1
|
Dewanjee S, Bhattacharya H, Bhattacharyya C, Chakraborty P, Fleishman J, Alexiou A, Papadakis M, Jha SK. Nrf2/Keap1/ARE regulation by plant secondary metabolites: a new horizon in brain tumor management. Cell Commun Signal 2024; 22:497. [PMID: 39407193 PMCID: PMC11476647 DOI: 10.1186/s12964-024-01878-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Brain cancer is regarded as one of the most life-threatening forms of cancer worldwide. Oxidative stress acts to derange normal brain homeostasis, thus is involved in carcinogenesis in brain. The Nrf2/Keap1/ARE pathway is an important signaling cascade responsible for the maintenance of redox homeostasis, and regulation of anti-inflammatory and anticancer activities by multiple downstream pathways. Interestingly, Nrf2 plays a somewhat, contradictory role in cancers, including brain cancer. Nrf2 has traditionally been regarded as a tumor suppressor since its cytoprotective functions are considered to be the principle cellular defense mechanism against exogenous and endogenous insults, such as xenobiotics and oxidative stress. However, hyperactivation of the Nrf2 pathway supports the survival of normal as well as malignant cells, protecting them against oxidative stress, and therapeutic agents. Plants possess a pool of secondary metabolites with potential chemotherapeutic/chemopreventive actions. Modulation of Nrf2/ARE and downstream activities in a Keap1-dependant manner, with the aid of plant-derived secondary metabolites exhibits promise in the management of brain tumors. Current article highlights the effects of Nrf2/Keap1/ARE cascade on brain tumors, and the potential role of secondary metabolites regarding the management of the same.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Chiranjib Bhattacharyya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Joshua Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, 11741, Greece
- Department of Research & Development, AFNP Med, Wien, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, Delhi, 110008, India.
| |
Collapse
|
2
|
Samimi F, Baazm M, Nadi Z, Dastghaib S, Rezaei M, Jalali-Mashayekhi F. Evaluation of Antioxidant Effects of Coenzyme Q10 against Hyperglycemia-Mediated Oxidative Stress by Focusing on Nrf2/Keap1/HO-1 Signaling Pathway in the Liver of Diabetic Rats. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:661-670. [PMID: 39449772 PMCID: PMC11497326 DOI: 10.30476/ijms.2023.100078.3222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/22/2023] [Accepted: 11/19/2023] [Indexed: 10/26/2024]
Abstract
Background Hyperglycemia-induced oxidative stress can damage the liver and lead to diabetes complications. Coenzyme Q10 (CoQ-10) reduces diabetes-related oxidative stress. However, its molecular mechanisms are still unclear. This study aimed to examine CoQ-10's antioxidant capabilities against hyperglycemia-induced oxidative stress in the livers of diabetic rats, specifically targeting the Nrf2/Keap1/ARE signaling pathway. Methods This study was conducted between 2020-2021 at Arak University of Medical Sciences. A total of 30 male adult Wistar rats (8 weeks old) weighing 220-250 g were randomly assigned to five groups (n=6 in each group): control healthy, sesame oil (CoQ-10 solvent), CoQ-10 (10 mg/Kg), diabetic, and diabetic+CoQ-10. Liver oxidative stress indicators, including malondialdehyde, catalase, glutathione peroxidase, and glutathione, were estimated using the spectrophotometry method. Nrf2, Keap1, HO-1, and NQO1 gene expressions were measured using real-time PCR tests in the liver tissue. All treatments were conducted for 6 weeks. Statistical analysis was performed using SPSS software. One-way ANOVA followed by LSD's or Tukey's post hoc tests were used to compare the results of different groups. P<0.05 was considered statistically significant. Results The findings showed that induction of diabetes significantly increased Keap1 expression (2.1±0.9 folds, P=0.01), and significantly inhibited the mRNA expression of Nrf2 (0.38±0.2 folds, P=0.009), HO-1 (0.27±0.1 folds, P=0.02), and NQO1 (0.26±0.1 folds P=0.01), compared with the healthy group. In the diabetic group, the activity of glutathione peroxidase, catalase enzymes, and glutathione levels was decreased with an increase in malondialdehyde level. CoQ-10 supplementation significantly up-regulated the expressions of Nrf2 (0.85±0.3, P=0.04), HO-1 (0.94±0.2, P=0.04), NQO1 (0.88±0.5, P=0.03) genes, and inhibited Keap1 expression (1.1±0.6, P=0.02). Furthermore, as compared to control diabetic rats, CoQ-10 ameliorated oxidative stress by decreasing malondialdehyde levels and increasing catalase, glutathione peroxidase activities, and glutathione levels in the liver tissues of the treated rats in the treatment group. Conclusion The findings of this study revealed that CoQ-10 could increase the antioxidant capacity of the liver tissue in diabetic rats by modulating the Nrf2/Keap1/HO-1/NQO1 signaling pathway.
Collapse
Affiliation(s)
- Fatemeh Samimi
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Department of Biochemistry and Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Research Center and Molecular Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Nadi
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehri Rezaei
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Farideh Jalali-Mashayekhi
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Research Center and Molecular Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
3
|
Cheng X, Tan Y, Li H, Zhang Z, Hui S, Zhang Z, Peng W. Mechanistic Insights and Potential Therapeutic Implications of NRF2 in Diabetic Encephalopathy. Mol Neurobiol 2024; 61:8253-8278. [PMID: 38483656 DOI: 10.1007/s12035-024-04097-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/04/2024] [Indexed: 09/21/2024]
Abstract
Diabetic encephalopathy (DE) is a complication of diabetes, especially type 2 diabetes (T2D), characterized by damage in the central nervous system and cognitive impairment, which has gained global attention. Despite the extensive research aimed at enhancing our understanding of DE, the underlying mechanism of occurrence and development of DE has not been established. Mounting evidence has demonstrated a close correlation between DE and various factors, such as Alzheimer's disease-like pathological changes, insulin resistance, inflammation, and oxidative stress. Of interest, nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor with antioxidant properties that is crucial in maintaining redox homeostasis and regulating inflammatory responses. The activation and regulatory mechanisms of NRF2 are a relatively complex process. NRF2 is involved in the regulation of multiple metabolic pathways and confers neuroprotective functions. Multiple studies have provided evidence demonstrating the significant involvement of NRF2 as a critical transcription factor in the progression of DE. Additionally, various molecules capable of activating NRF2 expression have shown potential in ameliorating DE. Therefore, it is intriguing to consider NRF2 as a potential target for the treatment of DE. In this review, we aim to shed light on the role and the possible underlying mechanism of NRF2 in DE. Furthermore, we provide an overview of the current research landscape and address the challenges associated with using NRF2 activators as potential treatment options for DE.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China
| | - Yejun Tan
- School of Mathematics, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China
| | - Zhen Zhang
- YangSheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Shan Hui
- Department of Geratology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China.
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China.
| |
Collapse
|
4
|
Yang D. TRPA1-Related Diseases and Applications of Nanotherapy. Int J Mol Sci 2024; 25:9234. [PMID: 39273183 PMCID: PMC11395144 DOI: 10.3390/ijms25179234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Transient receptor potential (TRP) channels, first identified in Drosophila in 1969, are multifunctional ion channels expressed in various cell types. Structurally, TRP channels consist of six membrane segments and are classified into seven subfamilies. Transient receptor potential ankyrin 1 (TRPA1), the first member of the TRPA family, is a calcium ion affinity non-selective cation channel involved in sensory transduction and responds to odors, tastes, and chemicals. It also regulates temperature and responses to stimuli. Recent studies have linked TRPA1 to several disorders, including chronic pain, inflammatory diseases, allergies, and respiratory problems, owing to its activation by environmental toxins. Mutations in TRPA1 can affect the sensory nerves and microvasculature, potentially causing nerve pain and vascular problems. Understanding the function of TRPA1 is important for the development of treatments for these diseases. Recent developments in nanomedicines that target various ion channels, including TRPA1, have had a significant impact on disease treatment, providing innovative alternatives to traditional disease treatments by overcoming various adverse effects.
Collapse
Affiliation(s)
- Dongki Yang
- Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
5
|
Hu L, Xie K, Zheng C, Qiu B, Jiang Z, Luo C, Diao Y, Luo J, Yao X, Shen Y. Exosomal MALAT1 promotes the proliferation of esophageal squamous cell carcinoma through glyoxalase 1-dependent methylglyoxal removal. Noncoding RNA Res 2024; 9:330-340. [PMID: 38505306 PMCID: PMC10945115 DOI: 10.1016/j.ncrna.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 03/21/2024] Open
Abstract
In previous study we characterized the oncogenic role of long non-coding RNA MALAT1 in esophageal squamous cell carcinoma (ESCC), but the detailed mechanism remains obscure. Here we identified glyoxalase 1 (GLO1) as the most possible executor of MALAT1 by microarray screening. GLO1 is responsible for degradation of cytotoxic methylglyoxal (MGO), which is by-product of tumor glycolysis. Accumulated MGO may lead to glycation of DNA and protein, resulting in elevated advanced glycation end products (AGEs), while glyoxalase 1 detoxify MGO to alleviate its cytotoxic effect to tumor cells. GLO1 interfering led to accumulation of AGEs and following activation of DNA injury biomarkers, which lead to cell cycle arrest and growth inhibition. In silico analysis based on online database revealed abundant enrichment of histone acetylation marker H3K27ac in GLO1 promotor, and acetyltransferase inhibitor C646 declined GLO1 expression. Acetyltransferase KAT2B, which was also identified as a target of MALAT, mediated histone lysine acetylation of GLO1 promotor, which was confirmed by ChIP-qPCR experiment. Shared binding sites of miR-206 were found on MALAT1 and KAT2B mRNA. Dual-luciferase reporter assays confirmed interaction within MALAT1-miR-206-GLO1. Finally, we identified MALAT1 encapsuled by exosome from donor cells, and transferred malignant behaviors to recipient cells. The secreted exosomes may enter circulation, and serum MALAT1 level combined with traditional tumor markers showed potential power for ESCC diagnosis.
Collapse
Affiliation(s)
- Liwen Hu
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Kai Xie
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Thoracic Surgery, Suzhou Dushu Lake Hospital of Soochow University, Suzhou, China
| | - Chao Zheng
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Thoracic Surgery, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingmei Qiu
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhisheng Jiang
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chao Luo
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yifei Diao
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jing Luo
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinyue Yao
- Department of Laboratory Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yi Shen
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Newairy ASAS, Hamaad FA, Wahby MM, Ghoneum M, Abdou HM. Neurotherapeutic effects of quercetin-loaded nanoparticles and Biochanin-A extracted from Trifolium alexandrinum on PI3K/Akt/GSK-3β signaling in the cerebral cortex of male diabetic rats. PLoS One 2024; 19:e0301355. [PMID: 38683825 PMCID: PMC11057738 DOI: 10.1371/journal.pone.0301355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 03/12/2024] [Indexed: 05/02/2024] Open
Abstract
Diabetes mellitus (DM) is a severe metabolic disease that can have significant consequences for cognitive health. Bioflavonoids such as Trifolium alexandrinum (TA), quercetin (Q), and Biochanin-A (BCA) are known to exert a wide range of pharmacological functions including antihyperglycemic activity. This study aimed to investigate the neurotherapeutic effects of quercetin-loaded nanoparticles (Q-LNP) and BCA extracted from TA against diabetes-induced cerebral cortical damage through modulation of PI3K/Akt/GSK-3β and AMPK signaling pathways. Adult male Wistar albino rats (N = 25) were randomly assigned to one of five groups: control, diabetics fed a high-fat diet (HFD) for 2 weeks and intraperitoneally (i.p.) injected with STZ (40 mg/kg), and diabetics treated with Q-LNP (50 mg/kg BW/day), BCA (10 mg/kg BW/day), or TA extract (200 mg/kg BW/day). Treatments were applied by oral gavage once daily for 35 days. Diabetic rats treated with Q-LNP, BCA, and TA extract showed improvement in cognitive performance, cortical oxidative metabolism, antioxidant parameters, and levels of glucose, insulin, triglyceride, and total cholesterol. In addition, these treatments improved neurochemical levels, including acetylcholine, dopamine, and serotonin levels as well acetylcholinesterase and monoamine oxidase activities. Furthermore, these treatments lowered proinflammatory cytokine production for TNF-α and NF-κB; downregulated the levels of IL-1β, iNOS, APP, and PPAR-γ; and attenuated the expressions of PSEN2, BACE, IR, PI3K, FOXO 1, AKT, AMPK, GSK-3β, and GFAP. The histopathological examinations of the cerebral cortical tissues confirmed the biochemical results. Overall, the present findings suggest the potential therapeutic effects of TA bioflavonoids in modulating diabetes-induced cerebral cortical damage.
Collapse
Affiliation(s)
| | - Fatma Ahmad Hamaad
- Faculty of Science, Department of Biochemistry, Alexandria University, Alexandria, Egypt
| | - Mayssaa Moharm Wahby
- Faculty of Science, Department of Biochemistry, Alexandria University, Alexandria, Egypt
| | - Mamdooh Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science, Los Angeles, California, United States of America
- Department of Surgery, University of California Los Angeles, Los Angeles, California, United States of America
| | - Heba Mohamed Abdou
- Faulty of Science, Department of Zoology, Alexandria University, Alexandria, Egypt
| |
Collapse
|
7
|
Cheng X, Huang J, Li H, Zhao D, Liu Z, Zhu L, Zhang Z, Peng W. Quercetin: A promising therapy for diabetic encephalopathy through inhibition of hippocampal ferroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:154887. [PMID: 38377720 DOI: 10.1016/j.phymed.2023.154887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/28/2023] [Accepted: 05/16/2023] [Indexed: 02/22/2024]
Abstract
BACKGROUND The pathophysiology of diabetic encephalopathy (DE), a significant diabetes-related pathological complication of the central nervous system, is poorly understood. Ferroptosis is an iron-dependent regulated necrotic cell death process that mediates the development of neurodegenerative and diabetes-related lesions. Quercetin (QE) exerts anti-ferroptotic effects in various diseases. However, the roles of ferroptosis in DE and the potential anti-ferroptotic mechanisms of QE are unclear. PURPOSE This study aimed to investigate if quercetin can ameliorate DE by inhibiting ferroptosis and to elucidate the potential anti-ferroptotic mechanisms of QE, thus providing a new perspective on the pathogenesis and prevention of DE. METHODS The spontaneously type 2 diabetic Goto-Kakizak rats and high glucose (HG)-induced PC12 cells were used as animal and in vitro models, respectively. The Morris water maze test was performed to evaluate the cognition of rats. Pathological damage was examined using hematoxylin and eosin staining. Mitochondrial damage was assessed using transmission electron microscopy. Lipid peroxidation was evaluated by examining the levels of malondialdehyde, superoxide dismutase, and glutathione. Additionally, the contents of iron ions were quantified. Immunofluorescence and western blotting were carried out to poke the protein levels. Network pharmacology analysis was conducted to construct a protein-protein interaction network for the therapeutic targets of QE in DE. Additionally, molecular docking and cellular thermal shift assay was performed to examine the target of QE. RESULTS QE alleviated cognitive impairment, decreased lipid peroxidation and iron deposition in the hippocampus, and upregulated the Nrf2/HO-1 signaling pathway. HG-induced ferroptosis in PC12 cells resulted in decreased cell viability accompanied by lipid peroxidation and iron deposition. QE mitigated HG-induced ferroptosis by upregulating the Nrf2/HO-1 pathway, which was partially suppressed upon Nrf2 inhibition. Network pharmacology analysis further indicated that the Nrf2/HO-1 signaling pathway is a key target of QE. Molecular docking experiments revealed that QE binds to KEAP1 through four hydrogen bonds. Moreover, QE altered the thermostability of KEAP1. CONCLUSION These results indicated that QE inhibits ferroptosis in the hippocampal neurons by binding to KEAP1 and subsequently upregulating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011, PR China; National Clinical Research Center for Mental Disorder, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Jianhua Huang
- Hunan Academy of Chinese Medicine, Changsha 410013, PR China
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011, PR China; National Clinical Research Center for Mental Disorder, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Di Zhao
- Hunan Academy of Chinese Medicine, Changsha 410013, PR China
| | - Zhao Liu
- Hunan Academy of Chinese Medicine, Changsha 410013, PR China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha 410219, PR China
| | - Zhen Zhang
- YangSheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, PR China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011, PR China; National Clinical Research Center for Mental Disorder, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China.
| |
Collapse
|
8
|
Zhang Q, Hu S, Jin Z, Wang S, Zhang B, Zhao L. Mechanism of traditional Chinese medicine in elderly diabetes mellitus and a systematic review of its clinical application. Front Pharmacol 2024; 15:1339148. [PMID: 38510656 PMCID: PMC10953506 DOI: 10.3389/fphar.2024.1339148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/31/2024] [Indexed: 03/22/2024] Open
Abstract
Objective: Affected by aging, the elderly diabetes patients have many pathological characteristics different from the young people, including more complications, vascular aging, cognitive impairment, osteoporosis, and sarcopenia. This article will explore their pathogenesis and the mechanism of Traditional Chinese medicine (TCM) intervention, and use the method of systematic review to evaluate the clinical application of TCM in elderly diabetes. Method: Searching for randomized controlled trials (RCTs) published from January 2000 to November 2023 in the following databases: Web of Science, Pubmed, Embase, Cochrane Library, Sinomed, China National Knowledge Internet, Wanfang and VIP. They were evaluated by three subgroups of Traditional Chinese Prescription, Traditional Chinese patent medicines and Traditional Chinese medicine extracts for their common prescriptions, drugs, adverse reactions and the quality of them. Results and Conclusion: TCM has the advantages of multi-target and synergistic treatment in the treatment of elderly diabetes. However, current clinical researches have shortcomings including the inclusion of age criteria and diagnosis of subjects are unclear, imprecise research design, non-standard intervention measures, and its safety needs further exploration. In the future, the diagnosis of elderly people with diabetes needs to be further clarified. Traditional Chinese patent medicines included in the pharmacopoeia can be used to conduct more rigorous RCTs, and then gradually standardize the traditional Chinese medicine prescriptions and traditional Chinese medicine extracts, providing higher level evidence for the treatment of elderly diabetes with traditional Chinese medicine.
Collapse
Affiliation(s)
- Qiqi Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Shiwan Hu
- Institute of Metabolic Diseases, Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zishan Jin
- Institute of Metabolic Diseases, Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Sicheng Wang
- Institute of Metabolic Diseases, Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Boxun Zhang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Alexander C, Parsaee A, Vasefi M. Polyherbal and Multimodal Treatments: Kaempferol- and Quercetin-Rich Herbs Alleviate Symptoms of Alzheimer's Disease. BIOLOGY 2023; 12:1453. [PMID: 37998052 PMCID: PMC10669725 DOI: 10.3390/biology12111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder impairing cognition and memory in the elderly. This disorder has a complex etiology, including senile plaque and neurofibrillary tangle formation, neuroinflammation, oxidative stress, and damaged neuroplasticity. Current treatment options are limited, so alternative treatments such as herbal medicine could suppress symptoms while slowing cognitive decline. We followed PRISMA guidelines to identify potential herbal treatments, their associated medicinal phytochemicals, and the potential mechanisms of these treatments. Common herbs, including Ginkgo biloba, Camellia sinensis, Glycyrrhiza uralensis, Cyperus rotundus, and Buplerum falcatum, produced promising pre-clinical results. These herbs are rich in kaempferol and quercetin, flavonoids with a polyphenolic structure that facilitate multiple mechanisms of action. These mechanisms include the inhibition of Aβ plaque formation, a reduction in tau hyperphosphorylation, the suppression of oxidative stress, and the modulation of BDNF and PI3K/AKT pathways. Using pre-clinical findings from quercetin research and the comparatively limited data on kaempferol, we proposed that kaempferol ameliorates the neuroinflammatory state, maintains proper cellular function, and restores pro-neuroplastic signaling. In this review, we discuss the anti-AD mechanisms of quercetin and kaempferol and their limitations, and we suggest a potential alternative treatment for AD. Our findings lead us to conclude that a polyherbal kaempferol- and quercetin-rich cocktail could treat AD-related brain damage.
Collapse
Affiliation(s)
- Claire Alexander
- Department of Biology, Lamar University, Beaumont, TX 77705, USA
| | - Ali Parsaee
- Biological Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Maryam Vasefi
- Department of Biology, Lamar University, Beaumont, TX 77705, USA
| |
Collapse
|
10
|
Oyeniran OH, Ademiluyi AO, Oboh G. Host-parasite relationship modulates the effect of African mistletoe leaves on the cholinergic, monoaminergic and carbohydrate hydrolyzing enzymes in fruit fly. J Basic Clin Physiol Pharmacol 2023; 34:591-601. [PMID: 34463440 DOI: 10.1515/jbcpp-2020-0298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/15/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Mistletoe infests common plant trees of great medicinal values such as Moringa and Almond. According to folklore, mistletoe leaves have been found to have application as food and medicine in the alleviation of various degenerative diseases. Host-parasite relationship may possibly influence the phytochemical and biological activities of mistletoe leaves. Hence, we examined the polyphenol contents, antioxidant properties, α-amylase, α-glucosidase, acetylcholinesterase (AChE) and monoamine oxidase (MAO) inhibitory activities of African mistletoe leaves obtained from Moringa and Almond host plants in fruit fly in vitro. METHODS The phenolic constituents of the leaves were evaluated using HPLC system. The antioxidant activities were determined through the ABTS, DPPH and OH free radicals scavenging properties, ferric (Fe3+) and malondialdehyde (MDA) reducing abilities and Fe2+ chelation. The inhibitory effects of the leaves aqueous extracts on α-amylase, α-glucosidase, AChE and MAO activities were also assessed. RESULTS The HPLC characterization of the leaves revealed that host plants caused marked variation in their phenolic composition, however, Almond mistletoe leaves had significantly (p<0.05) greater amounts of phenolic constituents. Both Moringa and Almond mistletoe leaves reduced Fe3+ and MDA levels, scavenged free radicals, chelated Fe2+ and inhibited α-amylase, α-glucosidase, AChE and MAO activities with the Almond mistletoe leaves having significantly (p<0.05) higher antioxidant properties and enzyme inhibitory activities. CONCLUSIONS This present study indicated that host plants could positively modulate the phenolic profile of mistletoe leaves and this probably brought about the vivid noticeable changes in their antioxidant abilities, cholinergic, monoaminergic and carbohydrate hydrolyzing enzymes inhibitory activities.
Collapse
Affiliation(s)
- Olubukola H Oyeniran
- Department of Biochemistry, Functional Foods, Nutraceuticals and Phytomedicine Unit, Federal University of Technology, Akure, Nigeria
- Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Adedayo O Ademiluyi
- Department of Biochemistry, Functional Foods, Nutraceuticals and Phytomedicine Unit, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Department of Biochemistry, Functional Foods, Nutraceuticals and Phytomedicine Unit, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
11
|
Colomba M, Benedetti S, Fraternale D, Guidarelli A, Coppari S, Freschi V, Crinelli R, Kass GEN, Gorassini A, Verardo G, Roselli C, Meli MA, Di Giacomo B, Albertini MC. Nrf2-Mediated Pathway Activated by Prunus spinosa L. (Rosaceae) Fruit Extract: Bioinformatics Analyses and Experimental Validation. Nutrients 2023; 15:2132. [PMID: 37432298 PMCID: PMC10181019 DOI: 10.3390/nu15092132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
In our previous studies, Prunus spinosa fruit (PSF) ethanol extract was showed to exert antioxidant, antimicrobial, anti-inflammatory and wound healing activities. In the present study, an integrated bioinformatics analysis combined with experimental validation was carried out to investigate the biological mechanism(s) that are responsible for the reported PSF beneficial effects as an antioxidant during a pro-inflammatory TLR4 insult. Bioinformatics analysis using miRNet 2.0 was carried out to address which biological process(es) the extract could be involved in. In addition, Chemprop was employed to identify the key targets of nuclear receptor (NR) signaling and stress response (SR) pathways potentially modulated. The miRNet analysis suggested that the PSF extract mostly activates the biological process of cellular senescence. The Chemprop analysis predicted three possible targets for nine phytochemicals found in the extract: (i) ARE signaling, (ii) mitochondrial membrane potential (MMP) and (iii) p53 SR pathways. The PSF extract antioxidant effect was also experimentally validated in vitro using the human monocyte U937 cell line. Our findings showed that Nrf2 is modulated by the extract with a consequent reduction of the oxidative stress level. This was confirmed by a strong decrease in the amount of reactive oxygen species (ROS) observed in the PSF-treated cells subjected to lipopolysaccharide (LPS) (6 h treatment, 1 µg/mL). No visible effects were observed on p53 and MMP modulation.
Collapse
Affiliation(s)
- Mariastella Colomba
- Department of Biomolecular Sciences (DiSB), University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.C.); (S.B.); (D.F.); (A.G.); (S.C.); (R.C.); (C.R.); (M.A.M.); (B.D.G.)
| | - Serena Benedetti
- Department of Biomolecular Sciences (DiSB), University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.C.); (S.B.); (D.F.); (A.G.); (S.C.); (R.C.); (C.R.); (M.A.M.); (B.D.G.)
| | - Daniele Fraternale
- Department of Biomolecular Sciences (DiSB), University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.C.); (S.B.); (D.F.); (A.G.); (S.C.); (R.C.); (C.R.); (M.A.M.); (B.D.G.)
| | - Andrea Guidarelli
- Department of Biomolecular Sciences (DiSB), University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.C.); (S.B.); (D.F.); (A.G.); (S.C.); (R.C.); (C.R.); (M.A.M.); (B.D.G.)
| | - Sofia Coppari
- Department of Biomolecular Sciences (DiSB), University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.C.); (S.B.); (D.F.); (A.G.); (S.C.); (R.C.); (C.R.); (M.A.M.); (B.D.G.)
| | - Valerio Freschi
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino Carlo Bo, 61029 Urbino, Italy;
| | - Rita Crinelli
- Department of Biomolecular Sciences (DiSB), University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.C.); (S.B.); (D.F.); (A.G.); (S.C.); (R.C.); (C.R.); (M.A.M.); (B.D.G.)
| | | | - Andrea Gorassini
- Department of Humanities and Cultural Heritage, University of Udine, 33100 Udine, Italy;
| | - Giancarlo Verardo
- Department of Agriculture, Food, Environment and Animal Sciences, University of Udine, 33100 Udine, Italy;
| | - Carla Roselli
- Department of Biomolecular Sciences (DiSB), University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.C.); (S.B.); (D.F.); (A.G.); (S.C.); (R.C.); (C.R.); (M.A.M.); (B.D.G.)
| | - Maria Assunta Meli
- Department of Biomolecular Sciences (DiSB), University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.C.); (S.B.); (D.F.); (A.G.); (S.C.); (R.C.); (C.R.); (M.A.M.); (B.D.G.)
| | - Barbara Di Giacomo
- Department of Biomolecular Sciences (DiSB), University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.C.); (S.B.); (D.F.); (A.G.); (S.C.); (R.C.); (C.R.); (M.A.M.); (B.D.G.)
| | - Maria Cristina Albertini
- Department of Biomolecular Sciences (DiSB), University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.C.); (S.B.); (D.F.); (A.G.); (S.C.); (R.C.); (C.R.); (M.A.M.); (B.D.G.)
| |
Collapse
|
12
|
Jin T, Zhang Y, Botchway BOA, Huang M, Lu Q, Liu X. Quercetin activates the Sestrin2/AMPK/SIRT1 axis to improve amyotrophic lateral sclerosis. Biomed Pharmacother 2023; 161:114515. [PMID: 36913894 DOI: 10.1016/j.biopha.2023.114515] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease with poor prognosis. The intricacies surrounding its pathophysiology could partly account for the lack of effective treatment for ALS. Sestrin2 has been reported to improve metabolic, cardiovascular and neurodegenerative diseases, and is involved in the direct and indirect activation of the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/silent information regulator 1 (SIRT1) axis. Quercetin, as a phytochemical, has considerable biological activities, such as anti-oxidation, anti-inflammation, anti-tumorigenicity, and neuroprotection. Interestingly, quercetin can activate the AMPK/SIRT1 signaling pathway to reduce endoplasmic reticulum stress, and alleviate apoptosis and inflammation. This report examines the molecular relationship between Sestrin2 and AMPK/SIRT1 axis, as well as the main biological functions and research progress of quercetin, together with the correlation between quercetin and Sestrin2/AMPK/SIRT1 axis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tian Jin
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China; Bupa Cromwell Hospital, London, UK
| | - Min Huang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Qicheng Lu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China.
| |
Collapse
|
13
|
Moratilla-Rivera I, Sánchez M, Valdés-González JA, Gómez-Serranillos MP. Natural Products as Modulators of Nrf2 Signaling Pathway in Neuroprotection. Int J Mol Sci 2023; 24:ijms24043748. [PMID: 36835155 PMCID: PMC9967135 DOI: 10.3390/ijms24043748] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Neurodegenerative diseases (NDs) affect the West due to the increase in life expectancy. Nervous cells accumulate oxidative damage, which is one of the factors that triggers and accelerates neurodegeneration. However, cells have mechanisms that scavenge reactive oxygen species (ROS) and alleviate oxidative stress (OS). Many of these endogenous antioxidant systems are regulated at the gene expression level by the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2). In the presence of prooxidant conditions, Nrf2 translocates to the nucleus and induces the transcription of genes containing ARE (antioxidant response element). In recent years, there has been an increase in the study of the Nrf2 pathway and the natural products that positively regulate it to reduce oxidative damage to the nervous system, both in in vitro models with neurons and microglia subjected to stress factors and in vivo models using mainly murine models. Quercetin, curcumin, anthocyanins, tea polyphenols, and other less studied phenolic compounds such as kaempferol, hesperetin, and icariin can also modulate Nrf2 by regulating several Nrf2 upstream activators. Another group of phytochemical compounds that upregulate this pathway are terpenoids, including monoterpenes (aucubin, catapol), diterpenes (ginkgolides), triterpenes (ginsenosides), and carotenoids (astaxanthin, lycopene). This review aims to update the knowledge on the influence of secondary metabolites of health interest on the activation of the Nrf2 pathway and their potential as treatments for NDs.
Collapse
|
14
|
Ramezani M, Meymand AZ, Khodagholi F, Kamsorkh HM, Asadi E, Noori M, Rahimian K, Shahrbabaki AS, Talebi A, Parsaiyan H, Shiravand S, Darbandi N. A role for flavonoids in the prevention and/or treatment of cognitive dysfunction, learning, and memory deficits: a review of preclinical and clinical studies. Nutr Neurosci 2023; 26:156-172. [PMID: 35152858 DOI: 10.1080/1028415x.2022.2028058] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Natural food substances, due to high rates of antioxidants, antiviral and anti-inflammatory properties, have been proposed to have the potential for the prevention or treatment of cognitive deficits, learning and memory deficits and neuro inflammation. In particular, medicinal plants with rich amounts of beneficial components such as flavonoids are one of the most promising therapeutic candidates for the cognitive deficit and memory loss. Herein, we aimed to review the impact of medicinal plants with focus on flavonoids on cognitive dysfunction, learning and memory loss by considering their signaling pathways. METHODS We extracted 93 preclinical and clinical studies related to the effects of flavonoids on learning and memory and cognition from published papers between 2000 and 2021 in the MEDLINE/PubMed, Cochrane Library, SCOPUS, and Airiti Library databases. RESULTS In the preclinical studies, at least there seem to be two main neurological and biological processes in which flavonoids contribute to the improvement and/or prevention of learning, memory deficit and cognitive dysfunction: (1) Regulation of neurotransmission system and (2) Enhancement of neurogenesis, synaptic plasticity and neuronal survival. CONCLUSION Although useful effects of flavonoids on learning and memory in preclinical investigations have been approved, more clinical trials are required to find out whether flavonoids and/or other ingredients of plants have the potent to prevent or treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Matin Ramezani
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | | | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ehsan Asadi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Noori
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Kimia Rahimian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Aisa Talebi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Parsaiyan
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Shiravand
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Darbandi
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| |
Collapse
|
15
|
Yang HY, Wu J, Lu H, Cheng ML, Wang BH, Zhu HL, Liu L, Xie M. Emodin suppresses oxaliplatin-induced neuropathic pain by inhibiting COX2/NF-κB mediated spinal inflammation. J Biochem Mol Toxicol 2023; 37:e23229. [PMID: 36184831 DOI: 10.1002/jbt.23229] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 07/25/2022] [Accepted: 09/16/2022] [Indexed: 01/15/2023]
Abstract
Oxaliplatin (OXA) is a common chemotherapy drug for colorectal, gastric, and pancreatic cancers. The anticancer effect of OXA is often accompanied by neurotoxicity and acute and chronic neuropathy. The symptoms present as paresthesia and pain which adversely affect patients' quality of life. Herein, five consecutive intraperitoneal injections of OXA at a dose of 4 mg/kg were used to mimic chemotherapy. OXA administration induced mechanical allodynia, activated spinal astrocytes, and increased inflammatory response. To develop an effective therapeutic measure for OXA-induced neuropathic pain, emodin was intrathecally injected into OXA rats. Emodin developed an analgesic effect, as demonstrated by a significant increase in the paw withdrawal threshold of OXA rats. Moreover, emodin treatment reduced the pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-1β) which upregulated in OXA rats. Furthermore, autodock data showed four hydrogen bonds were formed between emodin and cyclooxygenase-2 (COX2), and emodin treatment decreased COX2 expression in OXA rats. Cell research further proved that emodin suppressed nuclear factor κB (NF-κB)-mediated inflammatory signal and reactive oxygen species level. Taken together, emodin reduced spinal COX2/NF-κB mediated inflammatory signal and oxidative stress in the spinal cord of OXA rats which consequently relieved OXA-induced neuropathic pain.
Collapse
Affiliation(s)
- He-Yu Yang
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Ji Wu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Hong Lu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Meng-Lin Cheng
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Bang-Hua Wang
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Hai-Li Zhu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Ling Liu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Min Xie
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
16
|
Mhaske A, Sharma S, Shukla R. Nanotheranostic: The futuristic therapy for copper mediated neurological sequelae. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Wu S, Liao X, Zhu Z, Huang R, Chen M, Huang A, Zhang J, Wu Q, Wang J, Ding Y. Antioxidant and anti-inflammation effects of dietary phytochemicals: The Nrf2/NF-κB signalling pathway and upstream factors of Nrf2. PHYTOCHEMISTRY 2022; 204:113429. [PMID: 36096269 DOI: 10.1016/j.phytochem.2022.113429] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Oxidative stress (OS) is created by an imbalance between reactive oxygen species and antioxidant levels. OS promotes inflammation and is associated with many diseases, such as neurodegenerative disorders, diabetes, and cardiovascular disease. Nrf2 and NF-κB are critical in the cellular defence against OS and the regulators of inflammatory responses, respectively. Recent studies revealed that the Nrf2 signalling pathway interacts with the NF-κB signalling pathway in OS. More importantly, many natural compounds have long been recognized to ameliorate OS and inflammation via the Nrf2 and/or NF-κB signalling pathway. Thus, we briefly overview the potential crosstalk between Nrf2 and NF-κB and the upstream regulators of Nrf2 and review the literature on the antioxidant and anti-inflammatory effects of dietary phytochemicals (DPs) that can activate these defence systems. The aim is to provide evidence for the development of DPs into functional food for the regulation of the Nrf2/NF-κB signalling pathway by upstream regulators of Nrf2.
Collapse
Affiliation(s)
- Shujian Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China; Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xiyu Liao
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China; Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zhenjun Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Rui Huang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China; Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Mengfei Chen
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China; Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Aohuan Huang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China; Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jumei Zhang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China
| | - Qingping Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou, 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510070, China.
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
18
|
The Utilization of Physiologically Active Molecular Components of Grape Seeds and Grape Marc. Int J Mol Sci 2022; 23:ijms231911165. [PMID: 36232467 PMCID: PMC9570270 DOI: 10.3390/ijms231911165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
Nutritional interventions may highly contribute to the maintenance or restoration of human health. Grapes (Vitis vinifera) are one of the oldest known beneficial nutritional components of the human diet. Their high polyphenol content has been proven to enhance human health beyond doubt in statistics-based public health studies, especially in the prevention of cardiovascular disease and cancer. The current review concentrates on presenting and classifying polyphenol bioactive molecules (resveratrol, quercetin, catechin/epicatechin, etc.) available in high quantities in Vitis vinifera grapes or their byproducts. The molecular pathways and cellular signaling cascades involved in the effects of these polyphenol molecules are also presented in this review, which summarizes currently available in vitro and in vivo experimental literature data on their biological activities mostly in easily accessible tabular form. New molecules for different therapeutic purposes can also be synthesized based on existing polyphenol compound classes available in high quantities in grape, wine, and grape marc. Therefore an overview of these molecular structures is provided. Novel possibilities as dendrimer nanobioconjugates are reviewed, too. Currently available in vitro and in vivo experimental literature data on polyphenol biological activities are presented in easily accessible tabular form. The scope of the review details the antidiabetic, anticarcinogenic, antiviral, vasoprotective, and neuroprotective roles of grape-origin flavonoids. The novelty of the study lies in the description of the processing of agricultural by-products (grape seeds and skins) of industrial relevance, and the detailed description of the molecular mechanisms of action. In addition, the review of the clinical therapeutic applications of polyphenols is unique as no summary study has yet been done.
Collapse
|
19
|
Targeting NRF2 in Type 2 diabetes mellitus and depression: Efficacy of natural and synthetic compounds. Eur J Pharmacol 2022; 925:174993. [PMID: 35513015 DOI: 10.1016/j.ejphar.2022.174993] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/18/2022]
Abstract
Evidence supports a strong bidirectional association between depression and Type 2 diabetes mellitus (T2DM). The harmful impact of oxidative stress and chronic inflammation on the development of both disorders is widely accepted. Nuclear factor erythroid 2-related factor 2 (NRF2) is a pertinent target in disease management owing to its reputation as the master regulator of antioxidant responses. NRF2 influences the expression of various cytoprotective phase 2 antioxidant genes, which is hampered in both depression and T2DM. Through interaction and crosstalk with several signaling pathways, NRF2 endeavors to contain the widespread oxidative damage and persistent inflammation involved in the pathophysiology of depression and T2DM. NRF2 promotes the neuroprotective and insulin-sensitizing properties of its upstream and downstream targets, thereby interrupting and preventing disease advancement. Standard antidepressant and antidiabetic drugs may be powerful against these disorders, but unfortunately, they come bearing distressing side effects. Therefore, exploiting the therapeutic potential of NRF2 activators presents an exciting opportunity to manage such bidirectional and comorbid conditions.
Collapse
|
20
|
Frandsen J, Narayanasamy P. Effect of Cannabidiol on the Neural Glyoxalase Pathway Function and Longevity of Several C. elegans Strains Including a C. elegans Alzheimer's Disease Model. ACS Chem Neurosci 2022; 13:1165-1177. [PMID: 35385645 DOI: 10.1021/acschemneuro.1c00667] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cannabidiol is a nonpsychoactive phytocannabinoid produced by the Cannabis sativa plant and possesses a wide range of pharmacological activities, including anti-inflammatory, antioxidant, and neuroprotective activities. Cannabidiol functions in a neuroprotective manner, in part through the activation of cellular antioxidant pathways. The glyoxalase pathway detoxifies methylglyoxal, a highly reactive metabolic byproduct that can accumulate in the brain, and contributes to the severity of neurodegenerative diseases, including Alzheimer's disease. While cannabidiol's antioxidant properties have been investigated, it is currently unknown how it may modulate the glyoxalase pathway. In this research paper, we examine the effects of Cannabidiol on cerebellar neurons and in several Caenorhabditis elegans strains. We determined that a limited amount of Cannabidiol can prevent methylglyoxal-mediated cellular damage through enhancement of the neural glyoxalase pathway and extend the lifespan and survival of C. elegans, including a transgenic C. elegans strain modeling Alzheimer's disease.
Collapse
Affiliation(s)
- Joel Frandsen
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
21
|
Zhu X, Zhang YM, Zhang MY, Chen YJ, Liu YW. Hesperetin ameliorates diabetes-associated anxiety and depression-like behaviors in rats via activating Nrf2/ARE pathway. Metab Brain Dis 2021; 36:1969-1983. [PMID: 34273043 DOI: 10.1007/s11011-021-00785-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/14/2021] [Indexed: 12/11/2022]
Abstract
Diabetes-associated affective disorders are of wide concern, and oxidative stress plays a vital role in the pathological process. This study was to investigate the cerebroprotective effects of hesperetin against anxious and depressive disorders caused by diabetes, exploring the potential mechanisms related to activation of Nrf2/ARE pathway. Streptozotocin-induced diabetic rats were intragastrically administrated with hesperetin (0, 50, and 150 mg/kg) for 10 weeks. Forced swimming test, open field test, and elevated plus maze were used to evaluate the anxiety and depression-like behaviors of rats. The brain was collected for assays of Nrf2/ARE pathway. Moreover, high glucose-cultured SH-SY5Y cells were used to further examine the neuroprotective effects of hesperetin and underlying mechanisms. Hesperetin showed anxiolytic and antidepressant effects in diabetic rats according to the behavior tests, and increased p-Nrf2 in cytoplasm and Nrf2 in nucleus followed by elevations in mRNA levels and protein expression of glyoxalase 1 (Glo-1) and γ-glutamylcysteine synthetase (γ-GCS) in brain, known target genes of Nrf2/ARE signaling. Moreover, hesperetin attenuated high glucose-induced neuronal damages through activation of the classical Nrf2/ARE pathway in SH-SY5Y cells. Further study indicated that PKC inhibition or GSK-3β activation pretreatment attenuated even abolished the effect of hesperetin on the protein expression of Glo-1 and γ-GCS in high glucose-cultured SH-SY5Y cells. In summary, hesperetin ameliorated diabetes-associated anxiety and depression-like behaviors in rats, which was achieved through activation of the Nrf2/ARE pathway. Furthermore, an increase in nuclear Nrf2 phosphorylation from PKC activation and GSK-3β inhibition contributed to the activation of Nrf2/ARE pathway by hesperetin.
Collapse
Affiliation(s)
- Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yu-Meng Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Meng-Ya Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Ya-Jing Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yao-Wu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Department of Pharmacology, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
22
|
Adelusi T, Li X, Xu L, Du L, Hao M, Zhou X, Chowdhry A, Sun Y, Gu X, Lu Q, Yin X. Novel Chalcone BDD-39 Mitigated Diabetic Nephropathy through the Activation of Nrf2/ARE Signaling. Curr Mol Pharmacol 2021; 15:658-675. [PMID: 34525927 DOI: 10.2174/1874467214666210915145104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/05/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In this study, we investigated the Nrf2/ARE signaling pathway activating capacity of Biphenyl Diester Derivative-39 (BDD-39) in diabetic nephropathy in order to elucidate the mechanism surrounding its antidiabetic potential. OBJECTIVES Protein expressions of Nrf2, HO-1, NQO-1 and biomarkers of kidney fibrosis were executed after which mRNA levels of Nrf2, HO-1 and NQO-1 were estimated after creating the models following BBD-39 treatment. METHODS Type 2 diabetes model was established in mice with high-fat diet feeding combined with streptozocin intraperitoneal administration. The diabetic mice were then treated with BDD-39 (15, 45mg· kg-1· d-1, ig) or a positive control drug resveratrol (45mg· kg-1·d-1, ig) for 8 weeks. Staining techniques were used to investigate collagen deposition in the glomerulus of the renal cortex and also to investigate the expression and localization of Nrf2 and extracellular matrix (ECM) proteins (collagen IV and laminin) in vitro and in vivo. Furthermore, we studied the mechanism of action of BDD-39 using RNA-mediated Nrf2 silencing technique in mouse SV40 glomerular mesangial cells (SV40 GM cells). RESULTS We found that BDD-39 activates Nrf2/ARE signaling pathway, promotes Nrf2 nuclear translocation (Nrf2nuc/Nrf2cyt) and modulate prominent biomarkers of kidney fibrosis at the protein level. However, BDD-39 could not activate Nrf2/ARE signaling in RNA-mediated Nrf2-silenced HG-cultured SV40 GM cells. CONCLUSION Taken together, this study demonstrates for the first time that BDD-39 ameliorates experimental DN through attenuation of renal fibrosis progression and modulation of Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Temitope Adelusi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu. China
| | - Xizhi Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu. China
| | - Liu Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu. China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu. China
| | - Meng Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu. China
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu. China
| | - Apu Chowdhry
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu. China
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu. China
| | - Xiaoke Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu. China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu. China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu. China
| |
Collapse
|
23
|
Ogura J, Sugiura H, Tanaka A, Ono S, Sato T, Sato T, Maekawa M, Yamaguchi H, Mano N. Glucose-induced oxidative stress leads to in S-nitrosylation of protein disulfide isomerase in neuroblastoma cells. Biochim Biophys Acta Gen Subj 2021; 1865:129998. [PMID: 34474117 DOI: 10.1016/j.bbagen.2021.129998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Dementia places a significant burden on both patients and caregivers. Since diabetes is a risk factor for dementia, it is imperative to identify the relationship between diabetes and cognitive disorders. Protein disulfide isomerase (PDI) is an enzyme for oxidative protein folding. PDI S-nitrosylation is observed in the brain tissues of Alzheimer's disease patients. The aim of this study is to clarify the relationship between PDI S-nitrosylation and diabetes. METHODS We used SH-SY5Y cells cultured in high-glucose media. RESULTS S-nitrosylated PDI level increased at 7 days and remained high till 28 days in SH-SY5Y cells cultured in high-glucose media. Using PDI wild-type- or PDI C343S-expressing SH-SY5Y cells, PDI C343 was identified as the site of glucose-induced S-nitrosylation. IRE1α and PERK were phosphorylated at day 14 in the SH-SY5Y cells cultured in high-glucose media, and the phosphorylated status was maintained to day 28. To determine the effect of S-nitrosylated PDI on endoplasmic reticulum stress signaling, SH-SY5Y cells were treated with S-nitrosocystein (SNOC) for 30 min, following which the medium was replaced with SNOC-free media and the cells were cultured for 24 h. Only phosphorylated IRE1α treated with SNOC was associated with PDI S-nitrosylation. Neohesperidin, a flavonoid in citrus fruits, is a natural antioxidant. The treatment with neohesperidin in the final 7 days of glucose loading reversed PDI S-nitrosylation and improved cell proliferation. CONCLUSION Glucose loading leads to S-nitrosylation of PDI C343 and induces neurodegeneration via IRE1α phosphorylation. GENERAL SIGNIFICANCE The results may be useful for designing curative treatment strategies for dementia.
Collapse
Affiliation(s)
- Jiro Ogura
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan.
| | - Hiroki Sugiura
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Atsushi Tanaka
- Research Institute of Medical Sciences, School of Medicine, Yamagata University, Yamagata, Japan
| | - Shinji Ono
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Toshiyuki Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hiroaki Yamaguchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan; Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
24
|
Scuto M, Trovato Salinaro A, Caligiuri I, Ontario ML, Greco V, Sciuto N, Crea R, Calabrese EJ, Rizzolio F, Canzonieri V, Calabrese V. Redox modulation of vitagenes via plant polyphenols and vitamin D: Novel insights for chemoprevention and therapeutic interventions based on organoid technology. Mech Ageing Dev 2021; 199:111551. [PMID: 34358533 DOI: 10.1016/j.mad.2021.111551] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/19/2021] [Accepted: 08/01/2021] [Indexed: 12/29/2022]
Abstract
Polyphenols are chemopreventive through the induction of nuclear factor erythroid 2 related factor 2 (Nrf2)-mediated proteins and anti-inflammatory pathways. These pathways, encoding cytoprotective vitagenes, include heat shock proteins, such as heat shock protein 70 (Hsp70) and heme oxygenase-1 (HO-1), as well as glutathione redox system to protect against cancer initiation and progression. Phytochemicals exhibit biphasic dose responses on cancer cells, activating at low dose, signaling pathways resulting in upregulation of vitagenes, as in the case of the Nrf2 pathway upregulated by hydroxytyrosol (HT) or curcumin and NAD/NADH-sirtuin-1 activated by resveratrol. Here, the importance of vitagenes in redox stress response and autophagy mechanisms, as well as the potential use of dietary antioxidants in the prevention and treatment of multiple types of cancer are discussed. We also discuss the possible relationship between SARS-CoV-2, inflammation and cancer, exploiting innovative therapeutic approaches with HT-rich aqueous olive pulp extract (Hidrox®), a natural polyphenolic formulation, as well as the rationale of Vitamin D supplementation. Finally, we describe innovative approaches with organoids technology to study human carcinogenesis in preclinical models from basic cancer research to clinical practice, suggesting patient-derived organoids as an innovative tool to test drug toxicity and drive personalized therapy.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Valentina Greco
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Nello Sciuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Roberto Crea
- Oliphenol LLC., 26225 Eden Landing Road, Suite C, Hayward, CA 94545, USA.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123 Venezia, Italy.
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| |
Collapse
|
25
|
The Glyoxalase System in Age-Related Diseases: Nutritional Intervention as Anti-Ageing Strategy. Cells 2021; 10:cells10081852. [PMID: 34440621 PMCID: PMC8393707 DOI: 10.3390/cells10081852] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 12/19/2022] Open
Abstract
The glyoxalase system is critical for the detoxification of advanced glycation end-products (AGEs). AGEs are toxic compounds resulting from the non-enzymatic modification of biomolecules by sugars or their metabolites through a process called glycation. AGEs have adverse effects on many tissues, playing a pathogenic role in the progression of molecular and cellular aging. Due to the age-related decline in different anti-AGE mechanisms, including detoxifying mechanisms and proteolytic capacities, glycated biomolecules are accumulated during normal aging in our body in a tissue-dependent manner. Viewed in this way, anti-AGE detoxifying systems are proposed as therapeutic targets to fight pathological dysfunction associated with AGE accumulation and cytotoxicity. Here, we summarize the current state of knowledge related to the protective mechanisms against glycative stress, with a special emphasis on the glyoxalase system as the primary mechanism for detoxifying the reactive intermediates of glycation. This review focuses on glyoxalase 1 (GLO1), the first enzyme of the glyoxalase system, and the rate-limiting enzyme of this catalytic process. Although GLO1 is ubiquitously expressed, protein levels and activities are regulated in a tissue-dependent manner. We provide a comparative analysis of GLO1 protein in different tissues. Our findings indicate a role for the glyoxalase system in homeostasis in the eye retina, a highly oxygenated tissue with rapid protein turnover. We also describe modulation of the glyoxalase system as a therapeutic target to delay the development of age-related diseases and summarize the literature that describes the current knowledge about nutritional compounds with properties to modulate the glyoxalase system.
Collapse
|
26
|
Mancini MCS, Ponte LGS, Silva CHR, Fagundes I, Pavan ICB, Romeiro SA, da Silva LGS, Morelli AP, Rostagno MA, Simabuco FM, Bezerra RMN. Beetroot and leaf extracts present protective effects against prostate cancer cells, inhibiting cell proliferation, migration, and growth signaling pathways. Phytother Res 2021; 35:5241-5258. [PMID: 34132433 DOI: 10.1002/ptr.7197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/11/2021] [Accepted: 05/22/2021] [Indexed: 12/24/2022]
Abstract
Beet (Beta vulgaris L.) has high nutritional value, containing bioactive compounds such as betalains and flavonoids. Scientific evidence points to the use of these natural compounds in the treatment of several types of cancer, such as prostate cancer, one of the main causes of morbidity and mortality in men. Here, we compared beet roots and leaves extracts, and their main compounds, apigenin, and betanin, respectively, in DU-145 and PC-3 prostate cancer cell lines. Both cells presented the proliferation decreased for beetroot and beet leaves extracts. The apigenin treatment also reduced the proliferation of both cell lines. Regarding cell migration, beet leaves extract was able to decrease the scratch area in both cell lines, whereas apigenin affected only PC-3 cells' migration. In colony formation assay, both extracts were effective in reducing the number of colonies formed. Besides, the beet leaves extracts and apigenin presented strong inhibition of growth-related signaling pathways in both cell lines, and the beetroot extract and betanin presented effects only in DU-145 cells. Furthermore, the extracts and isolated compounds were able to reduce the levels of apoptotic and cell cycle proteins. This study reveals that beet extracts have important anti-cancer effects against prostate cancer cells.
Collapse
Affiliation(s)
- Mariana Camargo Silva Mancini
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Luis Gustavo Saboia Ponte
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Cayo Henrique Rocha Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Isabella Fagundes
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Isadora Carolina Betim Pavan
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil.,Laboratory of Signal Mechanisms, School of Pharmaceutical Sciences (FCF), University of Campinas (UNICAMP), Campinas, Brazil
| | - Stefhani Andrioli Romeiro
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Luiz Guilherme Salvino da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Maurício Ariel Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Rosangela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| |
Collapse
|
27
|
Xingyue L, Shuang L, Qiang W, Jinjuan F, Yongjian Y. Chrysin Ameliorates Sepsis-Induced Cardiac Dysfunction Through Upregulating Nfr2/Heme Oxygenase 1 Pathway. J Cardiovasc Pharmacol 2021; 77:491-500. [PMID: 33818552 DOI: 10.1097/fjc.0000000000000989] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022]
Abstract
ABSTRACT The incidence of myocardial dysfunction caused by sepsis is high, and the mortality of patients with sepsis can be significantly increased. During sepsis, oxidative stress and inflammation can lead to severe organ dysfunction. Flavone chrysin is one of the indispensable biological active ingredients for different fruits and vegetables and has antioxidant and anti-inflammatory properties. However, it is not clear whether chrysin is an effective treatment for heart dysfunction caused by sepsis. We found that it had protective effects against the harmful effects caused by LPS, manifested in improved survival, normalized cardiac function, improved partial pathological scores of myocardial tissue, and remission of apoptosis, as well as reduced oxidative stress and inflammation. Mechanism studies have found that chrysin is an important antioxidant protein, a key regulator of heme oxygenase 1 (HO-1). We found that HO-1 levels were increased after LPS intervention, and chrysin further increased HO-1 levels, along with the addition of Nrf2, a regulator of antioxidant proteins. Pretreatment with PD98059, an extracellular signal-regulated kinase-specific inhibitor, blocked chrysin-mediated phosphorylation of Nrf2 and the nuclear translocation of Nrf2. The protective effect of chrysin on sepsis-induced cardiac dysfunction was blocked by ZnPP, which is a HO-1 blocker. Chrysin increased antioxidant activity and reduced markers of oxidative stress (SOD and MDA) and inflammation (MPO and IL-1β), all of which were blocked by ZnPP. This indicates that HO-1 is the upstream molecule regulating the protective effect of chrysin. Thus, by upregulation of HO-1, chrysin protects against LPS-induced cardiac dysfunction and inflammation by inhibiting oxidative stress.
Collapse
Affiliation(s)
- Li Xingyue
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Li Shuang
- Department of Cardiovascular Medicine, The General Hospital of Western Theater Command PLA, Chengdu, PR China ; and
| | - Wang Qiang
- Department of Cardiovascular Medicine, The General Hospital of Western Theater Command PLA, Chengdu, PR China ; and
| | - Fu Jinjuan
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, PR China
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Yang Yongjian
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, PR China
- Department of Cardiovascular Medicine, The General Hospital of Western Theater Command PLA, Chengdu, PR China ; and
| |
Collapse
|
28
|
Sandhir R, Khurana M, Singhal NK. Potential benefits of phytochemicals from Azadirachta indica against neurological disorders. Neurochem Int 2021; 146:105023. [PMID: 33753160 DOI: 10.1016/j.neuint.2021.105023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
Azadirachta indica or Neem has been extensively used in the Indian traditional medical system because of its broad range of medicinal properties. Neem contains many chemically diverse and structurally complex phytochemicals such as limonoids, flavonoids, phenols, catechins, gallic acid, polyphenols, nimbins. These phytochemicals possess vast array of therapeutic activities that include anti-feedant, anti-viral, anti-malarial, anti-bacterial, anti-cancer properties. In recent years, many phytochemicals from Neem have been shown to be beneficial against various neurological disorders like Alzheimer's and Parkinson's disease, mood disorders, ischemic-reperfusion injury. The neuroprotective effects of the phytochemicals from Neem are primarily mediated by their anti-oxidant, anti-inflammatory and anti-apoptotic activities along with their ability to modulate signaling pathways. However, extensive studies are still required to fully understand the molecular mechanisms involved in neuropotective effects of phytochemicals from Neem. This review is an attempt to cover the neuroprotective properties of various phytochemicals from Neem along with their mechanism of action so that the potential of the compounds could be realized to reduce the burden of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, 160014, India.
| | - Mehak Khurana
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, 160014, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI) Sector-81 (Knowledge City), PO Manauli, S.A.S. Nagar, Mohali, 140306, Punjab, India
| |
Collapse
|
29
|
Bhandari R, Kaur J, Kaur S, Kuhad A. The Nrf2 pathway in psychiatric disorders: pathophysiological role and potential targeting. Expert Opin Ther Targets 2021; 25:115-139. [PMID: 33557652 DOI: 10.1080/14728222.2021.1887141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: All psychiatric disorders exhibit excitotoxicity, mitochondrial dysfunction, inflammation, oxidative stress, and neural damage as their common characteristic. The endogenous nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway is implicated in the defense mechanism against oxidative stress and has a significant role in psychiatric disorders.Areas covered: We explore the role of Nrf2 pathway and its modulators in psychiatric disorders. The literature was searched utilizing various databases such as Embase, Medline, Web of Science, Pub-Med, and Google Scholar from 2010 to 2020. The search included research articles, clinical reports, systematic reviews, and meta-analyses.Expert opinion: Environmental factors and genetic predisposition can be a trigger for the development of psychiatric disorders. Nrf2 downregulates certain inflammatory pathways and upregulates various antioxidant enzymes to maintain a balance. However, its intricate balance with NF-Kβ (Nuclear factor kappa light chain enhancer of activated B cells) and its crosstalk with the transcription factor Nrf2 is critical in severe oxidative stress. Several Nrf2 modulators are now in clinical trials and can help reduce oxidative stress and neuroinflammation. There are immense potential opportunities for these modulators to become a novel therapeutic option.
Collapse
Affiliation(s)
- Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Japneet Kaur
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Simerpreet Kaur
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| |
Collapse
|
30
|
Lee SE, Park YS. The Emerging Roles of Antioxidant Enzymes by Dietary Phytochemicals in Vascular Diseases. Life (Basel) 2021; 11:life11030199. [PMID: 33806594 PMCID: PMC8001043 DOI: 10.3390/life11030199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
Vascular diseases are major causes of death worldwide, causing pathologies including diabetes, atherosclerosis, and chronic obstructive pulmonary disease (COPD). Exposure of the vascular system to a variety of stressors and inducers has been implicated in the development of various human diseases, including chronic inflammatory diseases. In the vascular wall, antioxidant enzymes form the first line of defense against oxidative stress. Recently, extensive research into the beneficial effects of phytochemicals has been conducted; phytochemicals are found in commonly used spices, fruits, and herbs, and are used to prevent various pathologic conditions, including vascular diseases. The present review aims to highlight the effects of dietary phytochemicals role on antioxidant enzymes in vascular diseases.
Collapse
|
31
|
Bousquet J, Czarlewski W, Zuberbier T, Mullol J, Blain H, Cristol JP, De La Torre R, Pizarro Lozano N, Le Moing V, Bedbrook A, Agache I, Akdis CA, Canonica GW, Cruz AA, Fiocchi A, Fonseca JA, Fonseca S, Gemicioğlu B, Haahtela T, Iaccarino G, Ivancevich JC, Jutel M, Klimek L, Kraxner H, Kuna P, Larenas-Linnemann DE, Martineau A, Melén E, Okamoto Y, Papadopoulos NG, Pfaar O, Regateiro FS, Reynes J, Rolland Y, Rouadi PW, Samolinski B, Sheikh A, Toppila-Salmi S, Valiulis A, Choi HJ, Kim HJ, Anto JM. Potential Interplay between Nrf2, TRPA1, and TRPV1 in Nutrients for the Control of COVID-19. Int Arch Allergy Immunol 2021; 182:324-338. [PMID: 33567446 PMCID: PMC8018185 DOI: 10.1159/000514204] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
In this article, we propose that differences in COVID-19 morbidity may be associated with transient receptor potential ankyrin 1 (TRPA1) and/or transient receptor potential vanilloid 1 (TRPV1) activation as well as desensitization. TRPA1 and TRPV1 induce inflammation and play a key role in the physiology of almost all organs. They may augment sensory or vagal nerve discharges to evoke pain and several symptoms of COVID-19, including cough, nasal obstruction, vomiting, diarrhea, and, at least partly, sudden and severe loss of smell and taste. TRPA1 can be activated by reactive oxygen species and may therefore be up-regulated in COVID-19. TRPA1 and TRPV1 channels can be activated by pungent compounds including many nuclear factor (erythroid-derived 2) (Nrf2)-interacting foods leading to channel desensitization. Interactions between Nrf2-associated nutrients and TRPA1/TRPV1 may be partly responsible for the severity of some of the COVID-19 symptoms. The regulation by Nrf2 of TRPA1/TRPV1 is still unclear, but suggested from very limited clinical evidence. In COVID-19, it is proposed that rapid desensitization of TRAP1/TRPV1 by some ingredients in foods could reduce symptom severity and provide new therapeutic strategies.
Collapse
Affiliation(s)
- Jean Bousquet
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Charité, and Berlin Institute of Health, Comprehensive Allergy Center, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany, .,University Hospital and MACVIA France, Montpellier, France,
| | | | - Torsten Zuberbier
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Charité, and Berlin Institute of Health, Comprehensive Allergy Center, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joaquim Mullol
- Rhinology Unit & Smell Clinic, ENT Department, Hospital Clinic - Clinical & Experimental Respiratory Immunoallergy, IDIBAPS, CIBERES, Universitat de Barcelona, Barcelona, Spain
| | - Hubert Blain
- Department of Geriatrics, Montpellier University Hospital, Montpellier, France
| | - Jean-Paul Cristol
- Laboratoire de Biochimie et Hormonologie, PhyMedExp, Université de Montpellier, INSERM, CNRS, CHU de, Montpellier, France
| | - Rafael De La Torre
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain.,IMIM (Hospital del Mar Research Institute), Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut Toxicologia, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | | | - Anna Bedbrook
- University Hospital and MACVIA France, Montpellier, France.,MASK-air, Montpellier, France
| | - Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Cezmi A Akdis
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | - G Walter Canonica
- Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center IRCCS and Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Alvaro A Cruz
- Fundação ProAR, Federal University of Bahia and GARD/WHO Planning Group, Salvador, Brazil
| | - Alessandro Fiocchi
- Division of Allergy, The Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy
| | - Joao A Fonseca
- CINTESIS, Center for Research in Health Technologies and Information Systems, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,MEDIDA, Lda, Porto, Portugal
| | - Susana Fonseca
- GreenUPorto - Sustainable Agrifood Production Research Centre, DGAOT, Faculty of Sciences, University of Porto, Vila do Conde, Portugal
| | - Bilun Gemicioğlu
- Department of Pulmonary Diseases, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | - Guido Iaccarino
- Interdepartmental Center of Research on Hypertension and Related Conditions CIRIAPA, Federico II University, Napoli, Italy
| | | | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University and ALL-MED Medical Research Institute, Wrocław, Poland
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Helga Kraxner
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary
| | - Piotr Kuna
- Division of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz, Lodz, Poland
| | - Désirée E Larenas-Linnemann
- Center of Excellence in Asthma and Allergy, Médica Sur Clinical Foundation and Hospital, Mexico City, Mexico
| | - Adrian Martineau
- Institute for Population Health Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet and Sachs' Children's Hospital, Stockholm, Sweden
| | - Yoshitaka Okamoto
- Department of Otorhinolaryngology, Chiba University Hospital, Chiba, Japan
| | - Nikolaos G Papadopoulos
- Division of Infection, Immunity & Respiratory Medicine, Royal Manchester Children's Hospital, University of Manchester, Manchester, United Kingdom.,Allergy Department, 2nd Pediatric Clinic, Athens General Children's Hospital "P&A Kyriakou," University of Athens, Athens, Greece
| | - Oliver Pfaar
- Section of Rhinology and Allergy, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Frederico S Regateiro
- Allergy and Clinical Immunology Unit, Centro Hospitalar e Universitário de Coimbra, Faculty of Medicine, Institute of Immunology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, ICBR - Institute for Clinical and Biomedical Research, CIBB, University of Coimbra, Coimbra, Portugal
| | - Jacques Reynes
- Maladies Infectieuses et Tropicales, CHU, Montpellier, France
| | | | - Philip W Rouadi
- Department of Otolaryngology-Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| | - Boleslaw Samolinski
- Department of Prevention of Environmental Hazards and Allergology, Medical University of Warsaw, Warsaw, Poland
| | - Aziz Sheikh
- Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sanna Toppila-Salmi
- Skin and Allergy Hospital, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | - Arunas Valiulis
- Vilnius University Faculty of Medicine, Institute of Clinical Medicine & Institute of Health Sciences, Vilnius, Lithuania
| | - Hak-Jong Choi
- Research and Development Division, Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Hyun Ju Kim
- Strategy and Planning Division, SME Service Department, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Josep M Anto
- IMIM (Hospital del Mar Research Institute), Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut Toxicologia, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.,ISGlobAL, Barcelona, Centre for Research in Environmental Epidemiology, Barcelona, Spain
| |
Collapse
|
32
|
Wang X, Li H, Wang H, Shi J. Quercetin attenuates high glucose-induced injury in human retinal pigment epithelial cell line ARPE-19 by up-regulation of miR-29b. J Biochem 2021; 167:495-502. [PMID: 31960917 DOI: 10.1093/jb/mvaa001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/16/2019] [Indexed: 01/01/2023] Open
Abstract
Quercetin is a kind of distinctive bioactive flavonoid that has potent anti-oxidant, anti-inflammatory and anti-diabetic properties. The present article was designed to check the effect of quercetin on diabetic retinopathy. Adult retinal pigment epithelial cell line (ARPE)-19 cells were pre-treated with quercetin and then stimulated by high glucose. Cell damage was evaluated by CCK-8 assay, flow cytometer, quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay, 2,7-dichlorofluorescein diacetate probe and western blot. The association between quercetin and miR-29b expression as well as the downstream pathways was studied by qRT-PCR and western blot. Pre-treating ARPE-19 cells with quercetin clearly attenuated high glucose-induced viability loss, apoptosis, MCP-1 and IL-6 overproduction and reactive oxygen species (ROS) generation. Quercetin down-regulated p53, Bax and cleaved-caspase-3 expression, while up-regulated CyclinD1, CDK4 and Bcl-2. miR-29b was low expressed in high glucose-treated cell, but quercetin elevated its expression. Moreover, the protective action of quercetin towards ARPE-19 cells was attenuated when miR-29b was suppressed. Also, quercetin promoted PTEN/AKT pathway, while inhibited NF-κB pathway via a miR-29b-dependent way. These data illustrated quercetin possibly possess the anti-diabetic retinopathy potential, as quercetin clearly attenuated high glucose-evoked damage in ARPE-19 cells. The protective action of quercetin may due to its regulation on miR-29b expression as well as PTEN/AKT and NF-κB pathways.
Collapse
Affiliation(s)
- Xuejiao Wang
- Department of Ophthalmology, The Affiliated Hospital of Jilin Medical University, No.81 Huashan Road, Fengman District, Jilin 132013, China
| | - Hui Li
- Department of Ophthalmology, The Affiliated Hospital of Jilin Medical University, No.81 Huashan Road, Fengman District, Jilin 132013, China
| | - Hao Wang
- Department of Ophthalmology, The Affiliated Hospital of Jilin Medical University, No.81 Huashan Road, Fengman District, Jilin 132013, China
| | - Jingyun Shi
- Department of Ophthalmology, The Affiliated Hospital of Jilin Medical University, No.81 Huashan Road, Fengman District, Jilin 132013, China
| |
Collapse
|
33
|
Zhou J, Qi C, Fang X, Wang Z, Zhang S, Li D, Song J. DJ-1 modulates Nrf2-mediated MRP1 expression by activating Wnt3a/β-catenin signalling in A549 cells exposed to cigarette smoke extract and LPS. Life Sci 2021; 276:119089. [PMID: 33476627 DOI: 10.1016/j.lfs.2021.119089] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is an inflammatory disease characterized by airway obstruction and abnormal inflammatory responses. Multidrug resistance-related protein 1 (MRP1) can reduce lung inflammation and damage by excreting various toxic exogenous substances and certain pro-inflammatory molecules. AIMS We studied whether DJ-1 modulates nuclear factor erythroid 2-related factor 2 (Nrf2) by activating the Wnt3a/β-catenin signalling pathway to further regulate MRP1 expression and pulmonary antioxidant defences in alveolar epithelial (A549) cells treated with smoke extract (CSE) and lipopolysaccharide (LPS). MAIN METHODS Marker expression was studied by western blot analysis, quantitative real-time PCR and immunofluorescence staining of A549 cells. KEY FINDINGS A549 cells exposed to CSE and LPS showed downregulation of DJ-1, Wnt3a, MRP1 and haem oxygenase-1 (HO-1) and upregulation of inflammatory factors. Additionally, Nrf2 protein levels were significantly decreased, while there was no change in Nrf2 mRNA levels. Overexpression of DJ-1 and Wnt3a activated Nrf2 signalling, increased MRP1 and HO-1 levels and decreased IL-6 protein expression, while knockdown of DJ-1 and Wnt3a had the opposite effects. Furthermore, DJ-1 overexpression and DJ-1 knockdown increased and decreased, respectively, the levels of Wnt3a and β-catenin. Interestingly, Nrf2 and Wnt3a deficiency reduced the protective effects of Wnt3a and DJ-1, respectively, in A549 cells. However, the levels of DJ-1 and Wnt3a were not altered by Wnt3a and Nrf2 deletion, respectively. SIGNIFICANCE In A549 cells treated with CSE and LPS, DJ-1 regulates Nrf2-mediated MRP1 expression and antioxidant defences by activating the Wnt3a/β-catenin signalling pathway. These findings may provide potential therapeutic targets for COPD intervention.
Collapse
Affiliation(s)
- Jian Zhou
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Chuanzong Qi
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xin Fang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Zihao Wang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Shuyi Zhang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Dalang Li
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jue Song
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China.
| |
Collapse
|
34
|
Wang X, Huan Y, Li C, Cao H, Sun S, Lei L, Liu Q, Liu S, Ji W, Liu H, Huang K, Zhou J, Shen Z. Diphenyl diselenide alleviates diabetic peripheral neuropathy in rats with streptozotocin-induced diabetes by modulating oxidative stress. Biochem Pharmacol 2020; 182:114221. [DOI: 10.1016/j.bcp.2020.114221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
|
35
|
Yang T, Yang H, Heng C, Wang H, Chen S, Hu Y, Jiang Z, Yu Q, Wang Z, Qian S, Wang J, Wang T, Du L, Lu Q, Yin X. Amelioration of non-alcoholic fatty liver disease by sodium butyrate is linked to the modulation of intestinal tight junctions in db/db mice. Food Funct 2020; 11:10675-10689. [PMID: 33216087 DOI: 10.1039/d0fo01954b] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The intestinal microenvironment, a potential factor that contributes to the development of non-alcoholic fatty liver disease (NALFD) and type 2 diabetes (T2DM), has a close relationship with intestinal tight junctions (TJs). Here, we show that the disruption of intestinal TJs in the intestines of 16-week-old db/db mice and in high glucose (HG)-cultured Caco-2 cells can both be improved by sodium butyrate (NaB) in a dose-dependent manner in vitro and in vivo. Accompanying the improved intestinal TJs, NaB not only relieved intestine inflammation of db/db mice and HG and LPS co-cultured Caco-2 cells but also restored intestinal Takeda G-protein-coupled (TGR5) expression, resulting in up-regulated serum GLP-1 levels. Subsequently, the GLP-1 analogue Exendin-4 was used to examine the improvement of lipid accumulation in HG and free fatty acid (FFA) co-cultured HepG2 cells. Finally, we used 16-week-old db/db mice to examine the hepatoprotective effects of NaB and its producing strain Clostridium butyricum. Our data showed that NaB and Clostridium butyricum treatment significantly reduced the levels of blood glucose and serum transaminase and markedly reduced T2DM-induced histological alterations of the liver, together with improved liver inflammation and lipid accumulation. These findings suggest that NaB and Clostridium butyricum are a potential adjuvant treatment strategy for T2DM-induced NAFLD; their hepatoprotective effect was linked to the modulation of intestinal TJs, causing the restoration of glucose and lipid metabolism and the improvement of inflammation in hepatocytes.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang Y, Ni J, Gao T, Gao C, Guo L, Yin X. Activation of astrocytic sigma-1 receptor exerts antidepressant-like effect via facilitating CD38-driven mitochondria transfer. Glia 2020; 68:2415-2426. [PMID: 32460411 DOI: 10.1002/glia.23850] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
Despite sigma-1 receptor (Sig-1R) is a promising therapeutic target in depression, little is known regarding the cellular mechanisms underlying its antidepressant responses. Here, we demonstrated that astrocyte can be a direct cellular target of Sig-1R exerting antidepressant-like effect. In multiple behavioral models including forced swimming test (FST), tail suspension test (TST), open field test (OFT), and chronic unpredictable mild stress (CUMS), inhibition of astrocyte function blocked pharmacological Sig-1R activation-induced antidepressant-like effect, while specific activation of astrocytc Sig-1R by adeno-associated virus (AAV) was sufficient to produce antidepressant-like effect. In depression-related cellular tests, Sig-1R agonist or lentivirus-stimulated astrocyte conditioned medium (ACM) promoted neuronal neurite outgrowth, dendritic branch, and survival. Mechanismly, stimulation of Sig-1R enhanced the expression of CD38 via activation of extracellular regulated protein kinases 1/2 (ERK1/2), resulting in facilitating mitochondrial transfer from astrocyte. Furthermore, blockage of CD38-driven astrocyte transferring mitochondria in vivo and in vitro reversed the antidepressant-like effect of pharmacological Sig-1R activation. Thus, this study sheds light on the cellular mechanism of Sig-1R activation producing antidepressant-like effect. These data present the first evidence that enhancement of Sig-1R action on astrocytes entirely exerts antidepressant-like effect, indicating that specific activation of astrocytic Sig-1R may provide a new approach for antidepressant drug development.
Collapse
Affiliation(s)
- Yun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing Ni
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tianyu Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ce Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
37
|
Regulation of Nrf2/ARE Pathway by Dietary Flavonoids: A Friend or Foe for Cancer Management? Antioxidants (Basel) 2020; 9:antiox9100973. [PMID: 33050575 PMCID: PMC7600646 DOI: 10.3390/antiox9100973] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 12/25/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cell signaling mechanism in maintaining redox homeostasis in humans. The role of dietary flavonoids in activating Nrf2/ARE in relation to cancer chemoprevention or cancer promotion is not well established. Here we summarize the dual effects of flavonoids in cancer chemoprevention and cancer promotion with respect to the regulation of the Nrf2/ARE pathway, while underlying the possible cellular mechanisms. Luteolin, apigenin, quercetin, myricetin, rutin, naringenin, epicatechin, and genistein activate the Nrf2/ARE pathway in both normal and cancer cells. The hormetic effect of flavonoids has been observed due to their antioxidant or prooxidant activity, depending on the concentrations. Reported in vitro and in vivo investigations suggest that the activation of the Nrf2/ARE pathway by either endogenous or exogenous stimuli under normal physiological conditions contributes to redox homeostasis, which may provide a mechanism for cancer chemoprevention. However, some flavonoids, such as luteolin, apigenin, myricetin, quercetin, naringenin, epicatechin, genistein, and daidzein, at low concentrations (1.5 to 20 µM) facilitate cancer cell growth and proliferation in vitro. Paradoxically, some flavonoids, including luteolin, apigenin, and chrysin, inhibit the Nrf2/ARE pathway in vitro. Therefore, even though flavonoids play a major role in cancer chemoprevention, due to their possible inducement of cancer cell growth, the effects of dietary flavonoids on cancer pathophysiology in patients or appropriate experimental animal models should be investigated systematically.
Collapse
|
38
|
Therapeutic investigation of quercetin nanomedicine in a zebrafish model of diabetic retinopathy. Biomed Pharmacother 2020; 130:110573. [DOI: 10.1016/j.biopha.2020.110573] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/28/2020] [Accepted: 07/25/2020] [Indexed: 01/18/2023] Open
|
39
|
Yoo HJ, Hong CO, Ha SK, Lee KW. Chebulic Acid Prevents Methylglyoxal-Induced Mitochondrial Dysfunction in INS-1 Pancreatic β-Cells. Antioxidants (Basel) 2020; 9:antiox9090771. [PMID: 32825285 PMCID: PMC7554990 DOI: 10.3390/antiox9090771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
To investigate the anti-diabetic properties of chebulic acid (CA) associated with the prevention of methyl glyoxal (MG)-induced mitochondrial dysfunction in INS-1 pancreatic β-cells, INS-1 cells were pre-treated with CA (0.5, 1.0, and 2.0 μM) for 48 h and then treated with 2 mM MG for 8 h. The effects of CA and MG on INS-1 cells were evaluated using the following: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay; glyoxalase 1 (Glo-1) expression via Western blot and enzyme activity assays; Nrf-2, nuclear factor erythroid 2-related factor 2 protein expression via Western blot assay; reactive oxygen species (ROS) production assay; mRNA expression of mitochondrial dysfunction related components (UCP2, uncoupling protein 2; VDAC1, voltage-dependent anion-selective channel-1; cyt c, cytochrome c via quantitative reverse transcriptase-PCR; mitochondrial membrane potential (MMP); adenosine triphosphate (ATP) synthesis; glucose-stimulated insulin secretion (GSIS) assay. The viability of INS-1 cells was maintained upon pre-treating with CA before exposure to MG. CA upregulated Glo-1 protein expression and enzyme activity in INS-1 cells and prevented MG-induced ROS production. Mitochondrial dysfunction was alleviated by CA pretreatment; this occurred via the downregulation of UCP2, VDAC1, and cyt c mRNA expression and the increase of MMP and ATP synthesis. Further, CA pre-treatment promoted the recovery from MG-induced decrease in GSIS. These results indicated that CA could be employed as a therapeutic agent in diabetes due to its ability to prevent MG-induced development of insulin sensitivity and oxidative stress-induced dysfunction of β-cells.
Collapse
Affiliation(s)
- Hyun-jung Yoo
- Department of Biotechnology, College of Life Science & Biotechnology, Korea University, Seoul 02841, Korea; (H.-j.Y.); (C.-O.H.)
| | - Chung-Oui Hong
- Department of Biotechnology, College of Life Science & Biotechnology, Korea University, Seoul 02841, Korea; (H.-j.Y.); (C.-O.H.)
| | - Sang Keun Ha
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea;
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Science & Biotechnology, Korea University, Seoul 02841, Korea; (H.-j.Y.); (C.-O.H.)
- Correspondence: ; Tel.: +82-2-3290-3473; Fax: +82-2-927-1970
| |
Collapse
|
40
|
Do MH, Choi J, Kim Y, Ha SK, Yoo G, Hur J. Syzygium aromaticum Reduces Diabetes-induced Glucotoxicity via the NRF2/Glo1 Pathway. PLANTA MEDICA 2020; 86:876-883. [PMID: 32645736 DOI: 10.1055/a-1203-0452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Advanced glycation end products and methylglyoxal are known to show increased levels in diabetic conditions and induce diverse metabolic disorders. However, the antiglycation ability of the bark of Syzygium aromaticum is not yet studied. In this study, we determined the inhibitory effects of S. aromaticum on AGE formation. Moreover, S. aromaticum showed breakage and inhibitory ability against the formation of AGE-collagen crosslinks. In SV40 MES13 cells, treatment with the S. aromaticum extract significantly ameliorated MG-induced oxidative stress as well as cytotoxicity. Furthermore, in the S. aromaticum extract-treated group, there was a reduction in levels of several diabetic markers, such as blood glucose, kidney weight, and urinary albumin to creatinine ratio in streptozotocin-induced diabetic rats. Treatment with the S. aromaticum extract significantly increased the expression of nuclear factor erythroid 2-related factor 2, a transcription factor involved in the expression of antioxidant enzymes. Moreover, the treatment significantly upregulated the expression of glyoxalase 1 and downregulated the expression of receptor for AGEs. These results suggest that the S. aromaticum extract might ameliorate diabetes-induced renal damage by inhibiting the AGE-induced glucotoxicity and oxidative stress through the Nrf2/Glo1 pathway.
Collapse
Affiliation(s)
- Moon Ho Do
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea
| | - Jiwon Choi
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea
| | - Yoonsook Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea
| | - Sang Keun Ha
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Guijae Yoo
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea
| | - Jinyoung Hur
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
41
|
Insulin exacerbated high glucose-induced epithelial-mesenchymal transition in prostatic epithelial cells BPH-1 and prostate cancer cells PC-3 via MEK/ERK signaling pathway. Exp Cell Res 2020; 394:112145. [PMID: 32561286 DOI: 10.1016/j.yexcr.2020.112145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/13/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022]
Abstract
As two most common progressive diseases of aging, type 2 diabetes mellitus (T2DM) and benign prostatic hyperplasia (BPH) were all characterized by endocrine and metabolic disorders. Here, our clinical study showed that there were significant differences in fasting blood glucose (FBG), fasting insulin (FINS), insulin resistance index (HOMA-IR) and prostate volume (PV) between simple BPH patients and BPH complicated with T2DM patients. Further analysis showed that HOMA-IR was positively correlated with PV in BPH complicated with T2DM patients. The in vitro experiment results showed that high glucose (HG) promoted EMT process in a glucose-dependent manner in human prostate hyperplasia cells (BPH-1) and prostate cancer cells (PC-3), and this pathological process was exacerbated by co-culture with insulin. Mechanistically, insulin-induced exacerbation of EMT was depended on the activation of MEK/ERK signaling pathway, and we suggested that insulin and its analogs should be used very carefully for the clinical antihyperglycemic treatment of BPH complicated with T2DM patients.
Collapse
|
42
|
Wang R, Qiu Z, Wang G, Hu Q, Shi N, Zhang Z, Wu Y, Zhou C. Quercetin attenuates diabetic neuropathic pain by inhibiting mTOR/p70S6K pathway-mediated changes of synaptic morphology and synaptic protein levels in spinal dorsal horn of db/db mice. Eur J Pharmacol 2020; 882:173266. [PMID: 32553736 DOI: 10.1016/j.ejphar.2020.173266] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 01/27/2023]
Abstract
Numerous studies indicate that the changes of synaptic morphology and synaptic protein levels in spinal dorsal horn neurons contributes to the development and maintenance of neuropathic pain. Quercetin, a bioflavonoid compound, has been shown to have analgesic effect in several pain models. However, the underlying mechanism for quercetin to allieviate pain is unclear. Therefore, in this study, we observed the effect of quercetin on diabetic neuropathic pain in db/db mice and explored the underlying mechanisms. Our results showed that chronic quercetin treatment alleviated thermal hyperalgesia in db/db mice. Moreover, quercetin administration significantly reduced the total dendritic length, the number of dendritic branches, and the dendritic spine density in the spinal dorsal horn neurons of db/db mice. Meanwhile, the up-regulated expressions of synaptic plasticity-associated proteins postsynaptic density protein 95 (PSD-95) and synaptophysin in spinal dorsal horn of db/db mice were decreased by quercetin treatment. In addition, quercetin treatment reduced the phosphorylated levels of mammalian target of rapamycin (mTOR) and p70 ribosomal S6 kinase (p70S6K) in spinal dorsal horn of db/db mice. These results demonstrate that quercetin may alleviate diabetic neuropathic pain by inhibiting mTOR/p70S6K pathway-mediated changes of synaptic morphology and synaptic protein levels in spinal dorsal horn neurons of db/db mice. These findings suggest that quercetin may be a promising therapeutic drug in neuropathic pain.
Collapse
Affiliation(s)
- Ruiyao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhuang Qiu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Guizhi Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Qian Hu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Naihao Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zongqin Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yuqing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.
| | - Chenghua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
43
|
Gao Z, Sui J, Fan R, Qu W, Dong X, Sun D. Emodin Protects Against Acute Pancreatitis-Associated Lung Injury by Inhibiting NLPR3 Inflammasome Activation via Nrf2/HO-1 Signaling. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1971-1982. [PMID: 32546964 PMCID: PMC7247729 DOI: 10.2147/dddt.s247103] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022]
Abstract
Aim Lung injury is a common complication of acute pancreatitis (AP), which leads to the development of acute respiratory distress syndrome and causes high mortality. In the present study, we investigated the therapeutic effect of emodin on AP-induced lung injury and explored the molecular mechanisms involved. Materials and Methods Thirty male Sprague-Dawley rats were randomly divided into AP (n=24) and normal (n=6) groups. Rats in the AP group received a retrograde injection of 5% sodium taurocholate into the biliary-pancreatic duct and then randomly assigned to untreated, emodin, combined emodin and ML385, and dexamethasone (DEX) groups. Pancreatic and pulmonary injury was assessed using H&E staining. In in vitro study, rat alveolar epithelial cell line L2 cells were exposed to lipopolysaccharide and treated with emodin. Nrf2 siRNA pool was applied for the knockdown of Nrf2. The contents of the pro-inflammatory cytokines in the bronchoalveolar lavage fluid and lung were determined using enzyme-linked immunosorbent assay. The expressions of related mRNAs and proteins in the lung or L2 cells were detected using real-time polymerase chain reaction, Western blot, immunohistochemistry and immunofluorescence. Key Findings Emodin administration alleviated pancreatic and pulmonary injury of rats with AP. Emodin administration suppressed the production of proinflammatory cytokines, downregulated NLRP3, ASC and caspase-1 expressions and inhibited NF-κB nuclear accumulation in the lung. In addition, Emodin increased Nrf2 nuclear translocation and upregulated HO-1 expression. Moreover, the anti-inflammatory effect of emodin was blocked by Nrf2 inhibitor ML385. Conclusion Emodin effectively protects rats against AP-associated lung injury by inhibiting NLRP3 inflammasome activation via Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Zhenming Gao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, People's Republic of China
| | - Jidong Sui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, People's Republic of China
| | - Rong Fan
- Department of International Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, People's Republic of China
| | - Weikun Qu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, People's Republic of China
| | - Xuepeng Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, People's Republic of China
| | - Deguang Sun
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, People's Republic of China
| |
Collapse
|
44
|
Gu L, Lu J, Li Q, Wu N, Zhang L, Li H, Xing W, Zhang X. A network-based analysis of key pharmacological pathways of Andrographis paniculata acting on Alzheimer's disease and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112488. [PMID: 31866509 DOI: 10.1016/j.jep.2019.112488] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Andrographis paniculata (AP) is a native plant with anti-inflammatory and antioxidant properties and used as an official herbal medicine. Recently more and more researches have indicated that AP shows pharmacological effects on Alzheimer's disease (AD) but its mechanism is unclear. AIMS OF THE STUDY Network pharmacology approach combined with experimental validation was developed to reveal the underlying molecular mechanisms of AP in treating AD. MATERIALS AND METHODS The compounds of AP from TCM database, the AD-related targets from disease database and the targets corresponding to compounds from swissTargetPrediction were collected. Then DAVID database was used for annotation and enrichment pathways, meanwhile the compound-target, protein-protein interaction from String database and compound-target-pathway network was constructed, molecular modeling was performed using Sybyl-x. Okadaic acid (OKA)-induced cytotoxicity model in PC12 cells was established to verify the mechanism of AP and the key proteins were detected by western blotting. RESULTS 28 AP components were identified after ADME filter analysis and 52 targets were gained via mapping predicted targets into AD-related proteins. In addition, after multiple network analysis, the 22 hub target genes were enriched onto pathways involved in AD, such as neuroactive ligand-receptor interaction, serotonergic synapse, Alzheimer's disease, PI3K-Akt and NF-kB signaling pathway. Interestingly, molecular docking simulation revealed that the targets including PTGS2, BACE1, GSK3B and IKBKB had good ability to combine with AP components. Experimental validation in an in vitro system proved that AP treatment obviously increased in levels inactive of p-GSK3β (P < 0.05) and decreased in levels of BACE (P < 0.05), PTGS2 (namely COX2, P < 0.05) and NF-kB protein (P < 0.05) compare with OKA treated group. CONCLUSION Our data provided convincing evidence that the neuroprotective effects of AP might be partially related to their regulation of the APP-BACE1-GSK3B signal axis and inflammation, which should be the focus of study in this field in the future.
Collapse
Affiliation(s)
- Lili Gu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang, PR China
| | - Jiaqi Lu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang, PR China
| | - Qin Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang, PR China
| | - Ningzi Wu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang, PR China
| | - Lingxi Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang, PR China
| | - Hongxing Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang, PR China
| | - Wenmin Xing
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, Zhejiang, PR China
| | - Xinyue Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang, PR China.
| |
Collapse
|
45
|
Protein Kinase C Isozymes and Autophagy during Neurodegenerative Disease Progression. Cells 2020; 9:cells9030553. [PMID: 32120776 PMCID: PMC7140419 DOI: 10.3390/cells9030553] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Protein kinase C (PKC) isozymes are members of the Serine/Threonine kinase family regulating cellular events following activation of membrane bound phospholipids. The breakdown of the downstream signaling pathways of PKC relates to several disease pathogeneses particularly neurodegeneration. PKC isozymes play a critical role in cell death and survival mechanisms, as well as autophagy. Numerous studies have reported that neurodegenerative disease formation is caused by failure of the autophagy mechanism. This review outlines PKC signaling in autophagy and neurodegenerative disease development and introduces some polyphenols as effectors of PKC isozymes for disease therapy.
Collapse
|
46
|
Jang SR, Kim JI, Park CH, Kim CS. The controlled design of electrospun PCL/silk/quercetin fibrous tubular scaffold using a modified wound coil collector and L-shaped ground design for neural repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110776. [PMID: 32279813 DOI: 10.1016/j.msec.2020.110776] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/28/2022]
Abstract
Asymmetrically porous and aligned fibrous tubular conduit with selective permeability as a biomimetic neural scaffold was manufactured using polycaprolactone (PCL), silk, and quercetin by a modified electrospinning method. The outer surface of the randomly oriented fibrous scaffold had microscale pores that could prevent fibrous tissue invasion (FTI), but could permeate neurotrophic factors, nutrients, and oxygen. The inner surface of the aligned fibrous scaffold can be favorable for neurite outgrowth, because of their superior neural cell attachment, migration, and directional growth. In vitro and in vivo studies have demonstrated the therapeutic effect of Quercetin, a ubiquitous flavonoid widely distributed in plants, on neuropathy, by modulating the expression of NRF-2-dependent antioxidant responsive elements. In this study, the controlled inner and outer surface geometry of the 0.5, 1.0, and 2.0 wt% quercetin-containing electrospun PCL/silk fibrous tubular scaffold fabricated via a modified wound coil collector and L-shaped ground design (WCC-LG) was characterized by FE-SEM, TEM, FFT, FT-IR, and XRD. In addition, two types of neural cell lines, PC12 and S42, were used to evaluate the cell proliferation rate of the different amount of quercetin-loaded PCL/silk tubular scaffolds.
Collapse
Affiliation(s)
- Se Rim Jang
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Jeong In Kim
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Division of Mechanical Design Engineering, College of Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Division of Mechanical Design Engineering, College of Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
47
|
Adelusi TI, Du L, Hao M, Zhou X, Xuan Q, Apu C, Sun Y, Lu Q, Yin X. Keap1/Nrf2/ARE signaling unfolds therapeutic targets for redox imbalanced-mediated diseases and diabetic nephropathy. Biomed Pharmacother 2020; 123:109732. [PMID: 31945695 DOI: 10.1016/j.biopha.2019.109732] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Hyperglycemia/oxidative stress has been implicated in the initiation and progression of diabetic complications while the components of Keap1/Nrf2/ARE signaling are being exploited as therapeutic targets for the treatment/management of these pathologies. Antioxidant agents like drugs, nutraceuticals and pure compounds that target the proteins of this pathway and their downstream genes hold the therapeutic strength to put the progression of this disease at bay. Here, we elucidate how the modulation of Keap1/Nrf2/ARE had been exploited for the treatment/management of end-stage diabetic kidney complication (diabetic nephropathy) by looking into (1) Nrf2 nuclear translocation and phosphorylation by some protein kinases at specific amino acid sequences and (2) Keap1 downregulation/Keap1-Nrf2 protein-protein inhibition (PPI) as potential therapeutic mechanisms exploited by Nrf2 activators for the modulation of diabetic nephropathy biomarkers (Collagen IV, Laminin, TGF-β1 and Fibronectin) that ultimately lead to the amelioration of this disease progression. Furthermore, we brought to limelight the relationship between diabetic nephropathy and Keap1/Nrf2/ARE and finally elucidate how the modulation of this signaling pathway could be further explored to create novel therapeutic milestones.
Collapse
Affiliation(s)
- Temitope Isaac Adelusi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Meng Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Xuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Chowdhury Apu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
48
|
Novel biphenyl diester derivative AB-38b inhibits NLRP3 inflammasome through Nrf2 activation in diabetic nephropathy. Cell Biol Toxicol 2019; 36:243-260. [PMID: 31768838 DOI: 10.1007/s10565-019-09501-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
Inflammation reaction mediated by NLRP3 inflammasome and Nrf2-related oxidative stress are vital participants in the development of diabetic nephropathy (DN) and closely associated to kidney fibrosis. Nrf2, a known antioxidative transcription factor, has been reported to activate NLRP3 inflammasome through its downstream factors (HO-1, NQO1, etc.) recently. AB38b is a newly synthesized biphenyl diester derivative with a Nrf2 activation property. This research aims to evaluate the renal protective effects of AB-38b and to elucidate the anti-inflammation mechanisms involved. Type 2 diabetic mice induced by high fat diet with streptozocin (STZ) and high glucose-cultured mouse glomerular mesangial cells (GMCs) were used in current study. Results showed that administration of AB-38b improved the kidney function while attenuated renal fibrosis progression in diabetic mice together with reducing the extracellular matrix (ECM) accumulation of GMCs cultured in high glucose. Mechanistically, treatment with AB-38b significantly decreased the high level of NLRP3 inflammasome in diabetic condition by inhibiting the ROS/TXNIP/NLRP3 signaling pathway. And meanwhile, AB-38b treatment effectively improved Nrf2 signaling during diabetic condition. Furthermore, knocking down the gene expression of Nrf2 by siRNA in GMCs abolished the inhibition effect of AB-38b on NLRP3 inflammasome activation and ECM accumulation. Taken together, our data suggest that AB-38b was able to improve the renal function of diabetic mice, and the NLRP3 inflammasome inhibition effect of AB-38b was responsible for the renal protective effect. Further exploration indicate that Nrf2 plays pivotal role in AB-38b's attenuation of DN progression through inhibiting NLRP3 inflammasome activation.
Collapse
|
49
|
Potential Therapeutic Targets of Quercetin and Its Derivatives: Its Role in the Therapy of Cognitive Impairment. J Clin Med 2019; 8:jcm8111789. [PMID: 31717708 PMCID: PMC6912580 DOI: 10.3390/jcm8111789] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022] Open
Abstract
Quercetin (QC) is a flavonoid and crucial bioactive compound found in a variety of vegetables and fruits. In preclinical studies, QC has demonstrated broad activity against several diseases and disorders. According to recent investigations, QC is a potential therapeutic candidate for the treatment of nervous system illnesses because of its protective role against oxidative damage and neuroinflammation. QC acts on several molecular signals, including ion channels, neuroreceptors, and inflammatory receptor signaling, and it also regulates neurotrophic and anti-oxidative signaling molecules. While the study of QC in neurological disorders has focused on numerous target molecules, the role of QC on certain molecular targets such as G-protein coupled and nuclear receptors remains to be investigated. Our analysis presents several molecular targets of QC and its derivatives that demonstrate the pharmacological potential against cognitive impairment. Consequently, this article may guide future studies using QC and its analogs on specific signaling molecules. Finding new molecular targets of QC and its analogs may ultimately assist in the treatment of cognitive impairment.
Collapse
|
50
|
Nna VU, Abu Bakar AB, Ahmad A, Eleazu CO, Mohamed M. Oxidative Stress, NF-κB-Mediated Inflammation and Apoptosis in the Testes of Streptozotocin-Induced Diabetic Rats: Combined Protective Effects of Malaysian Propolis and Metformin. Antioxidants (Basel) 2019; 8:antiox8100465. [PMID: 31600920 PMCID: PMC6826571 DOI: 10.3390/antiox8100465] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress, inflammation and apoptosis are major complications that trigger organ failure in diabetes mellitus (DM), and are proven to adversely affect the male reproductive system. Clinical and experimental studies have demonstrated the promising protective effects of propolis in DM and its associated systemic effects. Herein, we investigated the effect of Malaysian propolis (MP) on testicular oxidative stress, inflammation and apoptosis in diabetic rats. Further, the possibility of a complementary effect of MP with the anti-hyperglycaemic agent, metformin (Met), was studied with the idea of recommending its use in the event that Met alone is unable to contain the negative effects of DM on the male reproductive system in mind. Male Sprague-Dawley rats were either gavaged distilled water (normoglycaemic control and diabetic control groups), MP (diabetic rats on MP), Met (diabetic rats on Met) or MP+Met (diabetic rats on MP+Met), for 4 weeks. MP decreased oxidative stress by up-regulating (p < 0.05) testicular mRNA levels of nuclear factor erythroid 2-related factor 2, superoxide dismutase, catalase and glutathione peroxidase; increasing (p < 0.05) the activities of antioxidant enzymes; and decreasing (p < 0.05) lipid peroxidation in the testes and epididymis of diabetic rats. Further, MP down-regulated (p < 0.05) testicular mRNA and protein levels of pro-inflammatory mediators (nuclear factor kappa B, inducible nitric oxide synthase, tumour necrosis factor-α and interleukin (IL)-1β), decreased (p < 0.05) the nitric oxide level, and increased (p < 0.05) IL-10 mRNA and protein levels. MP also down-regulated (p < 0.05) Bax/Bcl-2, p53, casapase-8, caspase-9 and caspase-3 genes, and increased (p < 0.05) testicular germ cell proliferation. MP's effects were comparable to Met. However, the best results were achieved following co-administration of MP and Met. Therefore, we concluded that administration of the MP+Met combination better attenuates testicular oxidative stress, inflammation and apoptosis in DM, relative to MP or Met monotherapy, and may improve the fertility of males with DM.
Collapse
Affiliation(s)
- Victor Udo Nna
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia.
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar P.M.B. 1115, Cross River State, Nigeria.
| | - Ainul Bahiyah Abu Bakar
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia.
| | - Azlina Ahmad
- Basic Science and Oral Biology Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia.
| | - Chinedum Ogbonnaya Eleazu
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia.
- Department of Chemistry/Biochemistry/Molecular Biology, Federal University Ndufu Alaike Ikwo, Abakiliki P.M.B. 10, Ebonyi State, Nigeria.
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia.
- Unit of Integrative Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia.
| |
Collapse
|