1
|
Xing Y, Huang D, Lin P, Zhou Y, Chen D, Ye C, Wu M. Salvianolic acid C promotes renal gluconeogenesis in fibrotic kidneys through PGC1α. Biochem Biophys Res Commun 2024; 744:151174. [PMID: 39700761 DOI: 10.1016/j.bbrc.2024.151174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Impaired renal gluconeogenesis is recently identified as a hallmark of chronic kidney disease. However, the therapeutic approach to promote renal gluconeogenesis in CKD is still lacking. We aimed to study whether Salvianolic acid C (SAC), a nature compound extracted from the traditional Chinese medicine Danshen, inhibits renal fibrosis through promotion of gluconeogenesis. TGF-β stimulated HK2 human renal epithelial cells and mice with unilateral ureteral obstruction (UUO) were used as in vitro and in vivo models to study renal fibrosis. Fibrotic and gluconeogenic changes were determined by Western blotting analysis, quantitative PCR and Masson staining. Glucose and lactate concentrations were measured in cell culture and renal tissues. We found that SAC treatment inhibits the deposition of extracellular matrix proteins and the expression of fibrotic markers such as fibronectin, N-cadherin, Vimentin, aSMA, pSmad3, and Snail in UUO kidneys or renal cells. Inhibition of these fibrotic markers by SAC treatment was associated with enhanced expression of three gluconeogenic enzymes such as PCK1, G6PC and FBP1 in renal tissues or cells. SAC increase the concentration of glucose in the supernatant of renal cells. Lactate concentration was reduced by SAC in renal tissues or cells. Pyruvate and glucose tolerance tests showed that SAC improve the impaired glucose metabolism systemically in UUO mice. Peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1ɑ) was downregulated in mouse kidneys after UUO operation, which was increased by SAC treatment. Moreover, PGC1α inhibitor SR-18292 reversed the anti-fibrotic effect and pro-gluconeogenic effect caused by SAC in renal cells. In conclusion, SAC inhibits renal fibrosis through promotion of PGC1α-mediated renal gluconeogenesis.
Collapse
Affiliation(s)
- Yufeng Xing
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China
| | - Di Huang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China
| | - Pinglan Lin
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China
| | - Yijing Zhou
- Department of Nephrology, JiaXing Hospital of Traditional Chinese Medicine, JiaXing, China
| | - Dongping Chen
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China
| | - Chaoyang Ye
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China.
| | - Ming Wu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, China.
| |
Collapse
|
2
|
Ribeiro FPB, de Luna Freire MO, de Oliveira Coutinho D, de Santana Cirilo MA, de Brito Alves JL. Gut Dysbiosis and Probiotic Therapy in Chronic Kidney Disease: A Comprehensive Review. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10427-9. [PMID: 39668321 DOI: 10.1007/s12602-024-10427-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
Chronic kidney disease (CKD) is a multifactorial disease affecting more than 13.4% of the world's population and is a growing public health problem. It is silent in its early stages and leads to irreversible kidney damage as the disease progresses. A key factor in this progression is the bidirectional relationship between CKD and gut dysbiosis, which creates an imbalance that promotes the accumulation of uremic toxins (UTs), contributing to renal fibrosis, endothelial dysfunction, and decreased glomerular filtration rate. In addition, CKD itself exacerbates gut dysbiosis by altering the composition of the gut microbiota (GM) and promoting the growth of pathogenic microorganisms. Therefore, it is crucial to explore new therapeutic strategies, and the use of probiotics and synbiotics has shown promise in modulating the GM. Numerous preclinical studies have shown that the use of probiotics in CKD has a beneficial effect on the kidney by reducing UTs, apoptosis, inflammation, and oxidative stress. Probiotic treatment has also been associated with restoration of intestinal integrity, modulation of microbial composition and diversity, and increased production of short-chain fatty acids (SCFAs). These positive results have also been observed in patients at different stages of CKD, where the use of probiotics and/or synbiotics was able to improve creatinine levels and uremic parameters and alleviate abdominal discomfort, in addition to modulating GM and reducing serum endotoxin levels. Although recent studies have explored the benefits of probiotics in the treatment of CKD, further research is needed to determine their long-term efficacy and clinical relevance. This review focuses on the factors driving gut dysbiosis in CKD, its role in disease progression, and the potential of probiotics as a therapeutic strategy.
Collapse
Affiliation(s)
- Fernanda Priscila Barbosa Ribeiro
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd, Cidade Universitária, João Pessoa, 58051-900, Brazil
| | - Micaelle Oliveira de Luna Freire
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd, Cidade Universitária, João Pessoa, 58051-900, Brazil
| | - Daniella de Oliveira Coutinho
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd, Cidade Universitária, João Pessoa, 58051-900, Brazil
| | | | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd, Cidade Universitária, João Pessoa, 58051-900, Brazil.
| |
Collapse
|
3
|
Liang L, Mi Y, Zhou S, Yang A, Wei C, Dai E. Advances in the study of key cells and signaling pathways in renal fibrosis and the interventional role of Chinese medicines. Front Pharmacol 2024; 15:1403227. [PMID: 39687302 PMCID: PMC11647084 DOI: 10.3389/fphar.2024.1403227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/21/2024] [Indexed: 12/18/2024] Open
Abstract
Renal fibrosis (RF) is a pathological process characterized by the excessive accumulation of extracellular matrix (ECM), which triggers a repair cascade in response to stimuli and pathogenic factors, leading to the activation of molecular signaling pathways involved in fibrosis. This article discusses the key cells, molecules, and signaling pathways implicated in the pathogenesis of RF, with a particular focus on tubular epithelial cells (TECs), cellular senescence, ferroptosis, autophagy, epithelial-mesenchymal transition (EMT), and transforming growth factor-β(TGF-β)/Smad signaling. These factors drive the core and regulatory pathways that significantly influence RF. A comprehensive understanding of their roles is essential. Through a literature review, we explore recent advancements in traditional Chinese medicine (TCM) aimed at reducing RF and inhibiting chronic kidney disease (CKD). We summarize, analyze, and elaborate on the important role of Chinese herbs in RF, aiming to provide new directions for their application in prevention and treatment, as well as scientific guidance for clinical practices.
Collapse
Affiliation(s)
- Lijuan Liang
- Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Dunhuang Medicine and Translation, Ministry of Education, Lanzhou, China
| | - Youjun Mi
- Institute of pathophysiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Shihan Zhou
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Aojian Yang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Chaoyu Wei
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Enlai Dai
- Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
4
|
Masenga SK, Desta S, Hatcher M, Kirabo A, Lee DL. How PPAR-alpha mediated inflammation may affect the pathophysiology of chronic kidney disease. Curr Res Physiol 2024; 8:100133. [PMID: 39665027 PMCID: PMC11629568 DOI: 10.1016/j.crphys.2024.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/03/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024] Open
Abstract
Chronic kidney disease (CKD) is a major risk factor for death in adults. Inflammation plays a role in the pathogenesis of CKD, but the mechanisms are poorly understood. Peroxisome proliferator-activated receptor alpha (PPAR-α) is a nuclear receptor and one of the three members (PPARα, PPARβ/δ, and PPARγ) of the PPARs that plays an important role in ameliorating pathological processes that accelerate acute and chronic kidney disease. Although other PPARs members are well studied, the role of PPAR-α is not well described and its role in inflammation-mediated chronic disease is not clear. Herein, we review the role of PPAR-α in chronic kidney disease with implications for the immune system.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Zambia
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Selam Desta
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, USA
| | - Mark Hatcher
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dexter L. Lee
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, USA
| |
Collapse
|
5
|
Peng X, Liu N, Zeng B, Bai Y, Xu Y, Chen Y, Chen L, Xia L. High salt diet accelerates skin aging in wistar rats: an 8-week investigation of cell cycle inhibitors, SASP markers, and oxidative stress. Front Bioeng Biotechnol 2024; 12:1450626. [PMID: 39465002 PMCID: PMC11502324 DOI: 10.3389/fbioe.2024.1450626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
Background Recent studies have shown that the high salt diet (HSD) is linked to increased dermal pro-inflammatory status and reduced extracellular matrix (ECM) expression in inflamed skin of mice. Decreased ECM content is a known aging phenotype of the skin, and alterations in ECM composition and organization significantly contribute to skin aging. This study aimed to determine whether a high salt diet accelerates skin aging and to identify the time point at which this effect becomes apparent. Methods Wistar rats were randomly divided into normal diet and high salt diet groups and fed continuously for 8 weeks. Skin samples were collected at weeks 7 and week 8. Skin pathological sections were evaluated and levels of cell cycle inhibitors, senescence-associated secretory phenotype (SASP), oxidative stress and vascular regulatory factors (VRFs) were examined. Correlation analyses were performed to reveal the effect of a high salt diet as an extrinsic factor on skin aging and to analyse the correlation between a high salt diet and intrinsic aging and blood flow status. Results At week 8, HSD rats exhibited thickened epidermis, thinned dermis, and atrophied hair follicles. The expression of cell cycle inhibitors and oxidative stress levels were significantly elevated in the skin of HSD rats at both week 7 and week 8. At week 7, some SASPs, including TGF-β and PAI-1, were elevated, but others (IL-1, IL-6, IL-8, NO) were not significantly changed. By week 8, inflammatory molecules (IL-1, IL-6, TGF-β), chemokines (IL-8), proteases (PAI-1), and non-protein molecules (NO) were significantly increased. Notably, despite elevated PAI-1 levels suggesting possible blood hypercoagulation, the ET-1/NO ratio was reduced in the HSD group at week 8. Conclusion The data suggest that a high salt diet causes skin aging by week 8. The effect of a high salt diet on skin aging is related to the level of oxidative stress and the expression of cell cycle inhibitors. Additionally, a potential protective mechanism may be at play, as evidenced by the reduced ET-1/NO ratio, which could help counteract the hypercoagulable state and support nutrient delivery to aging skin.
Collapse
Affiliation(s)
- Xile Peng
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, China
| | - Nannan Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, China
| | - Baihan Zeng
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, China
| | - Yilin Bai
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, China
| | - Yang Xu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, China
| | - Yixiao Chen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, China
| | - Li Chen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, China
| | - Lina Xia
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, China
| |
Collapse
|
6
|
Liu S, Zhang Y, Ma X, Zhan C, Ding N, Shi M, Zhang W, Yang S. Protective effects of engineered Lactobacillus crispatus strains expressing G-CSF on thin endometrium of mice. Hum Reprod 2024; 39:2305-2319. [PMID: 39178354 DOI: 10.1093/humrep/deae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 06/26/2024] [Indexed: 08/25/2024] Open
Abstract
STUDY QUESTION Does recombinant Lactobacillus expressing granulocyte colony-stimulating factor (G-CSF) have a better protective effect than the current treatment of thin endometrium (TE)? SUMMARY ANSWER This study suggested that the intrauterine injection of Lactobacillus crispastus (L. crispastus)-pPG612-G-CSF has a positive effect on preventing TE induced by 95% alcohol in mice. WHAT IS KNOWN ALREADY TE has a negative impact on the success rate of ART in patients, and is usually caused by intrauterine surgery, endometrial infection, or hormone drugs. Exogenous G-CSF can promote endometrial vascular remodelling and increase endometrial receptivity and the embryo implantation rate. Moreover, Lactobacillus plays a crucial role in maintaining and regulating the local microecological balance of the reproductive tract, and it could be a delivery carrier of the endometrial repair drug G-CSF. STUDY DESIGN, SIZE, DURATION We constructed engineered L. crispastus strains expressing G-CSF. The mice were divided into five groups: (i) Control group (C, n = 28), uteri were treated with preheated saline solution via intrauterine injection on the third and sixth day of oestrus; (ii) Model group (M, n = 35), where uteri were treated with 95% alcohol on the third day of oestrus and preheated saline solution on the sixth day of oestrus via intrauterine injection; (iii) L. crispatus-pPG612-treatment group (L, n = 45), where uteri were treated with 95% alcohol on the third day of oestrus and 0.1 ml × 108 CFU/ml L. crispatus-pPG612 on the sixth day of oestrus via intrauterine injection; (iv) L. crispatus-pPG612-treatment group (LG, n = 45), where uteri were treated with 95% alcohol on the third day of oestrus and 0.1 ml × 108 CFU/ml L. crispatus-pPG612-G-CSF on the sixth day of oestrus via intrauterine injection; (v) G-CSF-treatment group (G, n = 52), where uteri were treated with 95% alcohol on the third day of oestrus and 30 µg/kg G-CSF on the sixth day of oestrus via intrauterine injection. Then, we compared the effects of L. crispastus, L. crispatus-pPG612-G-CSF and G-CSF on endometrial thickness, angiogenesis, fibrosis, and inflammation in the TE mouse. PARTICIPANTS/MATERIALS, SETTING, METHODS We collected uterine tissues for haematoxylin-eosin staining, immunohistochemical staining, Western blot and RT-PCR, as well as serum for ELISA and uterine flushing solution for high-throughput sequencing. MAIN RESULTS AND THE ROLE OF CHANCE Compared with those in the M group (the mice of the group were intrauterine injected 95% alcohol and treated with saline solution), the L. crispatus-pPG612-G-CSF strain increased the thickness of the endometrium (P < 0.001) and the number of blood vessels and glands (both P < 0.001), enhanced the expression of cytokeratin 19 (CK19) (P < 0.001), vimentin (Vim) (P < 0.001), vascular endothelial growth factor-A (P < 0.001), and CD34 (P < 0.001), and decreased fibrosis levels (P = 0.004). In addition, the high-throughput sequencing results indicated that the L. crispatus-pPG612-G-CSF strain could decrease the abundance of Pseudomonas (P = 0.044) and Actinomyces spp. (P = 0.094) in TE mice and increased the average number of embryos (P = 0.036). Finally, the L. crispatus-pPG612-G-CSF strain was preliminarily confirmed to activate the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signalling pathway and enhance the mRNA expression of hypoxia-inducible factor-1α (P < 0.001), vascular endometrial growth factor (P = 0.003), and endothelial cell nitric oxide synthase (P = 0.003) in mouse uterine tissue. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Therapy with the L. crispatus-pPG612-G-CSF strain has tremendous potential to accelerate the reparative processes of TE. However, we have reported only the expression of genes and proteins related to the PI3K/AKT pathway, and numerous other mechanisms may also be involved in the restoration of the endometrium by L. crispatus-pPG612-G-CSF. WIDER IMPLICATIONS OF THE FINDINGS The results from the study provide new ideas and suggest new methods for TE treatment. STUDY FUNDING/COMPETING INTEREST(S) This work was financially supported by the Project of Science and Technology Development Plan of Jilin Province (grant number 20210101232JC), the Science and Technology Plan Item of Jilin Provincial Education Department (grant number JT53101022010), and the Doctoral Research Start-up Fund of Jilin Medical University (grant numbers JYBS2021014LK and 2022JYBS006KJ). The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as potential conflicts of interest.
Collapse
Affiliation(s)
- Shuang Liu
- Reproductive Immunology Laboratory, Basic Medical College, Jilin Medical University, Jilin, China
- Histology Development Laboratory, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yingnan Zhang
- Chronic Disease Laboratory, School of Public Health, Jilin Medical University, Jilin, China
- Department of Biology, College of Life Science, Changchun Sci-Tech University, Changchun, China
| | - Xin Ma
- Histology Development Laboratory, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chenglin Zhan
- Histology Development Laboratory, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ning Ding
- Histology Development Laboratory, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Mai Shi
- Chronic Disease Laboratory, School of Public Health, Jilin Medical University, Jilin, China
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, Basic Medical College, Jilin Medical University, Jilin, China
| | - Shubao Yang
- Reproductive Immunology Laboratory, Basic Medical College, Jilin Medical University, Jilin, China
| |
Collapse
|
7
|
Huang W, Zhang Z, Li X, Zheng Q, Wu C, Liu L, Chen Y, Zhang J, Jiang X. CD9 promotes TβR2-TβR1 association driving the transition of human dermal fibroblasts to myofibroblast under hypoxia. Mol Med 2024; 30:162. [PMID: 39333849 PMCID: PMC11428569 DOI: 10.1186/s10020-024-00925-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND During wound healing, fibroblast to myofibroblast transition is required for wound contraction and remodeling. While hypoxia is an important biophysical factor in wound microenvironment, the exact regulatory mechanism underlying hypoxia and fibroblast-to-myofibroblast transition remains unclear. We previously found that tetraspanin CD9 plays an important role in oxygen sensing and wound healing. Herein, we investigated the effects of physiological hypoxia on fibroblast-to-myofibroblast transition and the biological function and mechanism of CD9 in it. METHODS Human skin fibroblasts (HSF) and mouse dermis wounds model were established under physiological hypoxia (2% O2). The cell viability and contractility of HSF under hypoxia were evaluated by CCK8 and collagen gel retraction, respectively. The expression and distribution of fibroblast-to-myofibroblast transition markers and CD9 in HSF were detected by Western blotting and immunofluorescence. CD9 slicing and overexpressing HSFs were constructed to determine the role of CD9 by small interfering RNA and recombinant adenovirus vector. The association of TβR2 and TβR1 was measured by immunoprecipitation to explore the regulatory mechanism. Additionally, further validation was conducted on mouse dermis wounds model through histological analysis. RESULTS Enhanced fibroblast-to-myofibroblast transition and upregulated CD9 expression was observed under hypoxia in vitro and in vivo. Besides, reversal of fibroblast-to-myofibroblast transition under hypoxia was observed when silencing CD9, suggesting that CD9 played a key role in this hypoxia-induced transition. Moreover, hypoxia increased fibroblast-to-myofibroblast transition by activating TGF-β1/Smad2/3 signaling, especially increased interaction of TβR2 and TβR1. Ultimately, CD9 was determined to directly affect TβR1-TβR2 association in hypoxic fibroblast. CONCLUSION Collectively, these findings suggest that CD9 promotes TβR2-TβR1 association, thus driving the transition of human dermal fibroblasts to myofibroblast under hypoxia.
Collapse
Affiliation(s)
- Wanqi Huang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ze Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xin Li
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qingqing Zheng
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Chao Wu
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Luojia Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ying Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
8
|
Zhang C, Ji Z, Xu N, Yuan J, Zeng W, Wang Y, He Q, Dong J, Zhang X, Yang D, Jiang W, Yan Y, Shang W, Chu J, Chu Q. Integrating network pharmacology and experimental validation to decipher the pharmacological mechanism of DXXK in treating diabetic kidney injury. Sci Rep 2024; 14:22319. [PMID: 39333622 PMCID: PMC11436795 DOI: 10.1038/s41598-024-73642-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease that is highly susceptible to kidney injury. Di'ao XinXueKang capsules (DXXK) is a novel Chinese herbal medicine that has been used in clinical trials for the therapy of DM and kidney disease, but the underlying pharmacological mechanism remains unclear. This study aims to integrate network pharmacology, molecular docking and in vivo experiments to explore the potential mechanisms of DXXK in the treatment of diabetic kidney injury. The chemical constituents of DXXK were extracted from the ETCM and Batman-TCM databases, and then evaluated for their pharmacological activity via the Swiss ADME platform. Multiple disease databases were searched and integrated for DM-related targets. Overlapping targets were then collected to construct a protein-protein interaction (PPI) network. KEGG and GO enrichment analyses were performed based on the Metascape database, and molecular docking was performed using AutoDock Vina software. The main components in DXXK were analyzed by HPLC. The results of network pharmacology and molecular docking were validated in an animal model of DM induced by the combination of a high-fat diet (HFD) and streptozotocin (STZ). We screened and obtained 7 ingredients and identified dioscin, protodioscin, and pseudoprotodioscin as the major components of DXXK by HPLC. A total of 2,216 DM-related pathogenic genes were obtained from DrugBank, GeneCards, OMIM, and DisGeNET databases. KEGG and GO enrichment analyses indicated that the TGF-beta signaling pathway is a critical pathway associated with DM therapy. Molecular docking revealed that the ingredients in DXXK bind to the pivotal targets TGFβ1, Smad2, and Smad3. In diabetic mice, we found that DXXK alleviated diabetic symptoms, lowered blood glucose, improved insulin tolerance, and modulated lipid metabolism. Furthermore, DXXK attenuated renal lesions and fibrosis by downregulating TGFβ1, Smad2, and Smad3. Collectively, our results suggest that DXXK has the potential to regulate glucolipid metabolism in DM, and it may serve as a viable therapeutic option for renoprotection by inhibiting of the TGF-β1/Smad2/3 pathway.
Collapse
Affiliation(s)
- Chenxu Zhang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
- School of Graduate, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Zhangxin Ji
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
- School of Graduate, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Na Xu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and International Joint Laboratory On Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
| | - Jingjing Yuan
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
- Research and Technology Center, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
| | - Wen Zeng
- Research and Technology Center, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
| | - Yadong Wang
- Department of Pathology, School of Integrative Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Qing He
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
- School of Graduate, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Jiaxing Dong
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
- School of Graduate, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Xinyu Zhang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
- School of Graduate, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Dongmei Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
- School of Graduate, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Wei Jiang
- School of Nursing, Anhui Medical College, Furong Road Campus, Hefei, 230601, Anhui, People's Republic of China
| | - Yibo Yan
- Second Clinical Medical College, Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Wencui Shang
- School of Graduate, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Jun Chu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China.
- Research and Technology Center, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China.
- Institute of Surgery, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China.
| | - Quangen Chu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China.
| |
Collapse
|
9
|
Qiao ZZ, Zang MX, Zhang Y, Wang P, Li XY, Song X, Zhang CJ, Klinger FG, Ge W, Shen W, Cheng SF. LH promotes the proliferation of porcine primordial germ cell-like cells (pPGCLCs) by regulating the ceRNA network related to the TGF-β signaling pathway. Int J Biol Macromol 2024; 280:135984. [PMID: 39326611 DOI: 10.1016/j.ijbiomac.2024.135984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/23/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Primordial germ cells (PGCs), as the precursors of gametes found in early embryos, provide a new direction for solving the problem of reproductive disorders. In vitro, conversion of adult stem cells (ASCs) into primordial germ cell-like cells (PGCLCs) is feasible. The means of increasing PGCLCs number in vitro has been a focus of recent stem cell research. In this study, we found that luteinizing hormone (LH) could promote porcine PGCLCs (pPGCLCs) proliferation. To investigate the proliferation regulatory network, whole transcriptome sequencing technology was employed. Results showed that the TGF-β signaling pathway played a key role. In addition, we found that TGFβR1 and SMAD4, TGF-β signaling pathway-related genes, were significantly upregulated after LH treatment. Subsequently, we predicted their target microRNAs (miRNAs) and long non-coding RNAs (lncRNAs): ssc-miR-128, ssc-miR-146b, ssc-miR-361-3p, MSTRG.11473, MSTRG.11475, MSTRG.11553, and MSTRG.11554, and constructed the competitive endogenous RNAs (ceRNA) network. Finally, to further verify the ceRNA network, the miRNA-inhibitors were transfected into cells. RT-qPCR results indicated a significant increase in the expression of MSTRG.11473, MSTRG.11475, MSTRG.11553, MSTRG.11554, TGFβR1, and SMAD4 compared to the negative control (NC) group. In conclusion, these results highlight that LH could regulate the pPGCLCs proliferation by modulating the expression of TGF-β signaling pathway-related ncRNAs.
Collapse
Affiliation(s)
- Zhan-Zhong Qiao
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ming-Xin Zang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ying Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ping Wang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-Ya Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Song
- Jinxiang County Agriculture and Rural Bureau, Jining 272200, China
| | - Chun-Jie Zhang
- Wudi Animal Husbandry and Veterinary Service Management Center of Binzhou City, Binzhou 256600, China
| | | | - Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
10
|
Zhang Y, Ren L, Tian Y, Guo X, Wei F, Zhang Y. Signaling pathways that activate hepatic stellate cells during liver fibrosis. Front Med (Lausanne) 2024; 11:1454980. [PMID: 39359922 PMCID: PMC11445071 DOI: 10.3389/fmed.2024.1454980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Liver fibrosis is a complex process driven by various factors and is a key feature of chronic liver diseases. Its essence is liver tissue remodeling caused by excessive accumulation of collagen and other extracellular matrix. Activation of hepatic stellate cells (HSCs), which are responsible for collagen production, plays a crucial role in promoting the progression of liver fibrosis. Abnormal expression of signaling pathways, such as the TGF-β/Smads pathway, contributes to HSCs activation. Recent studies have shed light on these pathways, providing valuable insights into the development of liver fibrosis. Here, we will review six signaling pathways such as TGF-β/Smads that have been studied more in recent years.
Collapse
Affiliation(s)
- Youtian Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Long Ren
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yinting Tian
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaohu Guo
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Fengxian Wei
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yawu Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
11
|
She Z, Chen H, Lin X, Li C, Su J. POSTN Regulates Fibroblast Proliferation and Migration in Laryngotracheal Stenosis Through the TGF-β/RHOA Pathway. Laryngoscope 2024; 134:4078-4087. [PMID: 38771155 DOI: 10.1002/lary.31505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVES To investigate the role of periostin (POSTN) and the transforming growth factor β (TGF-β) pathway in the formation of laryngotracheal stenosis (LTS) scar fibrosis and to explore the specific signaling mechanism of POSTN-regulated TGF-β pathway in tracheal fibroblasts. METHODS Bioinformatics analysis was performed on scar data sets from the GEO database to preliminarily analyze the involvement of POSTN and TGF-β pathways in fibrosis diseases. Expression of POSTN and TGF-β pathway-related molecules was analyzed in LTS scar tissue at the mRNA and protein levels. The effect of POSTN on the biological behavior of tracheal fibroblasts was studied using plasmid DNA overexpression and siRNA silencing techniques to regulate POSTN expression and observe the activation of TGF-β1 and the regulation of cell proliferation and migration via the TGF-β/RHOA pathway. RESULTS The bioinformatics analysis revealed that POSTN and the TGF-β pathway are significantly involved in fibrosis diseases. High expression of POSTN and TGF-β/RHOA pathway-related molecules (TGFβ1, RHOA, CTGF, and COL1) was observed in LTS tissue at both mRNA and protein levels. In tracheal fibroblasts, overexpression or silencing of POSTN led to the activation of TGF-β1 and regulation of cell proliferation and migration through the TGF-β/RHOA pathway. CONCLUSION POSTN is a key molecule in scar formation in LTS, and it regulates the TGF-β/RHOA pathway to mediate the formation of cicatricial LTS by acting on TGF-β1. This study provides insights into the molecular mechanisms underlying LTS and suggests potential therapeutic targets for the treatment of this condition. LEVEL OF EVIDENCE NA Laryngoscope, 134:4078-4087, 2024.
Collapse
Affiliation(s)
- Zhiqiang She
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huiying Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoyu Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiping Su
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
12
|
Zelisko N, Lesyk R, Stoika R. Structure, unique biological properties, and mechanisms of action of transforming growth factor β. Bioorg Chem 2024; 150:107611. [PMID: 38964148 DOI: 10.1016/j.bioorg.2024.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Transforming growth factor β (TGF-β) is a ubiquitous molecule that is extremely conserved structurally and plays a systemic role in human organism. TGF-β is a homodimeric molecule consisting of two subunits joined through a disulphide bond. In mammals, three genes code for TGF-β1, TGF-β2, and TGF-β3 isoforms of this cytokine with a dominating expression of TGF-β1. Virtually, all normal cells contain TGF-β and its specific receptors. Considering the exceptional role of fine balance played by the TGF-β in anumber of physiological and pathological processes in human body, this cytokine may be proposed for use in medicine as an immunosuppressant in transplantology, wound healing and bone repair. TGFb itself is an important target in oncology. Strategies for blocking members of TGF-β signaling pathway as therapeutic targets have been considered. In this review, signalling mechanisms of TGF-β1 action are addressed, and their role in physiology and pathology with main focus on carcinogenesis are described.
Collapse
Affiliation(s)
- Nataliya Zelisko
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine
| |
Collapse
|
13
|
Bao Y, Shan Q, Lu K, Yang Q, Liang Y, Kuang H, Wang L, Hao M, Peng M, Zhang S, Cao G. Renal tubular epithelial cell quality control mechanisms as therapeutic targets in renal fibrosis. J Pharm Anal 2024; 14:100933. [PMID: 39247486 PMCID: PMC11377145 DOI: 10.1016/j.jpha.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 09/10/2024] Open
Abstract
Renal fibrosis is a devastating consequence of progressive chronic kidney disease, representing a major public health challenge worldwide. The underlying mechanisms in the pathogenesis of renal fibrosis remain unclear, and effective treatments are still lacking. Renal tubular epithelial cells (RTECs) maintain kidney function, and their dysfunction has emerged as a critical contributor to renal fibrosis. Cellular quality control comprises several components, including telomere homeostasis, ubiquitin-proteasome system (UPS), autophagy, mitochondrial homeostasis (mitophagy and mitochondrial metabolism), endoplasmic reticulum (ER, unfolded protein response), and lysosomes. Failures in the cellular quality control of RTECs, including DNA, protein, and organelle damage, exert profibrotic functions by leading to senescence, defective autophagy, ER stress, mitochondrial and lysosomal dysfunction, apoptosis, fibroblast activation, and immune cell recruitment. In this review, we summarize recent advances in understanding the role of quality control components and intercellular crosstalk networks in RTECs, within the context of renal fibrosis.
Collapse
Affiliation(s)
- Yini Bao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Keda Lu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ying Liang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Haodan Kuang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lu Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shuosheng Zhang
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030600, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310009, China
| |
Collapse
|
14
|
Fei S, Ma Y, Zhou B, Chen X, Zhang Y, Yue K, Li Q, Gui Y, Xiang T, Liu J, Yang B, Wang L, Huang X. Platelet membrane biomimetic nanoparticle-targeted delivery of TGF-β1 siRNA attenuates renal inflammation and fibrosis. Int J Pharm 2024; 659:124261. [PMID: 38782155 DOI: 10.1016/j.ijpharm.2024.124261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
The progression of renal fibrosis to end-stage renal disease (ESRD) is significantly influenced by transforming growth factor-beta (TGF-beta) signal pathway. This study aimed to develop nanoparticles (PMVs@PLGA complexes) with platelet membrane camouflage, which can transport interfering RNA to target and regulate the TGF-β1 pathway in damaged renal tissues. The aim is to reduce the severity of acute kidney injury and to reduce fibrosis in chronic kidney disease. Hence, we formulated PMVs@TGF-β1-siRNA NP complexes and employed them for both in vitro and in vivo therapy. From the experimental findings we know that the PMVs@siRNA NPs could effectively target the kidneys in unilateral ureteral obstruction (UUO) mice and ischemia/reperfusion injury (I/R) mice. In animal models of treatment, PMVs@siRNA NP complexes effectively decreased the expression of TGF-β1 and mitigated inflammation and fibrosis in the kidneys by blocking the TGF-β1/Smad3 pathway. Therefore, these PMVs@siRNA NP complexes can serve as a promising biological delivery system for treating kidney diseases.
Collapse
Affiliation(s)
- Shengnan Fei
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China; Medical School of Nantong University, Nantong 226001, PR China
| | - Yidan Ma
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China; Medical School of Nantong University, Nantong 226001, PR China
| | - Bing Zhou
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China; Medical School of Nantong University, Nantong 226001, PR China
| | - Xu Chen
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China
| | - Yuan Zhang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China
| | - Kun Yue
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China; Medical School of Nantong University, Nantong 226001, PR China
| | - Qingxin Li
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China; Medical School of Nantong University, Nantong 226001, PR China
| | - Yuanyuan Gui
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China; Medical School of Nantong University, Nantong 226001, PR China
| | - Tianya Xiang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China; Medical School of Nantong University, Nantong 226001, PR China
| | - Jianhang Liu
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China; Medical School of Nantong University, Nantong 226001, PR China
| | - Bin Yang
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester LE1 9HN, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Lei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu, PR China; Nantong Egens Biotechnology Co., Ltd, Nantong 226001, Jiangsu, PR China.
| | - Xinzhong Huang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China.
| |
Collapse
|
15
|
Taherian M, Bayati P, Mojtabavi N. Stem cell-based therapy for fibrotic diseases: mechanisms and pathways. Stem Cell Res Ther 2024; 15:170. [PMID: 38886859 PMCID: PMC11184790 DOI: 10.1186/s13287-024-03782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Fibrosis is a pathological process, that could result in permanent scarring and impairment of the physiological function of the affected organ; this condition which is categorized under the term organ failure could affect various organs in different situations. The involvement of the major organs, such as the lungs, liver, kidney, heart, and skin, is associated with a high rate of morbidity and mortality across the world. Fibrotic disorders encompass a broad range of complications and could be traced to various illnesses and impairments; these could range from simple skin scars with beauty issues to severe rheumatologic or inflammatory disorders such as systemic sclerosis as well as idiopathic pulmonary fibrosis. Besides, the overactivation of immune responses during any inflammatory condition causing tissue damage could contribute to the pathogenic fibrotic events accompanying the healing response; for instance, the inflammation resulting from tissue engraftment could cause the formation of fibrotic scars in the grafted tissue, even in cases where the immune system deals with hard to clear infections, fibrotic scars could follow and cause severe adverse effects. A good example of such a complication is post-Covid19 lung fibrosis which could impair the life of the affected individuals with extensive lung involvement. However, effective therapies that halt or slow down the progression of fibrosis are missing in the current clinical settings. Considering the immunomodulatory and regenerative potential of distinct stem cell types, their application as an anti-fibrotic agent, capable of attenuating tissue fibrosis has been investigated by many researchers. Although the majority of the studies addressing the anti-fibrotic effects of stem cells indicated their potent capabilities, the underlying mechanisms, and pathways by which these cells could impact fibrotic processes remain poorly understood. Here, we first, review the properties of various stem cell types utilized so far as anti-fibrotic treatments and discuss the challenges and limitations associated with their applications in clinical settings; then, we will summarize the general and organ-specific mechanisms and pathways contributing to tissue fibrosis; finally, we will describe the mechanisms and pathways considered to be employed by distinct stem cell types for exerting anti-fibrotic events.
Collapse
Affiliation(s)
- Marjan Taherian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Paria Bayati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Zhu YT, Liu XN, Lu BT, Cheng YX, Wang YZ. Novel Sesquiterpenoids with Renoprotective Activities from the Fruits of Alpinae oxyphylla as Potent TGF-β1/Smads Phosphorylation Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13138-13153. [PMID: 38814319 DOI: 10.1021/acs.jafc.4c01720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The fruit of Alpinia oxyphylla Miq is an important food spice in southern China and has been used in the treatment of kidney disorders for centuries. In order to discover the natural products with potent renoprotective activities in A. oxyphylla and provide some references for its usage, systematic phytochemical studies were carried out and 24 new diverse sesquiterpenoids, including seven guaiane sesquiterpenoids (1-7), 10 eudesmane sesquiterpenoids (9-13, 18, 19, and 21-23), six cadinane sesquiterpenoids (31-35 and 38), and an eremophilane sesquiterpenoid (40), along with 24 known analogues were isolated and elucidated by analysis of spectroscopic data and quantum-chemical calculations. Biological evaluation showed that 6 sesquiterpenoids could significantly inhibit the expression of extracellular matrix components, α-SMA in TGF-β1 induced kidney proximal tubular cells (NRK-52e) at low concentrations, and 9 sesquiterpenoids could also downregulate fibronectin and collagen I in a concentration-dependent manner, showing their potential in renal fibrosis. Further action mechanism study displayed that TGF-β1/Smads pathway might be involved in the antifibrotic effects of active sesquiterpenoids 15 and 43. These studies suggest that A. oxyphylla may have a potential to serve as a functional food in preventing renal fibrosis-associated diseases.
Collapse
Affiliation(s)
- Yue-Tong Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Xiao-Ning Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, P. R. China
| | - Bo-Tao Lu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yan-Zhi Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| |
Collapse
|
17
|
Ren M, Li J, Xu Z, Nan B, Gao H, Wang H, Lin Y, Shen H. Arsenic exposure induced renal fibrosis via regulation of mitochondrial dynamics and the NLRP3-TGF-β1/SMAD signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:3679-3693. [PMID: 38511876 DOI: 10.1002/tox.24196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/18/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
Environmental arsenic exposure is one of the major global public health problems. Studies have shown that arsenic exposure can cause renal fibrosis, but the underlying mechanism is still unclear. Integrating the in vivo and in vitro models, this study investigated the potential molecular pathways for arsenic-induced renal fibrosis. In this study, SD rats were treated with 0, 5, 25, 50, and 100 mg/L NaAsO2 for 8 weeks via drinking water, and HK2 cells were treated with different doses of NaAsO2 for 48 h. The in vivo results showed that arsenic content in the rats' kidneys increased as the dose increased. Body weight decreased and kidney coefficient increased at 100 mg/L. As a response to the elevated NaAsO2 dose, inflammatory cell infiltration, renal tubular injury, glomerular atrophy, tubulointerstitial hemorrhage, and fibrosis became more obvious indicated by HE and Masson staining. The kidney transcriptome profiles further supported the protein-protein interactions involved in NaAsO2-induced renal fibrosis. The in vivo results, in together with the in vitro experiments, have revealed that exposure to NaAsO2 disturbed mitochondrial dynamics, promoted mitophagy, activated inflammation and the TGF-β1/SMAD signaling pathway, and finally resulted in fibrosis. In summary, arsenic exposure contributed to renal fibrosis via regulating the mitochondrial dynamics and the NLRP3-TGF-β1/SMAD signaling axis. This study presented an adverse outcome pathway for the development of renal fibrosis due to arsenic exposure through drinking water.
Collapse
Affiliation(s)
- Miaomiao Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Jing Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Zehua Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Hongying Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Heng Wang
- Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, China
| | - Yi Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Heqing Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
18
|
Yan B, Zeng T, Liu X, Guo Y, Chen H, Guo S, Liu W. Study on the interaction protein of transcription factor Smad3 based on TurboID proximity labeling technology. Genomics 2024; 116:110839. [PMID: 38537808 DOI: 10.1016/j.ygeno.2024.110839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/27/2024] [Accepted: 03/24/2024] [Indexed: 05/27/2024]
Abstract
TurboID is a highly efficient biotin-labelling enzyme, which can be used to explore a number of new intercalating proteins due to the very transient binding and catalytic functions of many proteins. TGF-β/Smad3 signaling pathway is involved in many diseases, especially in diabetic nephropathy and inflammation. In this paper, a stably cell line transfected with Smad3 were constructed by using lentiviral infection. To further investigate the function of TGF-β/Smad3, the protein labeling experiment was conducted to find the interacting protein with Smad3 gene. Label-free mass spectrometry analysis was performed to obtain 491 interacting proteins, and the interacting protein hnRNPM was selected for IP and immunofluorescence verification, and it was verified that the Smad3 gene had a certain promoting effect on the expression of hnRNPM gene, and then had an inhibitory effect on IL-6. It lays a foundation for further study of the function of Smad3 gene and its involved regulatory network.
Collapse
Affiliation(s)
- Biao Yan
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Ting Zeng
- Medicine Research Institute, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Xiaoshan Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China; School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Yuanyuan Guo
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Hongguang Chen
- Medicine Research Institute, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China.
| | - Shuang Guo
- Medicine Research Institute, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China.
| | - Wu Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China.
| |
Collapse
|
19
|
Huang B, Han R, Tan H, Zhu W, Li Y, Jiang F, Xie C, Ren Z, Shi R. Scutellarin ameliorates diabetic nephropathy via TGF-β1 signaling pathway. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:25. [PMID: 38656633 PMCID: PMC11043297 DOI: 10.1007/s13659-024-00446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Breviscapine, a natural flavonoid mixture derived from the traditional Chinese herb Erigeron breviscapus (Vant.) Hand-Mazz, has demonstrated a promising potential in improving diabetic nephropathy (DN). However, the specific active constituent(s) responsible for its therapeutic effects and the underlying pharmacological mechanisms remain unclear. In this study, we aimed to investigate the impact of scutellarin, a constituent of breviscapine, on streptozotocin-induced diabetic nephropathy and elucidate its pharmacological mechanism(s). Our findings demonstrate that scutellarin effectively ameliorates various features of DN in vivo, including proteinuria, glomerular expansion, mesangial matrix accumulation, renal fibrosis, and podocyte injury. Mechanistically, scutellarin appears to exert its beneficial effects through modulation of the transforming growth factor-β1 (TGF-β1) signaling pathway, as well as its interaction with the extracellular signal-regulated kinase (Erk) and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Bangrui Huang
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education)Yunnan Provincial Center for Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, People's Republic of China
| | - Rui Han
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Hong Tan
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Wenzhuo Zhu
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Yang Li
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Fakun Jiang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education)Yunnan Provincial Center for Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, People's Republic of China
| | - Chun Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education)Yunnan Provincial Center for Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, People's Republic of China
| | - Zundan Ren
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Rou Shi
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China.
| |
Collapse
|
20
|
Zhao L, Hu H, Zhang L, Liu Z, Huang Y, Liu Q, Jin L, Zhu M, Zhang L. Inflammation in diabetes complications: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2024; 5:e516. [PMID: 38617433 PMCID: PMC11014467 DOI: 10.1002/mco2.516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/16/2024] Open
Abstract
At present, diabetes mellitus (DM) has been one of the most endangering healthy diseases. Current therapies contain controlling high blood sugar, reducing risk factors like obesity, hypertension, and so on; however, DM patients inevitably and eventually progress into different types of diabetes complications, resulting in poor quality of life. Unfortunately, the clear etiology and pathogenesis of diabetes complications have not been elucidated owing to intricate whole-body systems. The immune system was responsible to regulate homeostasis by triggering or resolving inflammatory response, indicating it may be necessary to diabetes complications. In fact, previous studies have been shown inflammation plays multifunctional roles in the pathogenesis of diabetes complications and is attracting attention to be the meaningful therapeutic strategy. To this end, this review systematically concluded the current studies over the relationships of susceptible diabetes complications (e.g., diabetic cardiomyopathy, diabetic retinopathy, diabetic peripheral neuropathy, and diabetic nephropathy) and inflammation, ranging from immune cell response, cytokines interaction to pathomechanism of organ injury. Besides, we also summarized various therapeutic strategies to improve diabetes complications by target inflammation from special remedies to conventional lifestyle changes. This review will offer a panoramic insight into the mechanisms of diabetes complications from an inflammatory perspective and also discuss contemporary clinical interventions.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Haoran Hu
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Lin Zhang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Zheting Liu
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yunchao Huang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qian Liu
- National Demonstration Center for Experimental Traditional Chinese Medicines Education (Zhejiang Chinese Medical University)College of Pharmaceutical Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Liang Jin
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Meifei Zhu
- Department of Critical Care MedicineThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Ling Zhang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
21
|
Yun QS, Bao YX, Jiang JB, Guo Q. Mechanisms of norcantharidin against renal tubulointerstitial fibrosis. Pharmacol Rep 2024; 76:263-272. [PMID: 38472637 DOI: 10.1007/s43440-024-00578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Renal tubulointerstitial fibrosis (RTIF) is a common feature and inevitable consequence of all progressive chronic kidney diseases, leading to end-stage renal failure regardless of the initial cause. Although research over the past few decades has greatly improved our understanding of the pathophysiology of RTIF, until now there has been no specific treatment available that can halt the progression of RTIF. Norcantharidin (NCTD) is a demethylated analogue of cantharidin, a natural compound isolated from 1500 species of medicinal insect, the blister beetle (Mylabris phalerata Pallas), traditionally used for medicinal purposes. Many studies have found that NCTD can attenuate RTIF and has the potential to be an anti-RTIF drug. This article reviews the recent progress of NCTD in the treatment of RTIF, with emphasis on the pharmacological mechanism of NCTD against RTIF.
Collapse
Affiliation(s)
- Qin-Su Yun
- Department of Pharmacy, The First People's Hospital of Changzhou and the 3rd Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu, China
| | - Yu-Xin Bao
- Research Center for Medicine and Biology, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, Guizhou, China.
| | - Jie-Bing Jiang
- Department of Pharmacology, Naval Medical University, Shanghai, 200433, China
| | - Qian Guo
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, 881 Yonghe Road, Nantong, 226001 , Jiangsu, China.
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| |
Collapse
|
22
|
Luo L, Zhang W, You S, Cui X, Tu H, Yi Q, Wu J, Liu O. The role of epithelial cells in fibrosis: Mechanisms and treatment. Pharmacol Res 2024; 202:107144. [PMID: 38484858 DOI: 10.1016/j.phrs.2024.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/19/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Fibrosis is a pathological process that affects multiple organs and is considered one of the major causes of morbidity and mortality in multiple diseases, resulting in an enormous disease burden. Current studies have focused on fibroblasts and myofibroblasts, which directly lead to imbalance in generation and degradation of extracellular matrix (ECM). In recent years, an increasing number of studies have focused on the role of epithelial cells in fibrosis. In some cases, epithelial cells are first exposed to external physicochemical stimuli that may directly drive collagen accumulation in the mesenchyme. In other cases, the source of stimulation is mainly immune cells and some cytokines, and epithelial cells are similarly altered in the process. In this review, we will focus on the multiple dynamic alterations involved in epithelial cells after injury and during fibrogenesis, discuss the association among them, and summarize some therapies targeting changed epithelial cells. Especially, epithelial mesenchymal transition (EMT) is the key central step, which is closely linked to other biological behaviors. Meanwhile, we think studies on disruption of epithelial barrier, epithelial cell death and altered basal stem cell populations and stemness in fibrosis are not appreciated. We believe that therapies targeted epithelial cells can prevent the progress of fibrosis, but not reverse it. The epithelial cell targeting therapies will provide a wonderful preventive and delaying action.
Collapse
Affiliation(s)
- Liuyi Luo
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Wei Zhang
- Department of Oral Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siyao You
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Xinyan Cui
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Hua Tu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Qiao Yi
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Jianjun Wu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China.
| | - Ousheng Liu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
23
|
Reiss AB, Jacob B, Zubair A, Srivastava A, Johnson M, De Leon J. Fibrosis in Chronic Kidney Disease: Pathophysiology and Therapeutic Targets. J Clin Med 2024; 13:1881. [PMID: 38610646 PMCID: PMC11012936 DOI: 10.3390/jcm13071881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic kidney disease (CKD) is a slowly progressive condition characterized by decreased kidney function, tubular injury, oxidative stress, and inflammation. CKD is a leading global health burden that is asymptomatic in early stages but can ultimately cause kidney failure. Its etiology is complex and involves dysregulated signaling pathways that lead to fibrosis. Transforming growth factor (TGF)-β is a central mediator in promoting transdifferentiation of polarized renal tubular epithelial cells into mesenchymal cells, resulting in irreversible kidney injury. While current therapies are limited, the search for more effective diagnostic and treatment modalities is intensive. Although biopsy with histology is the most accurate method of diagnosis and staging, imaging techniques such as diffusion-weighted magnetic resonance imaging and shear wave elastography ultrasound are less invasive ways to stage fibrosis. Current therapies such as renin-angiotensin blockers, mineralocorticoid receptor antagonists, and sodium/glucose cotransporter 2 inhibitors aim to delay progression. Newer antifibrotic agents that suppress the downstream inflammatory mediators involved in the fibrotic process are in clinical trials, and potential therapeutic targets that interfere with TGF-β signaling are being explored. Small interfering RNAs and stem cell-based therapeutics are also being evaluated. Further research and clinical studies are necessary in order to avoid dialysis and kidney transplantation.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (B.J.); (A.Z.); (A.S.); (M.J.); (J.D.L.)
| | | | | | | | | | | |
Collapse
|
24
|
Marstrand-Jørgensen AB, Sembach FE, Bak ST, Ougaard M, Christensen-Dalsgaard M, Rønn Madsen M, Jensen DM, Secher T, Heimbürger SMN, Fink LN, Hansen D, Hansen HH, Østergaard MV, Christensen M, Dalbøge LS. Shared and Distinct Renal Transcriptome Signatures in 3 Standard Mouse Models of Chronic Kidney Disease. Nephron Clin Pract 2024; 148:487-502. [PMID: 38354720 DOI: 10.1159/000535918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/04/2023] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION Several mouse models with diverse disease etiologies are used in preclinical research for chronic kidney disease (CKD). Here, we performed a head-to-head comparison of renal transcriptome signatures in standard mouse models of CKD to assess shared and distinct molecular changes in three mouse models commonly employed in preclinical CKD research and drug discovery. METHODS All experiments were conducted on male C57BL/6J mice. Mice underwent sham, unilateral ureter obstruction (UUO), or unilateral ischemic-reperfusion injury (uIRI) surgery and were terminated two- and 6-weeks post-surgery, respectively. The adenine-supplemented diet-induced (ADI) model of CKD was established by feeding with adenine diet for 6 weeks and compared to control diet feeding. For all models, endpoints included plasma biochemistry, kidney histology, and RNA sequencing. RESULTS All models displayed increased macrophage infiltration (F4/80 IHC) and fibrosis (collagen 1a1 IHC). Compared to corresponding controls, all models were characterized by an extensive number of renal differentially expressed genes (≥11,000), with a notable overlap in transcriptomic signatures across models. Gene expression markers of fibrosis, inflammation, and kidney injury supported histological findings. Interestingly, model-specific transcriptome signatures included several genes representing current drug targets for CKD, emphasizing advantages and limitations of the three CKD models in preclinical target and drug discovery. CONCLUSION The UUO, uIRI, and ADI mouse models of CKD have significant commonalities in their renal global transcriptome profile. Model-specific renal transcriptional signatures should be considered when selecting the specific model in preclinical target and drug discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Thomas Secher
- Gubra A/S, Hørsholm, Denmark
- Cell Imaging and Pharmacology, Cell Therapy R&D, Novo Nordisk A/S, Måløv, Denmark
| | | | - Lisbeth N Fink
- Gubra A/S, Hørsholm, Denmark
- Biotherapeutics Screening, Ferring Pharmaceuticals A/S, Kastrup, Denmark
| | - Ditte Hansen
- Department of Nephrology, Herlev-Gentofte Hospital, University of Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
25
|
DiKun KM, Tang XH, Fu L, Choi ME, Lu C, Gudas LJ. Retinoic acid receptor α activity in proximal tubules prevents kidney injury and fibrosis. Proc Natl Acad Sci U S A 2024; 121:e2311803121. [PMID: 38330015 PMCID: PMC10873609 DOI: 10.1073/pnas.2311803121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/18/2023] [Indexed: 02/10/2024] Open
Abstract
Chronic kidney disease (CKD) is characterized by a gradual loss of kidney function and affects ~13.4% of the global population. Progressive tubulointerstitial fibrosis, driven in part by proximal tubule (PT) damage, is a hallmark of late stages of CKD and contributes to the development of kidney failure, for which there are limited treatment options. Normal kidney development requires signaling by vitamin A (retinol), which is metabolized to retinoic acid (RA), an endogenous agonist for the RA receptors (RARα, β, γ). RARα levels are decreased in a mouse model of diabetic nephropathy and restored with RA administration; additionally, RA treatment reduced fibrosis. We developed a mouse model in which a spatiotemporal (tamoxifen-inducible) deletion of RARα in kidney PT cells of adult mice causes mitochondrial dysfunction, massive PT injury, and apoptosis without the use of additional nephrotoxic substances. Long-term effects (3 to 4.5 mo) of RARα deletion include increased PT secretion of transforming growth factor β1, inflammation, interstitial fibrosis, and decreased kidney function, all of which are major features of human CKD. Therefore, RARα's actions in PTs are crucial for PT homeostasis, and loss of RARα causes injury and a key CKD phenotype.
Collapse
Affiliation(s)
- Krysta M. DiKun
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY10065
- Weill Cornell Graduate School of Medical Sciences, New York, NY10065
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY10065
| | - Leiping Fu
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY10065
| | - Mary E. Choi
- New York Presbyterian Hospital, New York, NY10065
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY10065
| | | | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY10065
- Weill Cornell Graduate School of Medical Sciences, New York, NY10065
- Department of Urology, New York, NY10065
| |
Collapse
|
26
|
Chen XY, Wang TT, Shen Q, Ma H, Li ZH, Yu XN, Huang XF, Qing LS, Luo P. Preclinical Investigations on Anti-fibrotic Potential of Long-Term Oral Therapy of Sodium Astragalosidate in Animal Models of Cardiac and Renal Fibrosis. ACS Pharmacol Transl Sci 2024; 7:421-431. [PMID: 38357273 PMCID: PMC10863439 DOI: 10.1021/acsptsci.3c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 02/16/2024]
Abstract
In traditional Chinese medicine, Radix Astragali has played a vital role in treating progressive fibrotic diseases. One of its main active components, astragaloside IV, is a promising anti-fibrotic treatment despite its extremely low bioavailability. Our study aimed to optimize sodium astragalosidate (SA) by salt formation to improve solubility and oral absorption for anti-fibrotic therapy in vivo. Isoproterenol-induced myocardial fibrosis rat models and obese BKS-db mice presenting diabetic kidney fibrosis were used in this study. Daily oral administration of SA (20 mg/kg) for 14 days ameliorated cardiac fibrosis by reducing collagen accumulation and fibrosis-related inflammatory signals, including TNF-α, IL-1β, and IL-6. In db/db mice, SA (5,10, and 20 mg/kg per day for 8 weeks) dose-dependently alleviated lipid metabolism impairment and renal dysfunction when administered orally. Furthermore, Western blot and immunohistochemistry analyses demonstrated that SA treatment inhibited renal fibrosis by suppressing TGF-β1/Smads signaling. Taken together, our findings provide the oral-route medication availability of SA, which thus might offer a novel lead compound in preclinical trial-enabling studies for developing a long-term therapy to treat and prevent fibrosis.
Collapse
Affiliation(s)
- Xiao-Yi Chen
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
- Institute
of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Tian-Tian Wang
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
- Chengdu
Institute of Biology, Chinese Academy of
Sciences, Chengdu 610041, China
| | - Qing Shen
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
- Collaborative
Innovation Center of Seafood Deep Processing, Zhejiang Province Joint
Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Hao Ma
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
| | - Zhan-Hua Li
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
| | - Xi-Na Yu
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
| | - Xiao-Feng Huang
- Chengdu
Institute of Biology, Chinese Academy of
Sciences, Chengdu 610041, China
| | - Lin-Sen Qing
- Chengdu
Institute of Biology, Chinese Academy of
Sciences, Chengdu 610041, China
| | - Pei Luo
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
| |
Collapse
|
27
|
Guo J, Chen S, Zhang Y, Liu J, Jiang L, Hu L, Yao K, Yu Y, Chen X. Cholesterol metabolism: physiological regulation and diseases. MedComm (Beijing) 2024; 5:e476. [PMID: 38405060 PMCID: PMC10893558 DOI: 10.1002/mco2.476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/27/2024] Open
Abstract
Cholesterol homeostasis is crucial for cellular and systemic function. The disorder of cholesterol metabolism not only accelerates the onset of cardiovascular disease (CVD) but is also the fundamental cause of other ailments. The regulation of cholesterol metabolism in the human is an extremely complex process. Due to the dynamic balance between cholesterol synthesis, intake, efflux and storage, cholesterol metabolism generally remains secure. Disruption of any of these links is likely to have adverse effects on the body. At present, increasing evidence suggests that abnormal cholesterol metabolism is closely related to various systemic diseases. However, the exact mechanism by which cholesterol metabolism contributes to disease pathogenesis remains unclear, and there are still unknown factors. In this review, we outline the metabolic process of cholesterol in the human body, especially reverse cholesterol transport (RCT). Then, we discuss separately the impact of abnormal cholesterol metabolism on common diseases and potential therapeutic targets for each disease, including CVD, tumors, neurological diseases, and immune system diseases. At the end of this review, we focus on the effect of cholesterol metabolism on eye diseases. In short, we hope to provide more new ideas for the pathogenesis and treatment of diseases from the perspective of cholesterol.
Collapse
Affiliation(s)
- Jiarui Guo
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Silong Chen
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Ying Zhang
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
- Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Jinxia Liu
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Luyang Jiang
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Lidan Hu
- National Clinical Research Center for Child HealthThe Children's HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Ke Yao
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Yibo Yu
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Xiangjun Chen
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
- Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| |
Collapse
|
28
|
Qi M, Hu X, Zhu W, Ren Y, Dai C. Study on effects and relevant mechanisms of Mudan granules on renal fibrosis in streptozotocin-induced diabetes rats. Ren Fail 2024; 46:2310733. [PMID: 38357745 PMCID: PMC10877650 DOI: 10.1080/0886022x.2024.2310733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
AIMS The effects and relevant mechanisms of Mudan granules in the renal fibrosis of diabetic rats were explored through in vivo experiments, which provided a scientific basis for expanding their clinical indications. METHODS Male SD rats were given a single intraperitoneal injection of STZ (65 mg/kg) to induce diabetes rat models. After treatment with Mudan granules, the general condition of rats was recorded. Blood glucose, blood lipids, and renal function-related indicators were detected, renal tissue morphological changes and fibrosis-related indicators were observed, and the expression of pathway-related proteins were examined. RESULTS The general condition of diabetes rats was improved after the treatment of Mudan granules, the 24-h urinary protein and urinary albumin to creatinine ratio were reduced, and the renal function and lipid results were modified. The tissue damage to the rat kidney has been repaired. Expression of TGF-β1/Smad-related pathway proteins was suppressed in kidney tissues, and the fibrosis factor CO-IV, FN, and LN were reduced in serum. CONCLUSION Mudan granules may inhibit of TGF-β1/Smad pathway, inhibit the production of ECM, reduce the levels of fibrosis factors CO-IV, FN, and LN, to have a protective effect on kidney in diabetes rats.
Collapse
Affiliation(s)
- Mushuang Qi
- Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xiangka Hu
- Institute of Materia Medica, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wanjun Zhu
- Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ying Ren
- Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chunmei Dai
- Institute of Materia Medica, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
29
|
Wang L, Fan J, Yang T, Shen J, Wang L, Ge W. Investigating the therapeutic effects and mechanisms of Roxadustat on peritoneal fibrosis Based on the TGF-β/Smad pathway. Biochem Biophys Res Commun 2024; 693:149387. [PMID: 38145606 DOI: 10.1016/j.bbrc.2023.149387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023]
Abstract
Peritoneal fibrosis (PF) is particularly common in individuals undergoing peritoneal dialysis (PD). Fibrosis of the parenchymal tissue typically progresses slowly. Therefore, preventing and reducing the advancement of fibrosis is crucial for effective patient treatment. Roxadustat is a hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHI), primarily used to treat and improve renal anemia. Recent studies have found that HIF-1α possesses antioxidant activity and exerts a certain protective effect in ischemic heart disease and spinal cord injury, while it can also delay the progression of pulmonary and renal fibrosis. This study establishes the mice model through intraperitoneal injection of 4.25 % peritoneal dialysate fluid (PDF) and explores the therapeutic effects of Roxadustat by inducing TGF-β1-mediated epithelial-mesenchymal transition (EMT) in Met-5A cells. The aim is to investigate the protective role and mechanisms of Roxadustat against PD-related PF. We observed thicker peritoneal tissue and reduced permeability in animals with PD-related PF samples. This was accompanied by heightened inflammation, which Roxadustat alleviated by lowering the levels of inflammatory cytokines (IL-6, TNF-α). Furthermore, Roxadustat inhibited EMT in PF mice and TGF-β1-induced Met-5A cells, as evidenced by decreased expression of fibrotic markers, such as fibronectin, collagen I, and α-SMA, alongside an elevation in the expression of the epithelial marker, E-cadherin. Roxadustat also significantly decreased the expression of TGF-β1 and the phosphorylation of p-Smad2 and p-Smad3. In conclusion, Roxadustat ameliorates peritoneal fibrosis through the TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Lingyun Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, China
| | - Jiangqing Fan
- Department of Pharmacy, China Pharmaceutical University Nanjing Drum Tower Hospital, China
| | - Ting Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Jizhong Shen
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China.
| | - Lulu Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, The "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha, 410219, China.
| | - Weihong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, China.
| |
Collapse
|
30
|
Rajabi S, Saberi S, Najafipour H, Askaripour M, Rajizadeh MA, Shahraki S, Kazeminia S. Interaction of estradiol and renin-angiotensin system with microRNAs-21 and -29 in renal fibrosis: focus on TGF-β/smad signaling pathway. Mol Biol Rep 2024; 51:137. [PMID: 38236310 DOI: 10.1007/s11033-023-09127-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Kidney fibrosis is one of the complications of chronic kidney disease (CKD (and contributes to end-stage renal disease which requires dialysis and kidney transplantation. Several signaling pathways such as renin-angiotensin system (RAS), microRNAs (miRNAs) and transforming growth factor-β1 (TGF-β1)/Smad have a prominent role in pathophysiology and progression of renal fibrosis. Activation of classical RAS, the elevation of angiotensin II (Ang II) production and overexpression of AT1R, develop renal fibrosis via TGF-β/Smad pathway. While the non-classical RAS arm, Ang 1-7/AT2R, MasR reveals an anti-fibrotic effect via antagonizing Ang II. This review focused on studies illustrating the interaction of RAS with sexual female hormone estradiol and miRNAs in the progression of renal fibrosis with more emphasis on the TGF-β signaling pathway. MiRNAs, especially miRNA-21 and miRNA-29 showed regulatory effects in renal fibrosis. Also, 17β-estradiol (E2) is a renoprotective hormone that improved renal fibrosis. Beneficial effects of ACE inhibitors and ARBs are reported in the prevention of renal fibrosis in patients. Future studies are also merited to delineate the new therapy strategies such as miRNAs targeting, combination therapy of E2 or HRT, ACEis, and ARBs with miRNAs mimics and antagomirs in CKD to provide a new therapeutic approach for kidney patients.
Collapse
Affiliation(s)
- Soodeh Rajabi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shadan Saberi
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Askaripour
- Department of Physiology, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sarieh Shahraki
- Department of Physiology and Pharmacology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Sara Kazeminia
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
31
|
Wang X, Li M, Yin J, Fang J, Ying Y, Ye T, Zhang F, Ma S, Qin H, Liu X. Emetine dihydrochloride alleviated radiation-induced lung injury through inhibiting EMT. J Cell Mol Med 2023; 27:3839-3850. [PMID: 37723905 PMCID: PMC10718159 DOI: 10.1111/jcmm.17959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023] Open
Abstract
Radiation-induced lung injury (RILI), divided into early radiation pneumonia (RP) and late radiation-induced pulmonary fibrosis (RIPF), is a common serious disease after clinical chest radiotherapy or nuclear accident, which seriously threatens the life safety of patients. There has been no effective prevention or treatment strategy till now. Epithelial-mesenchymal transition (EMT) is a key step in the occurrence and development of RILI. In this study, we demonstrated that emetine dihydrochloride (EDD) alleviated RILI through inhibiting EMT. We found that EDD significantly attenuated EMT-related markers, reduced Smad3 phosphorylation expression after radiation. Then, for the first time, we observed EDD alleviated lung hyperaemia and reduced collagen deposit induced by irradiation, providing protection against RILI. Finally, it was found that EDD inhibited radiation-induced EMT in lung tissues. Our study suggested that EDD alleviated RILI through inhibiting EMT by blocking Smad3 signalling pathways. In summary, our results indicated that EDD is a novel potential radioprotector for RILI.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Radiobiology (Ministry of Health), School of Public HealthJilin UniversityChangchunChina
- Department of NeurologyThe Third Hospital of Jilin UniversityChangchunChina
| | - Mo Li
- Department of Thyroid SurgeryThe Second Hospital of Jilin UniversityChangchunChina
| | - Jizhong Yin
- Department of Radiation Medicine, Faculty of Naval MedicineNaval Medical UniversityShanghaiChina
| | - Jiayan Fang
- School of Public Health and ManagementWenzhou Medical UniversityWenzhouChina
| | - Yimeng Ying
- School of Public Health and ManagementWenzhou Medical UniversityWenzhouChina
| | - Tianxia Ye
- School of Public Health and ManagementWenzhou Medical UniversityWenzhouChina
| | - Fangxiao Zhang
- School of Public Health and ManagementWenzhou Medical UniversityWenzhouChina
| | - Shumei Ma
- School of Public Health and ManagementWenzhou Medical UniversityWenzhouChina
| | - Hongran Qin
- Department of Nuclear Radiation, Shanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiaodong Liu
- Key Laboratory of Radiobiology (Ministry of Health), School of Public HealthJilin UniversityChangchunChina
- School of Public Health and ManagementWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
32
|
Jing C, Fu R, Liu X, Zang G, Zhu X, Wang C, Zhang W. A comprehensive cuproptosis score and associated gene signatures reveal prognostic and immunological features of idiopathic pulmonary fibrosis. Front Immunol 2023; 14:1268141. [PMID: 38035073 PMCID: PMC10682708 DOI: 10.3389/fimmu.2023.1268141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Background Cuproptosis, the most recently identified and regulated cell death, depends on copper ions in vivo. Copper regulates the pathogenesis of Idiopathic pulmonary fibrosis (IPF), but the mechanism of action underlying cuproptosis in IPF remains unclear. Methods We identified three cuproptosis patterns based on ten cuproptosis-related genes using unsupervised consensus clustering. We quantified these patterns using a PCA algorithm to construct a cuproptosis score. ssGSEA and the Cibersort algorithm assessed the immune profile of IPF patients. GSEA and GSVA were used to analyze the functional differences in different molecular patterns. Drug susceptibility prediction based on cuproptosis scores and meaningful gene markers was eventually screened in combination with external public data sets,in vitro experiments and our cases. Results Of the three types of cuproptosis-related clusters identified in the study, patients in the clusterA, geneclusterB, and score-high groups showed improved prognoses. Moreover, each cluster exhibited differential immune characteristics, with the subtype showing a poorer prognosis associated with an immune overreaction. Cuproptosis score can be an independent risk factor for predicting the prognosis of IPF patients. GSEA showed a significant functional correlation between the score and cuproptosis. The genes AKAP9, ANK3, C6orf106, LYRM7, and MBNL1, were identified as prognostic-related signatures in IPF patients. The functional role of immune regulation in IPF was further explored by correlating essential genes with immune factors. Also, the nomogram constructed by cumulative information from gene markers and cuproptosis score showed reliable clinical application. Conclusions Cuproptosis patterns differ significantly in the prognosis and immune characteristics of IPF patients. The cuproptosis score and five gene signatures can provide a reliable reference in the prognosis and diagnosis of IPF.
Collapse
Affiliation(s)
- Chuanqing Jing
- Clinical Department of Integrated Traditional Chinese and Western Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rong Fu
- Clinical Department of Integrated Traditional Chinese and Western Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Guodong Zang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Xue Zhu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Can Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| |
Collapse
|
33
|
Jin Q, Liu T, Ma F, Yang L, Mao H, Wang Y, Li P, Peng L, Zhan Y. Therapeutic application of traditional Chinese medicine in kidney disease: Sirtuins as potential targets. Biomed Pharmacother 2023; 167:115499. [PMID: 37742600 DOI: 10.1016/j.biopha.2023.115499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023] Open
Abstract
Sirtuins are a family of NAD+ III-dependent histone deacetylases that consists of seven family members, Sirt1-Sirt7, which regulate various signalling pathways and are involved in many critical biological processes of kidney diseases. Traditional Chinese medicine (TCM), as an essential part of the global healthcare system, has multi-component and multi-pathway therapeutic characteristics and plays a role in preventing and controlling various diseases. Through ongoing collaboration with modern medicine, TCM has recently achieved many remarkable advancements in theoretical investigation, mechanistic research, and clinical applications related to kidney diseases. Therefore, a comprehensive and systematic summary of TCM that focuses on sirtuins as the intervention target for kidney diseases is necessary. This review introduces the relationship between abnormal sirtuins levels and common kidney diseases, such as diabetic kidney disease and acute kidney injury. Based on the standard biological processes, such as inflammation, oxidative stress, autophagy, mitochondrial homeostasis, and fibrosis, which are underlying kidney diseases, comprehensively describes the roles and regulatory effects of TCM targeting the sirtuins family in various kidney diseases.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
34
|
Yu Z, Xu C, Song B, Zhang S, Chen C, Li C, Zhang S. Tissue fibrosis induced by radiotherapy: current understanding of the molecular mechanisms, diagnosis and therapeutic advances. J Transl Med 2023; 21:708. [PMID: 37814303 PMCID: PMC10563272 DOI: 10.1186/s12967-023-04554-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
Cancer remains the leading cause of death around the world. In cancer treatment, over 50% of cancer patients receive radiotherapy alone or in multimodal combinations with other therapies. One of the adverse consequences after radiation exposure is the occurrence of radiation-induced tissue fibrosis (RIF), which is characterized by the abnormal activation of myofibroblasts and the excessive accumulation of extracellular matrix. This phenotype can manifest in multiple organs, such as lung, skin, liver and kidney. In-depth studies on the mechanisms of radiation-induced fibrosis have shown that a variety of extracellular signals such as immune cells and abnormal release of cytokines, and intracellular signals such as cGAS/STING, oxidative stress response, metabolic reprogramming and proteasome pathway activation are involved in the activation of myofibroblasts. Tissue fibrosis is extremely harmful to patients' health and requires early diagnosis. In addition to traditional serum markers, histologic and imaging tests, the diagnostic potential of nuclear medicine techniques is emerging. Anti-inflammatory and antioxidant therapies are the traditional treatments for radiation-induced fibrosis. Recently, some promising therapeutic strategies have emerged, such as stem cell therapy and targeted therapies. However, incomplete knowledge of the mechanisms hinders the treatment of this disease. Here, we also highlight the potential mechanistic, diagnostic and therapeutic directions of radiation-induced fibrosis.
Collapse
Affiliation(s)
- Zuxiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chaoyu Xu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Bin Song
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China
| | - Shihao Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chong Chen
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221200, China
| | - Changlong Li
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- Department of Molecular Biology and Biochemistry, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China.
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China.
| |
Collapse
|
35
|
Wang L, Zhao W, Ning X, Wang C, Liang S. Effect of X-ray irradiation combined with PD-1 inhibitor treatment on lung tissue injury in mice. Int Immunopharmacol 2023; 123:110775. [PMID: 37562291 DOI: 10.1016/j.intimp.2023.110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
PURPOSE To determine the effect of X-ray irradiation combined with PD-1 immune checkpoint inhibitor administration on lung tissue injury in a mouse model and its potential mechanism. METHODS In all, 20 C57BL/6J mice were randomly divided into four groups with five mice in each group: control group, PD-1 inhibitor group, irradiation group, and irradiation combined with PD-1 inhibitor group. Hematoxylin-eosin staining of the lung tissue was performed 30 days after the end of irradiation to evaluate the morphological and pathological changes in the tissue. Masson staining and analysis of hydroxyproline were used to evaluate the degree of pulmonary fibrosis. The levels of transforming growth factor-β1 (TGF-β1) and tumor necrosis factor α(TNF-α) were evaluated by Enzyme-Linked immunosorbent assay (ELISA). CD3+, CD4+, and CD8+ T lymphocytes in the lung tissue were detected by immunohistochemistry. The expression levels of TGF-β1, Smad3, cGAS, and STING in the lung tissue were evaluated by Western blotting. RESULTS The lung injury scores and pulmonary fibrosis indices in the irradiation group were higher than those in the control group. Meanwhile, lung pneumonia score, pulmonary fibrosis index, percentage of CD4 cells and expression of TGF-β1, p-Smad3, and STING in the lung tissue of mice in irradiation combined with PD-1 inhibitor group were higher than those in the other three groups. CONCLUSION Lung injury and pulmonary fibrosis were induced by whole chest X-ray irradiation in mice, and PD-1 inhibitor could aggravate lung injury and pulmonary fibrosis in mice. Thus, radiotherapy combined with PD-1 inhibitors may affect the immune inflammatory microenvironment in the lung tissues of mice by activating TGF-β1/Samd3 and cGAS/STING signaling pathways, thus aggravating lung tissue damage induced by radiation.
Collapse
Affiliation(s)
- Leili Wang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China; Department of Oncology, Liuzhou People's Hospital, Liuzhou, China
| | - Weidong Zhao
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xin Ning
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Cailan Wang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shixiong Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
36
|
Ren LL, Miao H, Wang YN, Liu F, Li P, Zhao YY. TGF-β as A Master Regulator of Aging-Associated Tissue Fibrosis. Aging Dis 2023; 14:1633-1650. [PMID: 37196129 PMCID: PMC10529747 DOI: 10.14336/ad.2023.0222] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/22/2023] [Indexed: 05/19/2023] Open
Abstract
Fibrosis is the abnormal accumulation of extracellular matrix proteins such as collagen and fibronectin. Aging, injury, infections, and inflammation can cause different types of tissue fibrosis. Numerous clinical investigations have shown a correlation between the degree of liver and pulmonary fibrosis in patients and telomere length and mitochondrial DNA content, both of which are signs of aging. Aging involves the gradual loss of tissue function over time, which results in the loss of homeostasis and, ultimately, an organism's fitness. A major feature of aging is the accumulation of senescent cells. Senescent cells abnormally and continuously accumulate in the late stages of life, contributing to age-related fibrosis and tissue deterioration, among other aging characteristics. Furthermore, aging generates chronic inflammation, which results in fibrosis and decreases organ function. This finding suggests that fibrosis and aging are closely related. The transforming growth factor-beta (TGF-β) superfamily plays a crucial role in the physiological and pathological processes of aging, immune regulation, atherosclerosis, and tissue fibrosis. In this review, the functions of TGF-β in normal organs, aging, and fibrotic tissues is discussed: TGF-β signalling is altered with age and is an indicator of pathology associated with tissue fibrosis. In addition, this review discusses the potential targeting of noncoding.
Collapse
Affiliation(s)
- Li-Li Ren
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Yan-Ni Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Fei Liu
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, Department of Nephrology, China-Japan Friendship Hospital, Beijing, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
37
|
Sarrand J, Soyfoo MS. Involvement of Epithelial-Mesenchymal Transition (EMT) in Autoimmune Diseases. Int J Mol Sci 2023; 24:14481. [PMID: 37833928 PMCID: PMC10572663 DOI: 10.3390/ijms241914481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complex reversible biological process characterized by the loss of epithelial features and the acquisition of mesenchymal features. EMT was initially described in developmental processes and was further associated with pathological conditions including metastatic cascade arising in neoplastic progression and organ fibrosis. Fibrosis is delineated by an excessive number of myofibroblasts, resulting in exuberant production of extracellular matrix (ECM) proteins, thereby compromising organ function and ultimately leading to its failure. It is now well acknowledged that a significant number of myofibroblasts result from the conversion of epithelial cells via EMT. Over the past two decades, evidence has accrued linking fibrosis to many chronic autoimmune and inflammatory diseases, including systemic sclerosis (SSc), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Sjögren's syndrome (SS), and inflammatory bowel diseases (IBD). In addition, chronic inflammatory states observed in most autoimmune and inflammatory diseases can act as a potent trigger of EMT, leading to the development of a pathological fibrotic state. In the present review, we aim to describe the current state of knowledge regarding the contribution of EMT to the pathophysiological processes of various rheumatic conditions.
Collapse
Affiliation(s)
- Julie Sarrand
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Muhammad S. Soyfoo
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
38
|
Liu Y, Wang W, Zhang J, Gao S, Xu T, Yin Y. JAK/STAT signaling in diabetic kidney disease. Front Cell Dev Biol 2023; 11:1233259. [PMID: 37635867 PMCID: PMC10450957 DOI: 10.3389/fcell.2023.1233259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most important microvascular complication of diabetes and the leading cause of end-stage renal disease (ESRD) worldwide. The Janus kinase/signal transducer and activator of the transcription (JAK/STAT) signaling pathway, which is out of balance in the context of DKD, acts through a range of metabolism-related cytokines and hormones. JAK/STAT is the primary signaling node in the progression of DKD. The latest research on JAK/STAT signaling helps determine the role of this pathway in the factors associated with DKD progression. These factors include the renin-angiotensin system (RAS), fibrosis, immunity, inflammation, aging, autophagy, and EMT. This review epitomizes the progress in understanding the complicated explanation of the etiologies of DKD and the role of the JAK/STAT pathway in the progression of DKD and discusses whether it can be a potential target for treating DKD. It further summarizes the JAK/STAT inhibitors, natural products, and other drugs that are promising for treating DKD and discusses how these inhibitors can alleviate DKD to explore possible potential drugs that will contribute to formulating effective treatment strategies for DKD in the near future.
Collapse
Affiliation(s)
- Yingjun Liu
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenkuan Wang
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jintao Zhang
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuo Gao
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Xu
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yonghui Yin
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
39
|
Du W, Lv Y, Wu H, Li Y, Tang R, Zhao M, Wei F, Li C, Ge W. Research on the effect of Dipsaci Radix before and after salt-processed on kidney yang deficiency syndrome rats and the preliminary mechanism study through the BMP-Smad signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116480. [PMID: 37061069 DOI: 10.1016/j.jep.2023.116480] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dipsaci Radix (DR) is the dry root of Dipsacus asper Wall. ex DC. AIM OF THE STUDY The purpose of this study was to compare the effects of DR on rats before and after salt-processed with kidney yang deficiency syndrome (KYDS), and we selected the BMP-Smad signaling pathway to explore the mechanism of DR. MATERIALS AND METHODS The model of KYDS was established by subcutaneous injection of hydrocortisone, the crude DR (CDR) and salt-processed DR (SDR) were given the corresponding dose (2 g/kg, 4 g/kg, and 6 g/kg). The organ index and the contents of adrenocorticotropic hormone (ACTH), cortistatin (CORT), thyroid hormone (T4), tumor necrosis factor-alpha (TNF-α), testosterone (T), estradiol (E2), cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), Na+-K+-ATPase, and growth hormone (GH) in serum were measured to evaluate the intervention effect of DR on KYDS rats. The expression of Smad 1, Smad 4, Smad 5, Smad 8, and BMP 7 protein in kidney was determined by immunohistochemistry, quantitative PCR (qPCR) and Western blot analysis. The effects of DR on 5 expression factors in the BMP-Smad signaling pathway were studied. Constituents absorbed into blood were identified by UPLC-Q-TOF/MS. RESULTS The results showed that compared with the model group, the thymus and kidney index, as well as the contents of ACTH, CORT, cAMP, GH, Na+-K+-ATPase, T, T4, and E2 were significantly increased in the CDR and SDR groups, and the contents of cGMP and TNF-α were significantly decreased. Compared with the CDR high dose group, ACTH, Na+-K+-ATPase, T, and T4 were significantly increased in the SDR high dose group. The results of immunohistochemistry, qPCR, and Western blot analysis showed that compared with the model group, the expression levels of Smad 1, Smad 4, Smad 5, Smad 8 and BMP 7 proteins in the kidney of DR groups were significantly increased. And SDR groups tended to be better than CDR groups. 8 constituents migrating to blood were identified. CONCLUSION This study showed that both CDR and SDR could have a good therapeutic effect on KYDS, and SDR was better than CDR. This study chose the BMP-Smad signaling pathway to study the mechanism of DR in the treatment of KYDS and provided a scientific basis for the processing mechanism of salt-processed.
Collapse
Affiliation(s)
- Weifeng Du
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, PR China; Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China.
| | - Yue Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, PR China.
| | - Hangsha Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, PR China.
| | - Yafei Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, PR China
| | - Rui Tang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, PR China
| | - Mingfang Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, PR China
| | - Feiyang Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, PR China
| | - Changyu Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| | - Weihong Ge
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, PR China; Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, 311401, PR China; Zhejiang Chinese Medical University Chinese Medicine Yinpian Co., Ltd., Hangzhou, 311401, PR China.
| |
Collapse
|
40
|
Pi P, Zeng Z, Zeng L, Han B, Bai X, Xu S. Molecular mechanisms of COVID-19-induced pulmonary fibrosis and epithelial-mesenchymal transition. Front Pharmacol 2023; 14:1218059. [PMID: 37601070 PMCID: PMC10436482 DOI: 10.3389/fphar.2023.1218059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
As the outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first broke out in Hubei Province, China, at the end of 2019. It has brought great challenges and harms to global public health. SARS-CoV-2 mainly affects the lungs and is mainly manifested as pulmonary disease. However, one of the biggest crises arises from the emergence of COVID-19-induced fibrosis. At present, there are still many questions about how COVID-19 induced pulmonary fibrosis (PF) occurs and how to treat and regulate its long-term effects. In addition, as an important process of fibrosis, the effect of COVID-19 on epithelial-mesenchymal transition (EMT) may be an important factor driving PF. This review summarizes the main pathogenesis and treatment mechanisms of COVID-19 related to PF. Starting with the basic mechanisms of PF, such as EMT, transforming growth factor-β (TGF-β), fibroblasts and myofibroblasts, inflammation, macrophages, innate lymphoid cells, matrix metalloproteinases and tissue inhibitors of metalloproteinases, hedgehog pathway as well as Notch signaling. Further, we highlight the importance of COVID-19-induced EMT in the process of PF and provide an overview of the related molecular mechanisms, which will facilitate future research to propose new clinical therapeutic solutions for the treatment of COVID-19-induced PF.
Collapse
Affiliation(s)
- Peng Pi
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Zhipeng Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Liqing Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Bing Han
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xizhe Bai
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Shousheng Xu
- School of Sports Engineering, Beijing Sport University, Beijing, China
| |
Collapse
|
41
|
Zhou YY, Wu YQ, Chong CJ, Zhong SM, Wang ZX, Qin XH, Liu ZQ, Liu JY, Song JL. Irpex lacteus polysaccharide exhibits therapeutic potential for ovarian fibrosis in PCOS rats via the TGF- β1/smad pathway. Heliyon 2023; 9:e18741. [PMID: 37554783 PMCID: PMC10405015 DOI: 10.1016/j.heliyon.2023.e18741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is one of the commonest endocrinopathies in childbearing women. The research was conducted to assess the impact of Irpex lacteus polysaccharide (ILP, 1000 mg/kg) on the letrozole (1 mg/kg)-induced PCOS model in female rats. Metformin (Met, 265 mg/kg) as the positive control. The study suggested that ILP restored the estrous cycle in rats with PCOS as well as lowered relative ovarian weight and body weight, in comparison to normal. Rats with PCOS showed improvement in ovarian structure and fibrosis when given ILP. ILP decreased the testosterone (T), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), total cholesterol (TC), luteinizing hormone (LH), homeostasis model assessment-insulin resistance (HOMA-IR), fasting blood glucose (FBG), and insulin (INS) levels and elevated the follicle-stimulating hormone (FSH) and estrogen (E2) levels in PCOS rats. In addition, ILP increased the content of superoxide dismutase (SOD) in serum and the antioxidant enzymes (Prdx3, Sod1, Gsr, Gsta4, Mgst1, Gpx3, Sod2 and Cat) expression levels in the ovaries and decreased the serum expression of malondialdehyde (MDA). In addition, ILP treatment slowed down the process of the fibrosis-associated TGF-β1/Smad pathway and downregulated α-smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF) levels in PCOS rats ovaries. According to these findings, ILP may be able to treat letrozole-induced PCOS in rats by ameliorating metabolic disturbances, sex hormone levels, oxidative stress, and ovarian fibrosis.
Collapse
Affiliation(s)
- Yan-Yuan Zhou
- Department of Pharmacy, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Ya-Qi Wu
- Department of Pharmacy, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Chao-Jie Chong
- Department of Pharmacy, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Shu-Mei Zhong
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, 541199, China
| | - Zi-Xian Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, 541199, China
| | - Xiao-Hui Qin
- Department of Pharmacy, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Zhi-Qiang Liu
- Department of Pharmacy, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Jun-Yang Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, 541199, China
| | - Jia-Le Song
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, 541199, China
- Department of Clinical Nutrition, Second Hospital Affiliated to Guilin Medical University, Guilin, 541100, China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541199, China
- South Asia Branch of National Engineering Research Center of Dairy Health for Maternal and Child Health, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
42
|
Di X, Gao X, Peng L, Ai J, Jin X, Qi S, Li H, Wang K, Luo D. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther 2023; 8:282. [PMID: 37518181 PMCID: PMC10387486 DOI: 10.1038/s41392-023-01501-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023] Open
Abstract
Cellular mechanotransduction, a critical regulator of numerous biological processes, is the conversion from mechanical signals to biochemical signals regarding cell activities and metabolism. Typical mechanical cues in organisms include hydrostatic pressure, fluid shear stress, tensile force, extracellular matrix stiffness or tissue elasticity, and extracellular fluid viscosity. Mechanotransduction has been expected to trigger multiple biological processes, such as embryonic development, tissue repair and regeneration. However, prolonged excessive mechanical stimulation can result in pathological processes, such as multi-organ fibrosis, tumorigenesis, and cancer immunotherapy resistance. Although the associations between mechanical cues and normal tissue homeostasis or diseases have been identified, the regulatory mechanisms among different mechanical cues are not yet comprehensively illustrated, and no effective therapies are currently available targeting mechanical cue-related signaling. This review systematically summarizes the characteristics and regulatory mechanisms of typical mechanical cues in normal conditions and diseases with the updated evidence. The key effectors responding to mechanical stimulations are listed, such as Piezo channels, integrins, Yes-associated protein (YAP) /transcriptional coactivator with PDZ-binding motif (TAZ), and transient receptor potential vanilloid 4 (TRPV4). We also reviewed the key signaling pathways, therapeutic targets and cutting-edge clinical applications of diseases related to mechanical cues.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoshuai Gao
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Liao Peng
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi Jin
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shiqian Qi
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Li
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Kunjie Wang
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
43
|
Feng L, Chen X, Huang Y, Zhang X, Zheng S, Xie N. Immunometabolism changes in fibrosis: from mechanisms to therapeutic strategies. Front Pharmacol 2023; 14:1243675. [PMID: 37576819 PMCID: PMC10412938 DOI: 10.3389/fphar.2023.1243675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Immune cells are essential for initiating and developing the fibrotic process by releasing cytokines and growth factors that activate fibroblasts and promote extracellular matrix deposition. Immunometabolism describes how metabolic alterations affect the function of immune cells and how inflammation and immune responses regulate systemic metabolism. The disturbed immune cell function and their interactions with other cells in the tissue microenvironment lead to the origin and advancement of fibrosis. Understanding the dysregulated metabolic alterations and interactions between fibroblasts and the immune cells is critical for providing new therapeutic targets for fibrosis. This review provides an overview of recent advances in the pathophysiology of fibrosis from the immunometabolism aspect, highlighting the altered metabolic pathways in critical immune cell populations and the impact of inflammation on fibroblast metabolism during the development of fibrosis. We also discuss how this knowledge could be leveraged to develop novel therapeutic strategies for treating fibrotic diseases.
Collapse
Affiliation(s)
- Lixiang Feng
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xingyu Chen
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yujing Huang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiaodian Zhang
- Hainan Cancer Clinical Medical Center of the First Affiliated Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province and Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Shaojiang Zheng
- Hainan Cancer Clinical Medical Center of the First Affiliated Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province and Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
- Department of Pathology, Hainan Women and Children Medical Center, Hainan Medical University, Haikou, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
44
|
Luo X, Zhang H, Cao X, Yang D, Yan Y, Lu J, Wang X, Wang H. Endurance Exercise-Induced Fgf21 Promotes Skeletal Muscle Fiber Conversion through TGF-β1 and p38 MAPK Signaling Pathway. Int J Mol Sci 2023; 24:11401. [PMID: 37511159 PMCID: PMC10379449 DOI: 10.3390/ijms241411401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Fgf21 has been identified as playing a regulatory role in muscle growth and function. Although the mechanisms through which endurance training regulates skeletal muscle have been widely studied, the contribution of Fgf21 remains poorly understood. Here, muscle size and function were measured, and markers of fiber type were evaluated using immunohistochemistry, immunoblots, or qPCR in endurance-exercise-trained wild-type and Fgf21 KO mice. We also investigated Fgf21-induced fiber conversion in C2C12 cells, which were incubated with lentivirus and/or pathway inhibitors. We found that endurance exercise training enhanced the Fgf21 levels of liver and GAS muscle and exercise capacity and decreased the distribution of skeletal muscle fiber size, and fast-twitch fibers were observed converting to slow-twitch fibers in the GAS muscle of mice. Fgf21 promoted the markers of fiber-type transition and eMyHC-positive myotubes by inhibiting the TGF-β1 signaling axis and activating the p38 MAPK signaling pathway without apparent crosstalk. Our findings suggest that the transformation and function of skeletal muscle fiber types in response to endurance training could be mediated by Fgf21 and its downstream signaling pathways. Our results illuminate the mechanisms of Fgf21 in endurance-exercise-induced fiber-type conversion and suggest a potential use of Fgf21 in improving muscle health and combating fatigue.
Collapse
Affiliation(s)
- Xiaomao Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Huiling Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiaorui Cao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Ding Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yi Yan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jiayin Lu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiaonan Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
45
|
Li ZY, Lv S, Qiao J, Wang SQ, Ji F, Li D, Yan J, Wei Y, Wu L, Gao C, Li ML. Acacetin Alleviates Cardiac Fibrosis via TGF-β1/Smad and AKT/mTOR Signal Pathways in Spontaneous Hypertensive Rats. Gerontology 2023; 69:1076-1094. [PMID: 37348478 DOI: 10.1159/000531596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
INTRODUCTION Attenuating cardiac fibroblasts activation contributes to reducing excessive extracellular matrix deposition and cardiac structural remodeling in hypertensive hearts. Acacetin plays a protective role in doxorubicin-induced cardiomyopathy and ischemia/reperfusion injury. The aim of this study was to investigate the potential molecular mechanisms underlying the protective role of acacetin on hypertension-induced cardiac fibrosis. METHODS Echocardiography, histopathological methods, and Western blotting techniques were used to evaluate the anti-fibrosis effects in spontaneous hypertensive rat (SHR) which were daily intragastrically administrated with acacetin (10 mg/kg and 20 mg/kg) for 6 weeks. Angiotensin II (Ang II) was used to induce cellular fibrosis in human cardiac fibroblasts (HCFs) in the absence and presence of acacetin treatment for 48 h. RESULTS Acacetin significantly alleviated hypertension-induced increase in left ventricular (LV) posterior wall thickness and LV mass index in SHR. The expressions of collagen-1, collagen-III, and alpha-smooth muscle actin (α-SMA) were remarkedly decreased after treatment with acacetin (n = 6, p < 0.05). In cultured HCFs, acacetin significantly attenuated Ang II-induced migration and proliferation (n = 6, p < 0.05). Moreover, acacetin substantially inhibited Ang II-induced upregulation of collagen-1 and collagen-III (n = 6, p < 0.05) and downregulated the expression of alpha-SMA in HCFs. Additionally, acacetin decreased the expression of TGF-β1, p-Smad3/Smad3, and p-AKT and p-mTOR but increased the expression of Smad7 (n = 6, p < 0.05). Further studies found that acacetin inhibited TGF-β1 agonist SRI and AKT agonist SC79 caused fibrotic effect. CONCLUSION Acacetin inhibits the hypertension-associated cardiac fibrotic processes through regulating TGF-β/Smad3, AKT/mTOR signal transduction pathways.
Collapse
Affiliation(s)
- Zhi-Yi Li
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Si Lv
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jie Qiao
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Cardiology, Southwest Medical University, Luzhou, China
| | - Si-Qi Wang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Fang Ji
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Dan Li
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jie Yan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Cardiology, Southwest Medical University, Luzhou, China
| | - Yan Wei
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Changzhen Gao
- Department of Cardiology, Affiliated Hospital of Jiang Nan University, Wuxi, China
| | - Miao-Ling Li
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
46
|
Alam J, Huda MN, Tackett AJ, Miah S. Oncogenic signaling-mediated regulation of chromatin during tumorigenesis. Cancer Metastasis Rev 2023; 42:409-425. [PMID: 37147457 PMCID: PMC10348982 DOI: 10.1007/s10555-023-10104-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
Signaling pathways play critical roles in executing and controlling important biological processes within cells. Cells/organisms trigger appropriate signal transduction pathways in order to turn on or off intracellular gene expression in response to environmental stimuli. An orchestrated regulation of different signaling pathways across different organs and tissues is the basis of many important biological functions. Presumably, any malfunctions or dysregulation of these signaling pathways contribute to the pathogenesis of disease, particularly cancer. In this review, we discuss how the dysregulation of signaling pathways (TGF-β signaling, Hippo signaling, Wnt signaling, Notch signaling, and PI3K-AKT signaling) modulates chromatin modifications to regulate the epigenome, thereby contributing to tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Jahangir Alam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Md Nazmul Huda
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sayem Miah
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
47
|
Huang CW, Lee SY, Du CX, Ku HC. Soluble dipeptidyl peptidase-4 induces epithelial-mesenchymal transition through tumor growth factor-β receptor. Pharmacol Rep 2023:10.1007/s43440-023-00496-y. [PMID: 37233949 DOI: 10.1007/s43440-023-00496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Kidney fibrosis is the final manifestation of chronic kidney disease, a condition mainly caused by diabetic nephropathy. Persistent tissue damage leads to chronic inflammation and excessive deposition of extracellular matrix (ECM) proteins. Epithelial-mesenchymal transition (EMT) is involved in a variety of tissue fibrosis and is a process during which epithelial cells transform into mesenchymal-like cells and lose their epithelial functionality and characteristics Dipeptidyl peptidase-4 (DPP4) is widely expressed in tissues, especially those of the kidney and small intestine. DPP4 exists in two forms: a plasma membrane-bound and a soluble form. Serum-soluble DPP4 (sDPP4) levels are altered in many pathophysiological conditions. Elevated circulating sDPP4 is correlated with metabolic syndrome. Because the role of sDPP4 in EMT remains unclear, we examined the effect of sDPP4 on renal epithelial cells. METHODS The influences of sDPP4 on renal epithelial cells were demonstrated by measuring the expression of EMT markers and ECM proteins. RESULTS sDPP4 upregulated the EMT markers ACTA2 and COL1A1 and increased total collagen content. sDPP4 activated SMAD signaling in renal epithelial cells. Using genetic and pharmacological methods to target TGFBR, we observed that sDPP4 activated SMAD signaling through TGFBR in epithelial cells, whereas genetic ablation and treatment with TGFBR antagonist prevented SMAD signaling and EMT. Linagliptin, a clinically available DPP4 inhibitor, abrogated sDPP4-induced EMT. CONCLUSIONS This study indicated that sDPP4/TGFBR/SMAD axis leads to EMT in renal epithelial cells. Elevated circulating sDPP4 levels may contribute to mediators that induce renal fibrosis.
Collapse
Affiliation(s)
- Cheng-Wei Huang
- Department of Life Science, Fu Jen Catholic University, No.510, Zhongzheng Road, Xinzhuang District, New Taipei City, 242, Taiwan
| | - Shih-Yi Lee
- Division of Pulmonary and Critical Care Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Chen-Xuan Du
- Department of Life Science, Fu Jen Catholic University, No.510, Zhongzheng Road, Xinzhuang District, New Taipei City, 242, Taiwan
| | - Hui-Chun Ku
- Department of Life Science, Fu Jen Catholic University, No.510, Zhongzheng Road, Xinzhuang District, New Taipei City, 242, Taiwan.
| |
Collapse
|
48
|
Wei S, Geng L, Yu H, Wang J, Yue Y, Zhang Q, Wu N. Isolation, Characterization, and Anti-Idiopathic Pulmonary Fibrosis Activity of a Fucoidan from Costaria costata. Molecules 2023; 28:molecules28114343. [PMID: 37298817 DOI: 10.3390/molecules28114343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Pulmonary fibrosis is a chronic, progressive, and fatal disease of the interstitial lung. There is currently a lack of efficient therapy to reverse the prognosis of patients. In this study, a fucoidan from Costaria costata was isolated, and its anti-idiopathic fibrosis activity was investigated both in vitro and in vivo. The chemical composition analysis showed that C. costata polysaccharide (CCP) consists of galactose and fucose as the main monosaccharides with a sulfate group content of 18.54%. Further study found that CCP could resist TGF-β1-induced epithelial-mesenchymal transition (EMT) in A549 cells by inhibiting the TGF-β/Smad and PI3K/AKT/mTOR signaling pathways. Moreover, in vivo study found that CCP treatment alleviated bleomycin (BLM)-stimulated fibrosis and inflammation in mice lung tissue. In conclusion, the present study suggests that CCP could protect the lung from fibrosis by relieving the EMT process and inflammation in lung cells.
Collapse
Affiliation(s)
- Sijie Wei
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Haoyu Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Nantong Zhongke Marine Science and Technology Research and Development Center, Nantong 226682, China
| |
Collapse
|
49
|
Yao Y, Lin L, Tang W, Shen Y, Chen F, Li N. Geniposide alleviates pressure overload in cardiac fibrosis with suppressed TGF-β1 pathway. Acta Histochem 2023; 125:152044. [PMID: 37196380 DOI: 10.1016/j.acthis.2023.152044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Cardiac fibrosis is one of the main contributors to the pathogenesis of heart failure. Geniposide (GE), a major iridoid in gardenia fruit extract, has recently been reported to improve skeletal muscle fibrosis through the modulation of inflammation response. This investigation aimed to illuminate the cardio-protective effect and the potential mechanism of GE in cardiac fibrosis. MATERIAL AND METHODS A transverse aortic contraction (TAC) induction mice model was established and GE (0 mg/kg; 10 mg/kg; 20 mg/kg; 40 mg/kg) was administered by oral gavage daily for 4 weeks. Hemodynamic parameters, Masson's trichrome stain, and hematoxylin-eosin (HE) staining were estimated and cardiomyocyte fibrosis, interstitial collagen levels, and hypertrophic markers were analyzed using qPCR and western blot. In vitro, H9C2 cells were exposed to the Ang II (1 μM) pretreated with GE (0.1 μM, 1 μM, and 10 μM). Cardiomyocyte apoptosis was detected. Moreover, the transforming growth factor β1 (TGF-β1)/Smad2 pathway was assessed in vivo and in vitro. RESULTS GE significantly ameliorated TAC-induced cardiac hypertrophy, ventricular remodeling, myocardial fibrosis, and improved cardiac function in vivo, and it inhibited Ang II-induced cardiomyocyte apoptosis in vitro. We further observed that the inflammatory channel TGF-β1/Smad2 pathway was suppressed by GE both in vivo and in vitro. CONCLUSION These results indicate that GE inhibited myocardial fibrosis and improved hypertrophic cardiomyocytes with attenuated the TGF-β1/Smad2 pathway and proposed to be an important therapeutic of cardiac fibrosis reduced by TAC.
Collapse
Affiliation(s)
- Yanmei Yao
- Department of General Medicine, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Leqing Lin
- Department of Critical Care Medicine, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Wenxue Tang
- Department of Critical Care Medicine, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Yueliang Shen
- Department of Pathophysiology, Zhejiang University Medical College, Hangzhou, Zhejiang 310000, People's Republic of China
| | - Fayu Chen
- Department of General Medicine, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Ning Li
- Department of Hematology and Oncology, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China.
| |
Collapse
|
50
|
Zhou L, Wu K, Gao Y, Qiao R, Tang N, Dong D, Li XQ, Nong Q, Luo DQ, Xiao Q, Fan X, Duan Q, Cao W. Piperlonguminine attenuates renal fibrosis by inhibiting TRPC6. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116561. [PMID: 37121453 DOI: 10.1016/j.jep.2023.116561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liuwei Dihuang (LWDH) is a classic prescription that has been used to the treatment of "Kidney-Yin" deficiency syndrome for more than 1000 years in China. Recent studies have confirmed that LWDH can prevent the progression of renal fibrosis. Numerous studies have demonstrated the critical role that TRPC6 plays in the development of renal fibrosis. Due to the complex composition of LWDH and its remarkable therapeutic effect on renal fibrosis, it is possible to discover new active ingredients targeting TRPC6 for the treatment of renal fibrosis. AIM OF STUDY This study aimed to identify selective TRPC6 inhibitors from LWDH and evaluate their therapeutical effects on renal fibrosis. MATERIALS AND METHODS Computer-aided drug design was used to screen the biologically active ingredients of LWDH, and their affinities to human TRPC6 protein were detected by microcalorimetry. TRPC6, TRPC3, and TRPC7 over-expressed HEK293 cells were constructed, and the selective activities of the compounds on TRPC6 were determined by measuring [Ca2+]i in these cells. To establish an in vitro model of renal fibrosis, human renal proximal tubular epithelial HK-2 cells were stimulated with TGF-β1. The therapeutic effects of LWDH compounds on renal fibrosis were then tested by detecting the related proteins. TRPC6 was knocked-down in HK-2 cells to investigate the effects of LWDH active ingredients on TRPC6. Finally, a unilateral ureteral obstruction model of renal fibrosis was established to test the therapeutic effect. RESULTS From hundreds of LWDH ingredients, 64 active components with oral bioavailability ≥30% and drug-likeness index ≥0.18 were acquired. A total of 10 active components were obtained by molecular docking with TRPC6 protein. Among them, 4 components had an affinity with TRPC6. Piperlonguminine (PLG) had the most potent affinity with TRPC6 and blocking effect on TRPC6-mediated Ca2+ entry. A 100 μM of PLG showed no detectable inhibition on TRPC1, TRPC3, TRPC4, TRPC5, or TRPC7-mediated Ca2+ influx into cells. In vitro results indicated that PLG concentration-dependently inhibited the abnormally high expression of α-smooth muscle actin (α-SMA), collagen I, vimentin, and TRPC6 in TGF-β1-induced HK-2 cells. Consistently, PLG also could not further inhibit TGF-β1-induced expressions of these protein biomarkers in TRPC6 knocked-down HK-2 cells. In vivo, PLG dose-dependently reduced urinary protein, serum creatinine, and blood urea nitrogen levels in renal fibrosis mice and markedly alleviated fibrosis and the expressions of α-SMA, collagen I, vimentin, and TRPC6 in kidney tissues. CONCLUSION Our results showed that PLG had anti-renal fibrosis effects by selectively inhibiting TRPC6. PLG might be a promising therapeutic agent for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Lei Zhou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Kehan Wu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Yuxuan Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Ruizhi Qiao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Na Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Dianchao Dong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Xiao-Qiang Li
- Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710000, China
| | - Qiuna Nong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Ding-Qiang Luo
- Shaanxi Institute for Food and Drug Control, Xi'an, 710065, China
| | - Qianhan Xiao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Xin Fan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Qimei Duan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China.
| | - Wei Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China; Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710000, China.
| |
Collapse
|