1
|
Jørgensen MR. Pathophysiological microenvironments in oral candidiasis. APMIS 2024; 132:956-973. [PMID: 38571459 DOI: 10.1111/apm.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Oral candidiasis (OC), a prevalent opportunistic infection of the oral mucosa, presents a considerable health challenge, particularly in individuals with compromised immune responses, advanced age, and local predisposing conditions. A considerable part of the population carries Candida in the oral cavity, but only few develop OC. Therefore, the pathogenesis of OC may depend on factors other than the attributes of the fungus, such as host factors and other predisposing factors. Mucosal trauma and inflammation compromise epithelial integrity, fostering a conducive environment for fungal invasion. Molecular insights into the immunocompromised state reveal dysregulation in innate and adaptive immunity, creating a permissive environment for Candida proliferation. Detailed examination of Candida species (spp.) and their virulence factors uncovers a nuanced understanding beyond traditional C. albicans focus, which embrace diverse Candida spp. and their strategies, influencing adhesion, invasion, immune evasion, and biofilm formation. Understanding the pathophysiological microenvironments in OC is crucial for the development of targeted therapeutic interventions. This review aims to unravel the diverse pathophysiological microenvironments influencing OC development focusing on microbial, host, and predisposing factors, and considers Candida resistance to antifungal therapy. The comprehensive approach offers a refined perspective on OC, seeking briefly to identify potential therapeutic targets for future effective management.
Collapse
Affiliation(s)
- Mette Rose Jørgensen
- Section of Oral Pathology and Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Dash SK, Benival D, Jindal AB. Formulation Strategies to Overcome Amphotericin B Induced Toxicity. Mol Pharm 2024; 21:5392-5412. [PMID: 39373243 DOI: 10.1021/acs.molpharmaceut.4c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Fungal infection poses a major global threat to public health because of its wide prevalence, severe mortality rate, challenges involved in diagnosis and treatment, and the emergence of drug-resistant fungal strains. Millions of people are getting affected by fungal infection, and around 3.8 million people face death per year due to fungal infection, as per the latest report. The polyene antibiotic AmB has an extensive record of use as a therapeutic moiety against systemic fungal infection and leishmaniasis since 1960. AmB has broad-spectrum fungistatic and fungicidal activity. AmB exerts its therapeutic activity at the cellular level by binding to fungal sterol and forming hydrophilic pores, releasing essential cellular components and ions into the extracellular fluid, leading to cell death. Despite using AmB as an antifungal and antileishmanial at a broad scale, its clinical use is limited due to drug-induced nephrotoxicity resulting from binding the aggregated form of the drug to mammalian sterol. To mitigate AmB-induced toxicity and to get better anti-fungal therapeutic outcomes, researchers have developed nanoformulations, self-assembled formulations, prodrugs, cholesterol- and albumin-based AmB formulations, AmB-mAb combination therapy, and AmB cochleates. These formulations have helped to reduce toxicity to a certain extent by controlling the aggregation state of AmB, providing sustained drug release, and altering the physicochemical and pharmacokinetic parameters of AmB. Although the preclinical outcome of AmB formulations is quite satisfactory, its parallel result at the clinical level is insignificant. However, the safety and efficacy of AmB therapy can be improved at the clinical stage by continuous investigation and collaboration among researchers, clinicians, and pharmaceutical companies.
Collapse
Affiliation(s)
- Sanat Kumar Dash
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS Pilani), Pilani Campus, Pilani, Rajasthan 333031, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Gandhinagar, Gujurat 382355, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS Pilani), Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
3
|
Sarkar R, Adhikary K, Banerjee A, Ganguly K, Sarkar R, Mohanty S, Dhua R, Bhattacharya K, Ahuja D, Pal S, Maiti R. Novel targets and improved immunotherapeutic techniques with an emphasis on antimycosal drug resistance for the treatment and management of mycosis. Heliyon 2024; 10:e35835. [PMID: 39224344 PMCID: PMC11367498 DOI: 10.1016/j.heliyon.2024.e35835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Infections due to pathogenic fungi are endemic in particular area with increased morbidity and mortality. More than a thousand people are infected per year and the way of treatment is of high demand having a significant impact on the population health. Medical practitioners confront various troublesome analytic and therapeutical challenges in the administration of immunosuppressed sufferer at high danger of expanding fungal infections. An upgraded antimycosal treatment is fundamental for a fruitful result while treating intrusive mycoses. A collection of antimycosal drugs keeps on developing with their specific antifungal targets including cell membrane, mitochondria, cell wall, and deoxyribonucleic acid (DNA)/ribonucleic acid (RNA) or protein biosynthesis. Some fundamental classes of ordinarily directed medications are the polyenes, amphotericin B, syringomycin, allylamines, honokiol, azoles, flucytosine, echinocandins etc. However, few immunotherapy processes and vaccinations are being developed to mark this need, although one presently can't seem to arrive at the conclusion. In this review article, there has been a trial to give details upgradation about the current immune therapeutic techniques and vaccination strategies against prevention or treatment of mycosis as well as the difficulties related with their turn of events. There has been also a visualization in the mentioned review paper about the various assorted drugs and their specific target analysis along with therapeutic interventions.
Collapse
Affiliation(s)
- Riya Sarkar
- Department of Medical Lab Technology and Biotechnology, Paramedical College Durgapur, West Bengal, 713212, India
| | - Krishnendu Adhikary
- Department of Medical Lab Technology and Biotechnology, Paramedical College Durgapur, West Bengal, 713212, India
| | - Arundhati Banerjee
- Department of Medical Lab Technology and Biotechnology, Paramedical College Durgapur, West Bengal, 713212, India
| | - Krishnendu Ganguly
- Department of Medical Lab Technology and Biotechnology, Paramedical College Durgapur, West Bengal, 713212, India
| | - Riya Sarkar
- Department of Medical Laboratory Technology, Dr. B. C. Roy Academy of Professional Courses, Durgapur, West Bengal, 713206, India
| | - Satyajit Mohanty
- Department of Advanced Pharmacology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Rumpa Dhua
- Department of Nutrition, Bankura Sammilani College, Kenduadihi, Bankura, West Bengal, 722102, India
| | - Koushik Bhattacharya
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India
| | - Deepika Ahuja
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India
| | - Suchandra Pal
- Department of Biotechnology, National Institute of Technology, Durgapur, West Bengal, 713209, India
| | - Rajkumar Maiti
- Department of Physiology, Bankura Christian College, Bankura, West Bengal, 722101, India
| |
Collapse
|
4
|
Jiang Q, Chen Y, Zheng S, Sui L, Yu D, Qing F, He W, Xiao Q, Guo T, Xu L, Liu Z, Liu Z. AIM2 enhances Candida albicans infection through promoting macrophage apoptosis via AKT signaling. Cell Mol Life Sci 2024; 81:280. [PMID: 38918243 PMCID: PMC11335202 DOI: 10.1007/s00018-024-05326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Candida albicans is among the most prevalent invasive fungal pathogens for immunocompromised individuals and novel therapeutic approaches that involve immune response modulation are imperative. Absent in melanoma 2 (AIM2), a pattern recognition receptor for DNA sensing, is well recognized for its involvement in inflammasome formation and its crucial role in safeguarding the host against various pathogenic infections. However, the role of AIM2 in host defense against C. albicans infection remains uncertain. This study reveals that the gene expression of AIM2 is induced in human and mouse innate immune cells or tissues after C. albicans infection. Furthermore, compared to their wild-type (WT) counterparts, Aim2-/- mice surprisingly exhibit resistance to C. albicans infection, along with reduced inflammation in the kidneys post-infection. The resistance of Aim2-/- mice to C. albicans infection is not reliant on inflammasome or type I interferon production. Instead, Aim2-/- mice display lower levels of apoptosis in kidney tissues following infection than WT mice. The deficiency of AIM2 in macrophages, but not in dendritic cells, results in a phenocopy of the resistance observed in Aim2-/- mice against C. albican infection. The treatment of Clodronate Liposome, a reagent that depletes macrophages, also shows the critical role of macrophages in host defense against C. albican infection in Aim2-/- mice. Furthermore, the reduction in apoptosis is observed in Aim2-/- mouse macrophages following infection or treatment of DNA from C. albicans in comparison with controls. Additionally, higher levels of AKT activation are observed in Aim2-/- mice, and treatment with an AKT inhibitor reverses the host resistance to C. albicans infection. The findings collectively demonstrate that AIM2 exerts a negative regulatory effect on AKT activation and enhances macrophage apoptosis, ultimately compromising host defense against C. albicans infection. This suggests that AIM2 and AKT may represent promising therapeutic targets for the management of fungal infections.
Collapse
Affiliation(s)
- Qian Jiang
- School of Graduate, China Medical University, Shenyang, Liaoning, China
- School of Nursing, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yayun Chen
- School of Graduate, China Medical University, Shenyang, Liaoning, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Siping Zheng
- School of Graduate, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Lina Sui
- School of Graduate, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Dalang Yu
- School of Graduate, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Furong Qing
- School of Graduate, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Wenji He
- School of Graduate, China Medical University, Shenyang, Liaoning, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiuxiang Xiao
- School of Graduate, China Medical University, Shenyang, Liaoning, China
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tianfu Guo
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Li Xu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
- Center for Scientific Research, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhichun Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China.
| | - Zhiping Liu
- School of Graduate, China Medical University, Shenyang, Liaoning, China.
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China.
- Center for Scientific Research, Gannan Medical University, Ganzhou, Jiangxi, China.
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
5
|
Attri N, Das S, Banerjee J, Shamsuddin SH, Dash SK, Pramanik A. Liposomes to Cubosomes: The Evolution of Lipidic Nanocarriers and Their Cutting-Edge Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:2677-2694. [PMID: 38613498 PMCID: PMC11110070 DOI: 10.1021/acsabm.4c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Lipidic nanoparticles have undergone extensive research toward the exploration of their diverse therapeutic applications. Although several liposomal formulations are in the clinic (e.g., DOXIL) for cancer therapy, there are many challenges associated with traditional liposomes. To address these issues, modifications in liposomal structure and further functionalization are desirable, leading to the emergence of solid lipid nanoparticles and the more recent liquid lipid nanoparticles. In this context, "cubosomes", third-generation lipidic nanocarriers, have attracted significant attention due to their numerous advantages, including their porous structure, structural adaptability, high encapsulation efficiency resulting from their extensive internal surface area, enhanced stability, and biocompatibility. Cubosomes offer the potential for both enhanced cellular uptake and controlled release of encapsulated payloads. Beyond cancer therapy, cubosomes have demonstrated effectiveness in wound healing, antibacterial treatments, and various dermatological applications. In this review, the authors provide an overview of the evolution of lipidic nanocarriers, spanning from conventional liposomes to solid lipid nanoparticles, with a special emphasis on the development and application of cubosomes. Additionally, it delves into recent applications and preclinical trials associated with cubosome formulations, which could be of significant interest to readers from backgrounds in nanomedicine and clinicians.
Collapse
Affiliation(s)
- Nishtha Attri
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Swarnali Das
- Department
of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Jhimli Banerjee
- Department
of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Shazana H. Shamsuddin
- Department
of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Sandeep Kumar Dash
- Department
of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Arindam Pramanik
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
- School
of Medicine, University of Leeds, Leeds LS53RL, United Kingdom
| |
Collapse
|
6
|
Thambugala KM, Daranagama DA, Tennakoon DS, Jayatunga DPW, Hongsanan S, Xie N. Humans vs. Fungi: An Overview of Fungal Pathogens against Humans. Pathogens 2024; 13:426. [PMID: 38787278 PMCID: PMC11124197 DOI: 10.3390/pathogens13050426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Human fungal diseases are infections caused by any fungus that invades human tissues, causing superficial, subcutaneous, or systemic diseases. Fungal infections that enter various human tissues and organs pose a significant threat to millions of individuals with weakened immune systems globally. Over recent decades, the reported cases of invasive fungal infections have increased substantially and research progress in this field has also been rapidly boosted. This review provides a comprehensive list of human fungal pathogens extracted from over 850 recent case reports, and a summary of the relevant disease conditions and their origins. Details of 281 human fungal pathogens belonging to 12 classes and 104 genera in the divisions ascomycota, basidiomycota, entomophthoromycota, and mucoromycota are listed. Among these, Aspergillus stands out as the genus with the greatest potential of infecting humans, comprising 16 species known to infect humans. Additionally, three other genera, Curvularia, Exophiala, and Trichophyton, are recognized as significant genera, each comprising 10 or more known human pathogenic species. A phylogenetic analysis based on partial sequences of the 28S nrRNA gene (LSU) of human fungal pathogens was performed to show their phylogenetic relationships and clarify their taxonomies. In addition, this review summarizes the recent advancements in fungal disease diagnosis and therapeutics.
Collapse
Affiliation(s)
- Kasun M. Thambugala
- Genetics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka; (K.M.T.); (D.P.W.J.)
- Center for Biotechnology, Department of Zoology, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
- Center for Plant Materials and Herbal Products Research, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Dinushani A. Daranagama
- Department of Plant and Molecular Biology, Faculty of Science, University of Kelaniya, Kelaniya 11300, Sri Lanka;
| | - Danushka S. Tennakoon
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Dona Pamoda W. Jayatunga
- Genetics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka; (K.M.T.); (D.P.W.J.)
- Center for Biotechnology, Department of Zoology, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
- Center for Plant Materials and Herbal Products Research, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Sinang Hongsanan
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Ning Xie
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
7
|
Xu Z, Lisha X, Yi L, Yunjun M, Luocheng C, Anqi Z, Kuibo Y, Xiaolu X, Shaozhen L, Xuecheng S, Yifu Z. Highly stable and antifungal properties on the oilseed rape of Cu 3(MoO 4) 2(OH) 2 nanoflakes prepared by simple aqueous precipitation. Sci Rep 2024; 14:5235. [PMID: 38433219 PMCID: PMC10909880 DOI: 10.1038/s41598-024-53612-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
In the last few decades, nanoparticles have been a prominent topic in various fields, particularly in agriculture, due to their unique physicochemical properties. Herein, molybdenum copper lindgrenite Cu3(MoO4)2(OH)2 (CM) nanoflakes (NFs) are synthesized by a one-step reaction involving α-MoO3 and CuCO3⋅Cu(OH)2⋅xH2O solution at low temperature for large scale industrial production and developed as an effective antifungal agent for the oilseed rape. This synthetic method demonstrates great potential for industrial applications. Infrared spectroscopy and X-ray diffraction (XRD) results reveal that CM samples exhibit a pure monoclinic structure. TG and DSC results show the thermal stable properties. It can undergo a phase transition form copper molybdate (Cu3Mo2O9) at about 300 °C. Then Cu3Mo2O9 nanoparticles decompose into at CuO and MoO3 at 791 °C. The morphology of CM powder is mainly composed of uniformly distributed parallelogram-shaped nanoflakes with an average thickness of about 30 nm. Moreover, the binding energy of CM NFs is measured to be 2.8 eV. To assess the antifungal properties of these materials, both laboratory and outdoor experiments are conducted. In the pour plate test, the minimum inhibitory concentration (MIC) of CM NFs against Sclerotinia sclerotiorum (S. sclerotiorum) is determined to be 100 ppm, and the zone of inhibiting S. sclerotiorum is 14 mm. When the concentration is above 100 nm, the change rate of the hyphae circle slows down a little and begins to decrease until to 200 ppm. According to the aforementioned findings, the antifungal effects of a nano CM NFs solution are assessed at different concentrations (0 ppm (clear water), 40 ppm, and 80 ppm) on the growth of oilseed rape in an outdoor setting. The results indicate that the application of CM NFs led to significant inhibition of S. sclerotiorum. Specifically, when the nano CM solution was sprayed once at the initial flowering stage at a concentration of 80 ppm, S. sclerotiorum growth was inhibited by approximately 34%. Similarly, when the solution was sprayed once at the initial flowering stage and once at the rape pod stage, using a concentration of 40 ppm, a similar level of inhibition was achieved. These outcomes show that CM NFs possess the ability to bind with more metal ions due to their larger specific surface area. Additionally, their semiconductor physical properties enable the generation of reactive oxygen species (ROS). Therefore, CM NFs hold great potential for widespread application in antifungal products.
Collapse
Affiliation(s)
- Zhao Xu
- School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Xu Lisha
- School of Physics, Hubei University, Wuhan, 430062, China
| | - Liu Yi
- School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Mei Yunjun
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Chen Luocheng
- Hubei Sino-Australian Nano Material Technology Co., Ltd., Guangshui, 432700, China
| | - Zheng Anqi
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, People's Republic of China
| | - Yin Kuibo
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, People's Republic of China
| | - Xiao Xiaolu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Li Shaozhen
- School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China.
| | - Sun Xuecheng
- Micro-Elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhang Yifu
- Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
8
|
Paluch E, Bortkiewicz O, Widelski J, Duda-Madej A, Gleńsk M, Nawrot U, Lamch Ł, Długowska D, Sobieszczańska B, Wilk KA. A Combination of β-Aescin and Newly Synthesized Alkylamidobetaines as Modern Components Eradicating the Biofilms of Multidrug-Resistant Clinical Strains of Candida glabrata. Int J Mol Sci 2024; 25:2541. [PMID: 38473787 DOI: 10.3390/ijms25052541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The current trend in microbiological research aimed at limiting the development of biofilms of multidrug-resistant microorganisms is increasingly towards the search for possible synergistic effects between various compounds. This work presents a combination of a naturally occurring compound, β-aescin, newly synthesized alkylamidobetaines (AABs) with a general structure-CnTMDAB, and antifungal drugs. The research we conducted consists of several stages. The first stage concerns determining biological activity (antifungal) against selected multidrug-resistant strains of Candida glabrata (C. glabrata) with the highest ability to form biofilms. The second stage of this study determined the activity of β-aescin combinations with antifungal compounds and alkylamidobetaines. In the next stage of this study, the ability to eradicate a biofilm on the polystyrene surface of the combination of β-aescin with alkylamidobetaines was examined. It has been shown that the combination of β-aescin and alkylamidobetaine can firmly remove biofilms and reduce their viability. The last stage of this research was to determine the safety regarding the cytotoxicity of both β-aescin and alkylamidobetaines. Previous studies on the fibroblast cell line have shown that C9 alkylamidobetaine can be safely used as a component of anti-biofilm compounds. This research increases the level of knowledge about the practical possibilities of using anti-biofilm compounds in combined therapies against C. glabrata.
Collapse
Affiliation(s)
- Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland
| | - Olga Bortkiewicz
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland
| | - Jarosław Widelski
- Department of Pharmacognosy with Medicinal Plants Garden, Lublin Medical University, 20-093 Lublin, Poland
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland
| | - Michał Gleńsk
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Urszula Nawrot
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Łukasz Lamch
- Department of Engineering and Technology of Chemical Processes, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Daria Długowska
- Department of Engineering and Technology of Chemical Processes, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Beata Sobieszczańska
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland
| | - Kazimiera A Wilk
- Department of Engineering and Technology of Chemical Processes, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| |
Collapse
|
9
|
Feng Z, Lu H, Jiang Y. Promising immunotherapeutic targets for treating candidiasis. Front Cell Infect Microbiol 2024; 14:1339501. [PMID: 38404288 PMCID: PMC10884116 DOI: 10.3389/fcimb.2024.1339501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
In the last twenty years, there has been a significant increase in invasive fungal infections, which has corresponded with the expanding population of individuals with compromised immune systems. As a result, the mortality rate linked to these infections remains unacceptably high. The currently available antifungal drugs, such as azoles, polyenes, and echinocandins, face limitations in terms of their diversity, the escalating resistance of fungi and the occurrence of significant adverse effects. Consequently, there is an urgent need to develop new antifungal medications. Vaccines and antibodies present a promising avenue for addressing fungal infections due to their targeted antifungal properties and ability to modulate the immune response. This review investigates the structure and function of cell wall proteins, secreted proteins, and functional proteins within C. albicans. Furthermore, it seeks to analyze the current advancements and challenges in macromolecular drugs to identify new targets for the effective management of candidiasis.
Collapse
Affiliation(s)
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Gu K, Feng S, Zhang X, Peng Y, Sun P, Liu W, Wu Y, Yu Y, Liu X, Liu X, Deng G, Zheng J, Li B, Zhao L. Deciphering the antifungal mechanism and functional components of cinnamomum cassia essential oil against Candida albicans through integration of network-based metabolomics and pharmacology, the greedy algorithm, and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117156. [PMID: 37729978 DOI: 10.1016/j.jep.2023.117156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fungal pathogens can cause deadly invasive infections and have become a major global public health challenge. There is an urgent need to find new treatment options beyond established antifungal agents, as well as new drug targets that can be used to develop novel antifungal agents. Cinnamomum cassia is a tropical aromatic plant that has a wide range of applications in traditional Chinese medicine, especially in the treatment of bacterial and fungal infections. AIM OF THE STUDY The present study aimed to explore the mechanism of action and functional components of Cinnamomum cassia essential oil (CEO) against Candida albicans using an integrated strategy combining network-based metabolomics and pharmacology, the greedy algorithm and molecular docking. MATERIALS AND METHODS CEO was extracted using hydrodistillation and its chemical composition was identified by GC-MS. Cluster analysis was performed on the compositions of 19 other CEOs from the published literature, as well as the sample obtained in this study. The damages of C. albicans cells upon treatment with CEO was observed using a scanning electron microscope. The mechanisms of its antifungal effect at a subinhibitory concentration of 0.1 × MIC were determined using microbial metabolomics and network analysis. The functional components were studied using the greedy algorithm and molecular docking. RESULTS A total of 69 compounds were identified in the chemical analysis of CEO, which accounted for 90% of the sample. The major compounds were terpenoids (34.04%), aromatic compounds (4.52%), aliphatic compounds (0.9%), and others. Hierarchical cluster analysis of the compositions of 20 essential oils extracted from Cinnamomum cassia grown in different geographical locations showed a wide diversity of chemical composition with four major chemotypes. CEO showed strong antifungal activity and caused destruction of cell membranes in a concentration-dependent way. Metabolic fingerprint analysis identified 29 metabolites associated with lipid metabolism, which were mapped to 23 core targets mainly involved in fatty acid biosynthesis and metabolism. Six antifungal functional components of CEO were identified through network construction, greedy algorithm and molecular docking, including trans-cinnamaldehyde, δ-cadinol, ethylcinnamate, safrole, trans-anethole, and trans-cinnamyl acetate, which showed excellent binding with specific targets of AKR1B1, PPARG, BCHE, CYP19A1, CYP2C19, QPCT, and CYP51A1. CONCLUSIONS This study provides a systematic understanding of the antifungal activity of CEO and offers an integrated strategy for deciphering the potential metabolism and material foundation of complex component drugs.
Collapse
Affiliation(s)
- Keru Gu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Shengyi Feng
- Center of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xinyue Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Yuanyuan Peng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Peipei Sun
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Wenchi Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Yi Wu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Yun Yu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xijian Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xiaohui Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Jun Zheng
- Center of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Bo Li
- Center of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Linjing Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| |
Collapse
|
11
|
Rovetta-Nogueira SDM, Borges AC, de Oliveira Filho M, Nishime TMC, Hein LRDO, Kostov KG, Koga-Ito CY. Helium Cold Atmospheric Plasma Causes Morphological and Biochemical Alterations in Candida albicans Cells. Molecules 2023; 28:7919. [PMID: 38067648 PMCID: PMC10707892 DOI: 10.3390/molecules28237919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
(1) Background: Previous studies reported the promising inhibitory effect of cold atmospheric plasma (CAP) on Candida albicans. However, the exact mechanisms of CAP's action on the fungal cell are still poorly understood. This study aims to elucidate the CAP effect on C. albicans cell wall, by evaluating the alterations on its structure and biochemical composition; (2) Methods: C. albicans cells treated with Helium-CAP were analyzed by atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) in order to detect morphological, topographic and biochemical changes in the fungal cell wall. Cells treated with caspofungin were also analyzed for comparative purposes; (3) Results: Expressive morphological and topographic changes, such as increased roughness and shape modification, were observed in the cells after CAP exposure. The alterations detected were similar to those observed after the treatment with caspofungin. The main biochemical changes occurred in polysaccharides content, and an overall decrease in glucans and an increase in chitin synthesis were detected; (4) Conclusions: Helium-CAP caused morphological and topographic alterations in C. albicans cells and affected the cell wall polysaccharide content.
Collapse
Affiliation(s)
- Sabrina de Moura Rovetta-Nogueira
- Oral Biopathology Graduate Program, Department of Environment Engineering, São José dos Campos Institute of Science & Technology, São Paulo State University (UNESP), São José dos Campos 12247-016, SP, Brazil; (S.d.M.R.-N.); (A.C.B.)
| | - Aline Chiodi Borges
- Oral Biopathology Graduate Program, Department of Environment Engineering, São José dos Campos Institute of Science & Technology, São Paulo State University (UNESP), São José dos Campos 12247-016, SP, Brazil; (S.d.M.R.-N.); (A.C.B.)
| | - Maurício de Oliveira Filho
- Department of Materials and Technology, Guaratinguetá Faculty of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, SP, Brazil; (M.d.O.F.); (L.R.d.O.H.)
| | | | - Luis Rogerio de Oliveira Hein
- Department of Materials and Technology, Guaratinguetá Faculty of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, SP, Brazil; (M.d.O.F.); (L.R.d.O.H.)
| | - Konstantin Georgiev Kostov
- Department of Physics, Guaratinguetá Faculty of Engineering, São Paulo State University (UNESP), Guaratinguetá 12516-410, SP, Brazil;
| | - Cristiane Yumi Koga-Ito
- Oral Biopathology Graduate Program, Department of Environment Engineering, São José dos Campos Institute of Science & Technology, São Paulo State University (UNESP), São José dos Campos 12247-016, SP, Brazil; (S.d.M.R.-N.); (A.C.B.)
| |
Collapse
|
12
|
Mudenda S, Matafwali SK, Mukosha M, Daka V, Chabalenge B, Chizimu J, Yamba K, Mufwambi W, Banda P, Chisha P, Mulenga F, Phiri M, Mfune RL, Kasanga M, Sartelli M, Saleem Z, Godman B. Antifungal resistance and stewardship: a knowledge, attitudes and practices survey among pharmacy students at the University of Zambia; findings and implications. JAC Antimicrob Resist 2023; 5:dlad141. [PMID: 38130703 PMCID: PMC10733812 DOI: 10.1093/jacamr/dlad141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Antifungal resistance (AFR) is a growing global public health concern. Little is currently known about knowledge, attitudes and practices regarding AFR and antifungal stewardship (AFS) in Zambia, and across the globe. To address this evidence gap, we conducted a study through a questionnaire design starting with pharmacy students as they include the next generation of healthcare professionals. Methods A cross-sectional study among 412 pharmacy students from June 2023 to July 2023 using a structured questionnaire. Multivariable analysis was used to determine key factors of influence. Results Of the 412 participants, 55.8% were female, with 81.6% aged between 18 and 25 years. Most students had good knowledge (85.9%) and positive attitudes (86.7%) but sub-optimal practices (65.8%) towards AFR and AFS. Overall, 30.2% of students accessed antifungals without a prescription. Male students were less likely to report a good knowledge of AFR (adjusted OR, AOR = 0.55, 95% CI: 0.31-0.98). Similarly, students residing in urban areas were less likely to report a positive attitude (AOR = 0.35, 95% CI: 0.13-0.91). Fourth-year students were also less likely to report good practices compared with second-year students (AOR = 0.48, 95% CI: 0.27-0.85). Conclusions Good knowledge and positive attitudes must translate into good practices toward AFR and AFS going forward. Consequently, there is a need to provide educational interventions where students have low scores regarding AFR and AFS. In addition, there is a need to implement strategies to reduce inappropriate dispensing of antifungals, especially without a prescription, to reduce AFR in Zambia.
Collapse
Affiliation(s)
- Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka PO Box 50110, Zambia
- Antimicrobial Resistance Coordinating Committee, Zambia National Public Health Institute, Lusaka, Zambia
| | - Scott Kaba Matafwali
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Moses Mukosha
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka PO Box 50110, Zambia
| | - Victor Daka
- Department of Public Health, Michael Chilufya Sata School of Medicine, Copperbelt University, Ndola PO Box 71191, Zambia
| | - Billy Chabalenge
- Department of Medicines Control, Zambia Medicines Regulatory Authority, Lusaka PO Box 31890, Zambia
| | - Joseph Chizimu
- Antimicrobial Resistance Coordinating Committee, Zambia National Public Health Institute, Lusaka, Zambia
| | - Kaunda Yamba
- Antimicrobial Resistance Coordinating Committee, Zambia National Public Health Institute, Lusaka, Zambia
| | - Webrod Mufwambi
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka PO Box 50110, Zambia
| | - Patrick Banda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka PO Box 50110, Zambia
| | - Patience Chisha
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka PO Box 50110, Zambia
| | - Florence Mulenga
- Conservation Department, World Wide Fund For Nature (WWF Zambia Country Office), Lusaka PO Box 50551, Zambia
| | - McLawrence Phiri
- Department of Pharmacy, Maina Soko Medical Center, Woodlands, Lusaka PO Box 320091, Zambia
| | - Ruth Lindizyani Mfune
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Maisa Kasanga
- Department of Epidemiology and Biostatistics, Zhengzhou University, College of Public Health, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | | | - Zikria Saleem
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Brian Godman
- School of Pharmacy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria 0208, South Africa
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow G4 0RE, UK
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| |
Collapse
|
13
|
Hassanpour P, Spotin A, Morovati H, Aghebati-Maleki L, Raeisi M, Rezaee MA, Hasani A, Aghebati-Maleki A, Abdollahzadeh H, Nami S. Molecular diagnosis, phylogenetic analysis, and antifungal susceptibility profiles of Candida species isolated from neutropenic oncological patients. BMC Infect Dis 2023; 23:765. [PMID: 37932679 PMCID: PMC10629196 DOI: 10.1186/s12879-023-08774-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Neutropenia is the most important cause of life-threatening invasive fungal infections (IFIs). Here, we studied the frequency and antifungal susceptibility profiles of Candida species that colonized or caused infections among neutropenic patients with solid or hematological malignancies. METHODS A total of 362 clinical samples were collected from 138 patients. After initial isolation using a mix of mycological methods, isolates were screened using chromogenic culture media. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was applied for molecular identification. Positive or suspected cases were confirmed using the reference method of sequencing. Antifungal susceptibility testing for voriconazole and caspofungin was carried out using the microbroth dilution method. An in-silico assay was applied for phylogenetic analysis. RESULTS Thirty-four Candida strains were isolated. C. albicans (47.06%) and C. glabrata (29.41%) were the most frequent strains. Antifungal treatment reduced the chance of Candida colonization by almost 76% in neutropenic patients (OR: 1.759; 95% CI: 1.349 to 2.390; p value: 0.000). An unusual and non-resistant strain, C. lambica, was reported from the bloodstream of a 56-year-old man with hematologic malignancy (HM). Eight isolates were non-susceptible, and one isolate was resistant to voriconazole. Also, four isolates were non-susceptible to caspofungin. CONCLUSION We can conclude that there is a cause-and-effect relationship between neutropenia, HM background, and Candida species separated from neutropenic patients, which can lead to possible infections. Further and repetitive studies are recommended using different molecular methods for better prediction and management of fungal infections in neutropenic patients.
Collapse
Affiliation(s)
- Parviz Hassanpour
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Adel Spotin
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Morovati
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Alka Hasani
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Abdollahzadeh
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Nami
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Pappas PG, Vazquez JA, Oren I, Rahav G, Aoun M, Bulpa P, Ben-Ami R, Ferrer R, Mccarty T, Thompson GR, Schlamm H, Bien PA, Barbat SH, Wedel P, Oborska I, Tawadrous M, Hodges MR. Clinical safety and efficacy of novel antifungal, fosmanogepix, for the treatment of candidaemia: results from a Phase 2 trial. J Antimicrob Chemother 2023; 78:2471-2480. [PMID: 37596890 PMCID: PMC10545531 DOI: 10.1093/jac/dkad256] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/28/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Fosmanogepix is a first-in-class antifungal targeting the fungal enzyme Gwt1, with broad-spectrum activity against yeasts and moulds, including multidrug-resistant fungi, formulated for intravenous (IV) and oral administration. METHODS This global, multicenter, non-comparative study evaluated the safety and efficacy of fosmanogepix for first-line treatment of candidaemia in non-neutropenic adults. Participants with candidaemia, defined as a positive blood culture for Candida spp. within 96 h prior to study entry, with ≤2 days of prior systemic antifungals, were eligible. Participants received fosmanogepix for 14 days: 1000 mg IV twice daily on Day 1, followed by maintenance 600 mg IV once daily, and optional switch to 700 mg orally once daily from Day 4. Eligible participants who received at least one dose of fosmanogepix and had confirmed diagnosis of candidaemia (<96 h of treatment start) composed the modified intent-to-treat (mITT) population. Primary efficacy endpoint was treatment success at the end of study treatment (EOST) as determined by the Data Review Committee. Success was defined as clearance of Candida from blood cultures with no additional antifungal treatment and survival at the EOST. RESULTS Treatment success was 80% (16/20, mITT; EOST) and Day 30 survival was 85% (17/20; 3 deaths unrelated to fosmanogepix). Ten of 21 (48%) were switched to oral fosmanogepix. Fosmanogepix was well tolerated with no treatment-related serious adverse events/discontinuations. Fosmanogepix had potent in vitro activity against baseline isolates of Candida spp. (MICrange: CLSI, 0.002-0.03 mg/L). CONCLUSIONS Results from this single-arm Phase 2 trial suggest that fosmanogepix may be a safe, well-tolerated, and efficacious treatment for non-neutropenic patients with candidaemia, including those with renal impairment.
Collapse
Affiliation(s)
- Peter G Pappas
- Division of Infectious Diseases, Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jose A Vazquez
- Division of Infectious Disease, Department of Medicine, Medical College of Georgia/Augusta University, Augusta, GA, USA
| | - Ilana Oren
- Infectious Disease Unit, Rambam Health Care Campus, Haifa, Israel
| | - Galia Rahav
- Sheba Medical Center, Ramat Gan, Israel
- Chaim Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mickael Aoun
- Department of Internal Medicine, Institut Jules Bordet, Brussels, Belgium
| | - Pierre Bulpa
- Intensive Care Medicine, University Hospital Mont-Godinne, CHU UCL Namur, Yvoir, Belgium
| | - Ronen Ben-Ami
- Chaim Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ricard Ferrer
- Vall d’Hebron Hospital Universitari, Shock, Organ Dysfunction, and Resuscitation (SODIR) Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d´Hebron Barcelona Hospital Campus, Passeig de la Vall d’Hebron, Barcelona, Spain
| | - Todd Mccarty
- Division of Infectious Diseases, Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - George R Thompson
- Division of Infectious Diseases, Department of Internal Medicine, and Department of Medical Microbiology and Immunology, University of California Davis, Sacramento, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Malinovská Z, Čonková E, Váczi P. Biofilm Formation in Medically Important Candida Species. J Fungi (Basel) 2023; 9:955. [PMID: 37888211 PMCID: PMC10607155 DOI: 10.3390/jof9100955] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 10/28/2023] Open
Abstract
Worldwide, the number of infections caused by biofilm-forming fungal pathogens is very high. In human medicine, there is an increasing proportion of immunocompromised patients with prolonged hospitalization, and patients with long-term inserted drains, cannulas, catheters, tubes, or other artificial devices, that exhibit a predisposition for colonization by biofilm-forming yeasts. A high percentage of mortality is due to candidemia caused by medically important Candida species. Species of major clinical significance include C. albicans, C. glabrata, C. tropicalis, C. parapsilosis, C. krusei, and C. auris. The association of these pathogenic species in the biofilm structure is a serious therapeutic problem. Candida cells growing in the form of a biofilm are able to resist persistent therapy thanks to a combination of their protective mechanisms and their ability to disseminate to other parts of the body, thus representing a threat from the perspective of a permanent source of infection. The elucidation of the key mechanisms of biofilm formation is essential to progress in the understanding and treatment of invasive Candida infections.
Collapse
Affiliation(s)
- Zuzana Malinovská
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (E.Č.); (P.V.)
| | | | | |
Collapse
|
16
|
Chaudhari HS, Palkar OS, Abha Mishra KM, Sethi KK. An extensive review on antifungal approaches in the treatment of mucormycosis. J Biochem Mol Toxicol 2023; 37:e23417. [PMID: 37345721 DOI: 10.1002/jbt.23417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 03/14/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
During the period of COVID-19, the occurrences of mucormycosis in immunocompromised patients have increased significantly. Mucormycosis (black fungus) is a rare and rapidly progressing fungal infection associated with high mortality and morbidity in India as well as globally. The causative agents for this infection are collectively called mucoromycetes which are the members of the order Mucorales. The diagnosis of the infection needs to be performed as soon as the occurrence of clinical symptoms which differs with types of Mucorales infection. Imaging techniques magnetic resonance imaging or computed tomography scan, culture testing, and microscopy are the approaches for the diagnosis. After the diagnosis of the infection is confirmed, rapid action is needed for the treatment in the form of antifungal therapy or surgery depending upon the severity of the infection. Delaying in treatment declines the chances of survival. In antifungal therapy, there are two approaches first-line therapy (monotherapy) and combination therapy. Amphotericin B (1) and isavuconazole (2) are the drugs of choice for first-line therapy in the treatment of mucormycosis. Salvage therapy with posaconazole (3) and deferasirox (4) is another approach for patients who are not responsible for any other therapy. Adjunctive therapy is also used in the treatment of mucormycosis along with first-line therapy, which involves hyperbaric oxygen and cytokine therapy. There are some drugs like VT-1161 (5) and APX001A (6), Colistin, SCH 42427, and PC1244 that are under clinical trials. Despite all these approaches, none can be 100% successful in giving results. Therefore, new medications with favorable or little side effects are required for the treatment of mucormycosis.
Collapse
Affiliation(s)
- Hrushikesh S Chaudhari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Omkar S Palkar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - K M Abha Mishra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Kalyan K Sethi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| |
Collapse
|
17
|
Wu S, Song R, Liu T, Li C. Antifungal therapy: Novel drug delivery strategies driven by new targets. Adv Drug Deliv Rev 2023; 199:114967. [PMID: 37336246 DOI: 10.1016/j.addr.2023.114967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/22/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
In patients with compromised immunity, invasive fungal infections represent a significant cause of mortality. Given the limited availability and drawbacks of existing first-line antifungal drugs, there is a growing interest in exploring novel targets that could facilitate the development of new antifungal agents or enhance the effectiveness of conventional ones. While previous studies have extensively summarized new antifungal targets inherent in fungi for drug development purposes, the exploration of potential targets for novel antifungal drug delivery strategies has received less attention. In this review, we provide an overview of recent advancements in new antifungal drug delivery strategies that leverage novel targets, including those located in the physio-pathological barrier at the site of infection, the infection microenvironment, fungal-host interactions, and the fungal pathogen itself. The objective is to enhance therapeutic efficacy and mitigate toxic effects in fungal infections, particularly in challenging cases such as refractory, recurrent, and drug-resistant invasive fungal infections. We also discuss the current challenges and future prospects associated with target-driven antifungal drug delivery strategies, offering important insights into the clinical implementation of these innovative approaches.
Collapse
Affiliation(s)
- Shuang Wu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, PR China
| | - Ruiqi Song
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, PR China
| | - Tongbao Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, PR China.
| | - Chong Li
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400716, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
18
|
Al-Ansari MM, Al-Dahmash ND, Jhanani GK. Anti-Candida, antioxidant and antidiabetic potential of ethyl acetate extract fraction-7a from Cymodocea serrulata and its bioactive compound characterization through FTIR and NMR. ENVIRONMENTAL RESEARCH 2023; 229:115985. [PMID: 37116681 DOI: 10.1016/j.envres.2023.115985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
The purpose of this research was to look into the spectral categorization of fraction 7a from the Cymodocea serrulata ethyl acetate extract employing 1H as well as 13C NMR and FTIR techniques. Besides this, the antifungal (Candida tropicalis, Candida parapsilosis, Candida albicans, and Candida glabrata), antioxidant, and antidiabetic activities were also determined through in-vitro studies. Surprisingly, the 1H and 13C NMR analyses revealed that fraction 7a contains the most aliphatic and the least aromatic compounds. FTIR analysis revealed that the test fraction 7a contains the most active functional groups related to alkanes, phenols, esters, and amide groups. At a dosage of 500 μg mL-1, the fraction 7a does have outstanding antifungal activity against fungal pathogens such as Candida tropicalis, C. parapsilosis, C. albicans, and C. glabrata. The results suggest that the fraction 7a does have excellent anti-candida activity against candidiasis-causing fungal pathogens. This fraction 7a also demonstrated fine dose dependent antioxidant and antidiabetic activities.
Collapse
Affiliation(s)
- Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Nora Dahmash Al-Dahmash
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - G K Jhanani
- University Centre for Research & Development, Chandigarh University, Mohali, 140103, India.
| |
Collapse
|
19
|
González-Ballesteros N, Fernandes M, Machado R, Sampaio P, Gomes AC, Cavazza A, Bigi F, Rodríguez-Argüelles MC. Valorisation of the Invasive Macroalgae Undaria pinnatifida (Harvey) Suringar for the Green Synthesis of Gold and Silver Nanoparticles with Antimicrobial and Antioxidant Potential. Mar Drugs 2023; 21:397. [PMID: 37504928 PMCID: PMC10381743 DOI: 10.3390/md21070397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Bacterial and fungal infections are a challenging global problem due to the reported increasing resistance of pathogenic microorganisms to conventional antimicrobials. Nanomaterials are a promising strategy to fight infections caused by multidrug-resistant microbes. In this work, gold (Au@UP) and silver (Ag@UP) nanoparticles were produced for the first time by green synthesis using an aqueous extract of the invasive macroalgae Undaria pinnatifida (UP). The nanoparticles were characterized by a wide range of physicochemical techniques. Au@UP and Ag@UP demonstrated to be spherical and crystalline with an average size of 6.8 ± 1.0 nm and 14.1 ± 2.8 nm, respectively. Carbohydrates and proteins of the UP extract may participate in the synthesis and capping of the nanoparticles. The UP extract, Ag@UP, and Au@UP were assessed for their antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, and Candida auris. Ag@UP showed the highest antimicrobial activity with very low MIC and MBC values for all the tested bacteria, and Au@UP demonstrated to be very effective against biofilm-producing bacteria. The antifungal properties of both Ag@UP and Au@UP were remarkable, inhibiting hyphae formation. This study points towards a very promising biomedical exploitation of this invasive brown algae.
Collapse
Affiliation(s)
| | - Mário Fernandes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Raúl Machado
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Paula Sampaio
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Andreia C. Gomes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Antonella Cavazza
- Dipartimento Scienze Chimiche, Della Vita e della Sostenibilità Ambientale, Università di Parma, 43124 Parma, Italy
| | - Franca Bigi
- Dipartimento Scienze Chimiche, Della Vita e della Sostenibilità Ambientale, Università di Parma, 43124 Parma, Italy
- Institute of Materials for Electronics and Magnetism, National Research Council, 43124 Parma, Italy
| | | |
Collapse
|
20
|
Ma Z, Wang X, Li C. Advances in anti-invasive fungal drug delivery systems. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:318-327. [PMID: 37476943 PMCID: PMC10409907 DOI: 10.3724/zdxbyxb-2023-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023]
Abstract
Currently, the first-line drugs for invasive fungal infections (IFI), such as amphotericin B, fluconazole and itraconazole, have drawbacks including poor water solubility, low bioavailability, and severe side effects. Using drug delivery systems is a promising strategy to improve the efficacy and safety of traditional antifungal therapy. Synthetic and biomimetic carriers have greatly facilitated the development of targeted delivery systems for antifungal drugs. Synthetic carrier drug delivery systems, such as liposomes, nanoparticles, polymer micelles, and microspheres, can improve the physicochemical properties of antifungal drugs, prolong their circulation time, enhance targeting capabilities, and reduce toxic side effects. Cell membrane biomimetic drug delivery systems, such as macrophage or red blood cell membrane-coated drug delivery systems, retain the membrane structure of somatic cells and confer various biological functions and specific targeting abilities to the loaded antifungal drugs, exhibiting better biocompatibility and lower toxicity. This article reviews the development of antifungal drug delivery systems and their application in the treatment of IFI, and also discusses the prospects of novel biomimetic carriers in antifungal drug delivery.
Collapse
Affiliation(s)
- Zhongyi Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Xinyu Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
- Medical Research Institute, Southwest University, Chongqing 400715, China.
| |
Collapse
|
21
|
Skóra M, Obłoza M, Tymecka M, Kalaska B, Gurgul M, Kamiński K. Studies on Antifungal Properties of Methacrylamido Propyl Trimethyl Ammonium Chloride Polycations and Their Toxicity In Vitro. Microbiol Spectr 2023; 11:e0084423. [PMID: 37166300 PMCID: PMC10269872 DOI: 10.1128/spectrum.00844-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023] Open
Abstract
The biological activity of polycations is usually associated with their biocidal properties. Their antibacterial features are well known, but in this work, observations on the antifungal properties of macromolecules obtained by methacrylamido propyl trimethyl ammonium chloride (MAPTAC) polymerization are presented. The results, not previously reported, make it possible to correlate antifungal properties directly with the structure of the macromolecule, in particular the molecular mass. The polymers described here have antifungal activity against some filamentous fungi. The strongest effect occurs for polymers with a mass of about 0.5 mDa which have confirmed activity against the multidrug-resistant species Scopulariopsis brevicaulis, Fusarium oxysporum, and Fusarium solani, as well as the dermatophytes Trichophyton mentagrophytes, Trichophyton rubrum, Trichophyton interdigitale, and Trichophyton tonsurans. In addition, this publication describes the effects of these macromolecular systems on serum and blood components and provides a preliminary assessment of toxicity on cell lines of skin-forming cells, i.e., fibroblasts and keratinocytes. Additionally, using a Franz diffusion chamber, a negligibly low transport of the active polymer through the skin was demonstrated, which is a desirable effect for externally applied antifungal drugs. IMPORTANCE Infectious diseases are a very big medical, social, and economic problem. Even before the COVID-19 pandemic, certain infections were among of the most common causes of death. The difficulties in the treatment of infectious diseases concern in particular fungal diseases, against which we have only a few classes of drugs represented by a few substances. The publication presents the preliminary results of the in vitro antifungal activity studies of four MAPTAC polymers on different fungal species and their cytotoxicity to human cells (fibroblasts and keratinocytes). The paper also compares these properties with analogous ones of two commonly used antifungal drugs, ciclopirox and terbinafine.
Collapse
Affiliation(s)
- Magdalena Skóra
- Department of Infections Control and Mycology, Chair of Microbiology, Jagiellonian University Medical College, Cracow, Poland
| | | | - Małgorzata Tymecka
- Doctoral School of Exact and Natural Sciences, Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Białystok, Białystok, Poland
| | | | - Kamil Kamiński
- Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| |
Collapse
|
22
|
Shetty S, Shetty S. Cubosome-based cosmeceuticals: a breakthrough in skincare. Drug Discov Today 2023:103623. [PMID: 37224997 DOI: 10.1016/j.drudis.2023.103623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
Nanotechnology in skin cosmetics has revolutionized robust skincare formulations, enabling the delivery of therapeutic agents to achieve the effective concentration at the targeted site of action. Lyotropic liquid crystals (LLCs) are emerging as a potential nanoparticle delivery system owing to their biocompatible and biodegradable nature. Within the space of LLCs, the structural and functional relationships of cubosomal characteristics are investigated as drug delivery vehicles for a potential application in skincare. The objective of this review is to describe the structure, preparation methods and the potential application of cubosomes for the successful delivery of cosmetic agents.
Collapse
Affiliation(s)
- Srishti Shetty
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs, NMIMS Deemed to Be University, Mumbai, 400056, Maharashtra, India
| | - Saritha Shetty
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs, NMIMS Deemed to Be University, Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
23
|
Dutra JAP, Maximino SC, Gonçalves RDCR, Morais PAB, de Lima Silva WC, Rodrigues RP, Neto ÁC, Júnior VL, de Souza Borges W, Kitagawa RR. Anti-Candida, docking studies, and in vitro metabolism-mediated cytotoxicity evaluation of Eugenol derivatives. Chem Biol Drug Des 2023; 101:350-363. [PMID: 36053023 DOI: 10.1111/cbdd.14131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 01/14/2023]
Abstract
The high morbidity and mortality rates of Candida infections, especially among immunocompromised patients, are related to the increased resistance rate of these species and the limited therapeutic arsenal. In this context, we evaluated the anti-Candida potential and the cytotoxic profile of eugenol derivatives. Anti-Candida activity was evaluated on C. albicans and C. parapsilosis strains by minimum inhibitory concentration (MIC), scanning electron microscopy (SEM), and molecular docking calculations at the site of the enzyme lanosterol-14-α-demethylase active site, responsible for ergosterol formation. The cytotoxic profile was evaluated in HepG2 cells, in the presence and absence of the metabolizing system (S9 system). The results indicated compounds 1b and 1d as the most active ones. The compounds have anti-Candida activity against both strains with MIC ranging from 50 to 100 μg ml-1 . SEM analyses of 1b and 1d indicated changes in the envelope architecture of both C. albicans and C. parapsilosis like the ones of eugenol and fluconazole, respectively. Docking results of the evaluated compounds indicated a similar binding pattern of fluconazole and posaconazole at the lanosterol-14-α-demethylase binding site. In the presence of the S9 system, compound 1b showed the same cytotoxicity profile as fluconazole (1.08 times) and compound 1d had 1.23 times increase in cytotoxicity. Eugenol and other evaluated compounds showed a significant increase in cytotoxicity. Our results suggest compound 1b as a promising starting point candidate to be used in the design of new anti-Candida agent prototypes.
Collapse
Affiliation(s)
- Jessyca Aparecida Paes Dutra
- Graduate Program of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Bonfim, Brazil
| | - Sarah Canal Maximino
- Graduate Program of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Bonfim, Brazil
| | | | - Pedro Alves Bezerra Morais
- Department of Chemistry and Physics, Exact, Natural and Health Sciences Center, Federal University of Espírito Santo, Guararema, Brazil
| | | | - Ricardo Pereira Rodrigues
- Graduate Program of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Bonfim, Brazil
| | - Álvaro Cunha Neto
- Department of Chemistry, Exact Sciences Center, Federal University of Espírito Santo, Goiabeiras, Brazil
| | - Valdemar Lacerda Júnior
- Department of Chemistry, Exact Sciences Center, Federal University of Espírito Santo, Goiabeiras, Brazil
| | - Warley de Souza Borges
- Department of Chemistry, Exact Sciences Center, Federal University of Espírito Santo, Goiabeiras, Brazil
| | - Rodrigo Rezende Kitagawa
- Graduate Program of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Bonfim, Brazil
| |
Collapse
|
24
|
Bedoya-Cardona JE, Rubio-Carrasquilla M, Ramírez-Velásquez IM, Valdés-Tresanco MS, Moreno E. Identifying Potential Molecular Targets in Fungi Based on (Dis)Similarities in Binding Site Architecture with Proteins of the Human Pharmacolome. Molecules 2023; 28:molecules28020692. [PMID: 36677748 PMCID: PMC9860719 DOI: 10.3390/molecules28020692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Invasive fungal infections represent a public health problem that worsens over the years with the increasing resistance to current antimycotic agents. Therefore, there is a compelling medical need of widening the antifungal drug repertoire, following different methods such as drug repositioning, identification and validation of new molecular targets and developing new inhibitors against these targets. In this work we developed a structure-based strategy for drug repositioning and new drug design, which can be applied to infectious fungi and other pathogens. Instead of applying the commonly accepted off-target criterion to discard fungal proteins with close homologues in humans, the core of our approach consists in identifying fungal proteins with active sites that are structurally similar, but preferably not identical to binding sites of proteins from the so-called "human pharmacolome". Using structural information from thousands of human protein target-inhibitor complexes, we identified dozens of proteins in fungal species of the genera Histoplasma, Candida, Cryptococcus, Aspergillus and Fusarium, which might be exploited for drug repositioning and, more importantly, also for the design of new fungus-specific inhibitors. As a case study, we present the in vitro experiments performed with a set of selected inhibitors of the human mitogen-activated protein kinases 1/2 (MEK1/2), several of which showed a marked cytotoxic activity in different fungal species.
Collapse
Affiliation(s)
| | - Marcela Rubio-Carrasquilla
- Facultad de Ciencias Básicas, Universidad de Medellín, Medellin 050026, Colombia
- Corporación para Investigaciones Biológicas, Medellin 050034, Colombia
| | - Iliana M. Ramírez-Velásquez
- Facultad de Ciencias Básicas, Universidad de Medellín, Medellin 050026, Colombia
- Instituto Tecnológico Metropolitano, Medellin 050034, Colombia
| | | | - Ernesto Moreno
- Facultad de Ciencias Básicas, Universidad de Medellín, Medellin 050026, Colombia
- Correspondence:
| |
Collapse
|
25
|
Rakhshan A, Rahmati Kamel B, Saffaei A, Tavakoli-Ardakani M. Hepatotoxicity Induced by Azole Antifungal Agents: A Review Study. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e130336. [PMID: 38116543 PMCID: PMC10728840 DOI: 10.5812/ijpr-130336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/31/2023] [Accepted: 02/21/2023] [Indexed: 12/21/2023]
Abstract
Context Fungal infections are very common, and several medications are used to treat them. Azoles are prescribed widely to treat fungal infections. In addition to therapeutic effects, any drug can be accompanied by side effects in patients. One of the most important complications in this regard is liver injury. Therefore, hepatotoxicity induced by azole antifungal drugs were reviewed in this study. Evidence Acquisition English scientific papers were evaluated to review the effects of hepatotoxicity by azole antifungal agents, and the related studies' results were summarized using a table. The systematic search was implemented on electronic databases, including PubMed, Google Scholar, and Science Direct. Original articles and review articles that were published before April 1, 2022, were included in the study. Those articles without available full text or non-English articles were excluded. Also, articles that reported pediatric data were excluded. Results Most studies have reported the effects of hepatotoxicity by azole antifungal agents, and their mechanisms have been described. Conclusions Clinical evaluations regarding the hepatotoxicity of antifungal agents provided in the literature were reviewed. Therefore, it is recommended to prescribe these drugs with caution in high-risk patients suffering from liver diseases, and patients should be monitored for hepatotoxicity. However, more research is needed to evaluate the hepatotoxicity of azole antifungal agents and select appropriate drugs according to cost-effectiveness and the side effects' profiles, relying on lower incidence of this liver complication.
Collapse
Affiliation(s)
- Amin Rakhshan
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bardia Rahmati Kamel
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Saffaei
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maria Tavakoli-Ardakani
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Conte M, Eletto D, Pannetta M, Petrone AM, Monti MC, Cassiano C, Giurato G, Rizzo F, Tessarz P, Petrella A, Tosco A, Porta A. Effects of Hst3p inhibition in Candida albicans: a genome-wide H3K56 acetylation analysis. Front Cell Infect Microbiol 2022; 12:1031814. [PMID: 36389164 PMCID: PMC9647175 DOI: 10.3389/fcimb.2022.1031814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Candida spp. represent the third most frequent worldwide cause of infection in Intensive Care Units with a mortality rate of almost 40%. The classes of antifungals currently available include azoles, polyenes, echinocandins, pyrimidine derivatives, and allylamines. However, the therapeutical options for the treatment of candidiasis are drastically reduced by the increasing antifungal resistance. The growing need for a more targeted antifungal therapy is limited by the concern of finding molecules that specifically recognize the microbial cell without damaging the host. Epigenetic writers and erasers have emerged as promising targets in different contexts, including the treatment of fungal infections. In C. albicans, Hst3p, a sirtuin that deacetylates H3K56ac, represents an attractive antifungal target as it is essential for the fungus viability and virulence. Although the relevance of such epigenetic regulator is documented for the development of new antifungal therapies, the molecular mechanism behind Hst3p-mediated epigenetic regulation remains unrevealed. Here, we provide the first genome-wide profiling of H3K56ac in C. albicans resulting in H3K56ac enriched regions associated with Candida sp. pathogenicity. Upon Hst3p inhibition, 447 regions gain H3K56ac. Importantly, these genomic areas contain genes encoding for adhesin proteins, degradative enzymes, and white-opaque switching. Moreover, our RNA-seq analysis revealed 1330 upregulated and 1081 downregulated transcripts upon Hst3p inhibition, and among them, we identified 87 genes whose transcriptional increase well correlates with the enrichment of H3K56 acetylation on their promoters, including some well-known regulators of phenotypic switching and virulence. Based on our evidence, Hst3p is an appealing target for the development of new potential antifungal drugs.
Collapse
Affiliation(s)
- Marisa Conte
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, University of Salerno, Fisciano, Salerno, Italy
| | - Daniela Eletto
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Martina Pannetta
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, University of Salerno, Fisciano, Salerno, Italy
| | - Anna M. Petrone
- Ph.D. Program in Drug Discovery and Development, University of Salerno, Fisciano, Salerno, Italy
| | - Maria C. Monti
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Chiara Cassiano
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
- Department of Pharmacy, University of Naples ‘Federico II’, Naples, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salerno, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salerno, Italy
| | - Peter Tessarz
- Max Planck Research Group “Chromatin and Ageing”, Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| |
Collapse
|
27
|
da Silva Neto JX, Dias LP, Lopes de Souza LA, Silva da Costa HP, Vasconcelos IM, Pereira ML, de Oliveira JTA, Cardozo CJP, Gonçalves Moura LFW, de Sousa JS, Carneiro RF, Lopes TDP, Bezerra de Sousa DDO. Insights into the structure and mechanism of action of the anti-candidal lectin Mo-CBP2 and evaluation of its synergistic effect and antibiofilm activity. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Novel Insights into Fungal Infections Prophylaxis and Treatment in Pediatric Patients with Cancer. Antibiotics (Basel) 2022; 11:antibiotics11101316. [PMID: 36289974 PMCID: PMC9598217 DOI: 10.3390/antibiotics11101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Invasive fungal diseases (IFDs) are a relevant cause of morbidity and mortality in children with cancer. Their correct prevention and management impact patients’ outcomes. The aim of this review is to highlight the rationale and novel insights into antifungal prophylaxis and treatment in pediatric patients with oncological and hematological diseases. The literature analysis showed that IFDs represent a minority of cases in comparison to bacterial and viral infections, but their impact might be far more serious, especially when prolonged antifungal therapy or invasive surgical treatments are required to eradicate colonization. A personalized approach is recommended since pediatric patients with cancer often present with different complications and require tailored therapy. Moreover, while the Aspergillus infection rate does not seem to increase, in the near future, new therapeutic recommendations should be required in light of new epidemiological data on Candidemia due to resistant species. Finally, further studies on CAR-T treatment and other immunotherapies are needed in patients with unique needs and the risk of complications. Definitive guidelines on IFD treatment considering the evolving epidemiology of antifungal resistance, new therapeutic approaches in pediatric cancer, novel antifungal drugs and the importance of an appropriate antifungal stewardship are urgently needed.
Collapse
|
29
|
Sharma M, Yadav A, Dubey KK, Tipple J, Das DB. Decentralized systems for the treatment of antimicrobial compounds released from hospital aquatic wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156569. [PMID: 35690196 DOI: 10.1016/j.scitotenv.2022.156569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
In many developing countries, untreated hospital effluents are discharged and treated simultaneously with municipal wastewater. However, if the hospital effluents are not treated separately, they pose concerning health risks due to the possible transport of the antimicrobial genes and microbes in the environment. Such effluent is considered as a point source for a number of potentially infectious microorganisms, waste antimicrobial compounds and other contaminants that could promote antimicrobial resistance development. The removal of these contaminants prior to discharge reduces the exposure of antimicrobials to the environment and this should lower the risk of superbug development. At an effluent discharge site, suitable pre-treatment of wastewater containing antimicrobials could maximise the ecological impact with potentially reduced risk to human health. In addressing these points, this paper reviews the applications of decentralized treatment systems toward reducing the concentration of antimicrobials in wastewater. The most commonly used techniques in decentralized wastewater treatment systems for onsite removal of antimicrobials were discussed and evidence suggests that hybrid techniques should be more useful for the efficient removal of antimicrobials. It is concluded that alongside the cooperation of administration departments, health industries, water treatment authorities and general public, decentralized treatment technology can efficiently enhance the removal of antimicrobial compounds, thereby decreasing the concentration of contaminants released to the environment that could pose risks to human and ecological health due to development of antimicrobial resistance in microbes.
Collapse
Affiliation(s)
- Manisha Sharma
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Ankush Yadav
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Kashyap Kumar Dubey
- Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Joshua Tipple
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Diganta Bhusan Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| |
Collapse
|
30
|
N-Phenacyldibromobenzimidazoles—Synthesis Optimization and Evaluation of Their Cytotoxic Activity. Molecules 2022; 27:molecules27144349. [PMID: 35889223 PMCID: PMC9315981 DOI: 10.3390/molecules27144349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Antifungal N-phenacyl derivatives of 4,6- and 5,6-dibromobenzimidazoles are interesting substrates in the synthesis of new antimycotics. Unfortunately, their application is limited by the low synthesis yields and time-consuming separation procedure. In this paper, we present the optimization of the synthesis conditions and purification methods of N-phenacyldibromobenzimidazoles. The reactions were carried out in various base solvent-systems including K2CO3, NaH, KOH, t-BuOK, MeONa, NaHCO3, Et3N, Cs2CO3, DBU, DIPEA, or DABCO as a base, and MeCN, DMF, THF, DMSO, or dioxane as a solvent. The progress of the reaction was monitored using HPLC analysis. The best results were reached when the reactions were carried out in an NaHCO3–MeCN system at reflux for 24 h. Additionally, the cytotoxic activity of the synthesized compounds against MCF-7 (breast adenocarcinoma), A-549 (lung adenocarcinoma), CCRF-CEM (acute lymphoblastic leukemia), and MRC-5 (normal lung fibroblasts) was evaluated. We observed that the studied cell lines differed in sensitivity to the tested compounds with MCF-7 cells being the most sensitive, while A-549 cells were the least sensitive. Moreover, the cytotoxicity of the tested derivatives towards CCRF-CEM cells increased with the number of chlorine or fluorine substituents. Furthermore, some of the active compounds, i.e., 2-(5,6-dibromo-1H-benzimidazol-1-yl)-1-(3,4-dichlorophenyl)ethanone (4f), 2-(4,6-dibromo-1H-benzimidazol-1-yl)-1-(2,4,6-trichlorophenyl)ethanone (5g), and 2-(4,6-dibromo-1H-benzimidazol-1-yl)-1-(2,4,6-trifluorophenyl)ethanone (5j) demonstrated pro-apoptotic properties against leukemic cells with derivative 5g being the most effective.
Collapse
|
31
|
Advances in Antifungal Development: Discovery of New Drugs and Drug Repurposing. Pharmaceuticals (Basel) 2022; 15:ph15070787. [PMID: 35890086 PMCID: PMC9318969 DOI: 10.3390/ph15070787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 02/05/2023] Open
Abstract
This Special Issue of Pharmaceuticals describes recent advances accomplished in the field of antifungal development, especially the discovery of new drugs and drug repurposing [...]
Collapse
|
32
|
Gao Y, Tang M, Li Y, Niu X, Li J, Fu C, Wang Z, Liu J, Song B, Chen H, Gao X, Guan X. Machine-learning based prediction and analysis of prognostic risk factors in patients with candidemia and bacteraemia: a 5-year analysis. PeerJ 2022; 10:e13594. [PMID: 35726257 PMCID: PMC9206432 DOI: 10.7717/peerj.13594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/25/2022] [Indexed: 01/17/2023] Open
Abstract
Bacteraemia has attracted great attention owing to its serious outcomes, including deterioration of the primary disease, infection, severe sepsis, overwhelming septic shock or even death. Candidemia, secondary to bacteraemia, is frequently seen in hospitalised patients, especially in those with weak immune systems, and may lead to lethal outcomes and a poor prognosis. Moreover, higher morbidity and mortality associated with candidemia. Owing to the complexity of patient conditions, the occurrence of candidemia is increasing. Candidemia-related studies are relatively challenging. Because candidemia is associated with increasing mortality related to invasive infection of organs, its pathogenesis warrants further investigation. We collected the relevant clinical data of 367 patients with concomitant candidemia and bacteraemia in the first hospital of China Medical University from January 2013 to January 2018. We analysed the available information and attempted to obtain the undisclosed information. Subsequently, we used machine learning to screen for regulators such as prognostic factors related to death. Of the 367 patients, 231 (62.9%) were men, and the median age of all patients was 61 years old (range, 52-71 years), with 133 (36.2%) patients aged >65 years. In addition, 249 patients had hypoproteinaemia, and 169 patients were admitted to the intensive care unit (ICU) during hospitalisation. The most common fungi and bacteria associated with tumour development and Candida infection were Candida parapsilosis and Acinetobacter baumannii, respectively. We used machine learning to screen for death-related prognostic factors in patients with candidemia and bacteraemia mainly based on integrated information. The results showed that serum creatinine level, endotoxic shock, length of stay in ICU, age, leukocyte count, total parenteral nutrition, total bilirubin level, length of stay in the hospital, PCT level and lymphocyte count were identified as the main prognostic factors. These findings will greatly help clinicians treat patients with candidemia and bacteraemia.
Collapse
Affiliation(s)
- Yali Gao
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mingsui Tang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yaling Li
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xueli Niu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jingyi Li
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chang Fu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zihan Wang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiayi Liu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bing Song
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China,School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Hongduo Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinghua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiuhao Guan
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
33
|
García-Gamboa R, Domínguez-Simi MÁ, Gradilla-Hernández MS, Bravo-Madrigal J, Moya A, González-Avila M. Antimicrobial and Antibiofilm Effect of Inulin-Type Fructans, Used in Synbiotic Combination with Lactobacillus spp. Against Candida albicans. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:212-219. [PMID: 35461373 DOI: 10.1007/s11130-022-00966-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
There is great interest in the search for new alternatives to antimicrobial drugs, and the use of prebiotics and probiotics is a promising approach to this problem. This study aimed to assess the effect of inulin-type fructans, used in synbiotic combinations with Lactobacillus paracasei or Lactobacillus plantarum, on the production of short-chain fatty acids and antimicrobial activity against Candida albicans. The inhibition assay using the L. paracasei and L. plantarum supernatants resulting from the metabolization of inulin-type fructans displayed growth inhibition and antibiofilm formation against C. albicans. Inhibition occurred at concentrations of 12.5, 25, and 50% of the L. paracasei supernatant and at a concentration of 50% of the L. plantarum supernatant. The analysis of short-chain fatty acids by gas chromatography showed that lactic acid was the dominating produced metabolite. However, acetic, propionic, and butyric acids were also detected in supernatants from both probiotics. Therefore, the synbiotic formulation of L. paracasei or L. plantarum in the presence of inulin-type fructans constitutes with anticandidal effect is a possible option to produce antifungal drugs or antimicrobial compounds.
Collapse
Affiliation(s)
- Ricardo García-Gamboa
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Av. Normalistas No. 800, col Colinas de la Normal, C.P. 44270, Guadalajara, Jalisco, Mexico
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, Col. Nuevo México, Jalisco, C.P. 45138, Zapopan, Mexico
| | - Miguel Ángel Domínguez-Simi
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Av. Normalistas No. 800, col Colinas de la Normal, C.P. 44270, Guadalajara, Jalisco, Mexico
| | - Misael Sebastián Gradilla-Hernández
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, Col. Nuevo México, Jalisco, C.P. 45138, Zapopan, Mexico
| | - Jorge Bravo-Madrigal
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Av. Normalistas No. 800, col Colinas de la Normal, C.P. 44270, Guadalajara, Jalisco, Mexico
| | - Andrés Moya
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Av. de Cataluña 21, 46020, València, Spain
| | - Marisela González-Avila
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Av. Normalistas No. 800, col Colinas de la Normal, C.P. 44270, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
34
|
Zhu GD, Xie LM, Su JW, Cao XJ, Yin X, Li YP, Gao YM, Guo XG. Identification of differentially expressed genes and signaling pathways with Candida infection by bioinformatics analysis. Eur J Med Res 2022; 27:43. [PMID: 35314002 PMCID: PMC8935812 DOI: 10.1186/s40001-022-00651-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Opportunistic Candida species causes severe infections when the human immune system is weakened, leading to high mortality. METHODS In our study, bioinformatics analysis was used to study the high-throughput sequencing data of samples infected with four kinds of Candida species. And the hub genes were obtained by statistical analysis. RESULTS A total of 547, 422, 415 and 405 differentially expressed genes (DEGs) of Candida albicans, Candida glabrata, Candida parapsilosis and Candida tropicalis groups were obtained, respectively. A total of 216 DEGs were obtained after taking intersections of DEGs from the four groups. A protein-protein interaction (PPI) network was established using these 216 genes. The top 10 hub genes (FOSB, EGR1, JUNB, ATF3, EGR2, NR4A1, NR4A2, DUSP1, BTG2, and EGR3) were acquired through calculation by the cytoHubba plug-in in Cytoscape software. Validated by the sequencing data of peripheral blood, JUNB, ATF3 and EGR2 genes were significant statistical significance. CONCLUSIONS In conclusion, our study demonstrated the potential pathogenic genes in Candida species and their underlying mechanisms by bioinformatic analysis methods. Further, after statistical validation, JUNB, ATF3 and EGR2 genes were attained, which may be used as potential biomarkers with Candida species infection.
Collapse
Affiliation(s)
- Guo-Dong Zhu
- Department of Oncology, Guangzhou Geriatric Hospital, Guangzhou, 510180, China
| | - Li-Min Xie
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jian-Wen Su
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xun-Jie Cao
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xin Yin
- Department of Pediatrics, The Pediatrics School of Guangzhou Medical University, Guangzhou, 510182, China
| | - Ya-Ping Li
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuan-Mei Gao
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
35
|
Ghobadi E, Saednia S, Emami S. Synthetic approaches and structural diversity of triazolylbutanols derived from voriconazole in the antifungal drug development. Eur J Med Chem 2022; 231:114161. [DOI: 10.1016/j.ejmech.2022.114161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/24/2022]
|
36
|
Hosseini SMK, Alizadeh F, Nouripour-Sisakht S, Khodavandi A. Synergistic interaction of fluconazole/sodium bicarbonate on the inhibition of Candida glabrata phospholipase gene. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
37
|
The Role of B-Cells and Antibodies against Candida Vaccine Antigens in Invasive Candidiasis. Vaccines (Basel) 2021; 9:vaccines9101159. [PMID: 34696267 PMCID: PMC8540628 DOI: 10.3390/vaccines9101159] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Systemic candidiasis is an invasive fungal infection caused by members of the genus Candida. The recent emergence of antifungal drug resistance and increased incidences of infections caused by non-albicans Candida species merit the need for developing immune therapies against Candida infections. Although the role of cellular immune responses in anti-Candida immunity is well established, less is known about the role of humoral immunity against systemic candidiasis. This review summarizes currently available information on humoral immune responses induced by several promising Candida vaccine candidates, which have been identified in the past few decades. The protective antibody and B-cell responses generated by polysaccharide antigens such as mannan, β-glucan, and laminarin, as well as protein antigens like agglutinin-like sequence gene (Als3), secreted aspartyl proteinase (Sap2), heat shock protein (Hsp90), hyphally-regulated protein (Hyr1), hyphal wall protein (Hwp1), enolase (Eno), phospholipase (PLB), pyruvate kinase (Pk), fructose bisphosphate aldolase (Fba1), superoxide dismutase gene (Sod5) and malate dehydrogenase (Mdh1), are outlined. As per studies reviewed, antibodies induced in response to leading Candida vaccine candidates contribute to protection against systemic candidiasis by utilizing a variety of mechanisms such as opsonization, complement fixation, neutralization, biofilm inhibition, direct candidacidal activity, etc. The contributions of B-cells in controlling fungal infections are also discussed. Promising results using anti-Candida monoclonal antibodies for passive antibody therapy reinforces the need for developing antibody-based therapeutics including anti-idiotypic antibodies, single-chain variable fragments, peptide mimotopes, and antibody-derived peptides. Future research involving combinatorial immunotherapies using humanized monoclonal antibodies along with antifungal drugs/cytokines may prove beneficial for treating invasive fungal infections.
Collapse
|
38
|
Stan D, Enciu AM, Mateescu AL, Ion AC, Brezeanu AC, Stan D, Tanase C. Natural Compounds With Antimicrobial and Antiviral Effect and Nanocarriers Used for Their Transportation. Front Pharmacol 2021; 12:723233. [PMID: 34552489 PMCID: PMC8450524 DOI: 10.3389/fphar.2021.723233] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/24/2021] [Indexed: 12/22/2022] Open
Abstract
Due to the increasing prevalence of life-threatening bacterial, fungal and viral infections and the ability of these human pathogens to develop resistance to current treatment strategies, there is a great need to find and develop new compunds to combat them. These molecules must have low toxicity, specific activity and high bioavailability. The most suitable compounds for this task are usually derived from natural sources (animal, plant or even microbial). In this review article, the latest and most promising natural compounds used to combat bacteria, filamentous fungi and viruses are presented and evaluated. These include plant extracts, essential oils, small antimicrobial peptides of animal origin, bacteriocins and various groups of plant compounds (triterpenoids; alkaloids; phenols; flavonoids) with antimicrobial and antiviral activity. Data are presented on the inhibitory activity of each natural antimicrobial substance and on the putative mechanism of action against bacterial and fungal strains. The results show that among the bioactive compounds studied, triterpenoids have significant inhibitory activity against coronaviruses, but flavonoids have also been shown to inhibit SARS-COV-2. The last chapter is devoted to nanocarriers used to improve stability, bioavailability, cellular uptake/internalization, pharmacokinetic profile and reduce toxicity of natural compunds. There are a number of nanocarriers such as liposomes, drug delivery microemulsion systems, nanocapsules, solid lipid nanoparticles, polymeric micelles, dendrimers, etc. However, some of the recent studies have focused on the incorporation of natural substances with antimicrobial/antiviral activity into polymeric nanoparticles, niosomes and silver nanoparticles (which have been shown to have intrinsic antimicrobial activity). The natural antimicrobials isolated from animals and microorganisms have been shown to have good inhibitory effect on a range of pathogens, however the plants remain the most prolific source. Even if the majority of the studies for the biological activity evaluation are in silico or in vitro, their internalization in the optimum nanocarriers represents the future of “green therapeutics” as shown by some of the recent work in the field.
Collapse
Affiliation(s)
- Diana Stan
- DDS Diagnostic, Bucharest, Romania.,Titu Maiorescu University, PhD Medical School, Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, Bucharest, Romania
| | | | | | - Ariana Cristina Brezeanu
- Carol Davila University of Medicine and Pharmacy-Department of Plastic Surgery, Bucharest, Romania
| | | | - Cristiana Tanase
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, Bucharest, Romania.,Titu Maiorescu University, Faculty of Medicine, Bucharest, Romania
| |
Collapse
|
39
|
Jadi PK, Sharma P, Bhogapurapu B, Roy S. Alternative Therapeutic Interventions: Antimicrobial Peptides and Small Molecules to Treat Microbial Keratitis. Front Chem 2021; 9:694998. [PMID: 34458234 PMCID: PMC8386189 DOI: 10.3389/fchem.2021.694998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/02/2021] [Indexed: 01/10/2023] Open
Abstract
Microbial keratitis is a leading cause of blindness worldwide and results in unilateral vision loss in an estimated 2 million people per year. Bacteria and fungus are two main etiological agents that cause corneal ulcers. Although antibiotics and antifungals are commonly used to treat corneal infections, a clear trend with increasing resistance to these antimicrobials is emerging at rapid pace. Extensive research has been carried out to determine alternative therapeutic interventions, and antimicrobial peptides (AMPs) are increasingly recognized for their clinical potential in treating infections. Small molecules targeted against virulence factors of the pathogens and natural compounds are also explored to meet the challenges and growing demand for therapeutic agents. Here we review the potential of AMPs, small molecules, and natural compounds as alternative therapeutic interventions for the treatment of corneal infections to combat antimicrobial resistance. Additionally, we have also discussed about the different formats of drug delivery systems for optimal administration of drugs to treat microbial keratitis.
Collapse
Affiliation(s)
- Praveen Kumar Jadi
- Prof, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Prerana Sharma
- Prof, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
- Department of Animal Sciences, University of Hyderabad, Hyderabad, India
| | - Bharathi Bhogapurapu
- Prof, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Sanhita Roy
- Prof, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
40
|
Lv QZ, Li DD, Han H, Yang YH, Duan JL, Ma HH, Yu Y, Chen JY, Jiang YY, Jia XM. Priming with FLO8-deficient Candida albicans induces Th1-biased protective immunity against lethal polymicrobial sepsis. Cell Mol Immunol 2021; 18:2010-2023. [PMID: 33154574 PMCID: PMC7642578 DOI: 10.1038/s41423-020-00576-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023] Open
Abstract
The morphological switch between yeast and hyphae of Candida albicans is essential for its interaction with the host defense system. However, the lack of understanding of host-pathogen interactions during C. albicans infection greatly hampers the development of effective immunotherapies. Here, we found that priming with the C. albicans FLO8-deficient (flo8) mutant, locked in yeast form, protected mice from subsequent lethal C. albicans infection. Deficiency of Dectin-2, a fungus-derived α-mannan recognition receptor, completely blocked flo8 mutant-induced protection. Mechanistically, the flo8 mutant-induced Dectin-2/CARD9-mediated IL-10 production in DCs and macrophages to block thymus atrophy by inhibiting the C. albicans-induced apoptosis of thymic T cells, which facilitated the continuous output of naive T cells from the thymus to the spleen. Continuous recruitment of naive T cells to the spleen enhanced Th1-biased antifungal immune responses. Consequently, depletion of CD4+ T cells or blockade of IL-10 receptor function using specific antibodies in mice completely blocked the protective effects of flo8 mutant priming against C. albicans infection. Moreover, mannans exposed on the surface of the flo8 mutant were responsible for eliciting protective immunity by inhibiting the C. albicans-induced apoptosis of thymic T cells to sustain the number of naive T cells in the spleen. Importantly, priming with the flo8 mutant extensively protected mice from polymicrobial infection caused by cecal ligation and puncture (CLP) by enhancing Th1-biased immune responses. Together, our findings imply that targeting FLO8 in C. albicans elicits protective immune responses against polymicrobial infections and that mannans extracted from the flo8 mutant are potential immunotherapeutic candidate(s) for controlling infectious diseases.
Collapse
Affiliation(s)
- Quan-Zhen Lv
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - De-Dong Li
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Hua Han
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yi-Heng Yang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jie-Lin Duan
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Hui-Hui Ma
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yao Yu
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jiang-Ye Chen
- State Key Laboratory of Molecular Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuan-Ying Jiang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Xin-Ming Jia
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
41
|
Haroun M, Tratrat C, Kochkar H, Nair AB. CDATA[Recent Advances in the Development of 1,2,3-Triazole-containing Derivatives as Potential Antifungal Agents and Inhibitors of Lanoster ol 14α-Demethylase. Curr Top Med Chem 2021; 21:462-506. [PMID: 33319673 DOI: 10.2174/1568026621999201214232018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 11/03/2020] [Indexed: 11/22/2022]
Abstract
1,2,3-Triazole, a five-membered heterocyclic nucleus, is widely recognized as a key chromophore of great value in medicinal chemistry for delivering compounds possessing innumerable biological activities, including antimicrobial, antitubercular, antidiabetic, antiviral, antitumor, antioxidants, and anti-inflammatory activities. Mainly, in the past years, diverse conjugates carrying this biologically valuable core have been reported due to their attractive fungicidal potential and potent effects on various infective targets. Hence, hybridization of 1,2,3-triazole with other antimicrobial pharmacophores appears to be a judicious strategy to develop new effective anti-fungal candidates to combat the emergence of drug-sensitive and drug-resistant infectious diseases. Thus, the current review highlights the recent advances of this promising category of 1,2,3-triazole-containing hybrids incorporating diverse varieties of bioactive heterocycles such as conozole, coumarin, imidazole, benzimidazole, pyrazole, indole, oxindole, chromene, pyrane, quinazoline, chalcone, isoflavone, carbohydrates, and amides. It underlies their inhibition behavior against a wide array of infectious fungal species during 2015-2020.
Collapse
Affiliation(s)
- Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Hafedh Kochkar
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
42
|
Susceptibility in vitro of clinical Candida albicans isolates to the selected azoles. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2021. [DOI: 10.2478/cipms-2021-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Candida spp. is the most prevalent cause of fungal infection worldwide, and their increasing resistance to anti-fungal agents, especially to azoles, has become problematic. The aim of this work was to establish the susceptibility to fluconazole, itraconazole, voriconazole and posaconazole of 50 clinical C. albicans isolates from hematooncological patients. This has been evaluated using the following parameters: MIC (Minimum Inhibitory Concentration), MIC50 (MIC required to inhibit the growth of 50% of organisms), as well as MIC90 (MIC required to inhibit the growth of 90% of organisms). Susceptibility of the studied clinical isolates to all azoles was high, being 86% for itraconazole, 90% for fluconazole and posaconazole and 92% for voriconazole. The resistance rates ranged from 8% (voriconazole), to 12% (itraconazole). The emergence of azole-resistant yeast strains creates a necessity to determine and monitor the sensitivity of the isolated Candida spp., including C. albicans, especially in patients predisposed to life-threating fungal invasive disease.
Collapse
|
43
|
Mazzarino M, Comunità F, de la Torre X, Molaioni F, Botrè F. Effects of the administration of miconazole by different routes on the biomarkers of the "steroidal module" of the Athlete Biological Passport. Drug Test Anal 2021; 13:1712-1726. [PMID: 34212529 PMCID: PMC8597009 DOI: 10.1002/dta.3121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022]
Abstract
This article reports the results obtained from the investigation of the influence of miconazole administration on the physiological fluctuation of the markers of the steroid profile included in the “steroidal module” of the Athlete Biological Passport. Urines collected from male Caucasian subjects before, during, and after either systemic (i.e., oral and buccal) or topical (i.e., dermal) treatment with miconazole were analyzed according to validated procedures based on gas chromatography coupled to tandem mass spectrometry (GC–MS/MS) (to determine the markers of the steroid profile) or liquid chromatography coupled to MS/MS (LC–MS/MS) (to determine miconazole urinary levels). The results indicate that only after systemic administration, the markers of the steroid profile were significantly altered. After oral and buccal administration, we have registered (i) a significant increase of the 5α‐androstane‐3α,17β‐diol/5β‐androstane‐3α,17β‐diol ratio and (ii) a significant decrease of the concentration of androsterone, etiocholanolone, 5β‐androstane‐3α,17β‐diol, and 5α‐androstane‐3α,17β‐diol and of the androsterone/etiocholanolone, androsterone/testosterone, and 5α‐androstane‐3α,17β‐diol/epitestosterone ratios. Limited effects were instead measured after dermal intake. Indeed, the levels of miconazole after systemic administration were in the range of 0.1–12.5 μg/ml, whereas after dermal administration were below the limit of quantification (50 ng/ml). Significant alteration started to be registered at concentrations of miconazole higher than 0.5 μg/ml. These findings were primarily explained by the ability of miconazole in altering the kinetic/efficacy of deglucuronidation of the endogenous steroids by the enzyme β‐glucuronidase during the sample preparation process. The increase of both incubation time and amount of β‐glucuronidase was demonstrated to be effective countermeasures in the presence of miconazole to reduce the risk of uncorrected interpretation of the results.
Collapse
Affiliation(s)
- Monica Mazzarino
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Fabio Comunità
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Xavier de la Torre
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Francesco Molaioni
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Francesco Botrè
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy.,REDs-Research and Expertise on Anti-Doping Sciences, ISSUL-Institute des Sciences du Sport, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
44
|
Analysis of a mathematical model of immune response to fungal infection. J Math Biol 2021; 83:8. [PMID: 34184123 DOI: 10.1007/s00285-021-01633-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 05/20/2021] [Accepted: 06/13/2021] [Indexed: 01/09/2023]
Abstract
Fungi are cells found as commensal residents, on the skin, and on mucosal surfaces of the human body, including the digestive track and urogenital track, but some species are pathogenic. Fungal infection may spread into deep-seated organs causing life-threatening infection, especially in immune-compromised individuals. Effective defense against fungal infection requires a coordinated response by the innate and adaptive immune systems. In the present paper we introduce a simple mathematical model of immune response to fungal infection consisting of three partial differential equations, for the populations of fungi (F), neutrophils (N) and cytotoxic T cells (T), taking N and T to represent, respectively, the innate and adaptive immune cells. We denote by [Formula: see text] the aggressive proliferation rate of the fungi, by [Formula: see text] and [Formula: see text] the killing rates of fungi by neutrophils and T cells, and by [Formula: see text] and [Formula: see text] the immune strengths, respectively, of N and T of an infected individual. We take the expression [Formula: see text] to represent the coordinated defense of the immune system against fungal infection. We use mathematical analysis to prove the following: If [Formula: see text], then the infection is eventually stopped, and [Formula: see text] as [Formula: see text]; and (ii) if [Formula: see text] then the infection cannot be stopped and F converges to some positive constant as [Formula: see text]. Treatments of fungal infection include anti-fungal agents and immunotherapy drugs, and both cause the parameter I to increase.
Collapse
|
45
|
Kaur N, Bains A, Kaushik R, Dhull SB, Melinda F, Chawla P. A Review on Antifungal Efficiency of Plant Extracts Entrenched Polysaccharide-Based Nanohydrogels. Nutrients 2021; 13:2055. [PMID: 34203999 PMCID: PMC8232670 DOI: 10.3390/nu13062055] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023] Open
Abstract
Human skin acts as a physical barrier; however, sometimes the skin gets infected by fungi, which becomes more severe if the infection occurs on the third layer of the skin. Azole derivative-based antifungal creams, liquids, or sprays are available to treat fungal infections; however, these formulations show various side effects on the application site. Over the past few years, herbal extracts and various essential oils have shown effective antifungal activity. Additionally, autoxidation and epimerization are significant problems with the direct use of herbal extracts. Hence, to overcome these obstacles, polysaccharide-based nanohydrogels embedded with natural plant extracts and oils have become the primary choice of pharmaceutical scientists. These gels protect plant-based bioactive compounds and are effective delivery agents because they release multiple bioactive compounds in the targeted area. Nanohydrogels can be applied to infected areas, and due to their contagious nature and penetration power, they get directly absorbed through the skin, quickly reaching the skin's third layer and effectively reducing the fungal infection. In this review, we explain various skin fungal infections, possible treatments, and the effective utilization of plant extract and oil-embedded polysaccharide-based nanohydrogels.
Collapse
Affiliation(s)
- Navkiranjeet Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Aarti Bains
- Department of Biotechnology, Chandigarh Group of Colleges Landran, Mohali 140307, Punjab, India;
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, Uttrakhand, India;
| | - Sanju B. Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India;
| | - Fogarasi Melinda
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăstur 3–5, 400372 Cluj-Napoca, Romania
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India;
| |
Collapse
|
46
|
Tratrat C. 1,2,4-Triazole: A Privileged Scaffold for the Development of Potent Antifungal Agents - A Brief Review. Curr Top Med Chem 2021; 20:2235-2258. [PMID: 32621720 DOI: 10.2174/1568026620666200704140107] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/04/2020] [Accepted: 04/13/2020] [Indexed: 12/23/2022]
Abstract
Over the past decades, a tremendous rise in invasive fungal infection diseases attributed to the yeast Candida albicans in immunocompromised individuals poses a seriously challenging issue. Another concern is the emergence of multi-drug resistant pathogens to the existing medicines due to their overuse and misuse. It was recently reported that 25-55% of the mortality rate is caused by invasive infection. Despite a large variety of drugs being available to treat invasive candidiasis, only two of them contain a 1,2,4-triazole core, namely Fluconazole and itraconazole, which are efficient in treating infection induced by fungal Candida species. Moreover, long-term therapy associated with azole medications has led to an increase in azole resistance as well as a high risk of toxicity. Despite numerous outstanding achievements in antifungal drug discovery, development of novel, safer and potent antifungal agents while overcoming the resistance problem associated with the current drugs is becoming the main focus of medicinal chemists. Therefore, this review outlines the breakthroughs in medicinal chemistry research regarding 1,2,4- triazole-based derivatives as potential antifungal agents in the past decade. In addition, the structureactivity relationship of these compounds is also discussed.
Collapse
Affiliation(s)
- Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
47
|
Ortega-Blake I, Fernández-Zertuche M, Regla I, Sánchez-Peña W, Gómez-Solis A, Jaimes-Chavez P, Galván-Hernández A, Tovar-Garduño E, Rodríguez-Fragoso L. Preclinical safety evaluation of amphotericin A21: A novel antifungal. Basic Clin Pharmacol Toxicol 2021; 129:72-81. [PMID: 33900024 DOI: 10.1111/bcpt.13592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/29/2021] [Accepted: 04/21/2021] [Indexed: 01/02/2023]
Abstract
Safety studies are essential in drug development. This study evaluates the safety of Amphotericin A21 (AmB-A21), a derivative of amphotericin B with antifungal therapeutic potential. We performed a chronic toxicity study, a targeted organ study and a dermal irritation test. To evaluate chronic toxicity, 18 male adult rats were treated orally with AmB-21 (2 mg/kg) for 26 weeks. The effects on body-weight and animal health were measured, and haematological, clinical chemistry and histopathological tests were conducted on various organs. In the target organ toxicity study, male adult rats received a daily oral dose of AmB-21 (2 mg/kg) for 6 and 17 weeks; testicle histology and testosterone levels were then evaluated. For the dermal irritation study, AmB-21 (200 and 1000 mg/kg) was placed on the skin of adult male rabbits; macroscopic and microscopic studies, as well as haematological and clinical chemistry tests were then conducted. The chronic toxicity study revealed that AmB-21 caused testicle damage, and the testicle-targeted study showed structural alterations and changes in testosterone levels at 17 weeks. However, these alterations were no longer observed 8 weeks after discontinuation of treatment, and the testes showed very similar characteristics to those in the control group. The dermal irritation study showed skin thickening and reddening in rabbits treated with 2000 mg of AmB-A21 after 14 days of exposure. This same group also showed changes in liver enzymes, renal parameters and platelet levels. Based on our results, we consider AmB-21 to be a potential candidate for safe, long-term antifungal treatment given its reduced side effects.
Collapse
Affiliation(s)
- Ivan Ortega-Blake
- Institute of Physical Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
| | | | - Ignacio Regla
- Faculty of Higher Studies Zaragoza, National Autonomous University of Mexico, Cuernavaca, Mexico
| | - Walfred Sánchez-Peña
- Pharmacy School, Autonomous University of the State of Morelos, Cuernavaca, Mexico
| | | | - Paola Jaimes-Chavez
- Pharmacy School, Autonomous University of the State of Morelos, Cuernavaca, Mexico
| | - Arturo Galván-Hernández
- Institute of Physical Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
| | - Erika Tovar-Garduño
- Chemical Research Center, Autonomous University of the State of Morelos, Cuernavaca, Mexico
| | | |
Collapse
|
48
|
Improvement of the anti-Candida activity of itraconazole in the zebrafish infection model by its coordination to silver(I). J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Wang Y, Lu C, Zhao X, Wang D, Liu Y, Sun S. Antifungal activity and potential mechanism of Asiatic acid alone and in combination with fluconazole against Candida albicans. Biomed Pharmacother 2021; 139:111568. [PMID: 33845374 DOI: 10.1016/j.biopha.2021.111568] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Candida albicans (C. albicans) infection remains a challenge to clinicians due to the limited available antifungals. With the widespread use of antifungals in the clinic, the drug resistance has been emerging continuously, especially fluconazole. Therefore, searching for new antifungals, active constituents of natural or traditional medicines, and approaches to overcome antifungals resistance is needed. This study investigated the activity of Asiatic acid (AA) alone and in combination with fluconazole (FLC) against C. albicans in vitro and in vivo. The in vitro studies indicated that the drug combination had a synergistic effect on FLC-resistant C. albicans, with fractional inhibitory concentration index (FICI) of 0.25. And when AA at the dose of 32 µg/mL, the drug combination group could decrease the sessile minimum inhibitory concentration (sMIC) of FLC from > 1024 µg/mL to 0.125-0.25 µg/mL within 8 h against C. albicans biofilms, even with the FICI > 0.5. In vivo, the antifungal efficacy of AA used alone and in combination with FLC was evaluated by Galleria mellonella (G. mellonella) larvae. The drug combination group prolonged the survival rate and reduced tissue invasion of larvae infected with resistant C. albicans. Furthermore, mechanism studies indicated that the antifungal effects of AA in combination with FLC might be associated with the inhibition of drug efflux pump, the accumulation of reactive oxygen species (ROS) and the inhibition of hyphal growth. These findings might provide novel insights for overcoming drug resistance of C. albicans and bring new reference data for the development and application of AA in future.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province 250014, People's Republic of China
| | - Chunyan Lu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province 250014, People's Republic of China
| | - Xia Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province 250014, People's Republic of China
| | - Decai Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province 27100, People's Republic of China
| | - Yaxin Liu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province 250014, People's Republic of China
| | - Shujuan Sun
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province 250014, People's Republic of China.
| |
Collapse
|
50
|
Retrospective assessment of fungal pathogens isolated from various clinical samples in a tertiary care hospital in Turkey: A cross-sectional study. JOURNAL OF SURGERY AND MEDICINE 2021. [DOI: 10.28982/josam.910783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|