1
|
Faryadi S, Sheikhahmadi A, Farhadi A, Nourbakhsh H. Evaluating the therapeutic effect of different forms of silymarin on liver status and expression of some genes involved in fat metabolism, antioxidants and anti-inflammatory in older laying hens. Vet Med Sci 2024; 10:e70025. [PMID: 39324876 PMCID: PMC11426161 DOI: 10.1002/vms3.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Silymarin, the predominant compound of milk thistle, is an extract took out from milk thistle (Silybum marianum) seeds, containing a mixture of flavonolignans with strong antioxidant capability. METHODS The experiment was conducted using 70 Lohmann LSL-Lite hens at 80 weeks of age with 7 treatments each with 10 replicates. Treatments included: (1) control diet without silymarin, (2) daily intake of 100 mg silymarin powder/kg body weight (BW) (PSM100), (3) daily intake of 200 mg silymarin powder/kg BW (PSM200), (4) daily intake of 100 mg nano-silymarin/kg BW (NSM100), (5) daily intake of 200 mg nano-silymarin/kg BW (NSM200), (6) daily intake of 100 mg lecithinized silymarin/kg BW (LSM100) and (7) daily intake of 200 mg lecithinized silymarin/kg BW (LSM200). The birds were housed individually, and diets were fed for 12 weeks. RESULTS Scanning electron microscopy showed that NSM was produced with the average particle size of 20.30 nm. Silymarin treatment improved serum antioxidant enzyme activity. All groups receiving silymarin showed a decrease in liver malondialdehyde content, expression of fatty acid synthase, tumour necrosis factor alpha, interleukin 6 (IL-6) genes in the liver, and hepatic steatosis than the control, except those fed the PSM100 diet. There were decreases in liver dry matter and fat contents, non-alcoholic fatty liver disease and hepatocyte ballooning, and an increase in glutathione peroxidase gene expression and a decrease in iNOS gene expression in birds fed the NSM100, NSM200, LSM100 and LSM200 diets compared to the control group. Moreover, all groups receiving silymarin showed a significant decrease in liver weight compare to the control group. CONCLUSIONS Overall, the effects of silymarin when converted to NSM or LSM and offered at the level of 200 mg/kg BW were more pronounced on the hepatic variables and may be useful in the prevention of the liver disease in older laying hens.
Collapse
Affiliation(s)
- Samira Faryadi
- Department of Animal ScienceFaculty of AgriculturalUniversity of KurdistanSanandajIran
| | - Ardashir Sheikhahmadi
- Department of Animal ScienceFaculty of AgriculturalUniversity of KurdistanSanandajIran
| | - Ayoub Farhadi
- Department of Animal ScienceFaculty of Animal Sciences and FisheriesSari Agricultural Sciences and Natural Resources UniversitySariIran
| | - Himan Nourbakhsh
- Department of Food Science and EngineeringFaculty of AgricultureUniversity of KurdistanSanandajIran
| |
Collapse
|
2
|
Ezhilarasan D, Langeswaran K. Hepatocellular Interactions of Potential Nutraceuticals in the Management of Inflammatory NAFLD. Cell Biochem Funct 2024; 42:e4112. [PMID: 39238138 DOI: 10.1002/cbf.4112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/17/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
Numerous studies highlight the potential of natural antioxidants, such as those found in foods and plants, to prevent or treat nonalcoholic fatty liver disease (NAFLD). Inflammation is a key factor in the progression from high-fat diet-induced NAFLD to nonalcoholic steatohepatitis (NASH). Injured liver cells and immune cells release inflammatory cytokines, activating hepatic stellate cells. These cells acquire a profibrogenic phenotype, leading to extracellular matrix accumulation and fibrosis. Persistent fibrosis can progress to cirrhosis. Fatty infiltration, oxidative stress, and inflammation exacerbate fatty liver diseases. Thus, many plant-derived antioxidants, like silymarin, silibinin, curcumin, resveratrol, berberine, and quercetin, have been extensively studied in experimental models and clinical patients with NAFLD. Experimentally, these compounds have shown beneficial effects in reducing lipid accumulation, oxidative stress, and inflammatory markers by modulating the ERK, NF-κB, AMPKα, and PPARγ pathways. They also help decrease metabolic endotoxemia, intestinal permeability, and gut inflammation. Clinically, silymarin and silibinin have been found to reduce transaminase levels, while resveratrol and curcumin help alleviate inflammation in NAFLD patients. However, these phytocompounds exhibit poor water solubility, leading to low oral bioavailability and hindering their biological efficacy. Additionally, inconclusive clinical results highlight the need for further trials with larger populations, longer durations, and standardized protocols.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Hepatology and Molecular Medicine Lab, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Kulanthaivel Langeswaran
- Department of Biomedical Science, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
3
|
Carvalho LCF, Ferreira FM, Dias BV, Azevedo DCD, de Souza GHB, Milagre MM, de Lana M, Vieira PMDA, Carneiro CM, Paula-Gomes SD, Cangussu SD, Costa DC. Silymarin inhibits the lipogenic pathway and reduces worsening of non-alcoholic fatty liver disease (NAFLD) in mice. Arch Physiol Biochem 2024; 130:460-474. [PMID: 36328030 DOI: 10.1080/13813455.2022.2138445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022]
Abstract
CONTEXT The role of silymarin in hepatic lipid dysfunction and its possible mechanisms of action were investigated. OBJECTIVE To evaluate the effects of silymarin on hepatic and metabolic profiles in mice fed with 30% fructose for 8 weeks. METHODS We evaluated the antioxidant profile of silymarin; mice consumed 30% fructose and were treated with silymarin (120 mg/kg/day or 240 mg/kg/day). We performed biochemical, redox status, and histopathological assays. RT-qPCR was performed to detect ACC-1, ACC-2, FAS, and CS expression, and western blotting to detect PGC-1α levels. RESULTS Silymarin contains high levels of phenolic compounds and flavonoids and exhibited significant antioxidant capacity in vitro. In vivo, the fructose-fed groups showed increased levels of AST, ALT, SOD/CAT, TBARS, hepatic TG, and cholesterol, as well as hypertriglyceridaemia, hypercholesterolaemia, and increased ACC-1 and FAS. Silymarin treatment reduced these parameters and increased mRNA levels and activity of hepatic citrate synthase. CONCLUSIONS These results suggest that silymarin reduces worsening of NAFLD.
Collapse
Affiliation(s)
| | | | - Bruna Vidal Dias
- Laboratório de Bioquímica Metabólica, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | | | - Matheus Marque Milagre
- Laboratório Doença de Chagas, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, Brazil
| | - Marta de Lana
- Laboratório Doença de Chagas, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, Brazil
| | | | | | - Sílvia de Paula-Gomes
- Laboratório de Bioquímica e Biologia Molecular, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, Brazil
| | - Silvia Dantas Cangussu
- Laboratório de Fisiopatologia Experimental, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, Brazil
| | - Daniela Caldeira Costa
- Laboratório de Bioquímica Metabólica, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
4
|
Mohammadian K, Fakhar F, Keramat S, Stanek A. The Role of Antioxidants in the Treatment of Metabolic Dysfunction-Associated Fatty Liver Disease: A Systematic Review. Antioxidants (Basel) 2024; 13:797. [PMID: 39061866 PMCID: PMC11273623 DOI: 10.3390/antiox13070797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global public health problem that causes liver-related morbidity and mortality. It is also an independent risk factor for non-communicable diseases. In 2020, a proposal was made to refer to it as "metabolic dysfunction-associated fatty liver disease (MAFLD)", with concise diagnostic criteria. Given its widespread occurrence, its treatment is crucial. Increased levels of oxidative stress cause this disease. This review aims to evaluate various studies on antioxidant therapies for patients with MAFLD. A comprehensive search for relevant research was conducted on the PubMed, SCOPUS, and ScienceDirect databases, resulting in the identification of 87 studies that met the inclusion criteria. In total, 31.1% of human studies used natural antioxidants, 53.3% used synthetic antioxidants, and 15.5% used both natural and synthetic antioxidants. In human-based studies, natural antioxidants showed 100% efficacy in the treatment of MAFLD, while synthetic antioxidants showed effective results in only 91% of the investigations. In animal-based research, natural antioxidants were fully effective in the treatment of MAFLD, while synthetic antioxidants demonstrated effectiveness in only 87.8% of the evaluations. In conclusion, antioxidants in their natural form are more helpful for patients with MAFLD, and preserving the correct balance of pro-oxidants and antioxidants is a useful way to monitor antioxidant treatment.
Collapse
Affiliation(s)
- Kiana Mohammadian
- Division of Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz 71348, Iran; (K.M.); (F.F.)
| | - Fatemeh Fakhar
- Division of Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz 71348, Iran; (K.M.); (F.F.)
| | - Shayan Keramat
- VAS-European Independent Foundation in Angiology/Vascular Medicine, Via GB Grassi 74, 20157 Milan, Italy;
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran
| | - Agata Stanek
- VAS-European Independent Foundation in Angiology/Vascular Medicine, Via GB Grassi 74, 20157 Milan, Italy;
- Department and Clinic of Internal Medicine, Angiology, and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-902 Bytom, Poland
| |
Collapse
|
5
|
Neelab, Zeb A, Jamil M. Milk thistle protects against non-alcoholic fatty liver disease induced by dietary thermally oxidized tallow. Heliyon 2024; 10:e31445. [PMID: 38818175 PMCID: PMC11137523 DOI: 10.1016/j.heliyon.2024.e31445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic condition caused by several factors including thermally oxidized tallow. Various strategies have been considered to ameliorate NAFLD. However, the role of milk thistle (MT) in ameliorating NAFLD caused by thermally oxidized tallow has not been reported. The purpose of this study was to evaluate the ability of milk thistle to protect rabbits from the toxicity of oxidized tallow (OT). The rabbits were given OT and an extract of MT. The composition of MT was analyzed using HPLC-DAD, and tallow samples were studied using GC-MS. The study also examined liver histology, antioxidant levels, liver-related inflammatory markers, and serum lipid profile. The results showed that the major components of the MT extract were silybin B, formononetin-glucuronic acid, proanthocyanidin B1, silychristin B, silydianin, and isosilybin A. The group given OT showed elevated lipid profiles, lower antioxidant status, higher levels of hepatic inflammatory markers, and lower levels of anti-inflammatory markers. This group also had higher fat storage in the liver compared to the control or treatment groups. However, when MT was supplemented, the pro-inflammatory cytokines (IL-1, IL-4, IL-6, and TNF-α) and antioxidant status (CAT, SOD, GSH-Px, GSH, and TBARS) of the liver returned to normal. This suggests that MT extract is an excellent source of hepatoprotective compounds. It protects the liver by increasing antioxidant enzymes, decreasing pro-inflammatory cytokines, and increasing anti-inflammatory markers.
Collapse
Affiliation(s)
- Neelab
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Alam Zeb
- The Bioactive Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- Department of Biochemistry, University of Malakand, Chakdara, Pakistan
| | - Muhammad Jamil
- Department of Surgery, Timergara Teaching Hospital, Timergara, Pakistan
| |
Collapse
|
6
|
Okrit F, Chayanupatkul M, Wanpiyarat N, Siriviriyakul P, Werawatganon D. Genistein and sex hormone treatment alleviated hepatic fat accumulation and inflammation in orchidectomized rats with nonalcoholic steatohepatitis. Heliyon 2024; 10:e26055. [PMID: 38380011 PMCID: PMC10877361 DOI: 10.1016/j.heliyon.2024.e26055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Testosterone deficiency has been reported to accelerate nonalcoholic fatty liver disease (NAFLD). However, there are minimal data on the risk of NAFLD in transgender women and the treatment of NAFLD in this population. This study aimed to investigate the treatment effects and the mechanisms of action of genistein and sex hormones in orchiectomized (ORX) rats with nonalcoholic steatohepatitis (NASH) induced by a high fat high fructose diet (HFHF). Seven-week old male Sprague-Dawley rats were randomly divided into 7 groups (n = 6 each group); 1) control group, 2) ORX + standard diet group, 3) HFHF group, 4) ORX + HFHF group, 5) ORX + HFHF diet + testosterone group (50 mg/kg body weight (BW) once weekly), 6) ORX + HFHF diet + estradiol group (1.6 mg/kg BW daily), and 7) ORX + HFHF diet + genistein group (16 mg/kg BW daily). The duration of treatment was 6 weeks. Liver tissue was used for histological examination by hematoxylin and eosin staining and hepatic fat measurement by Oil Red O staining. Protein expression levels of histone deacetylase3 (HDAC3) and peroxisome proliferator-activated receptor delta (PPARδ) were analyzed by immunoblotting. Hepatic nuclear factor (NF)-ĸB expression was evaluated by immunohistochemistry. Rats in the ORX + HFHF group had the highest degree of hepatic steatosis, lobular inflammation, hepatocyte ballooning and the highest percentage of positive Oil Red O staining area among all groups. The expression of HDAC3 and PPARδ was downregulated, while NF-ĸB expression was upregulated in the ORX + HFHF group when compared with control and ORX + standard diet groups. Testosterone, estradiol and genistein treatment improved histological features of NASH together with the reversal of HDAC3, PPARδ and NF-ĸB protein expression comparing with the ORX + HFHF group. In summary, genistein and sex hormone treatment could alleviate NASH through the up-regulation of HDAC3 and PPARδ, and the suppression of NF-ĸB expression.
Collapse
Affiliation(s)
- Fatist Okrit
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Maneerat Chayanupatkul
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natcha Wanpiyarat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Prasong Siriviriyakul
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Duangporn Werawatganon
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Zakaria Z, Othman ZA, Nna VU, Mohamed M. The promising roles of medicinal plants and bioactive compounds on hepatic lipid metabolism in the treatment of non-alcoholic fatty liver disease in animal models: molecular targets. Arch Physiol Biochem 2023; 129:1262-1278. [PMID: 34153200 DOI: 10.1080/13813455.2021.1939387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
Imbalance in hepatic lipid metabolism can lead to an abnormal triglycerides deposition in the hepatocytes which can cause non-alcoholic fatty liver disease (NAFLD). Four main mechanisms responsible for regulating hepatic lipid metabolism are fatty acid uptake, de novo lipogenesis, lipolysis and fatty acid oxidation. Controlling the expression of transcription factors at molecular level plays a crucial role in NAFLD management. This paper reviews various medicinal plants and their bioactive compounds emphasising mechanisms involved in hepatic lipid metabolism, other important NAFLD pathological features, and their promising roles in managing NAFLD through regulating key transcription factors. Although there are many medicinal plants popularly investigated for NAFLD treatment, there is still little information and scientific evidence available and there has been no research on clinical trials scrutinised on this matter. This review also aims to provide molecular information of medicinal plants in NALFD treatment that might have potentials for future scientifically controlled studies.
Collapse
Affiliation(s)
- Zaida Zakaria
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Zaidatul Akmal Othman
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
- Unit of Physiology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Victor Udo Nna
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
- Unit of Integrative Medicine, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
8
|
Kabutey A, Herák D, Mizera Č. Assessment of Quality and Efficiency of Cold-Pressed Oil from Selected Oilseeds. Foods 2023; 12:3636. [PMID: 37835289 PMCID: PMC10573014 DOI: 10.3390/foods12193636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
In this present study, an oil press was used to process 200 g each of sesame, pumpkin, flax, milk thistle, hemp and cumin oilseeds in order to evaluate the amount of oil yield, seedcake, sediments and material losses (oil and sediments). Sesame produced the highest oil yield at 30.60 ± 1.69%, followed by flax (27.73 ± 0.52%), hemp (20.31 ± 0.11%), milk thistle (14.46 ± 0.51%) and pumpkin (13.37 ± 0.35%). Cumin seeds produced the lowest oil yield at 3.46 ± 0.15%. The percentage of sediments in the oil, seedcake and material losses for sesame were 5.15 ± 0.09%, 60.99 ± 0.04% and 3.27 ± 1.56%. Sediments in the oil decreased over longer storage periods, thereby increasing the percentage oil yield. Pumpkin oil had the highest peroxide value at 18.45 ± 0.53 meq O2/kg oil, an acid value of 11.21 ± 0.24 mg KOH/g oil, free fatty acid content of 5.60 ± 0.12 mg KOH/g oil and iodine value of 14.49 ± 0.16 g l/100 g. The univariate ANOVA of the quality parameters against the oilseed type was statistically significant (p-value < 0.05), except for the iodine value, which was not statistically significant (p-value > 0.05). Future studies should analyze the temperature generation, oil recovery efficiency, percentage of residual oil in the seedcake and specific energy consumption of different oilseeds processed using small-large scale presses.
Collapse
Affiliation(s)
- Abraham Kabutey
- Department of Mechanical Engineering, Faculty of Engineering, Czech University of Life Sciences Prague, 165 20 Prague, Czech Republic; (D.H.); (Č.M.)
| | | | | |
Collapse
|
9
|
Sumara A, Stachniuk A, Trzpil A, Bartoszek A, Montowska M, Fornal E. LC-MS Metabolomic Profiling of Five Types of Unrefined, Cold-Pressed Seed Oils to Identify Markers to Determine Oil Authenticity and to Test for Oil Adulteration. Molecules 2023; 28:4754. [PMID: 37375308 DOI: 10.3390/molecules28124754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The authenticity of food products marketed as health-promoting foods-especially unrefined, cold-pressed seed oils-should be controlled to ensure their quality and safeguard consumers and patients. Metabolomic profiling using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF) was employed to identify authenticity markers for five types of unrefined, cold-pressed seed oils: black seed oil (Nigella sativa L.), pumpkin seed oil (Cucurbita pepo L.), evening primrose oil (Oenothera biennis L.), hemp oil (Cannabis sativa L.) and milk thistle oil (Silybum marianum). Of the 36 oil-specific markers detected, 10 were established for black seed oil, 8 for evening primrose seed oil, 7 for hemp seed oil, 4 for milk thistle seed oil and 7 for pumpkin seed oil. In addition, the influence of matrix variability on the oil-specific metabolic markers was examined by studying binary oil mixtures containing varying volume percentages of each tested oil and each of three potential adulterants: sunflower, rapeseed and sesame oil. The presence of oil-specific markers was confirmed in 7 commercial oil mix products. The identified 36 oil-specific metabolic markers proved useful for confirming the authenticity of the five target seed oils. The ability to detect adulterations of these oils with sunflower, rapeseed and sesame oil was demonstrated.
Collapse
Affiliation(s)
- Agata Sumara
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Anna Stachniuk
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Alicja Trzpil
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Adrian Bartoszek
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Emilia Fornal
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| |
Collapse
|
10
|
Tuli HS, Garg VK, Bhushan S, Uttam V, Sharma U, Jain A, Sak K, Yadav V, Lorenzo JM, Dhama K, Behl T, Sethi G. Natural flavonoids exhibit potent anticancer activity by targeting microRNAs in cancer: A signature step hinting towards clinical perfection. Transl Oncol 2022; 27:101596. [PMID: 36473401 PMCID: PMC9727168 DOI: 10.1016/j.tranon.2022.101596] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer prevalence and its rate of incidence are constantly rising since the past few decades. Owing to the toxicity of present-day antineoplastic drugs, it is imperative to explore safer and more effective molecules to combat and/or prevent this dreaded disease. Flavonoids, a class of polyphenols, have exhibited multifaceted implications against several diseases including cancer, without showing significant toxicity towards the normal cells. Shredded pieces of evidence suggest that flavonoids can enhance drug sensitivity and suppress proliferation, metastasis, and angiogenesis of cancer cells by modulating several oncogenic or oncosuppressor microRNAs (miRNAs, miRs). They play pivotal roles in regulation of various biological and pathological processes, including various cancers. In the present review, the structure, chemistry and miR targeting efficacy of quercetin, luteolin, silibinin, genistein, epigallocatechin gallate, and cyanidin against several cancer types are comprehensively discussed. miRs are considered as next-generation medicine of recent times, and their targeting by naturally occurring flavonoids in cancer cells could be deemed as a signature step. We anticipate that our compilations related to miRNA-mediated regulation of cancer cells by flavonoids might catapult the clinical investigations and affirmation in the future.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Sakshi Bhushan
- Department of Botany, Central University Jammu, Jammu and Kashmir 181143, India
| | - Vivek Uttam
- Department of Zoology, Central University of Punjab, Village-Ghudda, Punjab 151401, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Village-Ghudda, Punjab 151401, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Village-Ghudda, Punjab 151401, India
| | | | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, SE-20213 Malmö, Sweden
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense 32900, Spain,Universidade de Vigo, Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, 32004 Ourense, Spain
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh 243122, India
| | - Tapan Behl
- Department of Pharmacology, School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand 248007, India,Corresponding authors.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore,Corresponding authors.
| |
Collapse
|
11
|
Mechanistic Insights into the Pharmacological Significance of Silymarin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165327. [PMID: 36014565 PMCID: PMC9414257 DOI: 10.3390/molecules27165327] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/29/2022]
Abstract
Medicinal plants are considered the reservoir of diverse therapeutic agents and have been traditionally employed worldwide to heal various ailments for several decades. Silymarin is a plant-derived mixture of polyphenolic flavonoids originating from the fruits and akenes of Silybum marianum and contains three flavonolignans, silibinins (silybins), silychristin and silydianin, along with taxifolin. Silybins are the major constituents in silymarin with almost 70–80% abundance and are accountable for most of the observed therapeutic activity. Silymarin has also been acknowledged from the ancient period and is utilized in European and Asian systems of traditional medicine for treating various liver disorders. The contemporary literature reveals that silymarin is employed significantly as a neuroprotective, hepatoprotective, cardioprotective, antioxidant, anti-cancer, anti-diabetic, anti-viral, anti-hypertensive, immunomodulator, anti-inflammatory, photoprotective and detoxification agent by targeting various cellular and molecular pathways, including MAPK, mTOR, β-catenin and Akt, different receptors and growth factors, as well as inhibiting numerous enzymes and the gene expression of several apoptotic proteins and inflammatory cytokines. Therefore, the current review aims to recapitulate and update the existing knowledge regarding the pharmacological potential of silymarin as evidenced by vast cellular, animal, and clinical studies, with a particular emphasis on its mechanisms of action.
Collapse
|
12
|
A Molecular Insight into the Role of Antioxidants in Nonalcoholic Fatty Liver Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9233650. [PMID: 35602098 PMCID: PMC9117022 DOI: 10.1155/2022/9233650] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) defines fat accumulation in the liver, and it is commonly associated with metabolic syndromes like diabetes and obesity. Progressive NAFLD leads to nonalcoholic steatohepatitis (NASH) and ultimately causes cirrhosis and hepatocellular carcinoma, and NASH is currently a frequent cause of liver transplantation. Oxidative stress is often contributed to the progression of NAFLD, and hence, antioxidants such as silymarin, silybin, or silibinin, pentoxifylline, resveratrol, and vitamins A, C, and E are used in clinical trials against NAFLD. Silymarin induces the peroxisome proliferator-activated receptor α (PPARα), a fatty acid sensor, which promotes the transcription of genes that are required for the enzymes involved in lipid oxidation in hepatocytes. Silybin inhibits sterol regulatory element-binding protein 1 and carbohydrate response element-binding protein to downregulate the expression of genes responsible for de novo lipogenesis by activating AMP-activated protein kinase phosphorylation. Pentoxifylline inhibits TNF-α expression and endoplasmic reticulum stress-mediated inflammatory nuclear factor kappa B (NF-κB) activation. Thus, it prevents NAFLD to NASH progression. Resveratrol inhibits methylation at Nrf-2 promoters and NF-κB activity via SIRT1 activation in NAFLD conditions. However, clinically, resveratrol has not shown promising beneficial effects. Vitamin C is beneficial in NAFLD patients. Vitamin E is not effectively regressing hepatic fibrosis. Hence, its combination with antifibrotic agents is used as an adjuvant to produce a synergistic antifibrotic effect. However, to date, none of these antioxidants have been used as a definite therapeutic agent in NAFLD patients. Further, these antioxidants should be studied in NAFLD patients with larger populations and multiple endpoints in the future.
Collapse
|
13
|
Sumara A, Stachniuk A, Montowska M, Kotecka-Majchrzak K, Grywalska E, Mitura P, Saftić Martinović L, Kraljević Pavelić S, Fornal E. Comprehensive Review of Seven Plant Seed Oils: Chemical Composition, Nutritional Properties, and Biomedical Functions. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2067560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Agata Sumara
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| | - Anna Stachniuk
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, Poznan, Poland
| | | | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, Lublin, Poland
| | - Przemysław Mitura
- Department of Urology and Urological Oncology, Medical University of Lublin, Lublin, Poland
| | | | | | - Emilia Fornal
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
14
|
Jiang G, Sun C, Wang X, Mei J, Li C, Zhan H, Liao Y, Zhu Y, Mao J. Hepatoprotective mechanism of Silybum marianum on nonalcoholic fatty liver disease based on network pharmacology and experimental verification. Bioengineered 2022; 13:5216-5235. [PMID: 35170400 PMCID: PMC8974060 DOI: 10.1080/21655979.2022.2037374] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/29/2022] [Indexed: 12/12/2022] Open
Abstract
The study aimed to identify the key active components in Silybum marianum (S. marianum) and determine how they protect against nonalcoholic fatty liver disease (NAFLD). TCMSP, DisGeNET, UniProt databases, and Venny 2.1 software were used to identify 11 primary active components, 92 candidate gene targets, and 30 core hepatoprotective gene targets in this investigation, respectively. The PPI network was built using a string database and Cytoscape 3.7.2. The KEGG pathway and GO biological process enrichment, biological annotation, as well as the identified hepatoprotective core gene targets were analyzed using the Metascape database. The effect of silymarin on NAFLD was determined using H&E on pathological alterations in liver tissues. The levels of liver function were assessed using biochemical tests. Western blot experiments were used to observe the proteins that were expressed in the associated signaling pathways on the hepatoprotective effect, which the previous network pharmacology predicted. According to the KEGG enrichment study, there are 35 hepatoprotective signaling pathways. GO enrichment analysis revealed that 61 biological processes related to the hepatoprotective effect of S. marianum were identified, which mainly involved in response to regulation of biological process and immune system process. Silymarin was the major ingredient derived from S. marianum, which exhibited the hepatoprotective effect by reducing the levels of ALT, AST, TC, TG, HDL-C, LDL-C, decreasing protein expressions of IL-6, MAPK1, Caspase 3, p53, VEGFA, increasing protein expression of AKT1. The present study provided new sights and a possible explanation for the molecular mechanisms of S. marianum against NAFLD.
Collapse
Affiliation(s)
- Guoyan Jiang
- Department of Emergency, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunhong Sun
- Department of Emergency, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Wang
- Chongqing Medical and Pharmaceutical College, School of Clinical medicine, Chongqing, China
| | - Jie Mei
- Department of periodontal, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| | - Honghong Zhan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Yixuan Liao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Yongjun Zhu
- Department of Orthopedics, The Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Jingxin Mao
- Chongqing Medical and Pharmaceutical College, School of Clinical medicine, Chongqing, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
- College of Basic Medical Science, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Koltai T, Fliegel L. Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions. J Evid Based Integr Med 2022; 27:2515690X211068826. [PMID: 35018864 PMCID: PMC8814827 DOI: 10.1177/2515690x211068826] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/20/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
The flavonoid silymarin extracted from the seeds of Sylibum marianum is a mixture of 6 flavolignan isomers. The 3 more important isomers are silybin (or silibinin), silydianin, and silychristin. Silybin is functionally the most active of these compounds. This group of flavonoids has been extensively studied and they have been used as hepato-protective substances for the mushroom Amanita phalloides intoxication and mainly chronic liver diseases such as alcoholic cirrhosis and nonalcoholic fatty liver. Hepatitis C progression is not, or slightly, modified by silymarin. Recently, it has also been proposed for SARS COVID-19 infection therapy. The biochemical and molecular mechanisms of action of these substances in cancer are subjects of ongoing research. Paradoxically, many of its identified actions such as antioxidant, promoter of ribosomal synthesis, and mitochondrial membrane stabilization, may seem protumoral at first sight, however, silymarin compounds have clear anticancer effects. Some of them are: decreasing migration through multiple targeting, decreasing hypoxia inducible factor-1α expression, inducing apoptosis in some malignant cells, and inhibiting promitotic signaling among others. Interestingly, the antitumoral activity of silymarin compounds is limited to malignant cells while the nonmalignant cells seem not to be affected. Furthermore, there is a long history of silymarin use in human diseases without toxicity after prolonged administration. The ample distribution and easy accessibility to milk thistle-the source of silymarin compounds, its over the counter availability, the fact that it is a weed, some controversial issues regarding bioavailability, and being a nutraceutical rather than a drug, has somehow led medical professionals to view its anticancer effects with skepticism. This is a fundamental reason why it never achieved bedside status in cancer treatment. However, in spite of all the antitumoral effects, silymarin actually has dual effects and in some cases such as pancreatic cancer it can promote stemness. This review deals with recent investigations to elucidate the molecular actions of this flavonoid in cancer, and to consider the possibility of repurposing it. Particular attention is dedicated to silymarin's dual role in cancer and to some controversies of its real effectiveness.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
16
|
Zojaji SA, Mozaffari HM, Ghaderi P, Zojaji F, Hadjzadeh MAR, Seyfimoqadam M, Ghorbani A. Efficacy of an herbal compound in decreasing steatosis and transaminase activities in non-alcoholic fatty liver disease: A randomized clinical trial. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e18825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Ahmad Ghorbani
- Mashhad University of Medical Sciences, Iran; Mashhad University of Medical Sciences, Iran
| |
Collapse
|
17
|
Protective Effects of Sesamol against Liver Oxidative Stress and Inflammation in High-Fat Diet-Induced Hepatic Steatosis. Nutrients 2021; 13:nu13124484. [PMID: 34960036 PMCID: PMC8704932 DOI: 10.3390/nu13124484] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic high-fat diet (HFD) is associated with the onset and progression of hepatic steatosis, and oxidative stress is highly involved in this process. The potential role of sesamol (SEM) against oxidative stress and inflammation at the transcriptional level in a mice model of hepatic steatosis is not known. In this study, we aimed to investigate the scavenging effects of SEM towards reactive oxygen generated by lipid accumulation in the liver of obese mice and to explore the mechanisms of protection. Markers of oxidative stress, vital enzymes involved in stimulating oxidative stress or inflammation, and nuclear transcription of Nrf2 were examined. Our results showed that SEM significantly inhibited the activity of the HFD-induced hepatic enzymes CYP2E1 and NOX2, associated with oxidative stress generation. Additionally, SEM reversed HFD-induced activation of NF-κB, a redox-sensitive transcription factor, and attenuated the expression of hepatic TNF-α, a proinflammatory molecule. Moreover, SEM enhanced HFD-induced hepatic Nrf2 nuclear transcription and increased the levels of its downstream target genes Ho1 and Nqo1, which indicated antiinflammation and antioxidant properties. Our study suggests that chronic HFD led to hepatic steatosis, while SEM exhibited protective effects on the liver by counteracting the oxidative stress and inflammation induced by HFD. The underlying mechanism might involve multiple pathways at the transcriptional level; the antioxidant defense mechanism was in partly mediated by the upregulation of Nrf2.
Collapse
|
18
|
Fu K, Wang C, Ma C, Zhou H, Li Y. The Potential Application of Chinese Medicine in Liver Diseases: A New Opportunity. Front Pharmacol 2021; 12:771459. [PMID: 34803712 PMCID: PMC8600187 DOI: 10.3389/fphar.2021.771459] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Liver diseases have been a common challenge for people all over the world, which threatens the quality of life and safety of hundreds of millions of patients. China is a major country with liver diseases. Metabolic associated fatty liver disease, hepatitis B virus and alcoholic liver disease are the three most common liver diseases in our country, and the number of patients with liver cancer is increasing. Therefore, finding effective drugs to treat liver disease has become an urgent task. Chinese medicine (CM) has the advantages of low cost, high safety, and various biological activities, which is an important factor for the prevention and treatment of liver diseases. This review systematically summarizes the potential of CM in the treatment of liver diseases, showing that CM can alleviate liver diseases by regulating lipid metabolism, bile acid metabolism, immune function, and gut microbiota, as well as exerting anti-liver injury, anti-oxidation, and anti-hepatitis virus effects. Among them, Keap1/Nrf2, TGF-β/SMADS, p38 MAPK, NF-κB/IκBα, NF-κB-NLRP3, PI3K/Akt, TLR4-MyD88-NF-κB and IL-6/STAT3 signaling pathways are mainly involved. In conclusion, CM is very likely to be a potential candidate for liver disease treatment based on modern phytochemistry, pharmacology, and genomeproteomics, which needs more clinical trials to further clarify its importance in the treatment of liver diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Zhao M, Chen S, Ji X, Shen X, You J, Liang X, Yin H, Zhao L. Current innovations in nutraceuticals and functional foods for intervention of non-alcoholic fatty liver disease. Pharmacol Res 2021; 166:105517. [PMID: 33636349 DOI: 10.1016/j.phrs.2021.105517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/27/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023]
Abstract
As innovations in global agricultural production and food trading systems lead to major dietary shifts, high morbidity rates from non-alcoholic fatty liver disease (NAFLD), accompanied by elevated risk of lipid metabolism-related complications, has emerged as a growing problem worldwide. Treatment and prevention of NAFLD and chronic liver disease depends on the availability of safe, effective, and diverse therapeutic agents, the development of which is urgently needed. Supported by a growing body of evidence, considerable attention is now focused on interventional approaches that combines nutraceuticals and functional foods. In this review, we summarize the pathological progression of NAFLD and discuss the beneficial effects of nutraceuticals and the active ingredients in functional foods. We also describe the underlying mechanisms of these compounds in the intervention of NAFLD, including their effects on regulation of lipid homeostasis, activation of signaling pathways, and their role in gut microbial community dynamics and the gut-liver axis. In order to identify novel targets for treatment of lipid metabolism-related diseases, this work broadly explores the molecular mechanism linking nutraceuticals and functional foods, host physiology, and gut microbiota. Additionally, the limitations in existing knowledge and promising research areas for development of active interventions and treatments against NAFLD are discussed.
Collapse
Affiliation(s)
- Mengyao Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Shumin Chen
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoguo Ji
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Shen
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Jiangshan You
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyi Liang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai 200003, China.
| | - Liming Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; School of Life Science, Shandong University of Technology, Zibo, Shandong 255000, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China.
| |
Collapse
|
20
|
Shen HH, Alex R, Bellner L, Raffaele M, Licari M, Vanella L, Stec DE, Abraham NG. Milk thistle seed cold press oil attenuates markers of the metabolic syndrome in a mouse model of dietary-induced obesity. J Food Biochem 2020; 44:e13522. [PMID: 33047319 PMCID: PMC7770619 DOI: 10.1111/jfbc.13522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022]
Abstract
Milk thistle cold press oil (MTO) is an herbal remedy derived from Silybum marianum which contains a low level of silymarin and mixture of polyphenols and flavonoids. The effect of MTO on the cardiovascular and metabolic complications of obesity was studied in mice that were fed a high-fat diet (HFD) for 20 weeks and treated with MTO for the final 8 weeks of the diet. MTO treatment attenuated HFD-induced obesity, fasting hyperglycemia, hypertension, and induced markers of mitochondrial fusion and browning of white adipose. Markers of inflammation were also attenuated in both adipose and the liver of MTO-treated mice. In addition, MTO resulted in the improvement of liver fibrosis. These results demonstrate that MTO has beneficial actions to attenuate dietary obesity-induced weight gain, hyperglycemia, hypertension, inflammation, and suggest that MTO supplementation may prove beneficial to patients exhibiting symptoms of metabolic syndrome. PRACTICAL APPLICATIONS: Natural supplements are increasingly being considered as potential therapies for many chronic cardiovascular and metabolic diseases. Milk thistle cold press oil (MTO) is derived from Silybum marianum which is used as a dietary supplement in different parts of the world. The results of the present study demonstrate that MTO supplementation normalizes several metabolic and cardiovascular complications arising from dietary-induced obesity. MTO supplementation also had anti-inflammatory actions in the adipose as well as the liver. These results suggest that supplementation of MTO into the diet of obese individuals may afford protection against the worsening of cardiovascular and metabolic disease and improve inflammation and liver fibrosis.
Collapse
Affiliation(s)
- Hsin-Hsueh Shen
- Department of Medicine, New York Medical College, Valhalla, NY, USA
- Department and Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Ragin Alex
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| | - Lars Bellner
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| | - Marco Raffaele
- Department of Medicine, New York Medical College, Valhalla, NY, USA
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Maria Licari
- Department of Medicine, New York Medical College, Valhalla, NY, USA
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Luca Vanella
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - David E. Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nader G. Abraham
- Department of Medicine, New York Medical College, Valhalla, NY, USA
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
21
|
Choi EY, Choi JO, Park CY, Kim SH, Kim D. Water Extract of Artemisia annua L. Exhibits Hepatoprotective Effects Through Improvement of Lipid Accumulation and Oxidative Stress-Induced Cytotoxicity. J Med Food 2020; 23:1312-1322. [PMID: 33202166 DOI: 10.1089/jmf.2020.4696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a metabolic liver disease with a complex underlying mechanism that has not been completely understood. Thus, effective and safe drugs for this disease are not yet available. Artemisia annua L. is a medicinal plant with potent antimicrobial and antioxidant activities. In this study, we prepared a water extract of A. annua (WEAA) and examined its potential for NAFLD treatment. First, we pretreated HepG2 cells (human hepatocarcinoma cell line) with WEAA and then treated the cells with oleic acid or tert-butylhydroperoxide to examine the effect of WEAA on the lipid accumulation and the cytotoxicity, respectively. WEAA not only inhibited lipid accumulation within HepG2 cells but also protected cells from oxidative stress-mediated damage through the activation of antioxidant enzymes (such as activation of superoxide dismutase and production of glutathione) and its own scavenging activity. Next, to confirm protective effect of the WEAA in in vivo, mice were intragastrically administered with WEAA, extract of Silybum marianum or water once a day, and simultaneously provided with high-fat diet to induce fatty liver and hepatic steatosis. Oral administration of WEAA ameliorated weight gain and hepatic lipid accumulation in high-fat diet-fed mice. Moreover, the plasma levels of triglyceride, aspartate aminotransferase, and alanine aminotransferase were reduced in the WEAA-treated group. Our findings indicated that WEAA may be a potential intervention for preventing or treating hepatic lipid accumulation and liver damage.
Collapse
Affiliation(s)
| | - Jin Ouk Choi
- Department of Biomedical Sciences and Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | - Donghyun Kim
- Department of Biomedical Sciences and Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Wang X, Zhang Z, Wu SC. Health Benefits of Silybum marianum: Phytochemistry, Pharmacology, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11644-11664. [PMID: 33045827 DOI: 10.1021/acs.jafc.0c04791] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Silybum marianum (SM), a well-known plant used as both a medicine and a food, has been widely used to treat various diseases, especially hepatic diseases. The seeds and fruits of SM contain a flavonolignan complex called silymarin, the active compounds of which include silybin, isosilybin, silychristin, dihydrosilybin, silydianin, and so on. In this review, we thoroughly summarize high-quality publications related to the pharmacological effects and underlying mechanisms of SM. SM has antimicrobial, anticancer, hepatoprotective, cardiovascular-protective, neuroprotective, skin-protective, antidiabetic, and other effects. Importantly, SM also counteracts the toxicities of antibiotics, metals, and pesticides. The diverse pharmacological activities of SM provide scientific evidence supporting its use in both humans and animals. Multiple signaling pathways associated with oxidative stress and inflammation are the common molecular targets of SM. Moreover, the flavonolignans of SM are potential agonists of PPARγ and ABCA1, PTP1B inhibitors, and metal chelators. At the end of the review, the potential and perspectives of SM are discussed, and these insights are expected to facilitate the application of SM and the discovery and development of new drugs. We conclude that SM is an interesting dietary medicine for health enhancement and drug discovery and warrants further investigation.
Collapse
Affiliation(s)
- Xin Wang
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| | - Zhen Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| | - Shuai-Cheng Wu
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| |
Collapse
|
23
|
Han K, Li X, Zhang Y, He Y, Hu R, Lu X, Li Q, Hui J. Chia Seed Oil Prevents High Fat Diet Induced Hyperlipidemia and Oxidative Stress in Mice. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.201900443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kai Han
- School of Life Science Liaoning University Shenyang 110036 China
| | - Xin‐Yang Li
- Qinhuangdao Marine Environmental Monitoring Central Station SOA Qinhuangdao 066002 China
| | - Ye‐Qi Zhang
- School of Life Science Liaoning University Shenyang 110036 China
| | - Yong‐Lin He
- College of Food Science Southwest University Chongqing 400715 China
| | - Rui Hu
- Analytical Center Shenyang Agricultural University Shenyang 110866 China
| | - Xiu‐Li Lu
- School of Life Science Liaoning University Shenyang 110036 China
| | - Qi‐Jiu Li
- School of Life Science Liaoning University Shenyang 110036 China
| | - Jing Hui
- School of Life Science Liaoning University Shenyang 110036 China
| |
Collapse
|
24
|
Shen L, Xiong X, Zhang D, Zekrumah M, Hu Y, Gu X, Wang C, Zou X. Optimization of betacyanins from agricultural by-products using pressurized hot water extraction for antioxidant and in vitro oleic acid-induced steatohepatitis inhibitory activity. J Food Biochem 2019; 43:e13044. [PMID: 31515832 DOI: 10.1111/jfbc.13044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/22/2019] [Accepted: 08/29/2019] [Indexed: 12/30/2022]
Abstract
Pressurized hot water extraction (PHWE) is proposed to recover betacyanins from agricultural by-products (pitaya fruits peels (PFP), red beet stalks (RBS), and cactus pear peels (CPP)). The extraction yield of betacyanins was optimized by response surface methodology. The optimal PHWE conditions were attained and the actual yields of betacyanins under optimal conditions were well matched with the predicted yields. In addition, betacyanin pigment compositions as well as superoxide anion scavenging activity of individual betacyanins extract (BE) produced in optimal PHWE conditions were characterized by HPLC-ESI/MSn and cyclic voltammetry. Furthermore, the inhibitory activity of three BEs on oleic acid-induced steatohepatitis in cellular model was comparatively investigated. The results showed that unlike PFP, RBS, and CPP presented excellent efficacy in decreasing intracellular triglyceride and reactive oxygen species, inhibiting the release of alanine aminotransferase and aspartate aminotransferase as well as regulating fatty acid synthase and carnitine palmitoyltransferase 1 mRNAs expression. Practical applications In this study, PHWE, is firstly proposed for the enhancement of the extraction of betacyanins from three agricultural by-products. Betacyanin-rich extracts by PHWE method exhibit excellent activities in inhibition of ROS and regulation of lipid metabolism in hepatic cells. It suggests that PHWE has a strong potentiality in keeping bioactivity of BEs, which is significant for the production of betacyanins functional foods.
Collapse
Affiliation(s)
- Lingqin Shen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Xiong Xiong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Jiangsu Hengshun Group Co., Ltd., Zhenjiang, China
| | | | - Yuqian Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiangyue Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Chengtao Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
25
|
Indole-3-Acetic Acid Alleviates Nonalcoholic Fatty Liver Disease in Mice via Attenuation of Hepatic Lipogenesis, and Oxidative and Inflammatory Stress. Nutrients 2019; 11:nu11092062. [PMID: 31484323 PMCID: PMC6769627 DOI: 10.3390/nu11092062] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Recent evidences have linked indole-3-acetic acid (IAA), a gut microbiota-derived metabolite from dietary tryptophan, with the resistance to liver diseases. However, data supporting IAA-mediated protection against nonalcoholic fatty liver disease (NAFLD) from an in vivo study is lacking. In this study, we assessed the role of IAA in attenuating high-fat diet (HFD)-induced NAFLD in male C57BL/6 mice. Administration of IAA (50 mg/kg body weight) by intraperitoneal injection was found to alleviate HFD-induced elevation in fasting blood glucose and homeostasis model assessment of insulin resistance (HOMA-IR) index as well as plasma total cholesterol, low-density lipoprotein cholesterol (LDL-C), and glutamic-pyruvic transaminase (GPT) activity. Histological examination further presented the protective effect of IAA on liver damage induced by HFD feeding. HFD-induced an increase in liver total triglycerides and cholesterol, together with the upregulation of genes related to lipogenesis including sterol regulatory element binding-protein 1 (Srebf1), steraroyl coenzyme decarboxylase 1 (Scd1), peroxisome proliferator-activated receptor gamma (PPARγ), acetyl-CoA carboxylase 1 (Acaca), and glycerol-3-phosphate acyltransferase, mitochondrial (Gpam), which were mitigated by IAA treatment. The results of reactive oxygen species (ROS) and malonaldehyde (MDA) level along with superoxide dismutase (SOD) activity and glutathione (GSH) content in liver tissue evidenced the protection of IAA against HFD-induced oxidative stress. Additionally, IAA attenuated the inflammatory response of liver in mice exposed to HFD as shown by the reduction in the F4/80-positive macrophage infiltration and the expression of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α). In conclusion, our findings uncover that IAA alleviates HFD-induced hepatotoxicity in mice, which proves to be associated with the amelioration in insulin resistance, lipid metabolism, and oxidative and inflammatory stress.
Collapse
|
26
|
Baradaran A, Samadi F, Ramezanpour SS, Yousefdoust S. Hepatoprotective effects of silymarin on CCl 4-induced hepatic damage in broiler chickens model. Toxicol Rep 2019; 6:788-794. [PMID: 31440455 PMCID: PMC6698800 DOI: 10.1016/j.toxrep.2019.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
This study was conducted to investigate the hepatoprotective effects of silymarin on CCl4-induced oxidative stress in broiler chickens model. A total of 240 day-old broilers were divided into 4 equal groups (n = 60) composed of a control group (receiving 1 mL/Kg BW saline) and 3 groups treated with silymarin (receiving 100 mg/Kg BW silymarin), CCl4 (receiving 1 mL/Kg BW CCl4), and combination of silymarin + CCl4. Results indicated that silymarin has potential to mitigate the deleterious effects of CCl4 on protein and lipid metabolism. The protective activity of silymarin against CCl4-mediated lipid peroxidation was demonstrated by the lower serum content of MDA, as lipid peroxidation marker. CCl4-induced hepatotoxicity was demonstrated by the elevation of serum contents of ALP, AST, ALT, and GGT enzymes, whereas silymarin decreased serum activity of ALP and AST hepatic enzymes. The CCl4-challenged birds revealed considerable hepatic injures characterized by moderate to severe hepatocellular degeneration around the portal vein, aggregation of inflammatory cells, granulomatosis, cytolytic necrosis, periportal space fibrosis, and sinusoidal dilatation. However, liver damages were amended by the silymarin. In line with molecular study, a remarkable down-regulation was detected in the expression of CAT, GPx, and Mn-SOD hepatic genes in CCl4-challenged birds, whereas silymarin significantly up-regulated aforementioned genes. In general, current study showed that silymarin has potential to alleviate the adverse effects of oxidative stress in poultry farms.
Collapse
Affiliation(s)
- A Baradaran
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - F Samadi
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - S S Ramezanpour
- Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - S Yousefdoust
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
27
|
Zhang Z, Ran C, Ding QW, Liu HL, Xie MX, Yang YL, Xie YD, Gao CC, Zhang HL, Zhou ZG. Ability of prebiotic polysaccharides to activate a HIF1α-antimicrobial peptide axis determines liver injury risk in zebrafish. Commun Biol 2019; 2:274. [PMID: 31372513 PMCID: PMC6658494 DOI: 10.1038/s42003-019-0526-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
Natural polysaccharides have received much attention for their ability to ameliorate hepatic steatosis induced by high-fat diet. However, the potential risks of their use have been less investigated. Here, we show that the exopolysaccharides (EPS) from Lactobacillus rhamnosus GG (LGG) and L. casei BL23 reduce hepatic steatosis in zebrafish fed a high-fat diet, while BL23 EPS, but not LGG EPS, induce liver inflammation and injury. This is due to the fact that BL23 EPS induces gut microbial dysbiosis, while LGG EPS promotes microbial homeostasis. We find that LGG EPS, but not BL23 EPS, can directly activate intestinal HIF1α, and increased HIF1α boosts local antimicrobial peptide expression to facilitate microbial homeostasis, explaining the distinct compositions of LGG EPS- and BL23 EPS-associated microbiota. Finally, we find that liver injury risk is not confined to Lactobacillus-derived EPS but extends to other types of commonly used natural polysaccharides, depending on their HIF1α activation efficiency.
Collapse
Affiliation(s)
- Zhen Zhang
- China-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Chao Ran
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Qian-wen Ding
- China-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Hong-liang Liu
- China-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Ming-xu Xie
- China-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Ya-lin Yang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Ya-dong Xie
- China-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Chen-chen Gao
- China-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Hong-ling Zhang
- China-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Zhi-gang Zhou
- China-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| |
Collapse
|
28
|
Feng R, Chen JH, Liu CH, Xia FB, Xiao Z, Zhang X, Wan JB. A combination of Pueraria lobata and Silybum marianum protects against alcoholic liver disease in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152824. [PMID: 30836218 DOI: 10.1016/j.phymed.2019.152824] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Excess alcohol exposure leads to alcoholic liver disease (ALD). Pueraria lobata (PUE) and Silybum marianum (SIL) are two well-known hepatoprotective herbal remedies with various activities. The possible effect of combination of PUE and SIL on ALD has not been elucidated yet. PURPOSE We aimed to demonstrate that the combination of PUE and SIL prevents against alcoholic liver injury in mice using a model of chronic-plus-single-binge ethanol feeding. STUDY DESIGN Male C57BL/6 mice were randomly divided into five groups (n = 8-10), namely the control group (CON), ethanol-induced liver injury group (ETH), 150 mg/kg PUE treated group (PUE), 60 mg/kg SIL treated group (SIL), 210 mg/kg PUE+SIL treatment group (PUE+SIL). Except control group, all animals were fed a modified Lieber-DeCarli ethanol liquid diet for 10 days. While, control group received Lieber-DeCarli control diet containing isocaloric maltose dextrin substituted for ethanol. On day 11, the mice orally received a single dose of 31.5% (v/v) ethanol (5 g/kg BW) or an isocaloric maltose solution. RESULTS Ethanol exposure caused liver injury, as demonstrated by remarkably increased plasma parameters, histopathological changes, the increased lipid accumulation, oxidative stress and inflammation in liver. These alterations were ameliorated by the treatments of PUE, SIL and PUE+SIL. While, the PUE+SIL treatment showed the most effective protection, which was associated with reducing alcohol-induced hepatic steatosis via upregulating LKB1/AMPK/ACC signaling, and inhibiting hepatic inflammation via LPS-triggered TLR4-mediated NF-κB signaling pathway. Our results also indicated that the hepatoprotective effects of SIL+PUE might mainly attribute to the protection of SIL and PUE alone in alcohol-induced hepatic steatosis and hepatic inflammation, respectively. CONCLUSION These findings also suggest that the combination of PUE and SIL has a potential to be developed as a functional food for the management of ALD.
Collapse
Affiliation(s)
- Ruibing Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Jie-Hua Chen
- Nutrition and Health Research Centre, By-Health Co. LTD, Guangzhou, China
| | - Cong-Hui Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Fang-Bo Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Zeyu Xiao
- Translational Medicine Collaborative Innovation Center, Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuguang Zhang
- Nutrition and Health Research Centre, By-Health Co. LTD, Guangzhou, China.
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| |
Collapse
|
29
|
Biological mechanisms and related natural modulators of liver X receptor in nonalcoholic fatty liver disease. Biomed Pharmacother 2019; 113:108778. [DOI: 10.1016/j.biopha.2019.108778] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
|
30
|
Guo C, Qiao J, Zhang S, Li M, Li J, Hatab S. Elaeagnus mollis Oil Attenuates Non-alcoholic Fatty Disease in High-fat Diet Induced Obese Mice via Modifying the Expression of Lipid Metabolismrelated Genes. J Oleo Sci 2019; 68:893-908. [DOI: 10.5650/jos.ess19078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Caixia Guo
- School of Life Science, Shanxi University
| | | | | | - Meiping Li
- School of Life Science, Shanxi University
| | - Juan Li
- Shanxiqierkang samara biological products co. ltd
| | - Shaimaa Hatab
- Faculty of Agriculture and Environmental Science, Arish University
| |
Collapse
|
31
|
Jian T, Yu C, Ding X, Chen J, Li J, Zuo Y, Ren B, Lv H, Li W. Hepatoprotective Effect of Seed Coat of Euryale ferox Extract in Non-alcoholic Fatty Liver Disease Induced by High-fat Diet in Mice by Increasing IRs-1 and Inhibiting CYP2E1. J Oleo Sci 2019; 68:581-589. [DOI: 10.5650/jos.ess19018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tunyu Jian
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences
| | - Chen Yu
- Department of Integrated TCM & Western Medicine, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University
| | - Xiaoqin Ding
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences
| | - Jian Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University
| | - Jiawei Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences
| | - Yuanyuan Zuo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences
| | - Bingru Ren
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences
| | - Han Lv
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences
| | - Weilin Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences
- College of Forestry, Nanjing Forestry University
| |
Collapse
|
32
|
Li X, Song S, Xu M, Hua Y, Ding Y, Shan X, Meng G, Wang Y. Sirtuin3 deficiency exacerbates carbon tetrachloride-induced hepatic injury in mice. J Biochem Mol Toxicol 2018; 33:e22249. [PMID: 30368983 DOI: 10.1002/jbt.22249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/27/2018] [Accepted: 09/07/2018] [Indexed: 12/16/2022]
Abstract
Sirtuin3 (SIRT3) plays an important role in maintaining normal mitochondrial function and alleviating oxidative stress. After carbon tetrachloride (CCl4 ) administration, the expression of SIRT3 decreased in the liver of mice, which indicated that the SIRT3 might play a crucial role during chemical-induced acute hepatic injury. To verify the hypothesis, CCl 4 was given to induce acute hepatic injury in SIRT3 knockout (KO) mice and wild-type (WT) mice. CCl 4 -induced liver injury was more severe in SIRT3 KO mice compared with the WT mice. In addition, the oxidative stress induced by CCl 4 was enhanced in the SIRT3 KO mice. Furthermore, the increased expression of dynamin-related protein 1 was also aggravated in SIRT3 KO mice after CCl 4 administration. In conclusion, our study demonstrated that SIRT3 deficiency exacerbated CCl 4 -induced impairment of the liver in mice, and the mechanism might be related to enhanced oxidative stress.
Collapse
Affiliation(s)
- Xinshuai Li
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China
| | - Shu Song
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China
| | - Mengting Xu
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China
| | - Yuyun Hua
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China
| | - Yun Ding
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China
| | - Xiaoyu Shan
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China
| | - Yuqin Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, Jiangsu, China
| |
Collapse
|