1
|
Adly ME, Taher AT, Ahmed FM, Mahmoud AM, Salem MA, El-Masry RM. New series of fluoroquinolone derivatives as potential anticancer Agents: Design, Synthesis, in vitro biological Evaluation, and Topoisomerase II Inhibition. Bioorg Chem 2025; 156:108163. [PMID: 39827653 DOI: 10.1016/j.bioorg.2025.108163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/04/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
A series of fluoroquinolone analogs (II, IIIa-g) derived from Ciprofloxacin hydrazide were designed, and synthesized. The NCI-60 Human Tumor Cell Line Screening assay indicated that compounds II, IIIb, and IIIf are the most potent among the series and were further selected for five-dose evaluation, where they exhibited potent cytotoxicity with mean GI50 values of 3.30, 2.45, and 9.06 µM, respectively, where they reduced the cell proliferation of most of the tested cell lines with IC50 values significantly lower than the reference drug Etoposide. A selectivity study demonstrated the high selective cytotoxicity of IIIf towards cancerous cells over normal mammalian Vero cells, presenting it as a potent and selective antitumor agent. Cell cycle analysis revealed that treatment with II, IIIb, or IIIf induced cell cycle arrest at the G2/M phase in MCF-7 cells. Topoisomerase II enzyme inhibition assay showed that the three tested compounds are potent topo II inhibitors where compound II (IC50 = 51.66 µM) displayed more potent inhibitory activity compared to the well-known topo II inhibitor Etoposide (IC50 = 58.96 µM), while compounds IIIb and IIIf showed comparable activity to the reference drug. Molecular modeling study suggested that the topoisomerase inhibitory activity may be attributed to the binding to the Merbarone binding site and chelation with Mg2+.
Collapse
Affiliation(s)
- Mina E Adly
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11565, Egypt
| | - Azza T Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11565, Egypt; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, October 6 University (O6U), October 6 City 12585, Egypt
| | - Fakher M Ahmed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, October 6 University (O6U), October 6 City 12585, Egypt
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, October 6 University (O6U), October 6 City 12585, Egypt
| | - Mohamed A Salem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, October 6 University (O6U), October 6 City 12585, Egypt
| | - Rana M El-Masry
- Department of Organic Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), October 6 City 12451, Egypt.
| |
Collapse
|
2
|
Gach-Janczak K, Piekielna-Ciesielska J, Waśkiewicz J, Krakowiak K, Wtorek K, Janecka A. Quinolin-4-ones: Methods of Synthesis and Application in Medicine. Molecules 2025; 30:163. [PMID: 39795219 PMCID: PMC11721932 DOI: 10.3390/molecules30010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Quinolinones, also called quinolones, are a group of heterocyclic compounds with a broad spectrum of biological activities. These compounds occur naturally in plants and microorganisms but can also be obtained synthetically. The first synthesis of quinolinones took place at the end of the 19th century, and the most recent methods were published just a few years ago. They allow for obtaining an unlimited number of analogs differing in biological properties. In this review, we described the plethora of methods leading to quinolin-4-ones. Several of these compounds have been used as antibiotics for over four decades, but recently, their antiproliferative effects have been of particular interest to researchers. This review summarizes the experimental progress made in the synthetic development of various routes leading to quinoline-4-ones and presents an overview of the structures, their evolution, and their relation to activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.G.-J.); (J.P.-C.); (J.W.); (K.K.); (K.W.)
| |
Collapse
|
3
|
Allen-Taylor D, Boro G, Cabato P, Mai C, Nguyen K, Rijal G. Staphylococcus epidermidis biofilm in inflammatory breast cancer and its treatment strategies. Biofilm 2024; 8:100220. [PMID: 39318870 PMCID: PMC11420492 DOI: 10.1016/j.bioflm.2024.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Bacterial biofilms represent a significant challenge in both clinical and industrial settings because of their robust nature and resistance to antimicrobials. Biofilms are formed by microorganisms that produce an exopolysaccharide matrix, protecting function and supporting for nutrients. Among the various bacterial species capable of forming biofilms, Staphylococcus epidermidis, a commensal organism found on human skin and mucous membranes, has emerged as a prominent opportunistic pathogen, when introduced into the body via medical devices, such as catheters, prosthetic joints, and heart valves. The formation of biofilms by S. epidermidis on these surfaces facilitates colonization and provides protection against host immune responses and antibiotic therapies, leading to persistent and difficult-to-treat infections. The possible involvement of biofilms for breast oncogenesis has recently created the curiosity. This paper therefore delves into S. epidermidis biofilm involvement in breast cancer. S. epidermidis biofilms can create a sustained inflammatory environment through their metabolites and can break DNA in breast tissue, promoting cellular proliferation, angiogenesis, and genetic instability. Preventing biofilm formation primarily involves preventing bacterial proliferation using prophylactic measures and sterilization of medical devices and equipment. In cancer treatment, common modalities include chemotherapy, surgery, immunotherapy, alkylating agents, and various anticancer drugs. Understanding the relationship between anticancer drugs and bacterial biofilms is crucial, especially for those undergoing cancer treatment who may be at increased risk of bacterial infections, for improving patient outcomes. By elucidating these interactions, strategies to prevent or disrupt biofilm formation, thereby reducing the incidence of infections associated with medical devices and implants, can be identified.
Collapse
Affiliation(s)
- D. Allen-Taylor
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - G. Boro
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - P.M. Cabato
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - C. Mai
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - K. Nguyen
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - G. Rijal
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| |
Collapse
|
4
|
Sahu AA, Mukherjee A, Nirala SK, Bhadauria M. Cyclophosphamide-induced multiple organ dysfunctions: unravelling of dose dependent toxic impact on biochemistry and histology. Toxicol Res (Camb) 2024; 13:tfae201. [PMID: 39698395 PMCID: PMC11650506 DOI: 10.1093/toxres/tfae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/06/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Cyclophosphamide, an immunosuppressive alkylating agent, has been used against breast cancer, lymphoma and myeloid leukemia. Despite various therapeutic uses, its toxic impacts on multiple organs remains to be fully elucidated. AIM This study aimed to investigate dose dependent toxic impact of cyclophosphamide on liver, kidney, brain and testis emphasizing serum and tissue biochemical and histological alterations. MATERIALS AND METHODS Experimental design consisted of five groups of albino rats. Group 1-5 were administered vehicle for five consecutive days. On 6th day, group 1 received vehicle only and termed as control; group 2-5 received cyclophosphamide through intraperitoneal route at the rate of 50, 100, 150 and 200 mg/kg dose, respectively. After 24 h of the last administration, rats were euthanised; serum and tissue biochemistry; histology, sperm count and its motility were performed. RESULTS Serological, biochemical and histological indices exhibited dose dependent deviations from their regular status as a marker of toxicity in liver, kidney, brain and testis. Tukey's HSD post hoc test revealed maximum damage in multiple organs with 200 mg/kg dose of cyclophosphamide.
Collapse
Affiliation(s)
- Asim Amitabh Sahu
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas University, Ratanpur Road, Koni-Bilaspur, Chhattisgarh 495009, India
| | - Ankita Mukherjee
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas University, Ratanpur Road, Koni-Bilaspur, Chhattisgarh 495009, India
| | - Satendra Kumar Nirala
- Laboratory of Natural Products, Department of Rural Technology and Social Development, Guru Ghasidas University, Ratanpur Road, Koni-Bilaspur, Chhattisgarh 495009, India
| | - Monika Bhadauria
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas University, Ratanpur Road, Koni-Bilaspur, Chhattisgarh 495009, India
| |
Collapse
|
5
|
Oancea OL, Gâz ȘA, Marc G, Lungu IA, Rusu A. In Silico Evaluation of Some Computer-Designed Fluoroquinolone-Glutamic Acid Hybrids as Potential Topoisomerase II Inhibitors with Anti-Cancer Effect. Pharmaceuticals (Basel) 2024; 17:1593. [PMID: 39770435 PMCID: PMC11679884 DOI: 10.3390/ph17121593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Fluoroquinolones (FQs) are topoisomerase II inhibitors with antibacterial activity, repositioned recently as anti-cancer agents. Glutamic acid (GLA) is an amino acid that affects human metabolism. Since an anti-cancer mechanism of FQs is human topoisomerase II inhibition, it is expected that FQ-GLA hybrids can act similarly. Methods: We designed 27 hypothetical hybrids of 6 FQs and GLA through amide bonds at the 3- and 7-position groups of FQs or via ethylenediamine/ethanolamine linkers at the carboxyl group of the FQ. Hydroxamic acid derivatives were also theoretically formulated. Computational methods were used to predict their physicochemical, pharmacokinetic, or toxicological properties and their anti-cancer activity. For comparison, etoposide was used as an anti-cancer agent inhibiting topoisomerase II. Molecular docking assessed whether the hybrids could interact with the human topoisomerase II beta in the same binding site and interaction sites as etoposide. Results: All the hybrids acted as potential topoisomerase II inhibitors, demonstrating possible anti-cancer activity on several cancer cell lines. Among all the proposed hybrids, MF-7-GLA would be the ideal candidate as a lead compound. The hybrid OF-3-EDA-GLA and the hydroxamic acid derivatives also stood out. Conclusions: Both FQs and GLA have advantageous structures for obtaining hybrids with favourable properties. Improvements in the hybrids' structure could lead to promising results.
Collapse
Affiliation(s)
- Octavia-Laura Oancea
- Organic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Șerban Andrei Gâz
- Organic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Gabriel Marc
- Organic Chemistry Department, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Ioana-Andreea Lungu
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Aura Rusu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
6
|
Al Khzem AH, Gomaa MS, Alturki MS, Tawfeeq N, Sarafroz M, Alonaizi SM, Al Faran A, Alrumaihi LA, Alansari FA, Alghamdi AA. Drug Repurposing for Cancer Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:12441. [PMID: 39596504 PMCID: PMC11595001 DOI: 10.3390/ijms252212441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer ranks among the primary contributors to global mortality. In 2022, the global incidence of new cancer cases reached about 20 million, while the number of cancer-related fatalities reached 9.7 million. In Saudi Arabia, there were 13,399 deaths caused by cancer and 28,113 newly diagnosed cases of cancer. Drug repurposing is a drug discovery strategy that has gained special attention and implementation to enhance the process of drug development due to its time- and money-saving effect. It involves repositioning existing medications to new clinical applications. Cancer treatment is a therapeutic area where drug repurposing has shown the most prominent impact. This review presents a compilation of medications that have been repurposed for the treatment of various types of cancers. It describes the initial therapeutic and pharmacological classes of the repurposed drugs and their new applications and mechanisms of action in cancer treatment. The review reports on drugs from various pharmacological classes that have been successfully repurposed for cancer treatment, including approved ones and those in clinical trials and preclinical development. It stratifies drugs based on their anticancer repurpose as multi-type, type-specific, and mechanism-directed, and according to their pharmacological classes. The review also reflects on the future potential that drug repurposing has in the clinical development of novel anticancer therapies.
Collapse
Affiliation(s)
- Abdulaziz H. Al Khzem
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Mohamed S. Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Mansour S. Alturki
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Nada Tawfeeq
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Mohammad Sarafroz
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (M.S.A.); (N.T.); (M.S.)
| | - Shareefa M. Alonaizi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Alhassan Al Faran
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Laela Ahmed Alrumaihi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Fatimah Ahmed Alansari
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| | - Abdullah Abbas Alghamdi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Saudi Arabia; (S.M.A.); (A.A.F.); (L.A.A.); (F.A.A.); (A.A.A.)
| |
Collapse
|
7
|
Kassab AE, Gomaa RM, Gedawy EM. Drug repurposing of fluoroquinolones as anticancer agents in 2023. RSC Adv 2024; 14:37114-37130. [PMID: 39569131 PMCID: PMC11578043 DOI: 10.1039/d4ra03571b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Drug developers are currently focusing on investigating alternative strategies, such as "drug repositioning", to address issues associated with productivity, regulatory obstacles, and the steadily rising cost of pharmaceuticals. Repositioning is the best strategy to stop searching for new drugs because it takes less time and money to investigate new indications for already approved or unsuccessful drugs. Although there are several potent Topo II inhibitors available on the market as important drugs used in the therapy of many types of cancer, more may be required in the future. The current inhibitors have drawbacks including acquired resistance and unfavorable side effects such as cardiotoxicity and subsequent malignancy. A substantial body of research documented the cytotoxic potential of experimental fluoroquinolones (FQs) on tumor cell lines and their remarkable efficacy against eukaryotic Topo II in addition to optimized physical and metabolic characteristics. The FQ scaffold has a unique ability to potentially resolve every major issue associated with traditional Topo II inhibitors while maintaining a highly desirable profile in crucial drug-likeness parameters; therefore, there is a significant chance that FQs will be repositioned as anticancer candidates. This review offers a summary of the most recent research on the anticancer potential of FQs that was published in 2023. Along with discussing structural activity relationship studies and the mechanism underlying their antiproliferative activity, this review aims to provide up-to-date information that will spur the development of more potent FQs as viable cancer treatment candidates.
Collapse
Affiliation(s)
- Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University Kasr El-Aini Street, P. O. Box 11562 Cairo Egypt
| | - Rania M Gomaa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University P. O. Box 35516 Mansoura Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC) Badr City, P. O. Box 11829 Cairo Egypt +2023635140 +2023639307
| | - Ehab M Gedawy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University Kasr El-Aini Street, P. O. Box 11562 Cairo Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC) Badr City, P. O. Box 11829 Cairo Egypt +2023635140 +2023639307
| |
Collapse
|
8
|
Ali DME, Aziz HA, Bräse S, Al Bahir A, Alkhammash A, Abuo-Rahma GEDA, Elshamsy AM, Hashem H, Abdelmagid WM. Unveiling the Anticancer Potential of a New Ciprofloxacin-Chalcone Hybrid as an Inhibitor of Topoisomerases I & II and Apoptotic Inducer. Molecules 2024; 29:5382. [PMID: 39598770 PMCID: PMC11596536 DOI: 10.3390/molecules29225382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
The current study has yielded promising results in the evaluation of a new ciprofloxacin-chalcone hybrid (CP derivative) for its anticancer activity as potential Topoisomerases (Topo) I and II inhibitors. The in vitro results showed that the CP derivative significantly suppressed the growth of HCT-116 and LOX IMVI cells, with IC50 values of 5.0 μM and 1.3 μM, respectively, outperforming Staurosporine, which had IC50 values of 8.4 μM and 1.6 μM, respectively. Flow cytometry analysis revealed that the new CP derivative triggered apoptosis and cell cycle arrest at the G2/M phase, associated with the up-regulation of pro-apoptotic genes (Bax and Caspase 9) and downregulation of the anti-apoptotic gene (Bcl-2). Further investigations showed that the CP derivative inhibited Topo I and II enzymes, as expected molecular targets; docking studies further supported its dual inhibitory action on Topo I and II. These findings suggest that the ciprofloxacin-chalcone hybrid could be a promising lead compound for developing new anticancer therapy.
Collapse
Affiliation(s)
| | - Hossameldin A. Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Valley University, New Valley 72511, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Areej Al Bahir
- Chemistry Department, Faculty of Science, King Khalid University, Abha 64734, Saudi Arabia
| | - Abdullah Alkhammash
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Gamal El-Din A. Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia City 61768, Egypt
| | - Ali M. Elshamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia City 61768, Egypt
| | - Hamada Hashem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Walid M. Abdelmagid
- Medicinal Chemistry and Drug Discovery Research Centre, Swenam College, 210-6125 Sussex Avenue, Burnaby, BC V5H 4G1, Canada;
| |
Collapse
|
9
|
Suleiman G, El Brahmi N, Guillaumet G, El Kazzouli S. Advances in the Synthesis and Biological Applications of Enoxacin-Based Compounds. Biomolecules 2024; 14:1419. [PMID: 39595595 PMCID: PMC11592230 DOI: 10.3390/biom14111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
A comprehensive review of advances in the synthesis and biological applications of enoxacin (1, referred to as ENX)-based compounds is presented. ENX, a second-generation fluoroquinolone (FQ), is a prominent 1,8-naphthyridine containing compounds studied in medicinal chemistry. Quinolones, a class of synthetic antibiotics, are crucial building blocks for designing multi-biological libraries due to their inhibitory properties against DNA replication. Chemical modifications at positions 3 and 7 of the quinolone structure can transform antibacterial FQs into anticancer analogs. ENX and its derivatives have been examined for various therapeutic applications, including anticancer, antiviral, and potential treatment against COVID-19. Several synthetic methodologies have been devised for the efficient and versatile synthesis of ENX and its derivatives. This review emphasizes all-inclusive developments in the synthesis of ENX derivatives, focusing on modifications at C3 (carboxylic acid, Part A), C7 (piperazinyl, Part B), and other modifications (Parts A and B). The reactions considered were chosen based on their reproducibility, ease of execution, accessibility, and the availability of the methodology reported in the literature. This review provides valuable insights into the medicinal properties of these compounds, highlighting their potential as therapeutic agents in various fields.
Collapse
Affiliation(s)
- Garba Suleiman
- Euromed Research Center, School of Engineering in Biomedical and Biotechnology, Euromed University of Fes (UEMF), Fez 30000, Morocco; (G.S.); (N.E.B.)
| | - Nabil El Brahmi
- Euromed Research Center, School of Engineering in Biomedical and Biotechnology, Euromed University of Fes (UEMF), Fez 30000, Morocco; (G.S.); (N.E.B.)
| | - Gérald Guillaumet
- Euromed Research Center, School of Engineering in Biomedical and Biotechnology, Euromed University of Fes (UEMF), Fez 30000, Morocco; (G.S.); (N.E.B.)
- Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, BP 6759, CEDEX 2, 45067 Orléans, France
| | - Saïd El Kazzouli
- Euromed Research Center, School of Engineering in Biomedical and Biotechnology, Euromed University of Fes (UEMF), Fez 30000, Morocco; (G.S.); (N.E.B.)
| |
Collapse
|
10
|
Arabiyat S, Alzoubi A, Al-Daghistani H, Al-Hiari Y, Kasabri V, Alkhateeb R. Evaluation of Quinoline-Related Carboxylic Acid Derivatives as Prospective Differentially Antiproliferative, Antioxidative, and Anti-Inflammatory Agents. Chem Biol Drug Des 2024; 104:e14615. [PMID: 39358207 DOI: 10.1111/cbdd.14615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/27/2024] [Accepted: 08/17/2024] [Indexed: 10/04/2024]
Abstract
The higher prevalence of cancer and the unmet need for antioxidant/anti-inflammatory chemotherapeutic compounds with little side effect are of utmost importance. In addition, the increased likelihood of failure in clinical trials along with increasing development costs may have diminished the range of choices among newer drugs for clinical use. This has dictated the necessity to seek out novel medications by repurposing as it needs less time, effort, and resources to explore new uses of a current or unsuccessful medication. In this study, we examined the biological activity of 10 potential quinoline derivatives. Given the half-maximal inhibitory concentration (IC50 value) in lipopolysaccharide (LPS) induced inflammation of RAW264.7 mouse macrophages, all commercial FQs and selected quinolines (quinoline-4-carboxlic and quinoline-3-carboxylic acids) exerted impressively appreciable anti-inflammation affinities versus classical NSAID indomethacin without related cytotoxicities in inflamed macrophages. Conversely, all 14 tested compounds lacked antioxidative DPPH radical scavenging capacities as compared to ascorbic acid. Gemifloxacin, considerably unlike markets FQs, indomethacin and quinoline derivatives, exerted exceptional and differential antiproliferation propensities in colorectum SW480, HCT116, and CACO2, pancreatic PANC1, prostate PC3, mammary T47D, lung A375, and melanoma A549 adherent monolayers using the sulforhodamine B colorimetric method versus antineoplastic cisplatin. All quinoline derivatives and gemifloxacin alike, but not levofloxacin, ciprofloxacin, or indomethacin, displayed substantially selective viability reduction affinities in prolonged tumor incubations of cervical HELA and mammary MCF7 cells. Specifically kynurenic acid (hydrate), quinoline-2-carboxylic acid, quinoline-4-carboxylic acid, quinoline-3-carboxylic acid, and 1,2-dihydro-2-oxo-4-quinoline carboxylic acids possessed the most remarkable growth inhibition capacities against mammary MCF7 cell line, while quinoline-2-carboxylic acid was the only quinoline derivative with significant cytotoxicity on cervical HELA cancer cells. It is highly speculated that chelation with divalent metals via co-planarity with close proximity of the COOH and the N atom could have the potential molecular mechanism for optimally promising repurposed pharmacologies. Conclusively, this study revealed the considerably profound repurposed duality of cytotoxicity and anti-inflammation pharmacologies of quinoline derivatives. Activity-guided structural modifications of the present nuclear scaffolds can be inherently linked to the betterment and enhancement of their repurposed pharmacologies.
Collapse
Affiliation(s)
| | - Ahmad Alzoubi
- Department of Medical Laboratory Sciences, Faculty of Medical Allied Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Hala Al-Daghistani
- Department of Medical Laboratory Sciences, Faculty of Medical Allied Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | | | | | | |
Collapse
|
11
|
Ridha-Salman H, Shihab EM, Hasan HK, Abbas AH, Khorsheed SM, Ayad Fakhri S. Mitigative Effects of Topical Norfloxacin on an Imiquimod-Induced Murine Model of Psoriasis. ACS Pharmacol Transl Sci 2024; 7:2739-2754. [PMID: 39296262 PMCID: PMC11406690 DOI: 10.1021/acsptsci.4c00152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/21/2024]
Abstract
Psoriasis is a chronic, inflammatory dermatosis characterized by thickened, reddened, and scaly skin lesions. Norfloxacin is a fluoroquinolone antibiotic with enhanced antioxidant, anti-inflammatory, and immunomodulatory bioactivities. The aim of this study was to figure out the possible impact of topical norfloxacin on an imiquimod-induced model of psoriasis in mice. Thirty albino-type mice were split into five distinct groups of six animals each. The control group included healthy mice that had not received any treatment. The induction group was given the vehicle 2 h after the topical imiquimod, once daily for 8 days. Two hours after receiving topical imiquimod, the treatment groups including calcipotriol, norfloxacin 2.5%, and norfloxacin 5% were given topical ointments containing calcipotriol 0.005%, norfloxacin 2.5%, and norfloxacin 5%, for 8 days. Topical norfloxacin ointment significantly reduced the severity of imiquimod-exacerbated psoriatic lesions including erythema, shiny-white scaling, and acanthosis and fixed histological abnormalities. Furthermore, imiquimod-subjected mice treated with a higher concentration of norfloxacin ointment exhibited dramatically lower skin levels of inflammation-related biomarkers like IFN-γ, TNF-α, IL-6, IL-17A, IL-23, and TGF-β but higher levels of IL-10. They also demonstrated a notable decrease in angiogenesis parameters such as VEGF and IL-8, a substantial reduction in oxidative indicators like MDA and MPO, and a considerable rise in antioxidant enzymes like SOD and CAT. This study offers novel evidence that norfloxacin may assist in controlling inflammatory dermatoses like psoriasis by minimizing the severity of psoriatic plaques, correcting histological alterations, and diminishing the production of inflammatory, oxidative, and angiogenetic parameters.
Collapse
Affiliation(s)
- Hayder Ridha-Salman
- Department of Pharmacology, College of Pharmacy, Al-Mustaqbal University, Hillah 51001, Babylon +964, Iraq
| | - Elaf Mahmood Shihab
- Department of Pharmacology, College of Pharmacy, Al-Esraa University, Baghdad +964, Iraq
| | - Hasanain Kamil Hasan
- Department of Pharmacology, College of Pharmacy, Al-Mustaqbal University, Hillah 51001, Babylon +964, Iraq
| | - Alaa Hamza Abbas
- Department of Pharmacology, College of Pharmacy, Al-Mustaqbal University, Hillah 51001, Babylon +964, Iraq
| | | | - Salar Ayad Fakhri
- Department of Pharmacology, College of Pharmacy, Al-Esraa University, Baghdad +964, Iraq
| |
Collapse
|
12
|
Mahmoud Z, Ismail MM, Kamel M, Youssef A. Levofloxacin reposition-based design: synthesis, biological evaluation of new levofloxacin derivatives targeting topoisomerase II beta polymerase as promising anticancer agents, molecular docking, and physicochemical characterization. RSC Adv 2024; 14:28098-28119. [PMID: 39228758 PMCID: PMC11369887 DOI: 10.1039/d4ra03975k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
Repositioning of already approved medications through repurposing or re-profiling for new medical uses after certain structural modifications is a novel approach in drug discovery. Fluoroquinolone antibiotics are one of the cardinal agents investigated for potential anticancer activities. In this work, levofloxacin was repositioned for anticancer activities. A series of levofloxacin-based compounds were designed and synthesized through the derivatization of levofloxacin's carboxylic acid functionality. The newly synthesized compounds were screened for cytotoxic activities against breast, liver, and leukemia cancer cell lines. Their effect on normal cells was also investigated. The target compounds were evaluated for their proliferative inhibitory activity toward topoisomerase II beta polymerization. Compound 5 showed higher inhibitory activity against a breast cancer cell line (MCF-7) with IC50 = 1.4 μM and lesser side effects on a normal breast cell line (MCF-10a) with IC50 = 30.40 μM than reference drugs. The best activity against a liver cancer cell line (Hep3B) was exhibited by compounds 3c, 4b, 5, 7, 8, 13a and 13c with IC50 values ranging from 0.43 to 8.79 μM. Regarding the effect of compounds 5 and 13a on a leukemia cancer cell line (L-SR), their IC50 values were 0.96 and 3.12 μM, respectively. Compounds 3c and 5 showed Topo2β inhibitory effects on Hep3B cells (81.33% and 83.73%, respectively), which was better than levofloxacin and etoposide as reference drugs. Cytometry cell cycle analysis revealed that compounds 3c and 5 arrested the cell cycle at the S phase (37.56% and 39.09%, respectively). Compounds 3c and 5 exhibited an elevation in active caspase-3 levels by 4.9 and 4.5 folds, respectively. Molecular modeling simulation of compounds 3c and 5 demonstrated energy scores (-29.77 and -20.46 kcal mol-1, respectively) more than those of the reference drugs as they interact with the most essential amino acids required for good affinity towards human topoisomerase II beta enzyme (PDB ID: 3QX3). Physicochemical characteristics of the most promising cytotoxic compounds 3c and 5 were investigated and compared to etoposide and levofloxacin as reference drugs. However, they showed high gastrointestinal absorption and could not penetrate the blood-brain barrier.
Collapse
Affiliation(s)
- Zeinab Mahmoud
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University 11561 Cairo Egypt
| | - Mohamed M Ismail
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology P. O. Box 77 Giza Egypt +201285266644
| | - Mona Kamel
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University 11561 Cairo Egypt
| | - Amira Youssef
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology P. O. Box 77 Giza Egypt +201285266644
| |
Collapse
|
13
|
Bardaweel SK, AlOmari R, Hajjo R. Integrating computational and experimental chemical biology revealed variable anticancer activities of phosphodiesterase isoenzyme 5 inhibitors (PDE5i) in lung cancer. RSC Med Chem 2024; 15:2882-2899. [PMID: 39149110 PMCID: PMC11324042 DOI: 10.1039/d4md00364k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
Phosphodiesterase 5 (PDE5), an enzyme responsible for catalyzing the degradation of cyclic guanosine monophosphate (cGMP), has been linked to the development of cancer. PDE5 inhibitors (PDE5i), such as sildenafil (Viagra) and tadalafil (Cialis), work by blocking the action of PDE5 and are used primarily as treatments for erectile dysfunction and arterial hypertension. Some studies suggested a potential link between PDE5i and increased cancer risk, while other studies showed preferable antitumor effects. The present study is attempting to shed light on the systems biology effects of PDE5i by applying an integrative informatics approach followed by experimental validation methods including cell viability, cell motility, and proliferation capacity. Cell cycle and apoptosis analyses were carried out using flow cytometry, while real-time polymerase chain reaction (PCR) and western blotting were used to determine the relative gene and protein expression respectively. Our results indicated that the examined PDE5i significantly inhibited the proliferation of lung cancer cells, in addition to reducing wound closure and the mean colony count and size. Furthermore, PDE5i increased the early and late apoptotic activities and suppressed the gene and protein expression of PDE5 in lung cancer cells. The combination of cisplatin and raloxifene with PDE5i resulted in a synergistic effect. This study provides solid evidence supporting the anti-tumorigenic effect of PDE5i in lung cancer cells.
Collapse
Affiliation(s)
- Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan Amman 11942 Jordan
| | - Rola AlOmari
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan Amman 11942 Jordan
| | - Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan P.O. Box 130 Amman 11733 Jordan
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill NC USA
- Board Member, Jordan CDC Amman Jordan
| |
Collapse
|
14
|
Ibrahim UH, Gafar MA, Khan R, Tageldin A, Govender T, Mackraj I. Engineered extracellular vesicles coated with an antimicrobial peptide for advanced control of bacterial sepsis. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70000. [PMID: 39185334 PMCID: PMC11342353 DOI: 10.1002/jex2.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
Alarming sepsis-related mortality rates present significant challenges to healthcare services globally. Despite advances made in the field, there is still an urgent need to develop innovative approaches that could improve survival rates and reduce the overall cost of treatment for sepsis patients. Therefore, this study aimed to develop a novel multifunctional therapeutic agent for advanced control of bacterial sepsis. Extracellular vesicles (EVs) isolated from lipopolysaccharide (LPS) induced HepG2 (hepatocellular carcinoma cells) (iEV) displayed an average particle size of 171.63 ± 2.77 nm, a poly dispersion index (PDI) of 0.32 ± 0.0, and a zeta potential (ZP) of -11.87 ± 0.18 mV. Compared to HepG2 EV, LPS induction significantly increases the EV protein concentration, PDI and ZP, reduces the average size and promotes cell proliferation and cytoprotective effects of the isolated EVs (iEVs) against LPS-induced cytotoxicity. Coating of iEV with a cationic antimicrobial peptide (AMP) to form PC-iEV slightly changed their physical properties and shifted their surface charge toward neutral values. This modification improved the antibacterial activity (2-fold lower minimum bactericidal concentration [MBC] values) and biocompatibility of the conjugated peptide while maintaining iEV cytoprotective and anti-inflammatory activities. Our findings indicate the superior anti-inflammatory and antibacterial dual activity of PC-iEV against pathogens associated with sepsis.
Collapse
Affiliation(s)
- Usri H. Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Mohammed A. Gafar
- Discipline of Pharmaceutical Sciences, College of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Rene Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical ScienceUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Abdelrahman Tageldin
- Discipline of Pharmaceutical Sciences, College of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Irene Mackraj
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| |
Collapse
|
15
|
Nowakowska J, Radomska D, Czarnomysy R, Marciniec K. Recent Development of Fluoroquinolone Derivatives as Anticancer Agents. Molecules 2024; 29:3538. [PMID: 39124943 PMCID: PMC11314068 DOI: 10.3390/molecules29153538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer is the second leading cause of death in the world following cardiovascular disease. Its treatment, including radiation therapy and surgical removal of the tumour, is based on pharmacotherapy, which prompts a constant search for new and more effective drugs. There are high costs associated with designing, synthesising, and marketing new substances. Drug repositioning is an attractive solution. Fluoroquinolones make up a group of synthetic antibiotics with a broad spectrum of activity in bacterial diseases. Moreover, those compounds are of particular interest to researchers as a result of reports of their antiproliferative effects on the cells of the most lethal cancers. This article presents the current progress in the development of new fluoroquinolone derivatives with potential anticancer and cytotoxic activity, as well as structure-activity relationships, along with possible directions for further development.
Collapse
Affiliation(s)
- Justyna Nowakowska
- Department of Organic Chemistry, Medical University of Silesia, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Dominika Radomska
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (D.R.); (R.C.)
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (D.R.); (R.C.)
| | - Krzysztof Marciniec
- Department of Organic Chemistry, Medical University of Silesia, Jagiellonska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
16
|
Bano N, Parveen S, Saeed M, Siddiqui S, Abohassan M, Mir SS. Drug Repurposing of Selected Antibiotics: An Emerging Approach in Cancer Drug Discovery. ACS OMEGA 2024; 9:26762-26779. [PMID: 38947816 PMCID: PMC11209889 DOI: 10.1021/acsomega.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024]
Abstract
Drug repurposing is a method of investigating new therapeutic applications for previously approved medications. This repurposing approach to "old" medications is now highly efficient, simple to arrange, and cost-effective and poses little risk of failure in treating a variety of disorders, including cancer. Drug repurposing for cancer therapy is currently a key topic of study. It is a way of exploring recent therapeutic applications for already-existing drugs. Theoretically, the repurposing strategy has various advantages over the recognized challenges of creating new molecular entities, including being faster, safer, easier, and less expensive. In the real world, several medications have been repurposed, including aspirin, metformin, and chloroquine. However, doctors and scientists address numerous challenges when repurposing drugs, such as the fact that most drugs are not cost-effective and are resistant to bacteria. So the goal of this review is to gather information regarding repurposing pharmaceuticals to make them more cost-effective and harder for bacteria to resist. Cancer patients are more susceptible to bacterial infections. Due to their weak immune systems, antibiotics help protect them from a variety of infectious diseases. Although antibiotics are not immune boosters, they do benefit the defense system by killing bacteria and slowing the growth of cancer cells. Their use also increases the therapeutic efficacy and helps avoid recurrence. Of late, antibiotics have been repurposed as potent anticancer agents because of the evolutionary relationship between the prokaryotic genome and mitochondrial DNA of eukaryotes. Anticancer antibiotics that prevent cancer cells from growing by interfering with their DNA and blocking growth of promoters, which include anthracyclines, daunorubicin, epirubicin, mitoxantrone, doxorubicin, and idarubicin, are another type of FDA-approved antibiotics used to treat cancer. According to the endosymbiotic hypothesis, prokaryotes and eukaryotes are thought to have an evolutionary relationship. Hence, in this study, we are trying to explore antibiotics that are necessary for treating diseases, including cancer, helping people reduce deaths associated with various infections, and substantially extending people's life expectancy and quality of life.
Collapse
Affiliation(s)
- Nilofer Bano
- Molecular
Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary
Research (ICEIR-4), Integral University, Kursi Road, Lucknow 226026, India
- Department
of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Sana Parveen
- Molecular
Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary
Research (ICEIR-4), Integral University, Kursi Road, Lucknow 226026, India
- Department
of Biosciences, Faculty of Science, Integral
University, Kursi Road, Lucknow 226026, India
| | - Mohd Saeed
- Department
of Biology, College of Sciences, University
of Hail, P.O. Box 2240, Hail 55476, Saudi Arabia
| | - Samra Siddiqui
- Department
of Health Services Management, College of Public Health and Health
Informatics, University of Hail, Hail 55476, Saudi Arabia
| | - Mohammad Abohassan
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Snober S. Mir
- Molecular
Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary
Research (ICEIR-4), Integral University, Kursi Road, Lucknow 226026, India
- Department
of Biosciences, Faculty of Science, Integral
University, Kursi Road, Lucknow 226026, India
| |
Collapse
|
17
|
Ferrario N, Marras E, Vivona V, Randisi F, Fallica AN, Marrazzo A, Perletti G, Gariboldi MB. Mechanisms of the Antineoplastic Effects of New Fluoroquinolones in 2D and 3D Human Breast and Bladder Cancer Cell Lines. Cancers (Basel) 2024; 16:2227. [PMID: 38927932 PMCID: PMC11201967 DOI: 10.3390/cancers16122227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Antibacterial fluoroquinolones have emerged as potential anticancer drugs, thus prompting the synthesis of novel molecules with improved cytotoxic characteristics. Ciprofloxacin and norfloxacin derivatives, previously synthesized by our group, showed higher anticancer potency than their progenitors. However, no information about their mechanisms of action was reported. In this study, we selected the most active among these promising molecules and evaluated, on a panel of breast (including those triple-negative) and bladder cancer cell lines, their ability to induce cell cycle alterations and apoptotic and necrotic cell death through cytofluorimetric studies. Furthermore, inhibitory effects on cellular migration, metalloproteinase, and/or acetylated histone protein levels were also evaluated by the scratch/wound healing assay and Western blot analyses, respectively. Finally, the DNA relaxation assay was performed to confirm topoisomerase inhibition. Our results indicate that the highest potency previously observed for the derivatives could be related to their ability to induce G2/M cell cycle arrest and apoptotic and/or necrotic cell death. Moreover, they inhibited cellular migration, probably by reducing metalloproteinase levels and histone deacetylases. Finally, topoisomerase inhibition, previously observed in silico, was confirmed. In conclusion, structural modifications of progenitor fluoroquinolones resulted in potent anticancer derivatives possessing multiple mechanisms of action, potentially exploitable for the treatment of aggressive/resistant cancers.
Collapse
Affiliation(s)
- Nicole Ferrario
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (N.F.); (E.M.); (V.V.); (F.R.); (G.P.)
| | - Emanuela Marras
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (N.F.); (E.M.); (V.V.); (F.R.); (G.P.)
| | - Veronica Vivona
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (N.F.); (E.M.); (V.V.); (F.R.); (G.P.)
| | - Federica Randisi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (N.F.); (E.M.); (V.V.); (F.R.); (G.P.)
| | - Antonino Nicolò Fallica
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.N.F.); (A.M.)
| | - Agostino Marrazzo
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.N.F.); (A.M.)
| | - Gianpaolo Perletti
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (N.F.); (E.M.); (V.V.); (F.R.); (G.P.)
| | - Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (N.F.); (E.M.); (V.V.); (F.R.); (G.P.)
| |
Collapse
|
18
|
Khwaza V, Mlala S, Aderibigbe BA. Advancements in Synthetic Strategies and Biological Effects of Ciprofloxacin Derivatives: A Review. Int J Mol Sci 2024; 25:4919. [PMID: 38732134 PMCID: PMC11084713 DOI: 10.3390/ijms25094919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Ciprofloxacin is a widely used antibiotic in the fluoroquinolone class. It is widely acknowledged by various researchers worldwide, and it has been documented to have a broad range of other pharmacological activities, such as anticancer, antiviral, antimalarial activities, etc. Researchers have been exploring the synthesis of ciprofloxacin derivatives with enhanced biological activities or tailored capability to target specific pathogens. The various biological activities of some of the most potent and promising ciprofloxacin derivatives, as well as the synthetic strategies used to develop them, are thoroughly reviewed in this paper. Modification of ciprofloxacin via 4-oxo-3-carboxylic acid resulted in derivatives with reduced efficacy against bacterial strains. Hybrid molecules containing ciprofloxacin scaffolds displayed promising biological effects. The current review paper provides reported findings on the development of novel ciprofloxacin-based molecules with enhanced potency and intended therapeutic activities which will be of great interest to medicinal chemists.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, South Africa;
| | | | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, South Africa;
| |
Collapse
|
19
|
Sharma S, Chauhan A, Ranjan A, Mathkor DM, Haque S, Ramniwas S, Tuli HS, Jindal T, Yadav V. Emerging challenges in antimicrobial resistance: implications for pathogenic microorganisms, novel antibiotics, and their impact on sustainability. Front Microbiol 2024; 15:1403168. [PMID: 38741745 PMCID: PMC11089201 DOI: 10.3389/fmicb.2024.1403168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Overuse of antibiotics is accelerating the antimicrobial resistance among pathogenic microbes which is a growing public health challenge at the global level. Higher resistance causes severe infections, high complications, longer stays at hospitals and even increased mortality rates. Antimicrobial resistance (AMR) has a significant impact on national economies and their health systems, as it affects the productivity of patients or caregivers due to prolonged hospital stays with high economic costs. The main factor of AMR includes improper and excessive use of antimicrobials; lack of access to clean water, sanitation, and hygiene for humans and animals; poor infection prevention and control measures in hospitals; poor access to medicines and vaccines; lack of awareness and knowledge; and irregularities with legislation. AMR represents a global public health problem, for which epidemiological surveillance systems have been established, aiming to promote collaborations directed at the well-being of human and animal health and the balance of the ecosystem. MDR bacteria such as E. coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus spp., Acinetobacter spp., and Klebsiella pneumonia can even cause death. These microorganisms use a variety of antibiotic resistance mechanisms, such as the development of drug-deactivating targets, alterations in antibiotic targets, or a decrease in intracellular antibiotic concentration, to render themselves resistant to numerous antibiotics. In context, the United Nations issued the Sustainable Development Goals (SDGs) in 2015 to serve as a worldwide blueprint for a better, more equal, and more sustainable existence on our planet. The SDGs place antimicrobial resistance (AMR) in the context of global public health and socioeconomic issues; also, the continued growth of AMR may hinder the achievement of numerous SDGs. In this review, we discuss the role of environmental pollution in the rise of AMR, different mechanisms underlying the antibiotic resistance, the threats posed by pathogenic microbes, novel antibiotics, strategies such as One Health to combat AMR, and the impact of resistance on sustainability and sustainable development goals.
Collapse
Affiliation(s)
- Shikha Sharma
- Amity Institute of Environmental Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Seema Ramniwas
- University Centre for Research & Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, Punjab, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, India
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
20
|
Chung CL, Chen CL. Fluoroquinolones upregulate insulin-like growth factor-binding protein 3, inhibit cell growth and insulin-like growth factor signaling. Eur J Pharmacol 2024; 969:176421. [PMID: 38423242 DOI: 10.1016/j.ejphar.2024.176421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Fluoroquinolones (FQs), commonly known for their antibiotic properties, exhibit additional pharmacological potential with anti-proliferative effects on various malignant cell types and immunomodulatory responses. Despite these observed effects, the precise mechanisms of action remain elusive. This study elucidates the biological impact of FQs on insulin-like growth factor-binding protein 3 (IGFBP-3) productions in a p53-dependent manner. Cultured cells and mouse models treated with FQs demonstrated increased IGFBP-3 mRNA expression and protein secretion. The FQ-induced IGFBP-3 was identified to impede cell growth by inhibiting IGF-I signaling and exerting effects through an IGF-independent pathway. Notably, FQ-mediated suppression of cell proliferation was reversed in p53-null and p53 knockdown cells, suggesting the pivotal role of p53 in FQ-induced IGFBP-3 production and IGFBP-3-mediated growth inhibition. Additionally, ciprofloxacin, a clinically used FQ, exhibited the induction of tumor cell apoptosis and attenuation of tumor growth in a syngeneic mouse hepatocellular carcinoma (HCC) model. These findings unveil a novel mechanism through which FQs act as anti-proliferative agents, prompting further exploration of their potential utility or derivative compounds in cancer treatment and prevention.
Collapse
Affiliation(s)
- Chih-Ling Chung
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Chun-Lin Chen
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
21
|
Yudhawati R, Wicaksono NF. Immunomodulatory Effects of Fluoroquinolones in Community-Acquired Pneumonia-Associated Acute Respiratory Distress Syndrome. Biomedicines 2024; 12:761. [PMID: 38672119 PMCID: PMC11048665 DOI: 10.3390/biomedicines12040761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Community-acquired pneumonia is reported as one of the infectious diseases that leads to the development of acute respiratory distress syndrome. The innate immune system is the first line of defence against microbial invasion; however, its dysregulation during infection, resulting in an increased pathogen load, stimulates the over-secretion of chemokines and pro-inflammatory cytokines. This phenomenon causes damage to the epithelial-endothelial barrier of the pulmonary alveoli and the leakage of the intravascular protein into the alveolar lumen. Fluoroquinolones are synthetic antimicrobial agents with immunomodulatory properties that can inhibit bacterial proliferation as well as exhibit anti-inflammatory activities. It has been demonstrated that the structure of fluoroquinolones, particularly those with a cyclopropyl group, exerts immunomodulatory effects. Its capability to inhibit phosphodiesterase activity leads to the accumulation of intracellular cAMP, which subsequently enhances PKA activity, resulting in the inhibition of transcriptional factor NF-κB and the activation of CREB. Another mechanism reported is the inhibition of TLR and ERK signalling pathways. Although the sequence of events has not been completely understood, significant progress has been made in comprehending the specific mechanisms underlying the immunomodulatory effects of fluoroquinolones. Here, we review the indirect immunomodulatory effects of FQs as an alternative to empirical therapy in patients diagnosed with community-acquired pneumonia.
Collapse
Affiliation(s)
- Resti Yudhawati
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
- Department of Pulmonology and Respiratory Medicine, Universitas Airlangga Teaching Hospital, Surabaya 60015, Indonesia
- Department of Pulmonology and Respiratory Medicine, Dr. Soetomo General Hospital, Surabaya 60286, Indonesia
| | | |
Collapse
|
22
|
Azzman N, Anwar S, Syazani Mohamed WA, Ahemad N. Quinolone Derivatives as Anticancer Agents: Importance in Medicinal Chemistry. Curr Top Med Chem 2024; 24:1134-1157. [PMID: 38591202 DOI: 10.2174/0115680266300736240403075307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
Quinolone is a heterocyclic compound containing carbonyl at the C-2 or C-4 positions with nitrogen at the C-1 position. The scaffold was first identified for its antibacterial properties, and the derivatives were known to possess many pharmacological activities, including anticancer. In this review, the quinolin-2(H)-one and quinolin-4(H)-one derivatives were identified to inhibit several various proteins and enzymes involved in cancer cell growth, such as topoisomerase, microtubules, protein kinases, phosphoinositide 3-kinases (PI3K) and histone deacetylase (HDAC). Hybrids of quinolone with curcumin or chalcone, 2-phenylpyrroloquinolin-4-one and 4-quinolone derivatives have demonstrated strong potency against cancer cell lines. Additionally, quinolones have been explored as inhibitors of protein kinases, including EGFR and VEGFR. Therefore, this review aims to consolidate the medicinal chemistry of quinolone derivatives in the pipeline and discuss their similarities in terms of their pharmacokinetic profiles and potential target sites to provide an understanding of the structural requirements of anticancer quinolones.
Collapse
Affiliation(s)
- Nursyuhada Azzman
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Pulau Pinang Kampus Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Sirajudheen Anwar
- Department of Pharmacology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Wan Ahmad Syazani Mohamed
- Nutrition Unit, Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Level 3, Block C, Institute for Medical Research (IMR), National Institutes of Health (NIH) Complex, Ministry of Health Malaysia (MOH), No.1, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170 Shah Alam, Selangor, Malaysia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
23
|
Khwaza V, Oselusi SO, Morifi E, Nwamadi M, Hlope KS, Ndinteh DT, Matsebatlela TM, Oyedeji OO, Aderibigbe BA. Synthesis of Ursolic Acid-based Hybrids: In Vitro Antibacterial, Cytotoxicity Studies, In Silico Physicochemical and Pharmacokinetic Properties. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2024; 19:232-253. [PMID: 38317466 DOI: 10.2174/0127724344272444231114103144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND There is a critical need for the discovery of novel and effective antibacterial or anticancer molecules. OBJECTIVES Amine-linked ursolic acid-based hybrid compounds were prepared in good yields in the range of 60-68%. METHODS Their molecular structures were successfully confirmed using different spectroscopic methods including 1H/13C NMR, UHPLC-HRMS and FTIR spectroscopy. The in vitro cytotoxicity of some of these hybrid molecules against three human tumour cells, such as MDA-MB23, MCF7, and HeLa was evaluated using the MTT colorimetric method. RESULT Their antibacterial efficacy was evaluated against eleven bacterial pathogens using a serial dilution assay. Majority of the bacterial strains were inhibited significantly by compounds 17 and 24, with the lowest MIC values in the range of 15.3-31.25 μg/mL. Compound 16 exhibited higher cytotoxicity against HeLa cells than ursolic acid, with an IC50 value of 43.64 g/mL. CONCLUSION The in vitro antibacterial activity and cytotoxicity of these hybrid compounds demonstrated that ursolic acid-based hybrid molecules are promising compounds. Further research into ursolic acid-based hybrid compounds is required.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice, Eastern Cape, South Africa
| | - Samson Olaitan Oselusi
- School of Pharmacy, University of the Western Cape, Bellville, Cape Town 7535, South Africa
| | - Eric Morifi
- School of Chemistry, Mass Spectrometry Division, University of Witwatersrand, Johannesburg, South Africa
| | - Mutshinyalo Nwamadi
- Department of Chemistry, University of Johannesburg, Auckland Park Campus, Johannesburg, South Africa
| | - Kamogelo S Hlope
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Science and Agriculture, University of Limpopo, South Africa
| | - Derek Tantoh Ndinteh
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Thabe Moses Matsebatlela
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Science and Agriculture, University of Limpopo, South Africa
| | - Opeoluwa Oyehan Oyedeji
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice, Eastern Cape, South Africa
| | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice, Eastern Cape, South Africa
| |
Collapse
|
24
|
Salman HR, Al-Zubaidy AA, Abbas AH, Zigam QA. The ameliorative effects of topical gemifloxacin alone or in combination with clobetasol propionate on imiquimod-induced model of psoriasis in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:599-616. [PMID: 37490123 DOI: 10.1007/s00210-023-02629-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Psoriasis is a lifelong immune-driven skin condition characterized by excessive epidermal overgrowth and inflammatory cell infiltration. Gemifloxacin is a fourth-generation fluoroquinolone with improved immunomodulatory and anti-inflammatory properties that are believed to possess an attractive role in psoriasis via suppressing the production of cytokines, chemokines, and eosinophil and neutrophil chemotaxis. The aim of this research is to investigate the ameliorative effects of prolonged topical gemifloxacin (GMF) alone and combined with clobetasol propionate (CLO) on an imiquimod (IMQ)-induced mouse model of psoriasis. Forty-eight Swiss albino mice were divided into six groups of eight. All groups except the negative controls got 62.5 mg of IMQ 5% topically for 8 days. Mice in the control group (controls) got Vaseline instead. Following the induction in the IMQ 5% group, mice in treatment groups CLO 0.05, GMF 1%, GMF 3%, and CLO + GMF obtained clobetasol propionate 0.05%, GMF 1% and 3%, and a combination of both, respectively, for an additional 8 days, rendering the experiment 16 days long. Our results revealed that gemifloxacin alleviated erythematous, thickened, and scaly psoriatic lesions and inhibited the tissue level of inflammatory cytokines, including interleukin (IL)-8, IL-17A, IL-23, tumor necrosis factor-α (TNF-α), and transforming growth factor-β1 (TGF-β1). The anti-inflammatory effect also occurred by hindering nuclear factor-kappa B (NF-κB) signaling and reversing histopathological problems. Gemifloxacin acts effectively in mitigating psoriasis-associated lesions and restricting NF-κB-mediated inflammation, recommending gemifloxacin as a promising adjuvant candidate for additional studies on the long-term treatment of autoimmune and autoinflammatory dermatoses like psoriasis.
Collapse
Affiliation(s)
- Hayder Ridha Salman
- Department of Pharmacology, College of Pharmacy, Al-Mustaqbal University, 510001, Hillah, Babylon, Iraq.
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq.
| | - Adeeb Ahmed Al-Zubaidy
- Department of Pharmacology, College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Alaa Hamza Abbas
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Qassim A Zigam
- Department of Pharmacology, College of Pharmacy, Al-Mustaqbal University, 510001, Hillah, Babylon, Iraq
| |
Collapse
|
25
|
Peter S, Aderibigbe BA. Ciprofloxacin and Norfloxacin Hybrid Compounds: Potential Anticancer Agents. Curr Top Med Chem 2024; 24:644-665. [PMID: 38357952 DOI: 10.2174/0115680266288319240206052223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND The concept of utilizing drug repurposing/repositioning in the development of hybrid molecules is an important strategy in drug discovery. Fluoroquinolones, a class of antibiotics, have been reported to exhibit anticancer activities. Although anticancer drug development is achieving some positive outcomes, there is still a need to develop new and effective anticancer drugs. Some limitations associated with most of the available anticancer drugs are drug resistance and toxicity, poor bio-distribution, poor solubility, and lack of specificity, thereby reducing their therapeutic outcomes. OBJECTIVES Fluoroquinolones, a known class of antibiotics, have been explored by hybridizing them with other pharmacophores and evaluating their anticancer activity in silico and in vitro. Hence, this review provides an update on new anticancer drugs containing fluoroquinolones moiety, Ciprofloxacin and Norfloxacin between 2020 and 2023, their structural relationship activity, and the future strategies to develop potent chemotherapeutic agents. METHODS Fluoroquinolones were mostly hybridized via the N-4 of the piperazine ring on position C-7 with known pharmacophores characterized, followed by biological studies to evaluate their anticancer activity. RESULTS The hybrid molecules displayed promising and interesting anticancer activities. Factors such as the nature of the linker, the presence of electron-withdrawing groups, nature, and position of the substituents influenced the anticancer activity of the synthesized compounds. CONCLUSION The hybrids were selective towards some cancer cells. However, further in vivo studies are needed to fully understand their mode of action.
Collapse
Affiliation(s)
- Sijongesonke Peter
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice, Eastern Cape, South Africa
| | - Blessing A Aderibigbe
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice, Eastern Cape, South Africa
| |
Collapse
|
26
|
Li Y, Zhou X, Lyu Z. Analysis of two-gene signatures and related drugs in small-cell lung cancer by bioinformatics. Open Med (Wars) 2023; 18:20230806. [PMID: 37808164 PMCID: PMC10560035 DOI: 10.1515/med-2023-0806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Small-cell lung cancer (SCLC) has a poor prognosis and can be diagnosed with systemic metastases. Nevertheless, the molecular mechanisms underlying the development of SCLC are unclear, requiring further investigation. The current research aims to identify relevant biomarkers and available drugs to treat SCLC. The bioinformatics analysis comprised three Gene Expression Omnibus datasets (including GSE2149507, GSE6044, and GSE30219). Using the limma R package, we discovered differentially expressed genes (DEGs) in the current work. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were made by adopting the DAVID website. The DEG protein-protein interaction network was built based on the Search Tool for the Retrieval of Interacting Genes/Proteins website and visualized using the CytoHubba plugin in Cytoscape, aiming to screen the top ten hub genes. Quantitative real-time polymerase chain reaction was adopted for verifying the level of the top ten hub genes. Finally, the potential drugs were screened and identified using the QuartataWeb database. Totally 195 upregulated and 167 downregulated DEGs were determined. The ten hub genes were NCAPG, BUB1B, TOP2A, CCNA2, NUSAP1, UBE2C, AURKB, RRM2, CDK1, and KIF11. Ten FDA-approved drugs were screened. Finally, two genes and related drugs screened could be the prospective drug targets for SCLC treatment.
Collapse
Affiliation(s)
- Yi Li
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Xiwen Zhou
- Medical College, Shantou University, Shantou, China
| | - Zhi Lyu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Senior Cadres Ward, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
27
|
Najib Ullah SNM, Afzal O, Altamimi ASA, Alossaimi MA, Almalki WH, Alzahrani A, Barkat MA, Almeleebia TM, Alshareef H, Shorog EM, Khan G, Singh T, Singh JK. Bedaquiline-Loaded Solid Lipid Nanoparticles Drug Delivery in the Management of Non-Small-Cell Lung Cancer (NSCLC). Pharmaceuticals (Basel) 2023; 16:1309. [PMID: 37765117 PMCID: PMC10534335 DOI: 10.3390/ph16091309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 09/29/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) mortality and new case rates are both on the rise. Most patients have fewer treatment options accessible due to side effects from drugs and the emergence of drug resistance. Bedaquiline (BQ), a drug licensed by the FDA to treat tuberculosis (TB), has demonstrated highly effective anti-cancer properties in the past. However, it is difficult to transport the biological barriers because of their limited solubility in water. Our study developed a UPLC method whose calibration curves showed linearity in the range of 5 ng/mL to 500 ng/mL. The UPLC method was developed with a retention time of 1.42 and high accuracy and precision. Its LOQ and LOD were observed to be 10 ng/mL and 5 ng/mL, respectively, whereas in the formulation, capmul MCM C10, Poloxamer 188, and PL90G were selected as solid lipids, surfactants, and co-surfactants, respectively, in the development of SLN. To combat NSCLC, we developed solid lipid nanoparticles (SLNs) loaded with BQ, whereas BQ suspension is prepared by the trituration method using acacia powder, hydroxypropyl methylcellulose, polyvinyl acrylic acid, and BQ. The developed and optimized BQ-SLN3 has a particle size of 144 nm and a zeta potential of (-) 16.3 mV. whereas BQ-loaded SLN3 has observed entrapment efficiency (EE) and loading capacity (LC) of 92.05% and 13.33%, respectively. Further, BQ-loaded suspension revealed a particle size of 1180 nm, a PDI of 0.25, and a zeta potential of -0.0668. whereas the EE and LC of BQ-loaded suspension were revealed to be 88.89% and 11.43%, respectively. The BQ-SLN3 exhibited insignificant variation in particle size, homogeneous dispersion, zeta potential, EE, and LC and remained stable over 90 days of storage at 25 °C/60% RH, whereas at 40 °C/75% RH, BQ-SLN3 observed significant variation in the above-mentioned parameters and remained unstable over 90 days of storage. Meanwhile, the BQ suspension at both 25 °C (60% RH) and 40 °C (75% RH) was found to be stable up to 90 days. The optimized BQ-SLN3 and BQ-suspension were in vitro gastrointestinally stable at pH 1.2 and 6.8, respectively. The in vitro drug release of BQ-SLN3 showed 98.19% up to 12 h at pH 7.2 whereas BQ suspensions observed only 40% drug release up to 4 h at pH 7.2 and maximum drug release of >99% within 4 h at pH 4.0. The mathematical modeling of BQ-SLN3 followed first-order release kinetics followed by a non-Fickian diffusion mechanism. After 24 to 72 h, the IC50 value of BQ-SLN3 was 3.46-fold lower than that of the BQ suspension, whereas the blank SLN observed cell viability of 98.01% and an IC50 of 120 g/mL at the end of 72 h. The bioavailability and higher biodistribution of BQ-SLN3 in the lung tumor were also shown to be greater than those of the BQ suspension. The effects of BQ-SLN3 on antioxidant enzymes, including MDA, SOD, CAT, GSH, and GR, in the treated group were significantly improved and reached the level nearest to that of the control group of rats over the cancer group of rats and the BQ suspension-treated group of rats. Moreover, the pharmacodynamic activity resulted in greater tumor volume and tumor weight reduction by BQ-SLN3 over the BQ suspension-treated group. As far as we are aware, this is the first research to look at the potential of SLN as a repurposed oral drug delivery, and the results suggest that BQ-loaded SLN3 is a better approach for NSCLC due to its better action potential.
Collapse
Affiliation(s)
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Abdulmalik Saleh Alfawaz Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Manal A. Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Abdulaziz Alzahrani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al-Baha University, Alaqiq 65779-7738, Saudi Arabia;
| | - Md. Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Hafar Al-Batin 39524, Saudi Arabia;
| | - Tahani M. Almeleebia
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (T.M.A.); (E.M.S.)
| | - Hanan Alshareef
- Pharmacy Practice Department, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Eman M. Shorog
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (T.M.A.); (E.M.S.)
| | - Gyas Khan
- Department of Pharmacology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Tanuja Singh
- Department of Botany, Patliputra University, Patna 800020, India;
| | - J. K. Singh
- S.S Hospital and Research Institute, Kankarbagh, Patna 800020, India
| |
Collapse
|
28
|
Ahmed S, Mahendiran D, Bhat AR, Rahiman AK. Theoretical, in Vitro Antiproliferative, and in Silico Molecular Docking and Pharmacokinetics Studies of Heteroleptic Nickel(II) and Copper(II) Complexes of Thiosemicarbazone-Based Ligands and Pefloxacin. Chem Biodivers 2023; 20:e202300702. [PMID: 37528701 DOI: 10.1002/cbdv.202300702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
Twelve new heteroleptic nickel(II) and copper(II) complexes of the type [M(L1-6 )(Pfx)2 ] (1-12), where L1-6 =2-benzylidenehydrazinecarbothioamide (L1 ), 2-benzylidene-N-methylhydrazinecarbothioamide (L2 ), 2-benzylidene-N-phenylhydrazinecarbothioamide (L3 ), 2-(4-methylbenzylidene)hydrazinecarbothioamide (L4 ), 2-(4-methylbenzylidene)-N-methylhydrazinecarbothioamide (L5 ) and 2-(4-methylbenzylidene)-N-phenylhydrazinecarbothioamide (L6 ), Pfx=pefloxacin and M=Ni(II) or Cu(II) have been synthesised, and their structures were confirmed by different spectral techniques. The spectral data and density functional theory (DFT) calculations supported the bonding of pefloxacin drug molecule via one of the carboxylate oxygen atoms and the pyridone oxygen atom, and the thiosemicarbazone ligand via the imine nitrogen and the thione sulfur atoms with the metal(II) ion, forming distorted octahedral geometry. In vitro antiproliferative activity of the synthesized complexes was evaluated against three human breast cancer (T47D, estrogen negative (MDA-MB-231) and estrogen positive (MCF-7)) as well as non-tumorigenic human breast epithelial (MCF-10a) cell lines, which showed the higher activity for the copper(II) complexes. The interaction of the synthesized complexes with an oncogenic protein H-ras (121 p) was explored by in silico molecular docking studies. Further, in silico pharmacokinetics and ADMET parameters were also analysed to predict the drug-likeness as well as non-toxic and non-carcinogenic behavior, and safe oral administration of the complexes.
Collapse
Affiliation(s)
- Sumeer Ahmed
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, 600 014, India
| | - Dharmasivam Mahendiran
- Center for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, 4111, Australia
| | - Ajmal Rashid Bhat
- Department of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Aziz Kalilur Rahiman
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, 600 014, India
| |
Collapse
|
29
|
Kloskowski T, Fekner Z, Szeliski K, Paradowska M, Balcerczyk D, Rasmus M, Dąbrowski P, Kaźmierski Ł, Drewa T, Pokrywczyńska M. Effect of four fluoroquinolones on the viability of bladder cancer cells in 2D and 3D cultures. Front Oncol 2023; 13:1222411. [PMID: 37534254 PMCID: PMC10390741 DOI: 10.3389/fonc.2023.1222411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/23/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction The anticancer properties of fluoroquinolones and the high concentrations they achieve in urine may help in bladder cancer therapy. This study aimed to analyze the properties of 4 fluoroquinolones as potential candidates for supportive treatment of bladder cancer. Methods Comparative analyses were performed on the cytotoxic effects of norfloxacin, enrofloxacin, moxifloxacin, and ofloxacin on normal and cancer urothelial cell lines. In 2D culture, the cytotoxic properties of fluoroquinolones were evaluated using MTT assay, real-time cell growth analysis, fluorescence and light microscopy, flow cytometry, and molecular analysis. In 3D culture, the properties of fluoroquinolones were tested using luminescence assays and confocal microscopy. Results and Discussion All tested fluoroquinolones in 2D culture decreased the viability of both tested cell lines in a dose- and timedependent manner. Lower concentrations did not influence cell morphology and cytoskeletal organization. In higher concentrations, destruction of the actin cytoskeleton and shrinkage of the nucleus was visible. Flow cytometry analysis showed cell cycle inhibition of bladder cancer cell lines in the G2/M phase. This influence was minimal in the case of normal urothelium cells. In both tested cell lines, increases in the number of late apoptotic cells were observed. Molecular analysis showed variable expression of studied genes depending on the drug and concentration. In 3D culture, tested drugs were effective only in the highest tested concentrations which was accompanied by caspase 3/7 activation and cytoskeleton degradation. This effect was hardly visible in non-cancer cell lines. According to the data, norfloxacin and enrofloxacin had the most promising properties. These two fluoroquinolones exhibited the highest cytotoxic properties against both tested cell lines. In the case of norfloxacin, almost all calculated LC values for bladder cancer cell lines were achievable in the urine. Enrofloxacin and norfloxacin can be used to support chemotherapy in bladder cancer patients.
Collapse
Affiliation(s)
- Tomasz Kloskowski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Zuzanna Fekner
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Kamil Szeliski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Michelle Paradowska
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Daria Balcerczyk
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Rasmus
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Paweł Dąbrowski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Łukasz Kaźmierski
- Chair of Urology and Andrology, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Drewa
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- Chair of Urology and Andrology, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Pokrywczyńska
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
30
|
Swedan HK, Kassab AE, Gedawy EM, Elmeligie SE. Topoisomerase II inhibitors design: Early studies and new perspectives. Bioorg Chem 2023; 136:106548. [PMID: 37094479 DOI: 10.1016/j.bioorg.2023.106548] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
The DNA topoisomerase enzymes are widely distributed throughout all spheres of life and are necessary for cell function. Numerous antibacterial and cancer chemotherapeutic drugs target the various topoisomerase enzymes because of their roles in maintaining DNA topology during DNA replication and transcription. Agents derived from natural products, like anthracyclines, epipodophyllotoxins and quinolones, have been widely used to treat a variety of cancers. A very active field of fundamental and clinical research is the selective targeting of topoisomerase II enzymes for cancer treatment. This thematic review summarizes the recent advances in the anticancer activity of the most potent topoisomerase II inhibitors (anthracyclines, epipodophyllotoxins and fluoroquinolones) their modes of action, and structure-activity relationships (SARs) organized chronologically in the last ten years from 2013 to 2023. The review also highlights the mechanism of action and SARs of promising new topoisomerase II inhibitors.
Collapse
Affiliation(s)
- Hadeer K Swedan
- Central Administration of Research and Health Development, Ministry of Health, and Population (MoHP), Cairo P.O. Box 11516, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo P.O. Box 11562, Egypt.
| | - Ehab M Gedawy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo P.O. Box 11562, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo P.O. Box 11829, Egypt
| | - Salwa E Elmeligie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo P.O. Box 11562, Egypt
| |
Collapse
|
31
|
Ahadi H, Shokrzadeh M, Hosseini-Khah Z, Ghassemi Barghi N, Ghasemian M, Emami S. Conversion of antibacterial quinolone drug levofloxacin to potent cytotoxic agents. J Biochem Mol Toxicol 2023:e23334. [PMID: 36843476 DOI: 10.1002/jbt.23334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/03/2023] [Accepted: 02/10/2023] [Indexed: 02/28/2023]
Abstract
Levofloxacin, the optical S-(-) isomer of ofloxacin, is a broad-spectrum antibacterial agent widely used to control various infections caused by Gram-positive and Gram-negative bacteria. While the COOH group is necessary for antibacterial activity, its modification can offer anticancer activity to the fluoroquinolone framework. Therefore, several levofloxacin carboxamides 11a-j and 12 containing 5-substituted-1,3,4-thiadiazole residue were synthesized and screened in vitro for their anticancer activity. The in vitro MTT viability assay revealed that the most compounds had significant activity against cancer cells MCF-7, A549, and SKOV3. In particular, the 3-chloro- and 4-fluoro- benzyl derivatives (11b and 11h), with IC50 values of 1.69-4.76 μM were as potent as or better than doxorubicin. It should be noted that the mother quinolone levofloxacin showed no activity on the tested cancer cell lines. The SAR analysis demonstrated that the 3-chloro or 4-fluoro substituent on the S-benzyl moiety had positive effect on the activity. Further in vitro evaluations of the most promising compounds 11b and 11h by flow cytometric analysis and comet test revealed the ability of compounds in the induction of apoptosis and blockage of the cell proliferation at the G1-phase by nuclear fragmentation and DNA degradation in cancer cells. The obtained results demonstrated that the alteration of 6-COOH functional group in the levofloxacin structure and conjugation with a proper heterocyclic pharmacophore is a good strategy to obtain new anticancer agents.
Collapse
Affiliation(s)
- Hamideh Ahadi
- Department of Medicinal Chemistry, Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Hosseini-Khah
- Diabetes Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasrin Ghassemi Barghi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Ghasemian
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
32
|
Improving the antimicrobial activity of old antibacterial drug mafenide: Schiff bases and their bioactivity targeting resistant pathogens. Future Med Chem 2023; 15:255-274. [PMID: 36891917 DOI: 10.4155/fmc-2022-0259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Background: Increasing rates of acquired resistance have justified the critical need for novel antimicrobial drugs. One viable concept is the modification of known drugs. Methods & results: 21 mafenide-based compounds were prepared via condensation reactions and screened for antimicrobial efficacy, which demonstrated promising activity against both Gram-positive and Gram-negative pathogens, pathogenic fungi and mycobacterial strains (minimum inhibitory concentrations from 3.91 μM). Importantly, they retained activity against a panel of superbugs (methicillin- and vancomycin-resistant staphylococci, enterococci, multidrug-resistant Mycobacterium tuberculosis) without any cross-resistance. Unlike mafenide, most of its imines were bactericidal. Toxicity to HepG2 cells was also investigated. Conclusion: Schiff bases were significantly more active than the parent drug, with iodinated salicylidene and 5-nitrofuran/thiophene-methylidene scaffolds being preferred in identifying the most promising drug candidates.
Collapse
|
33
|
Swedan HK, Kassab AE, Gedawy EM, Elmeligie SE. Design, synthesis, and biological evaluation of novel ciprofloxacin derivatives as potential anticancer agents targeting topoisomerase II enzyme. J Enzyme Inhib Med Chem 2023; 38:118-137. [PMID: 36305290 PMCID: PMC9635472 DOI: 10.1080/14756366.2022.2136172] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A series of novel ciprofloxacin (CP) derivatives substituted at the N-4 position with biologically active moieties were designed and synthesised. 14 compounds were 1.02- to 8.66-fold more potent than doxorubicin against T-24 cancer cells. Ten compounds were 1.2- to 7.1-fold more potent than doxorubicin against PC-3 cancer cells. The most potent compounds 6, 7a, 7b, 8a, 9a, and 10c showed significant Topo II inhibitory activity (83-90% at 100 μM concentration). Compounds 6, 8a, and 10c were 1.01- to 2.32-fold more potent than doxorubicin. Compounds 6 and 8a induced apoptosis in T-24 (16.8- and 20.1-fold, respectively compared to control). This evidence was supported by an increase in the level of apoptotic caspase-3 (5.23- and 7.6-fold, sequentially). Both compounds arrested the cell cycle in the S phase in T-24 cancer cells while in PC-3 cancer cells the two compounds arrested the cell cycle in the G1 phase. Molecular docking simulations of compounds 6 and 8a into the Topo II active site rationalised their remarkable Topo II inhibitory activity.
Collapse
Affiliation(s)
- Hadeer K. Swedan
- Central Administration of Research and Health Development, Ministry of Health, and Population (MoHP), Cairo, Egypt
| | - Asmaa E. Kassab
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Cairo University, Cairo, Egypt
| | - Ehab M. Gedawy
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Cairo University, Cairo, Egypt
- Faculty of Pharmacy and Pharmaceutical Industries, Department of Pharmaceutical Chemistry, Badr University in Cairo (BUC), Badr City, Egypt
| | - Salwa E. Elmeligie
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Cairo University, Cairo, Egypt
| |
Collapse
|
34
|
Ryczkowska M, Maciejewska N, Olszewski M, Witkowska M, Makowiec S. Tetrahydroquinolinone derivatives exert antiproliferative effect on lung cancer cells through apoptosis induction. Sci Rep 2022; 12:19076. [PMID: 36352170 PMCID: PMC9646836 DOI: 10.1038/s41598-022-23640-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
The anticancer properties of quinolones is a topic of interest among researchers in the scientific world. Because these compounds do not cause side effects, unlike the commonly used cytostatics, they are considered a promising source of new anticancer drugs. In this work, we designed a brief synthetic pathway and obtained a series of novel 8-phenyltetrahydroquinolinone derivatives functionalized with benzyl-type moieties at position 3. The compounds were synthesized via classical reactions such as nucleophilic substitution, solvent lysis, and condensation. Biological evaluation revealed that 3-(1-naphthylmethyl)-4-phenyl-5,6,7,8-tetrahydro-1H-quinolin-2-one (4a) exhibited potent cytotoxicity toward colon (HTC-116) and lung (A549) cancer cell lines. Analysis of the mechanism of action of compounds showed that compound 4a induced cell cycle arrest at the G2/M phase, leading to apoptotic cell death via intrinsic and extrinsic pathways. Taken together, the findings of the study suggest that tetrahydroquinolinone derivatives bearing a carbonyl group at position 2 could be potential lead compounds to develop anticancer agents for the treatment of lung cancers.
Collapse
Affiliation(s)
- Małgorzata Ryczkowska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Natalia Maciejewska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Mateusz Olszewski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Milena Witkowska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Sławomir Makowiec
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland.
| |
Collapse
|
35
|
4-oxoquinoline-3-carboxamide acyclonucleoside phosphonates hybrids: human MCF-7 breast cancer cell death induction by oxidative stress-promoting and in silico ADMET studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Novel ciprofloxacin and norfloxacin-tetrazole hybrids as potential antibacterial and antiviral agents: targeting S. aureus topoisomerase and SARS-CoV-2-MPro. J Mol Struct 2022; 1274:134507. [PMID: 36406777 PMCID: PMC9640164 DOI: 10.1016/j.molstruc.2022.134507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
Abstract
This study was designed to synthesize hybridizing molecules from ciprofloxacin and norfloxacin by enhancing their biological activity with tetrazoles. The synthesized compounds were investigated in the interaction with the target enzyme of fluoroquinolones (DNA gyrase) and COVID-19 main protease using molecular similarity, molecular docking, and QSAR studies. A QSAR study was carried out to explore the antibacterial activity of our compounds over Staphylococcus aureus a QSAR study, using descriptors obtained from the docking with DNA gyrase, in combination with steric type descriptors, was done obtaining suitable statistical parameters (R2=87.00, QLMO2=71.67, and QEXT2=73.49) to support our results. The binding interaction of our compounds with CoV-2-Mpro was done by molecular docking and were compared with different covalent and non-covalent inhibitors of this enzyme. For the docking studies we used several crystallographic structures of the CoV-2-Mpro. The interaction energy values and binding mode with several key residues, by our compounds, support the capability of them to be CoV-2-Mpro inhibitors. The characterization of the compounds was completed using FT-IR, 1H-NMR, 13C-NMR, 19F-NMR and HRMS spectroscopic methods. The results showed that compounds 1, 4, 5, 10 and 12 had the potential to be further studied as new antibacterial and antiviral compounds
Collapse
|
37
|
Ibrahim UH, Devnarain N, Mohammed M, Omolo CA, Gafar MA, Salih M, Pant A, Shunmugam L, Mocktar C, Khan R, Oh JK, Govender T. Dual acting acid-cleavable self-assembling prodrug from hyaluronic acid and ciprofloxacin: A potential system for simultaneously targeting bacterial infections and cancer. Int J Biol Macromol 2022; 222:546-561. [PMID: 36150574 DOI: 10.1016/j.ijbiomac.2022.09.173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
Abstract
The incidence and of bacterial infections, and resulting mortality, among cancer patients is growing dramatically, worldwide. Several therapeutics have been reported to have dual anticancer and antibacterial activity. However, there is still an urgent need to develop new drug delivery strategies to improve their clinical efficacy. Therefore, this study aimed to develop a novel acid cleavable prodrug (HA-Cip) from ciprofloxacin and hyaluronic acid to simultaneously enhance the anticancer and antibacterial properties of Cip as a superior drug delivery system. HA-Cip was synthesised and characterised (FT-IR, HR-MS, and H1 NMR). HA-Cip generated stable micelles with an average particle size, poly dispersion index (PDI) and zeta potential (ZP) of 237.89 ± 25.74 nm, 0.265 ± 0.013, and -17.82 ± 1.53 mV, respectively. HA-Cip showed ≥80 % cell viability against human embryonic kidney 293 cells (non-cancerous cells), ˂0.3 % haemolysis; and a faster pH-responsive ciprofloxacin release at pH 6.0. HA-Cip showed a 5.4-fold improvement in ciprofloxacin in vitro anticancer activity against hepatocellular cancer (HepG2) cells; and enhanced in vitro antibacterial activity against Escherichia coli and Klebsiella pneumoniae at pH 6.0. Our findings show HA-Cip as a promising prodrug for targeted delivery of ciprofloxacin to efficiently treat bacterial infections associated, and/or co-existing, with cancer.
Collapse
Affiliation(s)
- Usri H Ibrahim
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Mahir Mohammed
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; United States International University-Africa, School of Pharmacy and Health Sciences, Department of Pharmaceutics, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Mohammed Salih
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Amit Pant
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Letitia Shunmugam
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Rene Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, School of Arts and Sciences, Concordia University, 7141 Sherbrooke St. W., Montreal, QC, Canada
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
38
|
Ben Ayed A, Akrout I, Albert Q, Greff S, Simmler C, Armengaud J, Kielbasa M, Turbé-Doan A, Chaduli D, Navarro D, Bertrand E, Faulds CB, Chamkha M, Maalej A, Zouari-Mechichi H, Sciara G, Mechichi T, Record E. Biotransformation of the Fluoroquinolone, Levofloxacin, by the White-Rot Fungus Coriolopsis gallica. J Fungi (Basel) 2022; 8:jof8090965. [PMID: 36135690 PMCID: PMC9506349 DOI: 10.3390/jof8090965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
The wastewater from hospitals, pharmaceutical industries and more generally human and animal dejections leads to environmental releases of antibiotics that cause severe problems for all living organisms. The aim of this study was to investigate the capacity of three fungal strains to biotransform the fluoroquinolone levofloxacin. The degradation processes were analyzed in solid and liquid media. Among the three fungal strains tested, Coriolopsis gallica strain CLBE55 (BRFM 3473) showed the highest removal efficiency, with a 15% decrease in antibiogram zone of inhibition for Escherichia coli cultured in solid medium and 25% degradation of the antibiotic in liquid medium based on high-performance liquid chromatography (HPLC). Proteomic analysis suggested that laccases and dye-decolorizing peroxidases such as extracellular enzymes could be involved in levofloxacin degradation, with a putative major role for laccases. Degradation products were proposed based on mass spectrometry analysis, and annotation suggested that the main product of biotransformation of levofloxacin by Coriolopsis gallica is an N-oxidized derivative.
Collapse
Affiliation(s)
- Amal Ben Ayed
- Laboratoire de Biochimie et de Genie Enzymatique des Lipases, Ecole Nationale d’Ingenieurs de Sfax, Universite de Sfax, BP 1173, Sfax 3038, Tunisia
- UMR1163, Biodiversite et Biotechnologie Fongiques, Aix-Marseille Universite, INRAE, 13288 Marseille, France
- Correspondence: (A.B.A.); (E.R.)
| | - Imen Akrout
- Laboratoire de Biochimie et de Genie Enzymatique des Lipases, Ecole Nationale d’Ingenieurs de Sfax, Universite de Sfax, BP 1173, Sfax 3038, Tunisia
- UMR1163, Biodiversite et Biotechnologie Fongiques, Aix-Marseille Universite, INRAE, 13288 Marseille, France
| | - Quentin Albert
- UMR1163, Biodiversite et Biotechnologie Fongiques, Aix-Marseille Universite, INRAE, 13288 Marseille, France
- CIRM-CF, INRAE, Aix-Marseille Universite, UMR1163, 13288 Marseille, France
| | - Stéphane Greff
- IMBE, UMR 7263, CNRS, IRD, Aix Marseille Universite, Avignon Universite, Station Marine d’Endoume, Rue de la Batterie des Lions, 13007 Marseille, France
| | - Charlotte Simmler
- IMBE, UMR 7263, CNRS, IRD, Aix Marseille Universite, Avignon Universite, Station Marine d’Endoume, Rue de la Batterie des Lions, 13007 Marseille, France
| | - Jean Armengaud
- Departement Medicaments et Technologies pour la Sante, CEA, INRAE, SPI, Universite Paris-Saclay, 30200 Bagnols-sur-Ceze, France
| | - Mélodie Kielbasa
- Departement Medicaments et Technologies pour la Sante, CEA, INRAE, SPI, Universite Paris-Saclay, 30200 Bagnols-sur-Ceze, France
| | - Annick Turbé-Doan
- UMR1163, Biodiversite et Biotechnologie Fongiques, Aix-Marseille Universite, INRAE, 13288 Marseille, France
| | - Delphine Chaduli
- UMR1163, Biodiversite et Biotechnologie Fongiques, Aix-Marseille Universite, INRAE, 13288 Marseille, France
- CIRM-CF, INRAE, Aix-Marseille Universite, UMR1163, 13288 Marseille, France
| | - David Navarro
- UMR1163, Biodiversite et Biotechnologie Fongiques, Aix-Marseille Universite, INRAE, 13288 Marseille, France
- CIRM-CF, INRAE, Aix-Marseille Universite, UMR1163, 13288 Marseille, France
| | - Emmanuel Bertrand
- UMR1163, Biodiversite et Biotechnologie Fongiques, Aix-Marseille Universite, INRAE, 13288 Marseille, France
| | - Craig B. Faulds
- UMR1163, Biodiversite et Biotechnologie Fongiques, Aix-Marseille Universite, INRAE, 13288 Marseille, France
| | - Mohamed Chamkha
- Laboratoire des Bioprocedes Environnementaux, Centre de Biotechnologie de Sfax, Universite de Sfax, BP 1177, Sfax 3063, Tunisia
| | - Amina Maalej
- Laboratoire des Bioprocedes Environnementaux, Centre de Biotechnologie de Sfax, Universite de Sfax, BP 1177, Sfax 3063, Tunisia
| | - Héla Zouari-Mechichi
- Laboratoire de Biochimie et de Genie Enzymatique des Lipases, Ecole Nationale d’Ingenieurs de Sfax, Universite de Sfax, BP 1173, Sfax 3038, Tunisia
| | - Giuliano Sciara
- UMR1163, Biodiversite et Biotechnologie Fongiques, Aix-Marseille Universite, INRAE, 13288 Marseille, France
| | - Tahar Mechichi
- Laboratoire de Biochimie et de Genie Enzymatique des Lipases, Ecole Nationale d’Ingenieurs de Sfax, Universite de Sfax, BP 1173, Sfax 3038, Tunisia
| | - Eric Record
- UMR1163, Biodiversite et Biotechnologie Fongiques, Aix-Marseille Universite, INRAE, 13288 Marseille, France
- Correspondence: (A.B.A.); (E.R.)
| |
Collapse
|
39
|
Yadav V. Computational evidence based perspective on the plausible repositioning of fluoroquinolones for COVID-19 treatment. Curr Comput Aided Drug Des 2022; 18:CAD-EPUB-126248. [PMID: 36093826 DOI: 10.2174/1573409918666220909094645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/13/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022]
Abstract
The coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become a serious global healthcare crisis, so there is an emergence of identifying efficacious therapeutic options. In a setting where there is an unavailability of definitive medication along with the constant eruption of vaccine-related controversies, the drug-repositioning approach seems to be an ideal step for the management of COVID-19 patients. Fluoroquinolones (FQs) are commonly prescribed antibiotics for the treatment of genitourinary tract and upper respiratory tract infections, including severe community-acquired pneumonia. Research over the years has postulated multifaceted implications of FQs in various pathological conditions. Previously, it has been reported that few, but not all FQs, possess strong antiviral activity with an unknown mechanism of action. Herein, an interesting perspective is discussed on repositioning possibilities of FQs for the SARS-CoV-2 infections based on the recent in silico evidential support. Noteworthy, FQs possess immunomodulatory and bactericidal activity which could be valuable for patients dealing with COVID-19 related complications. Conclusively, the current perspective could pave the way to initiate pre-clinical testing of FQs against several strains of SARS-CoV-2.
Collapse
Affiliation(s)
- Vikas Yadav
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège, Sart-Tilman, 4000, Liège, Belgium
- Department of Translational Medicine, Skane University Hospital, Clinical Research Centre, Lund University, Malmö, Sweden
| |
Collapse
|
40
|
The effect of ciprofloxacin on doxorubicin cytotoxic activity in the acquired resistance to doxorubicin in DU145 prostate carcinoma cells. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:194. [PMID: 36071289 DOI: 10.1007/s12032-022-01787-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/28/2022] [Indexed: 10/14/2022]
Abstract
The present study aimed to assess the influence of ciprofloxacin (CIP) against the doxorubicin (DOX)-resistant androgen-independent prostate cancer DU145 cells. The DOX-resistant DU145 (DU145/DOX20) cells were established by exposing DU145 cells to the increasing concentrations of DOX. The antiproliferative effect of CIP was examined through employing MTT, colony formation, and 3D culture assays. DU145/DOX20 cells exhibited a twofold higher IC50 value for DOX, an increased ABCB1 transporter activity, and some morphological changes accompanied by a decrease in spheroid size, adhesive and migration potential compared to DU145 cells. CIP (5 and 25 µg mL-1) resulted in a higher reduction in the viability of DU145/DOX20 cells than in DU145 cells. DU145/DOX20 cells were more resistant to CIP in 3D culture compared to the 2D one. No spheroid formation was observed for DU145/DOX20 cells treated with DOX and CIP combination. CIP and DOX, alone or in combination, significantly reduced the growth of DU145 spheroids. CIP in combination with 20 nM DOX prevented the colony formation of DU145 cells. The clonogenicity of DU145/DOX20 cells could not be estimated due to their low adhesive potential. CIP alone caused a significant reduction in the migration of DU145 cells and resulted in a more severe decrease in the wound closure ability of DOX-exposed ones. We identified that CIP enhanced DOX sensitivity in DU145 and DU145/DOX20 cells. This study suggested the co-delivery of low concentrations of CIP and DOX may be a promising strategy in treating the DOX-resistant and -sensitive hormone-refractory prostate cancer.
Collapse
|
41
|
Beberok A, Rok J, Rzepka Z, Marciniec K, Boryczka S, Wrześniok D. Interaction between moxifloxacin and Mcl-1 and MITF proteins: the effect on growth inhibition and apoptosis in MDA-MB-231 human triple-negative breast cancer cells. Pharmacol Rep 2022; 74:1025-1040. [PMID: 36045272 PMCID: PMC9585003 DOI: 10.1007/s43440-022-00407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 12/24/2022]
Abstract
Background Microphthalmia-associated transcription factor (MITF) activates the expression of genes involved in cellular proliferation, DNA replication, and repair, whereas Mcl-1 is a member of the Bcl-2 family of proteins that promotes cell survival by preventing apoptosis. The objective of the present study was to verify whether the interaction between moxifloxacin (MFLX), one of the fluoroquinolones, and MITF/Mcl-1 protein, could affect the viability, proliferation, and apoptosis in human breast cancer using both in silico and in vitro models. Methods Molecular docking analysis (in silico), fluorescence image cytometry, and Western blot (in vitro) techniques were applied to assess the contribution of MITF and Mcl-1 proteins in the MFLX-induced anti-proliferative and pro-apoptotic effects on the MDA-MB-231 breast cancer cells. Results We indicated the ability of MFLX to form complexes with MITF and Mcl-1 as well as the drug’s capacity to affect the expression of the tested proteins. We also showed that MFLX decreased the viability and proliferation of MDA-MB-231 cells and induced apoptosis via the intrinsic death pathway. Moreover, the analysis of the cell cycle progression revealed that MFLX caused a block in the S and G2/M phases. Conclusions We demonstrated for the first time that the observed effects of MFLX on MDA-MB-231 breast cancer cells (growth inhibition and apoptosis induction) could be related to the drug’s ability to interact with MITF and Mcl-1 proteins. Furthermore, the presented results suggest that MITF and Mcl-1 proteins could be considered as the target in the therapy of breast cancer. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s43440-022-00407-7.
Collapse
Affiliation(s)
- Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland.
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland
| | - Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland
| | - Krzysztof Marciniec
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland
| | - Stanisław Boryczka
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland
| |
Collapse
|
42
|
A Study on Repositioning Nalidixic Acid via Lanthanide Complexation: Synthesis, Characterization, Cytotoxicity and DNA/Protein Binding Studies. Pharmaceuticals (Basel) 2022; 15:ph15081010. [PMID: 36015158 PMCID: PMC9412414 DOI: 10.3390/ph15081010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/30/2022] Open
Abstract
“Drug repositioning” is a modern strategy used to uncover new applications for out-of-date drugs. In this context, nalidixic acid, the first member of the quinolone class with limited use today, has been selected to obtain nine new metal complexes with lanthanide cations (La3+, Sm3+, Eu3+, Gd3+, Tb3+); the experimental data suggest that the quinolone acts as a bidentate ligand, binding to the metal ion via the keto and carboxylate oxygen atoms, findings that are supported by DFT calculations. The cytotoxic activity of the complexes has been studied using the tumoral cell lines, MDA-MB-231 and LoVo, and a normal cell line, HUVEC. The most active compounds of the series display selective activity against LoVo. Their affinity for DNA and the manner of binding have been tested using UV–Vis spectroscopy and competitive binding studies; our results indicate that major and minor groove binding play a significant role in these interactions. The affinity towards serum proteins has also been evaluated, the complexes displaying higher affinity towards albumin than apotransferrin.
Collapse
|
43
|
Verinda SB, Muniroh M, Yulianto E, Maharani N, Gunawan G, Amalia NF, Hobley J, Usman A, Nur M. Degradation of ciprofloxacin in aqueous solution using ozone microbubbles: spectroscopic, kinetics, and antibacterial analysis. Heliyon 2022; 8:e10137. [PMID: 36033314 PMCID: PMC9399964 DOI: 10.1016/j.heliyon.2022.e10137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/30/2022] [Accepted: 07/28/2022] [Indexed: 12/07/2022] Open
Abstract
Ciprofloxacin (CIP) has been listed in the last version of the surface water due to its ability to kill human cells by inhibiting the activity of DNA topoisomerase IV. Thus, CIP, along with other antibiotic pollution has become a serious threat to the environment and public health. Ozonation has been used as an advanced technique that is applied in wastewater treatment to remove CIP, but the primary limitation of this method is the low solubility of ozone in water. This study is the first report of CIP removal in a scale-up of its aqueous solution using a self-developed aerator pump-enhanced ozonation (APO) system, which only employs a propeller and a zigzag arrangement of meshes. This aerator pump decreased the size of ozone bubbles by 90% and increased the effective ozone solubility to 0.47 ppm. The mechanism of degradation of CIP is attributed to an oxidation reaction of the antibiotic with reactive oxygen species, such as hydroxyl, oxygen, and hydroperoxyl radicals, generated on the surface of the ozone microbubbles. It was found that the rate and efficiency of degradation of CIP using the APO system were 3.64 × 10−3/min and 83.5%, respectively, which is higher compared with those of conventional flow ozonation (FO) systems (1.47 × 10−3/min and 60.9%). The higher degradation efficiency of CIP by the APO system was also revealed by its higher electrical energy efficiency (0.146 g/kWh), compared to that of the FO system (0.106 g/kWh). The degradation of CIP was also monitored by the resulting antibacterial activity against Escherichia coli and Staphylococcus aureus.
Collapse
Affiliation(s)
- Sera Budi Verinda
- Biomedical Graduate Program, Faculty of Medicine, Universitas Diponegoro, Tembalang, Semarang 50275, Indonesia
| | - Muflihatul Muniroh
- Department of Physiology, Faculty of Medicine, Universitas Diponegoro, Tembalang, Semarang 50275, Indonesia
| | - Eko Yulianto
- Center for Plasma Research, Integrated Laboratory, Universitas Diponegoro, Tembalang, Semarang 50275, Indonesia
| | - Nani Maharani
- Department of Pharmacology and Therapy, Faculty of Medicine, Universitas Diponegoro, Tembalang, Semarang 50275, Indonesia
| | - Gunawan Gunawan
- Department of Chemistry, Faculty of Science and Mathematics, Universitas Diponegoro, Tembalang, Semarang 50275, Indonesia
| | - Nur Farida Amalia
- Department of Physics, Faculty of Science and Mathematics, Universitas Diponegoro, Tembalang, Semarang 50275, Indonesia
| | - Jonathan Hobley
- Department of Biomedical Engineering, National Cheng Kung University, No. 1 University Road, Tainan City 701, Taiwan
| | - Anwar Usman
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Muhammad Nur
- Center for Plasma Research, Integrated Laboratory, Universitas Diponegoro, Tembalang, Semarang 50275, Indonesia.,Department of Physics, Faculty of Science and Mathematics, Universitas Diponegoro, Tembalang, Semarang 50275, Indonesia
| |
Collapse
|
44
|
Soda AK, Kurva S, Singh K, Veeragoni D, Misra S, Murahari M, Madabhushi S. Synthesis and Pharmacological Evaluation of Hexafluoro Functionalized Quinolone Derivatives as Potential Chemotherapeutic Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202201366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anil Kumar Soda
- Department of Fluoro-Agrochemicals CSIR-Indian Institute of Chemical Technology, Tarnaka Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Srinivas Kurva
- Department of Fluoro-Agrochemicals CSIR-Indian Institute of Chemical Technology, Tarnaka Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Kamini Singh
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
- Applied Biology CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Dileepkumar Veeragoni
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
- Applied Biology CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Sunil Misra
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
- Applied Biology CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Manikanta Murahari
- Medicinal Chemistry Research Division K L College of pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram Andhra Pradesh India
| | - Sridhar Madabhushi
- Department of Fluoro-Agrochemicals CSIR-Indian Institute of Chemical Technology, Tarnaka Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
45
|
Kloskowski T, Frąckowiak S, Adamowicz J, Szeliski K, Rasmus M, Drewa T, Pokrywczyńska M. Quinolones as a Potential Drug in Genitourinary Cancer Treatment-A Literature Review. Front Oncol 2022; 12:890337. [PMID: 35756639 PMCID: PMC9213725 DOI: 10.3389/fonc.2022.890337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Quinolones, broad-spectrum antibiotics, are frequently prescribed by urologists for many urological disorders. The mechanism of their bactericidal activity is based on the inhibition of topoisomerase II or IV complex with DNA, which consequently leads to cell death. It has been observed that these antibiotics also act against the analogous enzymes present in eukaryotic cells. Due to their higher accumulation in urine and prostate tissue than in serum, these drugs seem to be ideal candidates for application in genitourinary cancer treatment. In this study, an extensive literature review has been performed to collect information about concentrations achievable in urine and prostate tissue together with information about anticancer properties of 15 quinolones. Special attention was paid to the application of cytotoxic properties of quinolones for bladder and prostate cancer cell lines. Data available in the literature showed promising properties of quinolones, especially in the case of urinary bladder cancer treatment. In the case of prostate cancer, due to low concentrations of quinolones achievable in prostate tissue, combination therapy with other chemotherapeutics or another method of drug administration is necessary.
Collapse
Affiliation(s)
- Tomasz Kloskowski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Sylwia Frąckowiak
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Jan Adamowicz
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Kamil Szeliski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Rasmus
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Drewa
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Pokrywczyńska
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
46
|
Jałbrzykowska K, Chrzanowska A, Roszkowski P, Struga M. The New Face of a Well-Known Antibiotic: A Review of the Anticancer Activity of Enoxacin and Its Derivatives. Cancers (Basel) 2022; 14:cancers14133056. [PMID: 35804828 PMCID: PMC9264829 DOI: 10.3390/cancers14133056] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Enoxacin is a second-generation quinolone with promising anticancer activity. In contrast to other members of the quinolone group, it exhibits an extraordinary cytotoxic mechanism of action. Enoxacin enhances RNA interference and promotes microRNA processing, as well as the production of free radicals. Interestingly, apart from its proapoptotic, cell cycle arresting and cytostatic effects, enoxacin manifests a limitation of cancer invasiveness. The underlying mechanisms are the competitive inhibition of vacuolar H+-ATPase subunits and c-Jun N-terminal kinase signaling pathway suppression. The newly synthesized enoxacin derivatives have shown a magnified cytotoxic effect with an emphasis on prooxidative, proapoptotic and microRNA interference actions. The mentioned mechanisms seem to contribute to a safer, more selective and more effective anticancer therapy. Abstract Enoxacin as a second-generation synthetic quinolone is known for its antibacterial action; however, in recent years there have been studies focusing on its anticancer potential. Interestingly, it turns out that compared to other fluoroquinolones, enoxacin exhibits uncommon cytotoxic properties. Besides its influence on apoptosis, the cell cycle and cell growth, it exhibits a regulatory action on microRNA biogenesis. It was revealed that the molecular targets of the enoxacin-mediated inhibition of osteoclastogenesis are vacuolar H+-ATPase subunits and the c-Jun N-terminal kinase signaling pathway, causing a decrease in cell invasiveness. Interestingly, the prooxidative nature of the subjected fluoroquinolone enhanced the cytotoxic effect. Crucial for the anticancer activity were the carboxyl group at the third carbon atom, fluorine at the seventh carbon atom and nitrogen at the eighth position of naphyridine. Modifications of the parent drug improved the induction of oxidative stress, cell cycle arrest and the dysregulation of microRNA. The inhibition of V-ATPase–microfilament binding was also observed. Enoxacin strongly affected various cancer but not normal cells, excluding keratinocytes, which suffered from phototoxicity. It seems to be an underestimated anticancer drug with pleiotropic action. Furthermore, its usage as a safe antibiotic with well-known pharmacokinetics and selectivity will enhance the development of anticancer treatment strategies. This review covers articles published within the years 2000–2021, with a strong focus on the recent years (2016–2021). However, some canonical papers published in twentieth century are also mentioned.
Collapse
Affiliation(s)
- Karolina Jałbrzykowska
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland;
| | - Alicja Chrzanowska
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland;
- Correspondence: (A.C.); (M.S.); Tel.: +48-22-5720693 (A.C. & M.S.)
| | - Piotr Roszkowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - Marta Struga
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland;
- Correspondence: (A.C.); (M.S.); Tel.: +48-22-5720693 (A.C. & M.S.)
| |
Collapse
|
47
|
Chrzanowska A, Struga M, Roszkowski P, Koliński M, Kmiecik S, Jałbrzykowska K, Zabost A, Stefańska J, Augustynowicz-Kopeć E, Wrzosek M, Bielenica A. The Effect of Conjugation of Ciprofloxacin and Moxifloxacin with Fatty Acids on Their Antibacterial and Anticancer Activity. Int J Mol Sci 2022; 23:ijms23116261. [PMID: 35682940 PMCID: PMC9181188 DOI: 10.3390/ijms23116261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 01/02/2023] Open
Abstract
Novel conjugates (CP) of moxifloxacin (MXF) with fatty acids (1m–16m) were synthesized with good yields utilizing amides chemistry. They exhibit a more pronounced cytotoxic potential than the parent drug. They were the most effective for prostate cancer cells with an IC50 below 5 µM for respective conjugates with sorbic (2m), oleic (4m), 6-heptenoic (10m), linoleic (11m), caprylic (15m), and stearic (16m) acids. All derivatives were evaluated against a panel of standard and clinical bacterial strains, as well as towards mycobacteria. The highest activity towards standard isolates was observed for the acetic acid derivative 14m, followed by conjugates of unsaturated crotonic (1m) and sorbic (2m) acids. The activity of conjugates tested against an expanded panel of clinical coagulase-negative staphylococci showed that the compound (14m) was recognized as a leading structure with an MIC of 0.5 μg/mL denoted for all quinolone-susceptible isolates. In the group of CP derivatives, sorbic (2) and geranic (3) acid amides exhibited the highest bactericidal potential against clinical strains. The M. tuberculosis Spec. 210 strain was the most sensitive to sorbic (2m) conjugate and to conjugates with medium- and long-chain polyunsaturated acids. To establish the mechanism of antibacterial action, selected CP and MXF conjugates were examined in both topoisomerase IV decatenation assay and the DNA gyrase supercoiling assay, followed by suitable molecular docking studies.
Collapse
Affiliation(s)
- Alicja Chrzanowska
- Chair and Department of Biochemistry, Medical University of Warsaw, Ul. Banacha 1, 02-097 Warsaw, Poland; (A.C.); (M.S.); (K.J.)
| | - Marta Struga
- Chair and Department of Biochemistry, Medical University of Warsaw, Ul. Banacha 1, 02-097 Warsaw, Poland; (A.C.); (M.S.); (K.J.)
| | - Piotr Roszkowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warszawa, Poland
- Correspondence: (P.R.); (A.B.)
| | - Michał Koliński
- Bioinformatics Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego St., 02-106 Warsaw, Poland;
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland;
| | - Karolina Jałbrzykowska
- Chair and Department of Biochemistry, Medical University of Warsaw, Ul. Banacha 1, 02-097 Warsaw, Poland; (A.C.); (M.S.); (K.J.)
| | - Anna Zabost
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, 01-138 Warsaw, Poland; (A.Z.); (E.A.-K.)
| | - Joanna Stefańska
- Centre for Preclinical Research, Department of Pharmaceutical Microbiology, Medical University of Warsaw, 02-097 Warszawa, Poland;
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, 01-138 Warsaw, Poland; (A.Z.); (E.A.-K.)
| | - Małgorzata Wrzosek
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Anna Bielenica
- Chair and Department of Biochemistry, Medical University of Warsaw, Ul. Banacha 1, 02-097 Warsaw, Poland; (A.C.); (M.S.); (K.J.)
- Correspondence: (P.R.); (A.B.)
| |
Collapse
|
48
|
Simon AT, Chattopadhyay A, Ghosh SS. In Vitro Therapeutic Attributes of Luminescent Hydroxyapatite Nanoparticles in Codelivery Module. ACS APPLIED BIO MATERIALS 2022; 5:2741-2753. [PMID: 35608933 DOI: 10.1021/acsabm.2c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Imminent prospects of clinical importance have been accomplished through divergent treatment modalities implemented using nanoscale platforms. In the present study, hydroxyapatite nanoparticles doped with copper nanoclusters (HAPs) were explored for codelivery of a hydrophobic drug, namely, norfloxacin (NX), and a hydrophilic photosensitizer, such as methylene blue (MB). NX and MB were successfully homed into HAPs (MB-NX-HAPs), which further exhibited a pH-dependent release of both. With the objective of attaining an enhanced effect, MB-NX-HAPs were evaluated for combination therapy, involving chemotherapy and photodynamic therapy (PDT) with irradiation at 640 nm. The combinatorial therapy approach was initially applied for antibacterial therapy, which suggested a considerable reduction in bacterial growth of Gram-negative strain Pseudomonas aeruginosa MTCC 2488. Thereafter, the antiproliferative study performed in cancer cell lines (HeLa and MCF-7) revealed the efficiency of MB-NX-HAPs in bestowing a combinatorial effect through chemotherapy and PDT (irradiation at 640 nm). The combined effect exerted through MB-NX-HAPs subsequently induced reactive oxygen species (ROS) generation, cell cycle alteration, and apoptosis activation in cancer cells. The biocompatible nature of MB-NX-HAPs was appreciably shown through their minimal effect on the normal cell line (HEK-293). Additionally, HAPs through luminescence of copper nanoclusters were suggested to aid in bioimaging of cancer cell lines.
Collapse
Affiliation(s)
- Anitha T Simon
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Arun Chattopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India.,Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati781039, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati781039, India
| |
Collapse
|
49
|
Mohammed HHH, Abd El-Hafeez AA, Ebeid K, Mekkawy AI, Abourehab MAS, Wafa EI, Alhaj-Suliman SO, Salem AK, Ghosh P, Abuo-Rahma GEDA, Hayallah AM, Abbas SH. New 1,2,3-triazole linked ciprofloxacin-chalcones induce DNA damage by inhibiting human topoisomerase I& II and tubulin polymerization. J Enzyme Inhib Med Chem 2022; 37:1346-1363. [PMID: 35548854 PMCID: PMC9116245 DOI: 10.1080/14756366.2022.2072308] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A series of novel 1,2,3-triazole-linked ciprofloxacin-chalcones 4a-j were synthesised as potential anticancer agents. Hybrids 4a-j exhibited remarkable anti-proliferative activity against colon cancer cells. Compounds 4a-j displayed IC50s ranged from 2.53-8.67 µM, 8.67-62.47 µM, and 4.19-24.37 µM for HCT116, HT29, and Caco-2 cells; respectively, whereas the doxorubicin, showed IC50 values of 1.22, 0.88, and 4.15 µM. Compounds 4a, 4b, 4e, 4i, and 4j were the most potent against HCT116 with IC50 values of 3.57, 4.81, 4.32, 4.87, and 2.53 µM, respectively, compared to doxorubicin (IC50 = 1.22 µM). Also, hybrids 4a, 4b, 4e, 4i, and 4j exhibited remarkable inhibitory activities against topoisomerase I, II, and tubulin polymerisation. They increased the protein expression level of γH2AX, indicating DNA damage, and arrested HCT116 in G2/M phase, possibly through the ATR/CHK1/Cdc25C pathway. Thus, the novel ciprofloxacin hybrids could be exploited as potential leads for further investigation as novel anticancer medicines to fight colorectal carcinoma.
Collapse
Affiliation(s)
- Hamada H H Mohammed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Amer Ali Abd El-Hafeez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.,Cancer Biology Department, Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Kareem Ebeid
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.,Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Manufacturing, Deraya University, New Minia City, Minia, Egypt
| | - Aml I Mekkawy
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.,Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia
| | - Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Suhaila O Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, La Jolla, CA, USA.,Veterans Affairs Medical Center, La Jolla, CA, USA
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Alaa M Hayallah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sphinx University, New Assiut, Egypt
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
50
|
Zhang H, Daněk O, Makarov D, Rádl S, Kim D, Ledvinka J, Vychodilová K, Hlaváč J, Lefèbre J, Denis M, Rademacher C, Ménová P. Drug-like Inhibitors of DC-SIGN Based on a Quinolone Scaffold. ACS Med Chem Lett 2022; 13:935-942. [DOI: 10.1021/acsmedchemlett.2c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/26/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Hengxi Zhang
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Ondřej Daněk
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Dmytro Makarov
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Stanislav Rádl
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
- Zentiva a.s., U Kabelovny 130, 10237 Prague 10, Czech Republic
| | - Dongyoon Kim
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Jiří Ledvinka
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Kristýna Vychodilová
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900 Olomouc, Czech Republic
| | - Jan Hlaváč
- Department of Organic Chemistry, Faculty of Science, Palacký University, Tř. 17. Listopadu 12, 77146 Olomouc, Czech Republic
| | - Jonathan Lefèbre
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Maxime Denis
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| |
Collapse
|