOI: 10.1016/j.transproceed.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/02/2021] [Accepted: 12/27/2021] [Indexed: 11/29/2022]
|
46
|
Safwat S, Hathout RM, Ishak RA, Mortada ND. Elaborated survey in the scope of nanocarriers engineering for boosting chemotherapy cytotoxicity: A meta-analysis study. Int J Pharm 2021; 610:121268. [PMID: 34748812 DOI: 10.1016/j.ijpharm.2021.121268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023]
Abstract
Cancer is the prime cause of mortality throughout the world. Although the conventional chemotherapeutic agents damage the cancerous cells, they exert prominent injury to the normal cells owing to their lack of specificity. With advances in science, many research studies have been established to boost the cytotoxic effect of the chemotherapeutic agents via innovating novel nano-formulations having different variables. In the current meta-analysis study, combined data from different research articles were gathered for the evidence-based proof of the superiority of drug loaded nanocarriers over their corresponding conventional solutions in boosting the cytotoxic effect of chemotherapy in terms of IC50 values. The meta-analysis was subdivided into three subgroups; nanoparticles versus nanofibers, surface functionalized nanocarriers versus naked ones, and protein versus non-protein-based platforms. The different subgroups interestingly showed distinct scoring outcome data paving the road for cytotoxicity enhancement of the anti-cancer drugs in an evidence-based manner.
Collapse
Affiliation(s)
- Sally Safwat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt.
| | - Rania A Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| | - Nahed D Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| |
Collapse
|
47
|
Kim AV, Shelepova EA, Evseenko VI, Dushkin AV, Medvedev NN, Polyakov NE. Mechanism of the enhancing effect of glycyrrhizin on nifedipine penetration through a lipid membrane. J Mol Liq 2021; 344:117759. [PMID: 34658466 PMCID: PMC8500845 DOI: 10.1016/j.molliq.2021.117759] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/02/2021] [Indexed: 01/04/2023]
Abstract
The saponin glycyrrhizin from liquorice root shows the ability to enhance the therapeutic activity of other drugs when used as a drug delivery system. Due to its amphiphilic properties, glycyrrhizin can form self-associates (dimers, micelles) and supramolecular complexes with a wide range of hydrophobic drugs, which leads to an increase in their solubility, stability and bioavailability. That is why the mechanism of the biological activity of glycyrrhizin is of considerable interest and has been the subject of intensive physical and chemical research in the last decade. Two mechanisms have been proposed to explain the effect of glycyrrhizin on drug bioavailability, namely, the increase in drug solubility in water and enhancement of the membrane permeability. Interest in the membrane-modifying ability of glycyrrhizic acid (GA) is also growing at present due to its recently discovered antiviral activity against SARS-CoV-2 Bailly and Vergoten (2020) [1]. In the present study, the passive permeability of the DOPC lipid membrane for the calcium channel blocker nifedipine was elucidated by parallel artificial membrane permeability assay (PAMPA) and full atomistic molecular dynamics (MD) simulation with free energy calculations. PAMPA experiments show a remarkable increase in the amount of nifedipine (NF) permeated with glycyrrhizin compared to free NF. In previous studies, we have shown using MD techniques that glycyrrhizin molecules can integrate into the lipid bilayer. In this study, MD simulation demonstrates a significant decrease in the energy barrier of NF penetration through the lipid bilayer in the presence of glycyrrhizin both in the pure DOPC membrane and in the membrane with cholesterol. This effect can be explained by the formation of hydrogen bonds between NF and GA in the middle of the bilayer.
Collapse
Key Words
- CLR, cholesterol
- DDS, drug delivery system
- DOPC
- DOPC, dioleoylphosphatidylcholine
- Drug delivery
- GA, glycyrrhizic acid
- Glycyrrhizin
- Lipid bilayer
- MD, molecular dynamics
- Membrane penetration
- Molecular dynamics
- NF, nifedipine
- NMR
- NMR, nuclear magnetic resonance
- Nifedipine
- PAMPA
- PAMPA, parallel artificial membrane permeability assay
- PMF, potential of mean force
- TBK, tebuconazole
- VDW, Van der Waals
Collapse
Affiliation(s)
- A V Kim
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - E A Shelepova
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia
| | - V I Evseenko
- Institute of Solid State Chemistry and Mechanochemistry, Novosibirsk, Russia
| | - A V Dushkin
- Institute of Solid State Chemistry and Mechanochemistry, Novosibirsk, Russia
| | - N N Medvedev
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - N E Polyakov
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia.,Institute of Solid State Chemistry and Mechanochemistry, Novosibirsk, Russia
| |
Collapse
|
48
|
Li Q, Xu M, Yang Y, Guo J, Wan Z, Yang X. Tailoring structure and properties of long-lived emulsion foams stabilized by a natural saponin glycyrrhizic acid: Role of oil phase. Food Res Int 2021; 150:110733. [PMID: 34865752 DOI: 10.1016/j.foodres.2021.110733] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 11/24/2022]
Abstract
Novel supramolecular nanofibrils assembled from food-grade saponin glycyrrhizic acid (GA) are effective building blocks to make complex multiphase systems, e.g., emulsion foams. In this work, the effects of different oil phases (castor oil, sunflower oil, dodecane, and limonene) on the formation, stability and structural properties of long-lived emulsion foams prepared by GA nanofibrils (GNs) were investigated. The obtained results showed that soft-solid emulsion foams (4 wt% GNs) can be fabricated, independently of oil phase, and their structural properties, viscoelasticity, and tribological properties can be well tuned by oil phase polarity. Compared to the GNs aqueous foams, the presence of jammed emulsion droplets in the liquid channels and at the surfaces of bubbles can provide a higher bubble stability for emulsion foams. For more polar oil phase (castor oil), GNs showed a higher affinity to the oil-water interface with a lower interfacial tension, thus forming smaller oil droplets and bubbles, which leads to the higher mechanical strength, denser network microstructures, and lower friction coefficients of emulsion foams. However, the limonene foam exhibited weak storage stability and rheological properties, as well as the relatively low lubrication, which may be related to the formation of oil droplet aggregates and clusters induced by the volatility of limonene. GN-based emulsion foams are thermoresponsive, independently of oils, and the temperature-switchable process for the destabilization and regeneration of foams can be controlled and repeated. These emulsion foams based on natural saponin nanofibrils with tunable properties have potential sustainable applications in foods, pharmaceuticals, and personal care products.
Collapse
Affiliation(s)
- Qing Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Mengyue Xu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Yunyi Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Jian Guo
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China.
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
49
|
Wang Z, Xue Y, Chen T, Du Q, Zhu Z, Wang Y, Wu Y, Zeng Q, Shen C, Jiang C, Yang Z, Zhu H, Liu L, Liu Q. Glycyrrhiza acid micelles loaded with licochalcone A for topical delivery: Co-penetration and anti-melanogenic effect. Eur J Pharm Sci 2021; 167:106029. [PMID: 34601069 DOI: 10.1016/j.ejps.2021.106029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/07/2021] [Accepted: 09/29/2021] [Indexed: 01/19/2023]
Abstract
The co-penetration of micellar vehicles and the encapsulated drugs into the skin layers, as well as the mechanisms underlying the penetration enhancement have not been clearly elucidated. We developed licochalcone A (LA)-loaded glycyrrhiza acid (GA) (GA+LA) micelles for topical delivery of LA into the epidermis. The in vitro co-penetration, penetration pathways, mechanism of interaction between skin and the micelles, and the in vitro and in vivo whitening effect of GA+LA micelles were evaluated. Co-penetration and penetration pathways were visualized on the abdominal skin of rats model with confocal laser scanning microscopy (CLSM) using a nile blue A-labeled GA (GA-NB). We found that GA significantly increased the transport of LA into the skin predominantly via the hair follicles and GA mainly accumulated in the SC and epidermis, while LA was localized in the epidermis and dermis. Moreover, 73.4% of the LA deposited into the epidermis within 12 h and approximately 9.32% of the LA permeated across the SC in the form of entire micelles within 24 h. GA-NB+LA micelles disaggregated and accumulated in the specific skin layers, and the LA released from the carrier penetrated into deeper layers. Moreover, the GA+LA micelles promoted drug penetration via intracellular or intercellular routes by loosening the skin surface and enhancing fluidization through lipid distortion and keratin denaturation. Furthermore, GA+LA micelles exhibited synergistic whitening effect on B16 cells and UVB-exposed C57BL/6 mice. Collectively, GA micelles can enhance penetration of LA to the epidermis mainly via the hair follicles following topical application, and reduce skin pigmentation.
Collapse
Affiliation(s)
- Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Tingting Chen
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Qunqun Du
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Zhaoming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Yufang Wu
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China.
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou 510515, China.
| |
Collapse
|
50
|
Kim M, Park SC, Lee DY. Glycyrrhizin as a Nitric Oxide Regulator in Cancer Chemotherapy. Cancers (Basel) 2021; 13:cancers13225762. [PMID: 34830916 PMCID: PMC8616433 DOI: 10.3390/cancers13225762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Glycyrrhizin (GL) has anti-cancer, anti-inflammatory, anti-viral, and anti-oxidant activity. In particular, GL reduces multidrug resistance (MDR) in cancer cells, which is a major obstacle to chemotherapy. Nitric oxide (NO) also plays an important role in MDR, and GL affects NO concentration in the tumor microenvironment. However, the effects of GL and NO interaction on MDR have not been reviewed. Here, we review the role of GL as an NO regulator in cancer cells and its subsequent anti-MDR effect and posit that GL is a promising MDR inhibitor for cancer chemotherapy. Abstract Chemotherapy is used widely for cancer treatment; however, the evolution of multidrug resistance (MDR) in many patients limits the therapeutic benefits of chemotherapy. It is important to overcome MDR for enhanced chemotherapy. ATP-dependent efflux of drugs out of cells is the main mechanism of MDR. Recent studies have suggested that nitric oxide (NO) can be used to overcome MDR by inhibiting the ATPase function of ATP-dependent pumps. Several attempts have been made to deliver NO to the tumor microenvironment (TME), however there are limitations in delivery. Glycyrrhizin (GL), an active compound of licorice, has been reported to both reduce the MDR effect by inhibiting ATP-dependent pumps and function as a regulator of NO production in the TME. In this review, we describe the potential role of GL as an NO regulator and MDR inhibitor that efficiently reduces the MDR effect in cancer chemotherapy.
Collapse
Affiliation(s)
- Minsu Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
| | - Seok Chan Park
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
- Institute of Nano Science & Technology (INST), Hanyang University, Seoul 04763, Korea
- Elixir Pharmatech Inc., Seoul 04763, Korea
- Correspondence:
| |
Collapse
|