1
|
Yang L, Zhang Y, Liu J, Wang X, Zhang L, Wan H. A tumor-targeting black phosphorus-based nanoplatform for controlled chemo-photothermal therapy of breast cancer. Mater Today Bio 2025; 31:101563. [PMID: 40026630 PMCID: PMC11870200 DOI: 10.1016/j.mtbio.2025.101563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/20/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Combination therapy with high efficacy and precision shows great potential in breast cancer treatment. Herein, we developed a multifunctional nanocarrier (NBP@mSiO2-PEG-cRGD) for tumor-targeting chemo-photothermal therapy of breast cancer in a controlled manner. The nanocarrier was constructed by enveloping nano-sized black phosphorus (NBP) within a mesoporous silica shell (mSiO2) modified with the tumor-targeting peptide c(Arg-Gly-Asp-dPhe-Cys) (cRGD). Due to the existence of pore channels within mSiO2, NBP@mSiO2-PEG-cRGD achieved high loading efficiency of indole-3-carbinol (I3C) molecules (NBP@mSiO2-PEG-cRGD/I3C), an anti-tumor agent derived from food. Mediated by cRGD/integrin αvβ3 interaction, NBP@mSiO2-PEG-cRGD/I3C reached breast tumors in a targeted manner. Once irradiated by the near-infrared laser, our nanocarrier exhibited superior photothermal conversion, which not only induced photothermal therapy but also facilitated the release of I3C from NBP@mSiO2-PEG-cRGD/I3C within tumor cells to inhibit the activation of proto-oncogenic phosphoinositide 3-kinase (PI3K)-AKT signaling pathway and drive chemotherapy. All these attributes contributed to a satisfactory therapeutic effect toward breast tumors, manifesting in significant inhibition of cell proliferation, promotion of cell apoptosis, and reduction of tumor micro-vessel formation, which led to the efficient inhibition of tumor growth. Collectively, the nanocarrier developed here provided useful insights into the development of multifunctional platforms to effectively combat cancer.
Collapse
Affiliation(s)
- Lin Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Ying Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Xiaofen Wang
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China
| | - Li Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Hao Wan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| |
Collapse
|
2
|
Zhang G, Shang R, Zhong X, Lv S, Yi Y, Lu Y, Xu Z, Wang Y, Teng J. Natural products target pyroptosis for ameliorating neuroinflammation: A novel antidepressant strategy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156394. [PMID: 39826285 DOI: 10.1016/j.phymed.2025.156394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/19/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Depression is a common mental disorder characterized by prolonged loss of interest and low mood, accompanied by symptoms such as sleep disturbances and cognitive impairments. In severe cases, there may be a tendency toward suicide. Depression can be caused by a series of highly complex pathological mechanisms; However, its key pathogenic mechanism remains unclear. As a novel programmed cell death (PCD) pathway and inflammatory cell death mode, pyroptosis involves a series of tightly regulated gene expression events. It may play a significant role in the pathogenesis and management of depression by modulating neuroinflammatory processes. In addition, a large number of studies have shown that various pharmacologically active natural products can regulate pyroptosis through multiple targets and pathways, demonstrating significant potential in the treatment of depression. These natural products offer advantages such as low costs and minimal side effects, making them a viable supplement or alternative to traditional antidepressants. In this review, we summarized recent research on natural products that regulate pyroptosis and neuroinflammation to improve depression. The aim of this review was to contribute to a scientific basis for the discovery and development of more natural antidepressants in the future. METHODS To review the antidepressant effects of natural products targeting pyroptosis-mediated neuroinflammation, data were collected from the Web of Science, ScienceDirect databases, and PubMed to classify and summarize the relationship between pyroptosis and neuroinflammation in depression, as well as the pharmacological mechanisms of natural products. RESULTS Multiple researches have revealed that pyroptosis-mediated neuroinflammation serves as a pivotal contributory factor in the pathological process of depression. Natural products, such as terpenoids, terpenes, phenylethanol glycosides, and alkaloids, have antidepressant effects by regulating pyroptosis to alleviate neuroinflammation. CONCLUSION We comprehensively reviewed the regulatory effects of natural products in depression-related pyroptosis pathways, providing a uniquely insightful perspective for the research, development, and application of natural antidepressants. However, future research should further explore the modulatory mechanisms of natural products in regulating pyroptosis, which is of great importance for the genration of effective antidepressants.
Collapse
Affiliation(s)
- Guangheng Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Ruirui Shang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Shimeng Lv
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Yunhao Yi
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Yitong Lu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Zhiwei Xu
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Yilin Wang
- Affiliated Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Jing Teng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China.
| |
Collapse
|
3
|
Kong Y, Wang H, Qiao L, Du T, Luo J, Liu Y, Yang B. Exogenous application of luteolin enhances wheat resistance to Puccinia striiformis f. sp. tritici. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109674. [PMID: 40020601 DOI: 10.1016/j.plaphy.2025.109674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
The accumulation of flavonoids facilitates plant resistance to biotic stress. However, few studies have explored the functions of flavonoids during the interaction between wheat and Puccinia striiformis Westendorp f. sp. tritici Eriksson (Pst). This study analyzed the expression profiles of flavonoids and their biosynthesis genes in the resistant accession Y0337 and the susceptible accession Y0402 infected with Pst. The results showed that flavonoid biosynthesis pathway (FBP) genes were induced during early Pst infection. Among these, 29 initial FBP DEGs exhibited higher expression during incompatible interaction. Further, the total levels of 12 identified flavonoids were higher during incompatible interaction; among these, apigenin, luteolin, cynaroside were accumulated and naringenin was decreased, they may play a crucial role in Pst resistance. Integrated analysis of the transcriptome and metabolome showed that 21 DEGs regulated four crucial flavonoids biosynthesis. The gene regulatory network suggested that the transcription factors EFRs, WRKYs, NACs, and bHLHs potentially regulated four flavonoids biosynthesis. Additionally, it was shown that luteolin inhibited spore germination and infection of Pstin vivo and in vitro. In summary, these results enhance our understanding of the flavonoids biosynthesis in wheat resistance to Pst and highlight the role of luteolin in this process.
Collapse
Affiliation(s)
- Yixi Kong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Huiyutang Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Liang Qiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Tingting Du
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jianfei Luo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yiling Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Baoju Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
4
|
Pan J, Chen MY, Jiang CY, Zhang ZY, Yan JL, Meng XF, Han YP, Lou YY, Yang JT, Qian LB. Luteolin alleviates diabetic cardiac injury related to inhibiting SHP2/STAT3 pathway. Eur J Pharmacol 2025; 989:177259. [PMID: 39788407 DOI: 10.1016/j.ejphar.2025.177259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/15/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
Diabetic cardiomyopathy, a heart disease resulting from diabetes mellitus, inflicts structural and functional damage to the heart. Recent studies have highlighted the potential role of luteolin, a flavonoid, in mitigating diabetic cardiovascular injuries. The Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) is implicated in exacerbating diabetes- and obesity-related complications. Interestingly, luteolin has been shown to inhibit protein tyrosine phosphatases, but it's unclear how SHP2 relates to luteolin's protective effects against diabetic heart disease. Here, we hypothesized that the inhibition of SHP2 signaling could play a role in luteolin's protective action against diabetic heart injury. Diabetes was induced in male Sprague-Dawley rats through a high-fat diet followed by a single intraperitoneal dose of streptozotocin (30 mg/kg). Five weeks post-diabetes induction, these rats were intraperitoneally injected with luteolin at varying doses (5, 10, 20 mg/kg) every other day for an additional 5 weeks. Then cardiac function was assessed, and hearts were isolated for further analysis. We found that luteolin notably improved cardiac function, inhibited cardiac hypertrophy and fibrosis, reduced levels of inflammatory factors and reactive oxygen species, and activated superoxide dismutase. Importantly, luteolin treatment also reduced the expression of SHP2 and phosphorylated signal transducer and activator of transcription 3 (STAT3) in a dose-dependent manner. These findings suggest that luteolin protects the diabetic heart against inflammation, oxidative stress, hypertrophy, and fibrosis, which may relate to down-regulating cardiac SHP2/STAT3 signaling.
Collapse
Affiliation(s)
- Jie Pan
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Meng-Yuan Chen
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China; Department of Clinical Laboratory Medicine, First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Chun-Yan Jiang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Zi-Yan Zhang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Jia-Lin Yan
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Xiang-Fei Meng
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Yu-Peng Han
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yang-Yun Lou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Jin-Ting Yang
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Ling-Bo Qian
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China.
| |
Collapse
|
5
|
Liu F, Guo C, Liu X, Gu Z, Zou W, Tang X, Tang J. Luteolin in Inflammatory Bowel Disease and Colorectal Cancer: A Disease Continuum Perspective. Curr Issues Mol Biol 2025; 47:126. [PMID: 39996847 PMCID: PMC11853781 DOI: 10.3390/cimb47020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that may progress to colorectal cancer (CRC), presenting significant challenges to global health. With shifts in lifestyle, the incidence of both conditions continues to rise, underscoring the urgent need for effective treatments. While traditional therapies can be effective, their high recurrence rates and associated adverse reactions limit their broader application. Luteolin, a flavonoid derived from natural plants, has emerged as a promising focus in both IBD and CRC research due to its multi-target therapeutic potential. This article reviews the molecular mechanisms and signaling pathways through which luteolin regulates immune cell differentiation, mitigates inflammation and oxidative stress, modulates gut microbiota, and restores intestinal mucosal barrier function in IBD. In the context of CRC, luteolin demonstrates significant anti-tumor effects by inhibiting cancer cell proliferation, inducing apoptosis, and suppressing cell migration and invasion. Notably, luteolin has demonstrated significant improvements in IBD symptoms by influencing the differentiation of T cell subsets, decreasing the expression of inflammatory mediators, activating antioxidant pathways, and enhancing the structure of gut microbiota. Furthermore, advancements in formulation technology, such as the use of polymer micelles and responsive nanoparticles, have greatly improved the bioavailability and efficacy of luteolin. However, further investigation is needed to address the bioavailability and potential toxicity of luteolin, particularly in the critical transition from IBD to CRC. This article emphasizes the potential of luteolin in the treatment of IBD and CRC and anticipates its promising prospects for future clinical applications as a natural therapeutic agent.
Collapse
Affiliation(s)
- Fang Liu
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (F.L.); (C.G.)
- Clinical Medicine College of Integrated Chinese and Western Medicine, North Sichuan Medical College, Nanchong 637100, China; (X.L.); (Z.G.); (W.Z.)
| | - Cui Guo
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (F.L.); (C.G.)
| | - Xue Liu
- Clinical Medicine College of Integrated Chinese and Western Medicine, North Sichuan Medical College, Nanchong 637100, China; (X.L.); (Z.G.); (W.Z.)
| | - Zhili Gu
- Clinical Medicine College of Integrated Chinese and Western Medicine, North Sichuan Medical College, Nanchong 637100, China; (X.L.); (Z.G.); (W.Z.)
| | - Wenxuan Zou
- Clinical Medicine College of Integrated Chinese and Western Medicine, North Sichuan Medical College, Nanchong 637100, China; (X.L.); (Z.G.); (W.Z.)
| | - Xuegui Tang
- Clinical Medicine College of Integrated Chinese and Western Medicine, North Sichuan Medical College, Nanchong 637100, China; (X.L.); (Z.G.); (W.Z.)
| | - Jianyuan Tang
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (F.L.); (C.G.)
| |
Collapse
|
6
|
de Lima EP, Laurindo LF, Catharin VCS, Direito R, Tanaka M, Jasmin Santos German I, Lamas CB, Guiguer EL, Araújo AC, Fiorini AMR, Barbalho SM. Polyphenols, Alkaloids, and Terpenoids Against Neurodegeneration: Evaluating the Neuroprotective Effects of Phytocompounds Through a Comprehensive Review of the Current Evidence. Metabolites 2025; 15:124. [PMID: 39997749 PMCID: PMC11857241 DOI: 10.3390/metabo15020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/26/2025] Open
Abstract
Neurodegenerative diseases comprise a group of chronic, usually age-related, disorders characterized by progressive neuronal loss, deformation of neuronal structure, or loss of neuronal function, leading to a substantially reduced quality of life. They remain a significant focus of scientific and clinical interest due to their increasing medical and social importance. Most neurodegenerative diseases present intracellular protein aggregation or their extracellular deposition (plaques), such as α-synuclein in Parkinson's disease and amyloid beta (Aβ)/tau aggregates in Alzheimer's. Conventional treatments for neurodegenerative conditions incur high costs and are related to the development of several adverse effects. In addition, many patients are irresponsive to them. For these reasons, there is a growing tendency to find new therapeutic approaches to help patients. This review intends to investigate some phytocompounds' effects on neurodegenerative diseases. These conditions are generally related to increased oxidative stress and inflammation, so phytocompounds can help prevent or treat neurodegenerative diseases. To achieve our aim to provide a critical assessment of the current literature about phytochemicals targeting neurodegeneration, we reviewed reputable databases, including PubMed, EMBASE, and COCHRANE, seeking clinical trials that utilized phytochemicals against neurodegenerative conditions. A few clinical trials investigated the effects of phytocompounds in humans, and after screening, 13 clinical trials were ultimately included following PRISMA guidelines. These compounds include polyphenols (flavonoids such as luteolin and quercetin, phenolic acids such as rosmarinic acid, ferulic acid, and caffeic acid, and other polyphenols like resveratrol), alkaloids (such as berberine, huperzine A, and caffeine), and terpenoids (such as ginkgolides and limonene). The gathered evidence underscores that quercetin, caffeine, ginkgolides, and other phytochemicals are primarily anti-inflammatory, antioxidant, and neuroprotective, counteracting neuroinflammation, neuronal oxidation, and synaptic dysfunctions, which are crucial aspects of neurodegenerative disease intervention in various included conditions, such as Alzheimer's and other dementias, depression, and neuropsychiatric disorders. In summary, they show that the use of these compounds is related to significant improvements in cognition, memory, disinhibition, irritability/lability, aberrant behavior, hallucinations, and mood disorders.
Collapse
Affiliation(s)
- Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Vitor Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos Krt. 113, H-6725 Szeged, Hungary
| | - Iris Jasmin Santos German
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, São Paulo, Brazil
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, São Paulo, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Adriana Maria Ragassi Fiorini
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| |
Collapse
|
7
|
Lv J, Song X, Luo Z, Huang D, Xiao L, Zou K. Luteolin: exploring its therapeutic potential and molecular mechanisms in pulmonary diseases. Front Pharmacol 2025; 16:1535555. [PMID: 40012626 PMCID: PMC11861102 DOI: 10.3389/fphar.2025.1535555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/22/2025] [Indexed: 02/28/2025] Open
Abstract
Luteolin is a flavonoid widely found in plants, including vegetables, botanical drugs, and fruits. Owing to its diverse pharmacological activities, such as anticancer, oxidative stress protection, anti-inflammatory, and neuron-preserving effects, luteolin has attracted attention in research and medicine. Luteolin exhibits therapeutic effects on various pulmonary disease models through multiple molecular mechanisms; these include inhibition of activation of the PI3K/Akt-mediated Nuclear Factor kappa-B (NF-κB) and MAPK signaling pathways, as well as the promotion of regulatory T cell (Treg) function and enhancement of alveolar epithelial sodium channel (ENaC) activity (alleviating inflammation and oxidative stress responses). Luteolin has therapeutic effects on chronic obstructive pulmonary disease (COPD), acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pulmonary fibrosis, allergic asthma, and lung cancer. Luteolin, a naturally occurring polyphenol, is poorly water-soluble. The oral route may be ineffective because the gut poorly absorbs this type of flavonoid. Therefore, although luteolin exhibits significant biological activity, its clinical application is limited by challenges associated with its poor water solubility and low bioavailability, which are critical factors for its efficacy and pharmacological application. These challenges can be addressed by modifying the chemical structure and enhancing pharmaceutical formulations. We summarized the research advancements in improving the solubility and bioavailability of luteolin, as well as the effects of luteolin on various pulmonary diseases and their related mechanisms, with the aim of providing new ideas for researchers.
Collapse
Affiliation(s)
- Jialian Lv
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinyue Song
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zixin Luo
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Duoqin Huang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Li Xiao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Kang Zou
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
8
|
Cao DM, Rao Y, Liu T, Yuan WQ. Combination of Metabolomics and Bioinformatics to Reveal the Mechanism of Luteolin in the Treatment of Cervical Cancer. Chem Biol Drug Des 2025; 105:e70059. [PMID: 39887883 DOI: 10.1111/cbdd.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/05/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
The incidence of cervical cancer is high among women globally. The potential therapeutic efficacy of luteolin in the treatment of cervical cancer has been identified. Therefore, we aim to elucidate the mechanism of action of luteolin in the treatment of cervical cancer through a comprehensive approach that integrates metabolomics with bioinformatics. The first step involved the identification of differential metabolites through UHPLC-Q-Orbitrap-MS, which were then utilized for enrichment analysis of metabolic pathways and to determine the targets associated with these differential metabolites. Subsequently, the differential analysis and WGCNA were employed to identify DEGs and functional module genes respectively. The common targets were obtained by intersecting the results from the aforementioned three analyses, followed by conducting GO and KEGG pathway enrichment analysis on these targets. Subsequently, PPI networks were constructed using these common targets, and key targets were identified utilizing the MCC, EPC, Degree, Closeness Centrality, Betweenness Centrality, and Bottleneck algorithms in the CytoHubba plug-in. The subsequent steps involved the analysis of key genes for constructing a nomogram, conducting a ROC curve, examining content expression and survival analysis, and ultimately employing molecular docking to investigate the interaction between luteolin and crucial targets. The metabolomics analysis revealed the identification of a total of 45 distinct metabolites in this study, primarily associated with amino acid and nucleotide metabolism. The intersection of 773 differential metabolite targets, 3493 cervical cancer differential genes, and 3245 WGCNA-associated module genes yielded a set of 32 target genes associated with luteolin therapy for cervical cancer. The GO and KEGG pathway enrichment analysis also revealed that these targets were primarily associated with amino acid metabolism and nucleotide metabolism. The CytoHubba plug-in was utilized to identify three key genes (DMNT1, EZH2, and GMPS) through the application of multiple algorithms. Additionally, the datasets GSE63514, GSE67522, and GEPIA2 revealed a significant upregulation of all three genes in tumor tissue. ROC analysis demonstrated the good predictive ability of these three hub genes. Finally, the molecular docking results demonstrated the high binding affinity of luteolin towards DMNT1, EZH2, and GMPS. In conclusion, this study has unveiled the potential of luteolin in modulating amino acid and nucleotide metabolism for the treatment of cervical cancer, thereby providing a theoretical foundation for further investigation into the intricate association between luteolin and cervical cancer.
Collapse
Affiliation(s)
- Dong-Min Cao
- Department of Acupuncture, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Zhongshan, China
| | - Yin Rao
- Department of Acupuncture, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Tao Liu
- School of Mathematics and Big Data, Foshan University, Foshan, China
| | - Wei-Qu Yuan
- Department of Acupuncture, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- School of Mathematics and Big Data, Foshan University, Foshan, China
| |
Collapse
|
9
|
Jiang J, Zhu X, Li S, Yan Q, Ma J. Building a Bridge Between the Mechanism of EBV Reactivation and the Treatment of EBV-Associated Cancers. J Med Virol 2025; 97:e70192. [PMID: 39868897 DOI: 10.1002/jmv.70192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/15/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025]
Abstract
Epstein-Barr virus (EBV) infection is closely associated with the development of various tumors such as lymphomas and epithelial cancers. EBV has a discrete life cycle with latency and lytic phases. In recent years, significant progress has been made in the understanding of the mechanism underlying the transition of EBV from latency to lytic replication. Multiple new lytic activation factors have been emerged and promoted our understanding of this field. In addition, we have comprehensively presented the existing therapeutic strategies and their relationship to the mechanism underlying the transition of EBV from latency to lytic replication in this review, such as lytic induction therapy and drugs to prevent EBV from entering the lytic phase fully utilize the EBV reactivation mechanisms. This year marks the 60th anniversary of the discovery of EBV, and building a bridge between the mechanism of EBV reactivation and the treatment may help us to design new approaches for treating EBV-associated diseases.
Collapse
Affiliation(s)
- Jialin Jiang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, School of Basic Medicine Sciences, Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, and Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Xinlei Zhu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, School of Basic Medicine Sciences, Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, and Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Shukun Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, School of Basic Medicine Sciences, Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, and Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, School of Basic Medicine Sciences, Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, and Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| |
Collapse
|
10
|
Singh D, Shukla G. The multifaceted anticancer potential of luteolin: involvement of NF-κB, AMPK/mTOR, PI3K/Akt, MAPK, and Wnt/β-catenin pathways. Inflammopharmacology 2025; 33:505-525. [PMID: 39543054 DOI: 10.1007/s10787-024-01596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Cancer is the predominant and major cause of fatality worldwide, based on the different types of cancer. There is a limitation in the current treatment. So we need better therapeutic agents that counteract the progression and development of malignant tumours. Plant-derived products are closely related and useful for human health. Luteolin is a polyphenolic flavonoid bioactive molecule that is present in various herbs, vegetables, fruits, and flowers and exhibits chemoprotective and pharmacological activity against different malignancies. To offer innovative approaches for the management of various cancers, we present a comprehensive analysis of the latest discoveries on luteolin. The aim is to inspire novel concepts for the development of advanced pharmaceuticals targeting cancer and search specifically targeted reviews and research articles published from January 1999 to January 2024 that investigated the application of luteolin in various cancer management. A thorough literature search utilizing the keywords "luteolin" "Signalling Pathway" "cancer" and nanoparticles was performed in the databases of Google Scholar, Web of Science, SCOPUS, UGC care list and PubMed. Through the compilation of existing research, we have discovered that luteolin possesses several therapeutic actions against various cancer via a signaling pathway involving the of NF-κB regulation, AMPK/mTOR, toll-like receptor, Nrf-2, PI3K/Akt MAPK and Wnt/β-catenin and their underlying mechanism of action has been well understood. This review intended to completely integrate crucial information on natural sources, biosynthesis, pharmacokinetics, signaling pathways, chemoprotective and therapeutic properties against various cancers, and nanoformulation of luteolin.
Collapse
Affiliation(s)
- Deepika Singh
- Faculty of Health Sciences, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India.
| | - Gaurav Shukla
- Faculty of Health Sciences, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
11
|
Choudhary MK, Pancholi B, Kumar M, Babu R, Garabadu D. A review on endoplasmic reticulum-dependent anti-breast cancer activity of herbal drugs: possible challenges and opportunities. J Drug Target 2025; 33:206-231. [PMID: 39404107 DOI: 10.1080/1061186x.2024.2417189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Breast cancer (BC) is a major cause of cancer-related mortality across the globe and is especially highly prevalent in females. Based on the poor outcomes and several limitations of present management approaches in BC, there is an urgent need to focus and explore an alternate target and possible drug candidates against the target in the management of BC. The accumulation of misfolded proteins and subsequent activation of unfolded protein response (UPR) alters the homeostasis of endoplasmic reticulum (ER) lumen that ultimately causes oxidative stress in ER. The UPR activates stress-detecting proteins such as IRE1α, PERK, and ATF6, these proteins sometimes may lead to the activation of pro-apoptotic signaling pathways in cancerous cells. The ER stress-dependent antitumor activity could be achieved either through suppressing the adaptive UPR to make cells susceptible to ER stress or by causing chronic ER stress that may lead to triggering of pro-apoptotic signaling pathways. Several herbal drugs trigger ER-dependent apoptosis in BC cells. Therefore, this review discussed the role of fifty-two herbal drugs and their active constituents, focusing on disrupting the balance of the ER within cancer cells. Further, several challenges and opportunities have also been discussed in ER-dependent management in BC.Breast cancer (BC) is a major cause of cancer-related mortality across the globe and is especially highly prevalent in females. Based on the poor outcomes and several limitations of present management approaches in BC, there is an urgent need to focus and explore an alternate target and possible drug candidates against the target in the management of BC. The accumulation of misfolded proteins and subsequent activation of unfolded protein response (UPR) alters the homeostasis of endoplasmic reticulum (ER) lumen that ultimately causes oxidative stress in ER. The UPR activates stress-detecting proteins such as IRE1α, PERK, and ATF6, these proteins sometimes may lead to the activation of pro-apoptotic signaling pathways in cancerous cells. The ER stress-dependent antitumor activity could be achieved either through suppressing the adaptive UPR to make cells susceptible to ER stress or by causing chronic ER stress that may lead to triggering of pro-apoptotic signaling pathways. Several herbal drugs trigger ER-dependent apoptosis in BC cells. Therefore, this review discussed the role of fifty-two herbal drugs and their active constituents, focusing on disrupting the balance of the ER within cancer cells. Further, several challenges and opportunities have also been discussed in ER-dependent management in BC.
Collapse
Affiliation(s)
- Mayank Kumar Choudhary
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Bhaskaranand Pancholi
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Manoj Kumar
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Raja Babu
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Debapriya Garabadu
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
12
|
Zhou R, Peng X, Teng Y, Liu S, Yuan Y. Transcriptome analysis reveals potential medicinal ingredient synthesis in ornamental Dendrobium. Genomics 2025; 117:111003. [PMID: 39855484 DOI: 10.1016/j.ygeno.2025.111003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Dendrobium is divided into ornamental and medicinal varieties due to ornamental and medicinal values. However, current research mainly focuses on medicinal Dendrobium, with less study on the medicinal value of ornamental Dendrobium. We analyzed the microstructures, active components of the stems from twelve ornamental Dendrobium, and explored the biosynthetic networks of these active components based on transcriptome sequencing. This study found the Dendrobium with the highest content of polysaccharide, alkaloid, and flavonoid was Dendrobium aphyllum (53.89 %), Dendrobium thyrsiflorum (2.11 %) and Dendrobium loddigesii (7.21 %). Further research revealed 9 DEGs associated with polysaccharide biosynthesis were highly expressed in D. aphyllum; 4 DEGs related to alkaloid biosynthesis were highly expressed in D. thyrsiflorum; 8 DEGs associated with flavonoid biosynthesis were highly expressed in D. loddigesii. This study revealed the potential medicinal value of ornamental Dendrobium and the synthetic mechanisms of its medicinal components, providing a foundation for the medical applications of ornamental Dendrobium.
Collapse
Affiliation(s)
- Runyang Zhou
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Xi Peng
- Guizhou Academy of Sciences, Institute of Mountain Resources of Guizhou Province, Guiyang, China
| | - Yao Teng
- Guizhou Academy of Sciences, Institute of Mountain Resources of Guizhou Province, Guiyang, China.
| | - Sian Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China.
| | - Yingdan Yuan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Dai X, Liang B, Sun Y. Luteolin ameliorates rat model of metabolic syndrome-induced cardiac injury by apoptosis suppression and autophagy promotion via NR4A2/p53 regulation. BMC Complement Med Ther 2025; 25:14. [PMID: 39833877 PMCID: PMC11744851 DOI: 10.1186/s12906-025-04749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Reduced cardiac autophagy, inflammation, and apoptosis contribute to cardiovascular complications caused by metabolic syndrome (MetS). It is documented that the nuclear receptor 4A2 (NR4A2) could modulate autophagy and apoptosis in cardiac complications. The aim of this investigation was to assess the therapeutic potential of luteolin, with documented beneficial properties, against MetS-associated cardiac injury. METHODS Forty male albino Wistar rats were divided into 5 groups randomly as controls, MetS, and MetS animals treated with luteolin (25, 50, 100 mg/kg ip). The animal's weight, blood pressure, lipid profile, tolerance to glucose and insulin, and cardiac histopathology were evaluated. Moreover, troponin T, creatine kinase-myocardial band (CK-MB), inflammatory profile (IL-6, IL-1β, TNF-α), transforming growth factor-β1 (TGF-β1), oxidative stress, and matrix metalloproteinase-9 (MMP-9) were analyzed to determine the cardiac state. Cardiac NR4A2 and p53, as well as apoptotic (B-cell leukemia/lymphoma 2 [BCL-2], Caspase [CASP]-3, and CASP-9) and autophagic mediators (Sequestosome-1/p62, Microtubule-associated protein 1 A/1B-light chain 3 [LC3], and Beclin-1) were measured by RT-qPCR and ELISA. RESULTS Luteolin remarkably restored MetS-induced biochemical derangements and related cardiac injury via the suppression of apoptosis, inflammation, and stress but promotion of autophagy (p-value < 0.001). CONCLUSION Current findings revealed the promising therapeutical properties of luteolin against MetS-associated cardiovascular risks.
Collapse
Affiliation(s)
- Xiyan Dai
- Department of Comprehensive, Maoming People's Hospital, Maoming, 525000, China
| | - Bo Liang
- Department of MRI, Maoming People's Hospital, Maoming, 525000, China
| | - Yaolin Sun
- Department of Cardiovascular Medicine, First Hospital of Northwest University, Xi'an, 710043, China.
| |
Collapse
|
14
|
Herlina T, Rizaldi Akili AW, Nishinarizki V, Hardianto A, Latip JB. Review on antibacterial flavonoids from genus Erythrina: Structure-activity relationship and mode of action. Heliyon 2025; 11:e41395. [PMID: 39811340 PMCID: PMC11729662 DOI: 10.1016/j.heliyon.2024.e41395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
The Fabaceae family, particularly genus Erythrina, is renowned for significant medicinal properties. These plants have been used as natural remedies to address various health issues and are rich in flavonoids. Therefore, this review aimed to provide a comprehensive overview of antibacterial activity, structure-activity relationship, especially against drug-resistance Staphylococcus aureus, and mode of action for flavonoids isolated from Erythrina. Data were collected from reputable electronic scholarly resources focusing on publications from 2000 to 2022. The results showed that the evaluated flavonoids include 31 % pterocarpans, 22 % flavanones, 20 % isoflavanones, 18 % isoflavones, 4 % isoflavans, 3 % isoflav-3-enes, 1 % 3-arylcoumarins, and 1 % coumestans. Most of these compounds in Erythrina plants were extracted from the roots and stem bark. Among these group of flavonoids, pterocarpan stands out as the most active class against S. aureus. Structure-activity relationship study emphasized pivotal contribution of the prenyl functional group to enhance antibacterial activity of flavonoids. Increasing the number of prenyl groups enhanced antibacterial effectiveness while modifying the group reduced this activity. The proposed antibacterial mechanisms of these flavonoids include the suppression of nucleic acid synthesis, disruption of cytoplasmic membrane function, and modulation of energy metabolism. Among the potent antibacterial flavonoids from genus Erythrina, compound 3,9-dihyroxy-10-γ,γ-dimethylallyl-6a,11a-dehydropterocarpan was found as the most potent against Methicillin-Resistant Staphylococcus aureus (MRSA) through the inhibition of nucleic acid synthesis. Other common flavonoids such as genistein, daidzein, apigenin, and luteolin exert antibacterial activity through the inhibition of ATP synthase.
Collapse
Affiliation(s)
- Tati Herlina
- Department of Chemistry, Faculty of Mathematics and Natural Science, Padjadjaran University, Jatinangor, 45363, Sumedang, West Java, Indonesia
| | - Abd Wahid Rizaldi Akili
- Department of Chemistry, Faculty of Mathematics and Natural Science, Padjadjaran University, Jatinangor, 45363, Sumedang, West Java, Indonesia
| | - Vicki Nishinarizki
- Department of Chemistry, Faculty of Mathematics and Natural Science, Padjadjaran University, Jatinangor, 45363, Sumedang, West Java, Indonesia
| | - Ari Hardianto
- Department of Chemistry, Faculty of Mathematics and Natural Science, Padjadjaran University, Jatinangor, 45363, Sumedang, West Java, Indonesia
| | - Jalifah Binti Latip
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 46300, Bangi, Selangor, Malaysia
| |
Collapse
|
15
|
Yang S, Duan H, Yan Z, Xue C, Niu T, Cheng W, Zhang Y, Zhao X, Hu J, Zhang L. Luteolin Alleviates Ulcerative Colitis in Mice by Modulating Gut Microbiota and Plasma Metabolism. Nutrients 2025; 17:203. [PMID: 39861331 PMCID: PMC11768085 DOI: 10.3390/nu17020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Ulcerative colitis (UC) is a chronic and easily recurrent inflammatory bowel disease. The gut microbiota and plasma metabolites play pivotal roles in the development and progression of UC. Therefore, therapeutic strategies targeting the intestinal flora or plasma metabolites offer promising avenues for the treatment of UC. Luteolin (Lut), originating from a variety of vegetables and fruits, has attracted attention for its potent anti-inflammatory properties and potential to modulate intestinal flora. METHODS The therapeutic efficacy of Lut was evaluated in an established dextran sodium sulfate (DSS)-induced colitis mice model. The clinical symptoms were analyzed, and biological samples were collected for microscopic examination and the evaluation of the epithelial barrier function, microbiome, and metabolomics. RESULTS The findings revealed that Lut administration at a dose of 25 mg/kg significantly ameliorated systemic UC symptoms in mice, effectively reduced the systemic inflammatory response, and significantly repaired colonic barrier function. Furthermore, Lut supplementation mitigated gut microbiota dysbiosis in a UC murine model, increasing the abundance of Muribaculaceae, Rikenella, and Prevotellaceae while decreasing Escherichia_Shigella and Bacteroides levels. These alterations in gut microbiota also influenced plasma metabolism, significantly increasing phosphatidylcholine (PC), 6'-Deamino- 6'-hydroxyneomycin C, and gamma-L-glutamyl-butyrosine B levels and decreasing Motapizone and Arachidoyl-Ethanolamide (AEA) levels. CONCLUSIONS This study reveals that Lut supplementation modulates intestinal inflammation by restoring the gut microbiota community structure, thereby altering the synthesis of inflammation-related metabolites. Lut is a potential nutritional supplement with anti-inflammatory properties and offers a novel alternative for UC intervention and mitigation. In addition, further studies are needed to ascertain whether specific microbial communities or metabolites can mediate the recovery from UC.
Collapse
Affiliation(s)
- Shuai Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Zhenxing Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Chen Xue
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Tian Niu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Wenjing Cheng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Lihong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
16
|
Kong D, Duan J, Chen S, Wang Z, Ren J, Lu J, Chen T, Song Z, Wu D, Chang Y, Yin Z, Shen Z, Zheng H. Transplant oncology and anti-cancer immunosuppressants. Front Immunol 2025; 15:1520083. [PMID: 39840041 PMCID: PMC11747528 DOI: 10.3389/fimmu.2024.1520083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Organ transplantation is a life-saving intervention that enhances the quality of life for patients with end-stage organ failure. However, long-term immunosuppressive therapy is required to prevent allogeneic graft rejection, which inadvertently elevates the risk of post-transplant malignancies, especially for liver transplant recipients with a prior history of liver cancer. In response, the emerging field of transplant oncology integrates principles from oncology and immunology to improve outcomes for patients at high risk of tumor occurrence or recurrence following transplantation. Therefore, it is of substantial clinical significance to develop immunosuppressants that possess both immunosuppressive and anti-tumor properties. For instance, mTOR inhibitors demonstrate anti-tumor effects among antimetabolite immunosuppressive drugs, and recent studies indicate that capecitabine, an antimetabolite chemotherapeutic, may also exhibit immunosuppressive activity in the clinic for liver transplants suffering from hepatocellular carcinoma. This review systematically explores potential immunosuppressants with dual anti-tumor and immunosuppressive effects to support the management of transplant patients at elevated risk of tumor occurrence or recurrence.
Collapse
Affiliation(s)
- Dejun Kong
- Nankai University School of Medicine, Tianjin, China
| | - Jinliang Duan
- Nankai University School of Medicine, Tianjin, China
| | - Shaofeng Chen
- Nankai University School of Medicine, Tianjin, China
| | - Zhenglu Wang
- Tianjin Organ Transplantation Research Center, Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Jiashu Ren
- Tianjin First Central Clinical College, Tianjin, China
| | - Jianing Lu
- Tianjin First Central Clinical College, Tianjin, China
| | - Tao Chen
- Nankai University School of Medicine, Tianjin, China
| | - Zhuolun Song
- Tianjin Organ Transplantation Research Center, Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
| | - Di Wu
- Tianjin Organ Transplantation Research Center, Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
| | - Yuan Chang
- Nankai University School of Medicine, Tianjin, China
| | - Zhongqian Yin
- Tianjin First Central Clinical College, Tianjin, China
| | - Zhongyang Shen
- Tianjin Organ Transplantation Research Center, Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin, China
| | - Hong Zheng
- Tianjin Organ Transplantation Research Center, Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin, China
| |
Collapse
|
17
|
Pandey P, Lakhanpal S, Mahmood D, Kang HN, Kim B, Kang S, Choi J, Choi M, Pandey S, Bhat M, Sharma S, Khan F, Park MN, Kim B. An updated review summarizing the anticancer potential of flavonoids via targeting NF-kB pathway. Front Pharmacol 2025; 15:1513422. [PMID: 39834817 PMCID: PMC11743680 DOI: 10.3389/fphar.2024.1513422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Nuclear factor-κB (NF-κB) cell signaling pathway is essential for the progression and development of numerous human disorders, including cancer. NF-κB signaling pathway regulates a wide range of physiological processes, such as cell survival, growth, and migration. Deregulated NF-kB signaling resulted in unregulated cell proliferation, viability, movement, and invasion, thus promoting tumor development. Recent findings have increasingly shown that plant derived phytochemicals that inhibit NF-κB signaling have the potential to be employed in cancer therapeutics. Flavonoids are a group of polyphenolic natural compounds present in various plants and their fruits, vegetables, and leaves. These compounds have numerous medicinal properties owing to their antioxidant, anti-inflammatory, antiviral, and antitumor characteristics. The main mechanism by which these flavonoids exhibit their anticancer potential is via potent antioxidative and immunomodulatory actions. Current research reports have demonstrated that these flavonoids exhibited their anticancer effects via suppressing the NF-κB signaling. Based on these facts, we have comprehensively outlined the cancer promoting role of NF-κB pathway in various processes including tumor progression, drug resistance, angiogenesis and metastasis. In addition to these, we also summarize the anticancer potential of flavonoids by specifically targeting the NF-κB pathway in various types of cancers.
Collapse
Affiliation(s)
- Pratibha Pandey
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Danish Mahmood
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Han Na Kang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Byunggyu Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Min Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Mahakshit Bhat
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bonglee Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Ge X, Liu T, Wang Y, Wen H, Huang Z, Chen L, Xu J, Zhou H, Wu Q, Zhao C, Shao R, Xu W. Porous starch microspheres loaded with luteolin exhibit hypoglycemic activities and alter gut microbial communities in type 2 diabetes mellitus mice. Food Funct 2025; 16:54-70. [PMID: 39377562 DOI: 10.1039/d4fo02907k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Luteolin (LUT), a natural flavonoid known for its hypoglycemic properties, is primarily sourced from vegetables such as celery and broccoli. However, its poor stability and low bioavailability in the upper digestive tract hinder its application in the functional food industry. To address these challenges, this study employed porous starch (PS) as a carrier to develop PS microspheres loaded with luteolin (PSLUT), simulating its release in vitro. The research assessed the hypoglycemic effects of LUT in type 2 diabetes mellitus (T2DM) mice both before and after PS treatment. In vitro findings demonstrated that PS improved LUT's stability in simulated gastric fluids and enhanced its in vivo bioavailability, aligning with experimental outcomes. PSLUT administration significantly improved body weight, fasting blood glucose (FBG), oral glucose tolerance test (OGTT), pancreatic islet function, and other relevant indicators in T2DM mice. Moreover, PSLUT alleviated abnormal liver biochemical indicators and liver tissue injury caused by T2DM. The underlying hypoglycemic mechanism of PSLUT is thought to involve the regulation of protein kinase B (AKT-1) and glucose transporter 2 (GLUT-2). After four weeks of intervention, various PSLUT doses significantly reduced the Firmicutes to Bacteroidetes ratio at the phylum level and decreased the relative abundance of harmful bacteria at the genus level, including Acetatifactor, Candidatus-Arthromitus, and Turicibacter. This microbial shift was associated with improvements in hyperglycemia-related indicators such as FBG, the area under the curve (AUC) of OGTT, and homeostasis model assessment of insulin resistance (HOMA-IR), which are closely linked to these bacterial genera. Additionally, Lachnoclostridium, Parasutterella, Turicibacter, and Papillibacter were identified as key intestinal marker genera involved in T2DM progression through Spearman correlation analysis. In conclusion, PS enhanced LUT's hypoglycemic efficacy by modulating the transcription and protein expression levels of AKT-1 and GLUT-2, as well as the relative abundance of potential gut pathogens in T2DM mice. These results provide a theoretical foundation for advancing luteolin's application in the functional food industry and further investigating its hypoglycemic potential.
Collapse
Affiliation(s)
- Xiaodong Ge
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Tingting Liu
- Clinical Pharmacy Department, Yancheng Second People's Hospital, Yancheng, 224051, China
| | - Yaolin Wang
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Huanhuan Wen
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Zirui Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ligen Chen
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Jianda Xu
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, Changzhou, 213003, China
| | - Hongcheng Zhou
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, 224051, China
| | - Qin Wu
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, 224051, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rong Shao
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Wei Xu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
19
|
Vazhappilly CG, Alsawaf S, Mathew S, Nasar NA, Hussain MI, Cherkaoui NM, Ayyub M, Alsaid SY, Thomas JG, Cyril AC, Ramadan WS, Chelakkot AL. Pharmacodynamics and safety in relation to dose and response of plant flavonoids in treatment of cancers. Inflammopharmacology 2025; 33:11-47. [PMID: 39580755 DOI: 10.1007/s10787-024-01581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/02/2024] [Indexed: 11/26/2024]
Abstract
Despite the recent advancements in developing bioactive nutraceuticals as anticancer modalities, their pharmacodynamics, safety profiles, and tolerability remain elusive, limiting their success in clinical trials. The failure of anticancer drugs in clinical trials can be attributed to the changes in drug clearance, absorption, and cellular responses, which alter the dose-response efficacy, causing adverse health effects. Flavonoids demonstrate a biphasic dose-response phenomenon exerting a stimulatory or inhibitory effect and often follow a U-shaped curve in different preclinical cancer models. A double-edged sword, bioflavonoids' antioxidant or prooxidant properties contribute to their hormetic behavior and facilitate redox homeostasis by regulating the levels of reactive oxygen species (ROS) in cells. Emerging reports suggest a need to discuss the pharmacodynamic broad-spectrum of plant flavonoids to improve their therapeutic efficacy, primarily to determine the ideal dose for treating cancer. This review discusses the dose-response effects of a few common plant flavonoids against some types of cancers and assesses their safety and tolerability when administered to patients. Moreover, we have emphasized the role of dietary-rich plant flavonoids as nutraceuticals in cancer treatment and prevention.
Collapse
Affiliation(s)
- Cijo George Vazhappilly
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE.
| | - Seba Alsawaf
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Shimy Mathew
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, UAE
| | - Noora Ali Nasar
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Maheen Imtiaz Hussain
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Noor Mustapha Cherkaoui
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Mohammed Ayyub
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Serin Yaser Alsaid
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Joshua George Thomas
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Asha Caroline Cyril
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | | |
Collapse
|
20
|
Xu Y, Zhang YX, Chen HY, Chang LS, Gou XJ, Chen WL. Integrating Network Pharmacology and In vivo Experimental Validation to Reveal the Mechanism of FuZheng YiLiu Formula on Estrogen Receptor Positive Breast Cancer. Comb Chem High Throughput Screen 2025; 28:49-63. [PMID: 37957900 DOI: 10.2174/0113862073255044231027061742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/04/2023] [Accepted: 09/14/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND AND PURPOSE FuZheng YiLiu Formula (FZYL) is a commonly used formula for postoperative estrogen receptor-positive (ER+) breast cancer and post-radiotherapy deficiency of both Qi and Yin. FZYL has been used in clinical practice for decades because of its ability to effectively improve the symptoms of deficiency in cancer patients. However, its mechanism needs to be further clarified. In this paper, we will observe the effect of FZYL on mice with ER+ breast cancer and explore the mechanism by which it improves the symptoms of ER+ breast cancer. MATERIALS AND METHODS A tumor xenograft mouse model was established to detect tumor growth in vivo in order to evaluate the pharmacological effects of FZYL on ER+ breast cancer. The main targets of FZYL were identified by extracting the FZYL components and the corresponding potential target genes of breast cancer from the established database and constructing a proteinprotein interaction network of shared genes using the string database. GO functional annotation and KEGG pathway enrichment analysis were performed, and molecular docking, molecular dynamics simulations, western blotting analysis, and RT-qPCR were performed to confirm the validity of targets in the relevant pathways. RESULTS FZYL was able to significantly reduce the size of tumors in vivo and had a significant therapeutic effect on tumor xenograft mice. GO and KEGG pathway enrichment analyses indicated that the effects of FZYL may be mediated by oxidative stress levels, apoptotic signaling pathways, and cell cycle proliferation. By RT-qPCR and protein blotting assays, FZYL targeted the key targets of TP53, JUN, ESR1, RELA, MYC, and MAPK1 to exert its effects. The key active components of FZYL are quercetin, luteolin, stigmasterol, and glycitein. Molecular docking and molecular dynamics simulation results further demonstrated that the key active components of FZYL are stably bound to the core targets. CONCLUSION In this study, the potential active ingredients, potential core targets, key biological pathways, and signaling pathways involved in the treatment of breast cancer with FZYL were identified, providing a theoretical basis for further anti ER+ breast cancer research.
Collapse
Affiliation(s)
- Yuan Xu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
- Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China
| | - Ying-Xuan Zhang
- Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China
| | - Hong-Yu Chen
- Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China
| | - Li-Sheng Chang
- Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China
| | - Xiao-Jun Gou
- Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China
| | - Wen-Li Chen
- Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China
| |
Collapse
|
21
|
Song W, Zhang Q, Cao Z, Jing G, Zhan T, Yuan Y, Kang N, Zhang Q. Targeting SERCA2 in Anti-Tumor Drug Discovery. Curr Drug Targets 2025; 26:1-16. [PMID: 39323343 DOI: 10.2174/0113894501325497240918042654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
SERCA2, a P-type ATPase located on the endoplasmic reticulum of cells, plays an important role in maintaining calcium balance within cells by transporting calcium from the cytoplasm to the endoplasmic reticulum against its concentration gradient. A multitude of studies have demonstrated that the expression of SERCA2 is abnormal in a wide variety of tumor cells. Consequently, research exploring compounds that target SERCA2 may offer a promising avenue for the development of novel anti-tumor drugs. This review has summarized the anti-tumor compounds targeting SERCA2, including thapsigargin, dihydroartemisinin, curcumin, galangin, etc. These compounds interact with SERCA2 on the endoplasmic reticulum membrane, disrupting intracellular calcium ion homeostasis, leading to tumor cell apoptosis, autophagy and cell cycle arrest, ultimately producing anti-tumor effects. Additionally, several potential research directions for compounds targeting SERCA2 as clinical anti-cancer drugs have been proposed in the review. In summary, SERCA2 is a promising anti-tumor target for drug discovery and development.
Collapse
Affiliation(s)
- Wanqian Song
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qiuju Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhiyong Cao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guo Jing
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tiancheng Zhan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yongkang Yuan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
22
|
Mahwish, Imran M, Naeem H, Hussain M, Alsagaby SA, Al Abdulmonem W, Mujtaba A, Abdelgawad MA, Ghoneim MM, El‐Ghorab AH, Selim S, Al Jaouni SK, Mostafa EM, Yehuala TF. Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies. Food Sci Nutr 2025; 13:e4682. [PMID: 39830909 PMCID: PMC11742186 DOI: 10.1002/fsn3.4682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/25/2024] [Accepted: 11/30/2024] [Indexed: 01/22/2025] Open
Abstract
Luteolin is widely distributed phytochemical, a flavonoid, in kingdom plantae. Luteolin with potential antioxidant activity prevent ROS-induced damages and reduce oxidative stress which is mainly responsible in pathogenesis of many diseases. Several chemo preventive activities and therapeutic benefits are associated with luteolin. Luteolin prevents cancer via modulation of numerous pathways, that is, by inactivating proteins; such as procaspase-9, CDC2 and cyclin B or upregulation of caspase-9 and caspase-3, cytochrome C, cyclin A, CDK2, and APAF-1, in turn inducing cell cycle arrest as well as apoptosis. It also enhances phosphorylation of p53 and expression level of p53-targeted downstream gene. By Increasing BAX protein expression; decreasing VEGF and Bcl-2 expression it can initiate cell cycle arrest and apoptosis. Luteolin can stimulate mitochondrial-modulated functions to cause cellular death. It can also reduce expression levels of p-Akt, p-EGFR, p-Erk1/2, and p-STAT3. Luteolin plays positive role against cardiovascular disorders by improving cardiac function, decreasing the release of inflammatory cytokines and cardiac enzymes, prevention of cardiac fibrosis and hypertrophy; enhances level of CTGF, TGFβ1, ANP, Nox2, Nox4 gene expressions. Meanwhile suppresses TGFβ1 expression and phosphorylation of JNK. Luteolin helps fight diabetes via inhibition of alpha-glucosidase and ChE activity. It can reduce activity levels of catalase, superoxide dismutase, and GS4. It can improve blood glucose, insulin, HOMA-IR, and HbA1c levels. This review is an attempt to elaborate molecular targets of luteolin and its role in modulating irregularities in cellular pathways to overcome severe outcomes during diseases including cancer, cardiovascular disorders, diabetes, obesity, inflammation, Alzheimer's disease, Parkinson's disease, hepatic disorders, renal disorders, brain injury, and asthma. As luteolin has enormous therapeutic benefits, it could be a potential candidate in future drug development strategies.
Collapse
Affiliation(s)
- Mahwish
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Muhammad Imran
- Department of Food Science and TechnologyUniversity of NarowalNarowalPakistan
| | - Hammad Naeem
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of AgricultureMultanPakistan
| | - Muzzamal Hussain
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityAL‐MajmaahSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of MedicineQassim UniversityBuraidahSaudi Arabia
| | - Ahmed Mujtaba
- Department of Food Sciences and Technology, Faculty of Engineering and TechnologyHamdard University Islamabad campusIslamabadPakistan
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of PharmacyJouf UniversityAljoufSaudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of PharmacyAlMaarefa UniversityRiyadhSaudi Arabia
| | - Ahmed H. El‐Ghorab
- Department of Chemistry, College of ScienceJouf UniversitySakakaSaudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of PharmacyJouf UniversitySakakaSaudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys)Al‐Azhar UniversityCairoEgypt
| | - Tadesse Fenta Yehuala
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of TechnologyBahir Dar UniversityBahir DarEthiopia
| |
Collapse
|
23
|
Ye Z, Yang S, Chen L, Yu W, Xia Y, Li B, Zhou X, Cheng F. Luteolin alleviated calcium oxalate crystal induced kidney injury by inhibiting Nr4a1-mediated ferroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156302. [PMID: 39662099 DOI: 10.1016/j.phymed.2024.156302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND The global incidence of calcium oxalate (CaOx) kidney stones is rising, and effective treatments remain limited. Luteolin (Lut), a naturally flavonoid present in several plants, is recognized for its anti-inflammatory, anti-injury, and neuroprotective effects. However, its effects on CaOx kidney stone formation and the associated kidney damage are still unknown. OBJECTIVE Our study seeks to explore the therapeutic impact of Lut on kidney injury and renal fibrosis caused by CaOx crystal and to elucidate the underlying mechanisms. METHODS CaOx stone models were established in mice via intraperitoneal injection of glyoxylate (Gly, 100 mg/kg) for 12 days. Lut (50 mg/kg or 100 mg/kg) was administered intraperitoneally 7 days before and with the period of Gly treatment. Kidney function and histopathology changes in renal tissues were assessed. RNA sequencing was used to explore potential mechanisms between the model and Lut treatment groups. Molecular docking simulations evaluated the interaction between Lut and the downstream target Nr4a1. Moreover, Nr4a1 knockout mice and knockdown plasmids were used to validate the mechanism of Lut in the treatment of CaOx crystal-induced kidney injury. RESULTS Lut significantly mitigated kidney injury and renal fibrosis induced by CaOx crystal, as evidenced by improved kidney function, histopathology staining and Western blot analysis. Lut treatment also significantly inhibited lipid peroxidation and mitochondrial injury. In vitro experiments further demonstrated that Lut treatment alleviated injury and fibrosis in HK-2 cells. Mechanistically, RNA sequencing and molecular docking simulations indicated that Lut binds to Nr4a1 to regulate ferroptosis, thereby alleviating kidney injury induced by CaOx crystal. Overexpression of Nr4a1 negated Lut's beneficial effects, whereas Nr4a1 knockout exhibited a protective effect against kidney injury. CONCLUSION Lut exerts its protective effects by inhibiting ferroptosis via targeting Nr4a1-Slc7a11-GPX4 pathway, alleviating kidney injury and renal fibrosis caused by CaOx crystal deposition.
Collapse
Affiliation(s)
- Zehua Ye
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060
| | - Songyuan Yang
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060
| | - Lijia Chen
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060
| | - Weimin Yu
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060
| | - Yuqi Xia
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060
| | - Bojun Li
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060
| | - Xiangjun Zhou
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060
| | - Fan Cheng
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060.
| |
Collapse
|
24
|
Ambele MA, Maebele LT, Mulaudzi TV, Kungoane T, Damane BP. Advances in nano-delivery of phytochemicals for glioblastoma treatment. DISCOVER NANO 2024; 19:216. [PMID: 39718730 DOI: 10.1186/s11671-024-04172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Glioblastoma (GBM) is an aggressive brain tumor characterized by cellular and molecular diversity. This diversity presents significant challenges for treatment and leads to poor prognosis. Surgery remains the primary treatment of choice for GBMs, but it often results in tumor recurrence due to complex interactions between GBM cells and the peritumoral brain zone. Phytochemicals have shown promising anticancer activity in in-vitro studies and are being investigated as potential treatments for various cancers, including GBM. However, some phytochemicals have failed to translate their efficacy to pre-clinical studies due to limited penetration into the tumor microenvironment, leading to high toxicity. Thus, combining phytochemicals with nanotechnology has emerged as a promising alternative for treating GBM. This review explores the potential of utilizing specific nanoparticles to deliver known anticancer phytochemicals directly to tumor cells. This method has demonstrated potential in overcoming the challenges of the complex GBM microenvironment, including the tight blood-brain barrier while minimizing damage to healthy brain tissue. Therefore, employing this interdisciplinary approach holds significant promise for developing effective phyto-nanomedicines for GBM and improving patient outcomes.
Collapse
Affiliation(s)
- Melvin Anyasi Ambele
- Department of Oral and Maxillofacial Pathology, Faculty of Health Sciences, School of Dentistry, University of Pretoria, P.O. Box 1266, Pretoria, 0001, South Africa.
- Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, P.O. Box 0084, Gezina, South Africa.
| | - Lorraine Tshegofatso Maebele
- Department of Surgery, Level 7, Bridge E, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Level 7, Bridge E, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Tsholofelo Kungoane
- Department of Oral and Maxillofacial Pathology, Faculty of Health Sciences, School of Dentistry, University of Pretoria, P.O. Box 1266, Pretoria, 0001, South Africa
| | - Botle Precious Damane
- Department of Surgery, Level 7, Bridge E, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa.
| |
Collapse
|
25
|
Mottola S, De Marco I. Designing Microparticles of Luteolin and Naringenin in Different Carriers via Supercritical Antisolvent Process. Polymers (Basel) 2024; 16:3600. [PMID: 39771451 PMCID: PMC11679595 DOI: 10.3390/polym16243600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Antioxidants are contained in fruits and vegetables and are commonly obtained through food. However, it is frequently necessary to supplement the diet with substances that are often poorly soluble in water and sensitive to light and oxygen. For this reason, in this work, luteolin (LUT) and naringenin (NAR), two compounds with antioxidant activity and potential health benefits, were precipitated through the supercritical antisolvent technique using polyvinylpyrrolidone and β-cyclodextrin as the carriers. The precipitation occurred from dimethylsulfoxide using supercritical carbon dioxide as the antisolvent. The influence of pressure (9-12 MPa), active substance/carrier concentration in the solution (20-200 mg/mL), and their ratio (1/1 and 1/2 mol/mol) on morphology, particle mean size, and distribution were investigated. Under the optimized operating conditions, spherical microparticles with a mean diameter equal to 2.7 ± 0.9 μm (for LUT) and 5.5 ± 1.9 μm (for NAR) were obtained. The active ingredients were protected from the external environment by the presence of the carrier, and the dissolution rate was notably increased by processing them with β-cyclodextrin. It was sixty times faster and three times faster than that of the antioxidant alone for LUT and NAR, respectively.
Collapse
Affiliation(s)
- Stefania Mottola
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy;
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy;
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
26
|
Eryilmaz IE, Colakoglu Bergel C, Arioz B, Huriyet N, Cecener G, Egeli U. Luteolin induces oxidative stress and apoptosis via dysregulating the cytoprotective Nrf2-Keap1-Cul3 redox signaling in metastatic castration-resistant prostate cancer cells. Mol Biol Rep 2024; 52:65. [PMID: 39699825 DOI: 10.1007/s11033-024-10178-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND The treatment of metastatic castration-resistant prostate cancer (mCRPC) is still challenging clinically. Due to the refractor and highly metastatic phenotype of mCRPC, novel therapy strategies need to be investigated. Luteolin, a promising anticancer agent with various biological targets in many cancer types, also has a pro-oxidant effect that selectively triggers ROS and apoptosis. In recent years, among its ROS-mediated mechanisms, the inhibitory effect of luteolin on the nuclear factor-E2-related factor 2 (Nrf2), the main ROS scavenger protein in cancer cells, has been reported. However, no evidence exists that luteolin potentially regulates the Nrf2 or its regulator signaling pathway, Nrf2-Keap1-Cul3 axis, concerning its pro-oxidant effects associated with ROS-triggered apoptosis in any PCa cells or tumor model. METHODS AND RESULTS In the present study, we investigated for the first time whether the anticancer effect of luteolin is associated with pro-oxidant activity via the regulation of the Nrf2-Keap1-Cul3 redox signaling in PC3 and DU145 mCRPC cells. The results showed that luteolin significantly caused more cytotoxic, apoptotic, and pro-oxidant effects in a dose-dependent manner in mCRPC cells than in WPMY-1 normal prostate fibroblast cells for 72 h. Moreover, significant inhibition of Nrf2-Keap1-Cul3 redox signaling has occurred in response to increasing doses of luteolin in mCRPC cells. CONCLUSIONS The current study put forth the potential pro-oxidant inhibitory effect of luteolin on the Nrf2-Keap1-Cul3 axis in mCRPC cells for the first time. Thus, luteolin might be an attractive therapy strategy with an inhibitory effect on the cytoprotective Nrf2-Keap1-Cul3 redox signaling for treating mCRPC.
Collapse
Affiliation(s)
- Isil Ezgi Eryilmaz
- Medical Biology Department, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| | | | - Bilge Arioz
- Medical Biology Department, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Nuseybe Huriyet
- Medical Biology Department, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Gulsah Cecener
- Medical Biology Department, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Unal Egeli
- Medical Biology Department, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
27
|
Godiyal Y, Maheshwari D, Taniguchi H, Zinzuwadia SS, Morera-Díaz Y, Tewari D, Bishayee A. Role of PD-1/PD-L1 signaling axis in oncogenesis and its targeting by bioactive natural compounds for cancer immunotherapy. Mil Med Res 2024; 11:82. [PMID: 39690423 DOI: 10.1186/s40779-024-00586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
Cancer is a global health problem and one of the leading causes of mortality. Immune checkpoint inhibitors have revolutionized the field of oncology, emerging as a powerful treatment strategy. A key pathway that has garnered considerable attention is programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1). The interaction between PD-L1 expressed on tumor cells and PD-1 reduces the innate immune response and thus compromises the capability of the body's immune system. Furthermore, it controls the phenotype and functionality of innate and adaptive immune components. A range of monoclonal antibodies, including avelumab, atezolizumab, camrelizumab, dostarlimab, durvalumab, sinitilimab, toripalimab, and zimberelimab, have been developed for targeting the interaction between PD-1 and PD-L1. These agents can induce a broad spectrum of autoimmune-like complications that may affect any organ system. Recent studies have focused on the effect of various natural compounds that inhibit immune checkpoints. This could contribute to the existing arsenal of anticancer drugs. Several bioactive natural agents have been shown to affect the PD-1/PD-L1 signaling axis, promoting tumor cell apoptosis, influencing cell proliferation, and eventually leading to tumor cell death and inhibiting cancer progression. However, there is a substantial knowledge gap regarding the role of different natural compounds targeting PD-1 in the context of cancer. Hence, this review aims to provide a common connection between PD-1/PD-L1 blockade and the anticancer effects of distinct natural molecules. Moreover, the primary focus will be on the underlying mechanism of action as well as the clinical efficacy of bioactive molecules. Current challenges along with the scope of future research directions targeting PD-1/PD-L1 interactions through natural substances are also discussed.
Collapse
Affiliation(s)
- Yogesh Godiyal
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Drishti Maheshwari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552, Magdalenka, Poland
- African Genome Center, Mohammed VI Polytechnic University, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Shweta S Zinzuwadia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Yanelys Morera-Díaz
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology, 11600, Havana, Cuba
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
28
|
Iida M, Kagawa T, Yajima I, Harusato A, Tazaki A, Nishadhi DASM, Taguchi N, Kato M. Anti-Graying Effects of External and Internal Treatments with Luteolin on Hair in Model Mice. Antioxidants (Basel) 2024; 13:1549. [PMID: 39765877 PMCID: PMC11673595 DOI: 10.3390/antiox13121549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Little is known about the anti-graying effects of antioxidants on hair. The anti-graying effects of three antioxidants (luteolin, hesperetin, and diosmetin) on hair were investigated according to the sequential processes of hair graying that were previously clarified in model mice [Ednrb(+/-);RET-mice]. External treatment with luteolin, but not that with hesperetin or diosmetin, alleviated hair graying in Ednrb(+/-);RET-mice. Internal treatment with luteolin also mitigated hair graying in the mice. Although both luteolin treatments had very limited effects on hair cycles, the treatments suppressed the increase in p16ink4a-positive cells in bulges [senescent keratinocyte stem cells (KSCs)]. Both of the treatments also suppressed decreases in the expression levels of endothelins in KSCs and their receptor (Ednrb) in melanocyte stem cells (MSCs) and alleviated hair graying in the mice. Luteolin is a special antioxidant with an anti-graying potency through improvement of age-related dysfunction in signaling between endothelins in KSCs and their receptor in MSCs. Luteolin for topical and oral use is commercially available to people in the form of supplements. Similar processes of hair graying in Ednrb(+/-);RET-mice and humans have been reported. These results are encouraging for the practical application of luteolin as a medicine with an anti-graying effect on hair in humans.
Collapse
Grants
- 19H01147 Ministry of Education, Culture, Sports, Science and Technology
- 23H03147 Ministry of Education, Culture, Sports, Science and Technology
- 23K27837 Ministry of Education, Culture, Sports, Science and Technology
- 22KK0145 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Machiko Iida
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (M.I.); (T.K.); (A.H.); (D.A.S.M.N.)
- Units of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-shi 487-8501, Japan
| | - Takumi Kagawa
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (M.I.); (T.K.); (A.H.); (D.A.S.M.N.)
| | - Ichiro Yajima
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (M.I.); (T.K.); (A.H.); (D.A.S.M.N.)
- Units of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-shi 487-8501, Japan
| | - Akihito Harusato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (M.I.); (T.K.); (A.H.); (D.A.S.M.N.)
| | - Akira Tazaki
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (M.I.); (T.K.); (A.H.); (D.A.S.M.N.)
- Activities of the Institute of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| | - Delgama A. S. M. Nishadhi
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (M.I.); (T.K.); (A.H.); (D.A.S.M.N.)
| | - Nobuhiko Taguchi
- Units of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-shi 487-8501, Japan
- General Research and Development Institute, Hoyu Co., Ltd., 1-12 Rouboku, Nagakute-shi 480-1136, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (M.I.); (T.K.); (A.H.); (D.A.S.M.N.)
- Units of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-shi 487-8501, Japan
- Activities of the Institute of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
29
|
Wang J, Li H, Wang Z, Ruan S. Luteolin: A Comprehensive and Visualized Analysis of Research Hotspots and Its Antitumor Mechanisms. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2377-2401. [PMID: 39686791 DOI: 10.1142/s0192415x24500903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The aim of this study was to analyze the research hotspots and mechanisms of luteolin in tumor-related fields using bibliometric and bioinformatic approaches to guide future research. We conducted a comprehensive screening of all articles on luteolin and tumors in Web of Science from 2008 to 2023. The extracted words from these publications were visualized using VOSviewer, Scimago Graphica, and CiteSpace. Public databases were used to collect luteolin and tumor-related targets. GO and KEGG analyses of luteolin antitumor-related genes were performed using Metascape. Protein interaction networks were built with Cytoscape and STRING, identifying hub targets of luteolin in antitumor activity. Subsequently, the binding capacity of luteolin to these hub targets was assessed using molecular docking technology. We found that China dominated this field, the Egyptian Knowledge Bank published the most articles, and Molecules had the highest number of related publications. Recently, network pharmacology, target, traditional Chinese medicine, and nanoparticles have become research hotspots in luteolin's antitumor research. A total of 483 overlapping genes between luteolin and tumors were identified, and they were closely associated with the cancer-associated pathways, PI3K-Akt, and MAPK signaling pathways. Luteolin forms a complex network of antitumor-related genes, with TP53, TNF, STAT3, AKT1, JUN, IL6, and SRC playing key roles and showing strong binding affinity to luteolin. Computer technology is becoming increasingly integral to the discipline, and future research will focus on more precise antitumor mechanisms and effective clinical applications.
Collapse
Affiliation(s)
- Jiaxuan Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P. R. China
| | - Hao Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University, (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P. R. China
| | - Zhenru Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P. R. China
| | - Shanming Ruan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P. R. China
| |
Collapse
|
30
|
Yang Y, Chen Y, Jia X, Huang X. Association of dietary flavonoid intake with the prevalence and all-cause mortality of depressive symptoms: Findings from analysis of NHANES. J Affect Disord 2024; 366:44-58. [PMID: 39187180 DOI: 10.1016/j.jad.2024.08.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND This study aimed to explore the relationship between flavonoids intake and the prevalence and all-cause mortality of depressive symptoms in American adults. METHODS Analyzing 2007-2008, 2009-2010, and 2017-2018 NHANES data, we examined the association between dietary flavonoid and depressive symptoms, including specific subclasses assessment and mortality outcomes tracking until December 31, 2019. Our methodology included weighted multivariate logistic regression, weighted cox proportional hazards regression and restricted cubic spline (RCS) models, supported by stratified and sensitivity analyses. RESULTS Among the 12,340 participants in total, 1129 exhibited depressive symptoms. The multiple logistic regression analysis showed a significant reduction in total flavonoid and subclass intake in individuals with current depressive symptoms. Adjusted odds ratios (ORs) for the highest quartiles were 0.69 for anthocyanidins and 0.63 for flavones. Interaction effects emerged in non-hypertensive, higher-income, and normal-weight groups for flavones intake. The RCS model indicated an L-shaped association between depressive symptoms and total flavonoid intake, with inflection points at 346 mg/day. During a median follow-up of 119 months, 148 deaths occurred among patients with depressive symptoms. Hazard ratios (HRs) for all-cause mortality showed a significant positive correlation between total flavonoid intake and survival in model 1 (HR = 0.56), with an optimal intake range of 45.2-948.3 mg/day according to the RCS model. LIMITATIONS The study relied on U.S. population survey data, potentially limiting generalizability. Unmeasured confounding factors may exist, and genetic factors were not considered. CONCLUSIONS Adequate intake of flavonoids, especially anthocyanidins and flavones, is associated with reduced odds of depressive symptoms. Additionally, optimal intake ranges of flavonoid intake for mental health benefits were observed for all-cause mortality in population with depressive symptoms.
Collapse
Affiliation(s)
- Yaqin Yang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yuemei Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaotong Jia
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyan Huang
- Department of Nephrology, Hunan Provincial Hospital of Chinese Medicine, Hengyang, China.
| |
Collapse
|
31
|
Demir K, Turgut R, Şentürk S, Işıklar H, Günalan E. The Therapeutic Effects of Bioactive Compounds on Colorectal Cancer via PI3K/Akt/mTOR Signaling Pathway: A Critical Review. Food Sci Nutr 2024; 12:9951-9973. [PMID: 39723045 PMCID: PMC11666977 DOI: 10.1002/fsn3.4534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 12/28/2024] Open
Abstract
Understanding the molecular signaling pathways of colorectal cancer (CRC) can be accepted as the first step in treatment strategy. Permanent mTOR signaling activation stimulates the CRC process via various biological processes. It supplies the survival of CRC stem cells, tumorigenesis, morbidity, and decreased response to drugs in CRC pathogenesis. Therefore, inhibition of the mTOR signaling by numerous bioactive components may be effective against CRC. The study aims to discuss the therapeutic capacity of various polyphenols, terpenoids, and alkaloids on CRC via the PI3K/Akt/mTOR pathway. The potential molecular effects of bioactive compounds on the mTOR pathway's upstream and downstream targets are examined. Each bioactive component causes various physiological processes, such as triggering free radical production, disruption of mitochondrial membrane potential, cell cycle arrest, inhibition of CRC stem cell migration, and suppression of glycolysis through mTOR signaling inhibition. As a result, carcinogenesis is inhibited by inducing apoptosis and autophagy. However, it should be noted that studies are primarily in vitro dose-dependent treatment researchers. This study raises awareness about the role of phenolic compounds in treating CRC, contributing to their future use as anticancer agents. These bioactive compounds have the potential to be developed into food supplementation to prevent and treat various cancer types including CRC. This review has the potential to lead to further development of clinical studies. In the future, mTOR inhibition by applying several bioactive agents using advanced drug delivery systems may contribute to CRC treatment with 3D cell culture and in vivo clinical studies.
Collapse
Affiliation(s)
- Kübra Demir
- Institute of Graduate EducationIstanbul Health and Technology UniversityIstanbulTürkiye
- Faculty of Health Science, Department of Nutrition and DieteticsSabahattin Zaim UniversityIstanbulTürkiye
| | - Rana Turgut
- Institute of Graduate EducationIstanbul Health and Technology UniversityIstanbulTürkiye
| | - Selcen Şentürk
- Institute of Graduate EducationIstanbul Health and Technology UniversityIstanbulTürkiye
| | - Handan Işıklar
- Faculty of Medicine, Department of Internal MedicineYalova UniversityYalovaTürkiye
| | - Elif Günalan
- Faculty of Health Science, Department of Nutrition and DieteticsIstanbul Health and Technology UniversityIstanbulTürkiye
| |
Collapse
|
32
|
Chen J, Ye W. Molecular mechanisms underlying Tao-Hong-Si-Wu decoction treating hyperpigmentation based on network pharmacology, Mendelian randomization analysis, and experimental verification. PHARMACEUTICAL BIOLOGY 2024; 62:296-313. [PMID: 38555860 PMCID: PMC11632782 DOI: 10.1080/13880209.2024.2330609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/26/2024] [Accepted: 03/02/2024] [Indexed: 04/02/2024]
Abstract
CONTEXT Hyperpigmentation, a common skin condition marked by excessive melanin production, currently has limited effective treatment options. OBJECTIVE This study explores the effects of Tao-Hong-Si-Wu decoction (THSWD) on hyperpigmentation and to elucidate the underlying mechanisms. MATERIALS AND METHODS We employed network pharmacology, Mendelian randomization, and molecular docking to identify THSWD's hub targets and mechanisms against hyperpigmentation. The Cell Counting Kit-8 (CCK-8) assay determined suitable THSWD treatment concentrations for PIG1 cells. These cells were exposed to graded concentrations of THSWD-containing serum (2.5%, 5%, 10%, 15%, 20%, 30%, 40%, and 50%) and treated with α-MSH (100 nM) to induce an in vitro hyperpigmentation model. Assessments included melanin content, tyrosinase activity, and Western blotting. RESULTS ALB, IL6, and MAPK3 emerged as primary targets, while quercetin, apigenin, and luteolin were the core active ingredients. The CCK-8 assay indicated that concentrations between 2.5% and 20% were suitable for PIG1 cells, with a 50% cytotoxicity concentration (CC50) of 32.14%. THSWD treatment significantly reduced melanin content and tyrosinase activity in α-MSH-induced PIG1 cells, along with downregulating MC1R and MITF expression. THSWD increased ALB and p-MAPK3/MAPK3 levels and decreased IL6 expression in the model cells. DISCUSSION AND CONCLUSION THSWD mitigates hyperpigmentation by targeting ALB, IL6, and MAPK3. This study paves the way for clinical applications of THSWD as a novel treatment for hyperpigmentation and offers new targeted therapeutic strategies.
Collapse
Affiliation(s)
- Jun Chen
- Department of Geriatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Wenyi Ye
- Department of Traditional Chinese Internal Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
33
|
Thapa R, Gupta S, Gupta G, Bhat AA, Smriti, Singla M, Ali H, Singh SK, Dua K, Kashyap MK. Epithelial-mesenchymal transition to mitigate age-related progression in lung cancer. Ageing Res Rev 2024; 102:102576. [PMID: 39515620 DOI: 10.1016/j.arr.2024.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Epithelial-Mesenchymal Transition (EMT) is a fundamental biological process involved in embryonic development, wound healing, and cancer progression. In lung cancer, EMT is a key regulator of invasion and metastasis, significantly contributing to the fatal progression of the disease. Age-related factors such as cellular senescence, chronic inflammation, and epigenetic alterations exacerbate EMT, accelerating lung cancer development in the elderly. This review describes the complex mechanism among EMT and age-related pathways, highlighting key regulators such as TGF-β, WNT/β-catenin, NOTCH, and Hedgehog signalling. We also discuss the mechanisms by which oxidative stress, mediated through pathways involving NRF2 and ROS, telomere attrition, regulated by telomerase activity and shelterin complex, and immune system dysregulation, driven by alterations in cytokine profiles and immune cell senescence, upregulate or downregulate EMT induction. Additionally, we highlighted pathways of transcription such as SNAIL, TWIST, ZEB, SIRT1, TP53, NF-κB, and miRNAs regulating these processes. Understanding these mechanisms, we highlight potential therapeutic interventions targeting these critical molecules and pathways.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Indore, Madhya Pradesh, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Smriti
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Manoj Kumar Kashyap
- Molecular Oncology Laboratory, Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India.
| |
Collapse
|
34
|
Yang Y, He S, Wang W, Lu Y, Ren B, Dan C, Ji Y, Yu R, Ju X, Qiao X, Xiao Y, Cai J, Hong X. NIR-II Image-Guided Wound Healing in Hypoxic Diabetic Foot Ulcers: The Potential of Ergothioneine-Luteolin-Chitin Hydrogels. Macromol Rapid Commun 2024; 45:e2400528. [PMID: 39422630 DOI: 10.1002/marc.202400528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/18/2024] [Indexed: 10/19/2024]
Abstract
Hypoxic diabetic foot ulcers (HDFUs) pose a challenging chronic condition characterized by oxidative stress damage, bacterial infection, and persistent inflammation. This study introduces a novel therapeutic approach combining ergothioneine (EGT), luteolin (LUT), and quaternized chitosan oxidized dextran (QCOD) to address these challenges and facilitate wound healing in hypoxic DFUs. In vitro, assessments have validated the biosafety, antioxidant, and antimicrobial properties of the ergothioneine-luteolin-chitin (QCOD@EGT-LUT) hydrogel. Furthermore, near-infrared II (NIR-II) fluorescence image-guided the application of QCOD@EGT-LUT hydrogel in simulated HDFUs. Mechanistically, QCOD@EGT-LUT hydrogel modulates the diabetic wound microenvironment by reducing reactive oxygen species (ROS). In vivo studies demonstrated increased expression of angiogenic factors mannose receptor (CD206) and latelet endothelial cell adhesion molecule-1 (PECAM-1/CD31), coupled with decreased inflammatory factors tumor necrosis factor-α (TNF-α) and Interleukin-6 (IL-6), thereby promoting diabetic wound healing through up-regulation of transforming growth factor β-1 (TGF-β1).
Collapse
Affiliation(s)
- Yao Yang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Shengnan He
- Key Laboratory of Virology and Biosafety (CAS), Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Wumei Wang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Yiwen Lu
- Hubei Engineering Centre of Natural Polymers-Based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Bingtao Ren
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Ci Dan
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Yang Ji
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Rui Yu
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Xinpeng Ju
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Xue Qiao
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
- Key Laboratory of Virology and Biosafety (CAS), Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Yuling Xiao
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| | - Jie Cai
- Hubei Engineering Centre of Natural Polymers-Based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuechuan Hong
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, Tibet University, Lhasa, 850000, China
| |
Collapse
|
35
|
Nechchadi H, Nadir Y, Benhssaine K, Alem C, Sellam K, Boulbaroud S, Berrougui H, Ramchoun M. Hypolipidemic activity of phytochemical combinations: A mechanistic review of preclinical and clinical studies. Food Chem 2024; 459:140264. [PMID: 39068825 DOI: 10.1016/j.foodchem.2024.140264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Hyperlipidemia, a condition characterized by elevated levels of lipids in the blood, poses a significant risk factor for various health disorders, notably cardiovascular diseases. Phytochemical compounds are promising alternatives to the current lipid-lowering drugs, which cause many undesirable effects. Based on in vivo and clinical studies, combining phytochemicals with other phytochemicals, prebiotics, and probiotics and their encapsulation in nanoparticles is more safe and effective for managing hyperlipidemia than monotherapy. To this end, the results obtained and the mechanisms of action of these combinations were examined in detail in this review.
Collapse
Affiliation(s)
- Habiba Nechchadi
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco.
| | - Youssef Nadir
- Laboratory of Biological Engineering, Faculty of Sciences and Techniques, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Khalid Benhssaine
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Chakib Alem
- Biochemistry of Natural Products Team, Faculty of Sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Khalid Sellam
- Biology, Environment and Health Team, Faculty of sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Samira Boulbaroud
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Hicham Berrougui
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Mhamed Ramchoun
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| |
Collapse
|
36
|
Zheng Y, Meng L, Qu L, Zhao C, Wang L, Ma J, Liu C, Shou C. Co-targeting TMEM16A with a novel monoclonal antibody and EGFR with Cetuximab inhibits the growth and metastasis of esophageal squamous cell carcinoma. J Transl Med 2024; 22:1046. [PMID: 39563381 DOI: 10.1186/s12967-024-05830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024] Open
Abstract
The chloride channel transmembrane protein 16A (TMEM16A) possesses a calcium-activated property linked to tumor-promoting malignant phenotype and electrophysiological stability. Numerous studies have shown that TMEM16A exhibits aberrant amplification in various squamous cell carcinomas such as esophageal squamous cell carcinoma (ESCC) and is correlated with unfavorable outcomes of ESCC patients. Therefore, TMEM16A is considered as a promising therapeutic target for ESCC. Because of its intricate structure, the development of therapeutic antibodies directed against TMEM16A has not been documented. In this study, we produced a series of novel monoclonal antibodies targeting TMEM16A and identified mT16#5 as an antibody capable of inhibiting ESCC cells migration, invasion and TMEM16A ion channel activity. Additionally, based on the validation that TMEM16A was positively correlated with expression of EGFR and the interaction between them, the mT16#5 exhibited a synergistic inhibitory effect on ESCC metastasis and growth when administered in combination with Cetuximab in vivo. In terms of mechanism, we found that mT16A#5 inhibited the phosphorylation of PI3K, AKT and JNK. These results highlight the anti-growth and anti-metastasis capacity of the combination of mT16A#5 and Cetuximab in the treatment of ESCC by targeting TMEM16A and EGFR, and provide a reference for combinational antibody treatment in ESCC.
Collapse
Affiliation(s)
- Yutian Zheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Department of Pathology, National Center for Children's Health (NCCH), Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Lin Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Like Qu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Chuanke Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Lixin Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiayi Ma
- Beijing National Day School, Beijing, 100039, China
| | - Caiyun Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Chengchao Shou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
37
|
Wang X, Wu L, Luo D, He L, Wang H, Peng B. Mechanism of action of Salvia miltiorrhiza on avascular necrosis of the femoral head determined by integrated network pharmacology and molecular dynamics simulation. Sci Rep 2024; 14:28479. [PMID: 39558045 PMCID: PMC11574184 DOI: 10.1038/s41598-024-79532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
Avascular necrosis of the femoral head (ANFH) is a progressive, multifactorial, and challenging clinical condition that often leads to hip dysfunction and deterioration. The pathogenesis of ANFH is complex, and there is no foolproof treatment strategy. Although some pharmacologic and surgical treatments have been shown to improve ANFH, the associated side effects and poor prognosis are of concern. Therefore, there is an urgent need to explore therapeutic interventions with superior efficacy and safety to improve the quality of life of patients with ANFH. Salvia miltiorrhiza (SM), a traditional Chinese medicine with a long history, is widely used for the treatment of cardiovascular and musculoskeletal diseases due to its multiple pharmacological activities. However, the molecular mechanism of SM for the treatment of ANFH is still unclear. Therefore, this study aimed to explore the potential targets and mechanisms of SM for the treatment of ANFH using network pharmacology and molecular modeling techniques. By searching multiple databases, we screened 52 compounds and 42 common targets involved in ANFH therapy and identified dan-shexinkum d, cryptotanshinone, tanshinone iia, and dihydrotanshinlactone as key compounds. Based on the protein-protein interaction (PPI) network, TP53, AKT1, EGFR, STAT3, BCL2, IL6, and TNF were identified as core targets. Subsequent enrichment analysis revealed that these targets were mainly enriched in the AGE-RAGE, IL-17, and TNF pathways, which were mainly associated with inflammatory responses, apoptosis, and oxidative stress. In addition, molecular docking and 100 nanoseconds molecular dynamics (MD) simulations showed that the bioactive compounds of SM had excellent affinity and binding strength to the core targets. Among them, dan-shexinkum d possessed the lowest binding free energy (-215.874 kcal/mol and - 140.277 kcal/mol, respectively) for AKT1 and EGFR. These results demonstrated the multi-component, multi-target, and multi-pathway intervention mechanism of SM in the treatment of ANFH, which provided theoretical basis and clues for further experimental validation and development of anti-ANFH drugs.
Collapse
Affiliation(s)
- Xiangjin Wang
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Lijiao Wu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Dan Luo
- Basic Medical College of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Langyu He
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Hao Wang
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Bo Peng
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China.
| |
Collapse
|
38
|
Philip M, Karakka Kal AK, Subhahar MB, Karatt TK, Graiban FM, Ajeebsanu MM, Joseph M, Jose SV. Investigation Into the Equine Metabolism of Phosphodiesterase-4 Inhibitor Roflumilast for Potential Doping Control. Drug Test Anal 2024. [PMID: 39551487 DOI: 10.1002/dta.3822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024]
Abstract
The phosphodiesterase 4 (PDE4) inhibitors constitute a relatively modern class of medications that are known for inducing bronchodilation and exhibiting anti-inflammatory properties within the body. Due to these properties, there is concern regarding their potential misuse as performance-enhancing substances in competitive sports. This study delves into the metabolic conversion of roflumilast in thoroughbred horses following oral administration and in vitro experimentation using equine liver microsomes and Cunninghamella elegans. High-performance liquid chromatography coupled with a Q Exactive Orbitrap mass spectrometer (HPLC-HRMS) was employed for analysis. The investigation identified 10 metabolites of roflumilast, including six phase I and four phase II metabolites from in vivo studies, and 11 metabolites from in vitro studies, consisting of eight phase I and three phase II metabolites. The identified biotransformation products encompassed processes such as hydroxylation, chlorine substitution, methylation, N-oxide formation, and even the dissociation of methylenecyclopropane and difluoromethane. Furthermore, the study identified three glucuronic acid and one sulfonic acid conjugated phase II metabolites of the investigated drug candidate. The aforementioned findings contribute to the detection and comprehension of the unauthorized utilization of roflumilast in equestrian sports.
Collapse
Affiliation(s)
- Moses Philip
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, UAE
| | | | | | - Tajudheen K Karatt
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, UAE
| | | | | | - Marina Joseph
- Department of Bacteriology, Diagnostic Section, Central Veterinary Research Laboratory, Dubai, UAE
| | - Shantymol V Jose
- Department of Bacteriology, Diagnostic Section, Central Veterinary Research Laboratory, Dubai, UAE
| |
Collapse
|
39
|
N'do JYP, Paré D, Bondé L, Hilou A. Comparative phytochemical profile and biological activity of three Terminalia species as alternative antimicrobial therapies. Heliyon 2024; 10:e40159. [PMID: 39583820 PMCID: PMC11584580 DOI: 10.1016/j.heliyon.2024.e40159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
Ethnopharmacological relevance Medicinal plants can help combat antibiotic resistance by providing novel, active molecules. Three plant species of the Terminalia genus are widely used in traditional medicine in the Mouhoun region for the treatment of cutaneous and respiratory diseases. Therefore, it is important to determine the ethnopharmacological potential of bark extracts from the trunks of these three Terminalia species. Aim of the study This study compared the phytochemical and biological activities of extracts from three Terminalia species to determine their ethnopharmacology. Materials and methods The medicinal properties of the extracts were assessed based on their ability to inhibit the growth of the following microorganisms: Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Candida albicans, Candida krusei, Candida glabrata, and Candida tropicalis. The significant interest in these medicinal plants among the local communities were elucidated by their antioxidant properties and phytochemical composition, along with the detection key bioactive compounds. Major phytochemical groups and phenolic compounds were determined using high-performance liquid chromatography with a diode array detector. These phytochemical findings were validated by evaluating the antioxidant capacity of the extracts using DPPH, FRAP, and ABTS assays. Results Hydroethanolic, ethanolic, and hexane extracts from the bark of three Terminalia species inhibited the growth of both bacteria and fungi, as evidenced by their minimum inhibitory concentrations (MICs).The findings showed that Terminalia species were most effective against various tested bacteria and fungi, with MICs ranging from 0.1 to 6.25 mg/mL. Terminalia avicennioides, Terminalia macroptera, and Terminalia laxiflora extracts demonstrated 50 % inhibition of DPPH at concentrations ranging from 0.04 to 0.6 mg/mL. Phytochemical analysis revealed the presence of several families of chemical compounds, such as total phenolics and flavonoids. Phenolic compounds identified by HPLC in ethanolic extracts of T. avicennioides, such as isorhamnetin, quercetin, and ferulic acid, are recognised for their antimicrobial and antioxidant properties. Conclusion These findings establish an ethnobotany for these three Terminalia species, with their chromatographic characteristics facilitating the identification of key molecules of interest. The ethanolic extract of T. avicennioides can be used in phytomedicinal formulations against bacterial (P. aeruginosa and S. aureus) and fungal (C. albicans and C. glabrata) infections, both of which are recurrently recorded in certain skin and respiratory tract diseases.
Collapse
Affiliation(s)
- Jotham Yhi-pênê N'do
- Laboratory of Applied Biochemistry and Chemistry, Joseph Ki-Zerbo University, 03 BP 7021, Ouagadougou, 03, Burkina Faso
| | - Dramane Paré
- Laboratory of Applied Biochemistry and Chemistry, Joseph Ki-Zerbo University, 03 BP 7021, Ouagadougou, 03, Burkina Faso
| | - Loyapin Bondé
- Laboratory of Plant Biology and Ecology, University Joseph Ki-Zerbo, 03 BP 7021, Ouagadougou, 03, Burkina Faso, Burkina Faso
| | - Adama Hilou
- Laboratory of Applied Biochemistry and Chemistry, Joseph Ki-Zerbo University, 03 BP 7021, Ouagadougou, 03, Burkina Faso
| |
Collapse
|
40
|
Saez Lancellotti TE, Avena MV, Funes AK, Bernal-López MR, Gómez-Huelgas R, Fornes MW. Exploring the impact of lipid stress on sperm cytoskeleton: insights and prospects. Nat Rev Urol 2024:10.1038/s41585-024-00952-1. [PMID: 39528754 DOI: 10.1038/s41585-024-00952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The decline in male fertility correlates with the global rise in obesity and dyslipidaemia, representing significant public health challenges. High-fat diets induce metabolic alterations, including hypercholesterolaemia, hepatic steatosis and atherosclerosis, with detrimental effects on testicular function. Testicular tissue, critically dependent on lipids for steroidogenesis, is particularly vulnerable to these metabolic disruptions. Excessive lipid accumulation within the testes, including cholesterol, triglycerides and specific fatty acids, disrupts essential sperm production processes such as membrane formation, maturation, energy metabolism and cell signalling. This leads to apoptosis, impaired spermatogenesis, and abnormal sperm morphology and function, ultimately compromising male fertility. During spermiogenesis, round spermatids undergo extensive reorganization, including the formation of the acrosome, manchette and specialized filamentous structures, which are essential for defining the final sperm cell shape. In this Perspective, we examine the impact of high-fat diets on the cytoskeleton of spermatogenic cells and its consequences to identify the mechanisms underlying male infertility associated with dyslipidaemia. Understanding these processes may facilitate the development of therapeutic strategies, such as dietary interventions or natural product supplementation, that aim to address infertility in men with obesity and hypercholesterolaemia. The investigation of cytoskeleton response to lipid stress extends beyond male reproduction, offering insights with broader implications.
Collapse
Affiliation(s)
- Tania E Saez Lancellotti
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina.
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain.
| | - María V Avena
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Abi K Funes
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María-Rosa Bernal-López
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo Gómez-Huelgas
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel W Fornes
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
41
|
Treder-Rochna N, Mańkowska A, Kujawa W, Harciarek M. The effectiveness of olfactory training for chronic olfactory disorder following COVID-19: a systematic review. Front Hum Neurosci 2024; 18:1457527. [PMID: 39588055 PMCID: PMC11586678 DOI: 10.3389/fnhum.2024.1457527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/07/2024] [Indexed: 11/27/2024] Open
Abstract
Background Chronic olfactory disorders are some of the most frequent post-COVID-19 presentations. Olfactory training (OT) is currently the most popular method used for treating post-viral olfactory dysfunction (PVOD). We evaluated the effect of olfactory training on the chronic olfactory disorders of patients infected with COVID-19. Methodology A systematic literature search was performed per PRISMA guidelines in PubMed, Scopus, Web of Science, EBSCOhost, and the Cochrane Library. Only patients with chronic olfactory disorders of 30 days or more were included. The primary outcome was the olfactory score at the end of follow-up. In all studies, improvement was defined as a positive change over time in the results of objective psychophysical olfactory tests. The most commonly used test was the Sniffin' Sticks. Typically, outcome measures involved comparing the mean olfactory scores. In the Sniffin' Sticks test, an improvement was also indicated by a change of 5.5 points or more in the Threshold, Discrimination, and Identification scores. Results Fourteen studies (1.596 participants) were included in this review. Among the included studies, up to 10 were RCTs. Nine studies assessed the combined effects of adjuvant therapy and olfactory training, while five studies assessed only OT. Conclusions In our assessment, olfactory training alone produces significant improvements in chronic olfactory dysfunctions. However, a combined therapy approach is essential to achieve more effective outcomes. Integrating olfactory training with adjuvants like CoUltraPEALut, Cerebrolysin, and oral Vitamin A has demonstrated substantial benefits in enhancing post-COVID-19 olfactory function. Strict adherence to the OT protocol and extending the duration of OT to 3 months or more significantly enhance treatment outcomes.
Collapse
Affiliation(s)
- Natalia Treder-Rochna
- Faculty of Social Sciences, Institute of Psychology, University of Gdansk, Gdansk, Poland
| | | | | | - Michał Harciarek
- Faculty of Social Sciences, Institute of Psychology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
42
|
Zhang J, Li C, Li W, Shi Z, Liu Z, Zhou J, Tang J, Ren Z, Qiao Y, Liu D. Mechanism of luteolin against non-small-cell lung cancer: a study based on network pharmacology, molecular docking, molecular dynamics simulation, and in vitro experiments. Front Oncol 2024; 14:1471109. [PMID: 39582546 PMCID: PMC11582065 DOI: 10.3389/fonc.2024.1471109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction Luteolin, a naturally occurring flavonoid compound, demonstrates promising anti-cancer properties. However, its mechanism against non-small-cell lung cancer (NSCLC) remains unknown. This study employed network pharmacology, molecular docking, molecular dynamics simulation (MDS), and in vitro experiments to investigate the potential mechanisms by which luteolin against NSCLC. Methods Initially, the potential targets of luteolin and NSCLC-related targets were identified from public databases such as TCMSP, GeneCards, OMIM, DrugBank, and TTD. Subsequently, the protein-protein interaction (PPI) network screening and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted. The binding affinity and stability of luteolin with the core targets were assessed using molecular docking and MDS. Finally, the results were validated by in vitro experiments. Results A total of 56 luteolin targets and 2145 NSCLC-related targets were identified. Six core targets, TP53, EGFR, AKT1, TNF, JUN, and CASP3, were screened via the PPI network. The GO and KEGG analyses indicated that luteolin's activity against NSCLC potentially involves PI3K-Akt, NF-kappa B, and other signaling pathways. Molecular docking revealed that luteolin had high binding affinity with the core targets. MDS confirmed the stable interaction between luteolin and key proteins TP53 and AKT1. in vitro, luteolin significantly inhibited the proliferation and migration of A549 cells, while also inducing apoptosis. In addition, luteolin downregulated the expression of p-Akt (Ser473), MDM2, and Bcl-2 but upregulated the expression of p53 and Bax, which was consistent with the effect of LY294002. Conclusion Luteolin had a good anti-NSCLC effect, and the apoptosis-inducing effect might be related to the Akt/MDM2/p53 signaling pathway.
Collapse
Affiliation(s)
- Jihang Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Changling Li
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Wenyi Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenpeng Shi
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenguo Liu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Junyu Zhou
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Tang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zixuan Ren
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yun Qiao
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Deshan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
43
|
Yu F, Wang G, Chen X, Zhang Y, Yang C, Hu H, Wei L. Luteolin alleviates cerebral ischemia/reperfusion injury by regulating cell pyroptosis. Open Med (Wars) 2024; 19:20241063. [PMID: 39507105 PMCID: PMC11538924 DOI: 10.1515/med-2024-1063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 11/08/2024] Open
Abstract
Objective This study aimed to clarify the roles and underlying mechanisms of luteolin in the progression of cerebral ischemia/reperfusion injury (CIRI). Methods A mouse model of CIRI was established using the middle cerebral artery occlusion (MCAO) method, after which luteolin was administered. Subsequently, neuronal apoptosis and pyroptosis were measured and the brain tissues of each group were subjected to RNA sequencing. Results Luteolin alleviated MCAO-induced brain infarction, apoptosis, and pyroptosis. RNA sequencing identified 3,379, 2,777, and 3,933 differentially expressed genes (DEGs) in the MCAO vs sham, MCAO vs MCAO + luteolin, and MCAO + luteolin vs sham groups, respectively. The identified DEGs showed enrichment in multiple processes, including pattern specification, forebrain development, anion transport, leukocyte migration, regulation of cell-cell adhesion, and positive regulation of the response to external stimuli, as well as the calcium, PI3K-AKT, JAK-STAT, NF-kappa B, IL-17, cAMP, cGMP-PKG, and Wnt signaling pathways. In addition, Ccl2 and Angpt2 interacted more with the other top 30 DEGs with high interaction weights. Finally, RT-qPCR results showed that MCAO induction significantly up-regulated the expression of Stoml3, Eomes, and Ms4a15 and down-regulated Nms, Ttr, and Avpr1a; however, luteolin could partially reverse the expression caused by MCAO. Conclusion Luteolin can alleviate brain infarction, apoptosis, and pyroptosis in CIRI, and may improve MCAO-induced CIRI by targeting the identified DEGs and their enriched pathways.
Collapse
Affiliation(s)
- Fei Yu
- Department of Neurology, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Guangxue Wang
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xingyi Chen
- Department of Medical Department, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yanfei Zhang
- Department of Neurosurgery, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Cheng Yang
- Department of Neurosurgery, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Hui Hu
- Department of Neurology, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Liang Wei
- Department of Neurosurgery, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| |
Collapse
|
44
|
Du S, Wang Z, Zhu H, Tang Z, Li Q. Flavonoids attenuate inflammation of HGF and HBMSC while modulating the osteogenic differentiation based on microfluidic chip. J Transl Med 2024; 22:992. [PMID: 39488714 PMCID: PMC11531701 DOI: 10.1186/s12967-024-05808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND When inflammation occurs in periodontal tissues, a dynamic cellular crosstalk interacts between gingival fibroblasts and bone marrow mesenchymal stem cells (BMSCs), which plays a crucial role in the biological behaviour and differentiation of the cells. Recently, flavonoids are increasingly recognized for their therapeutic potential in modulating inflammation and osteogenic differentiation. Owing to their varied molecular structures and mechanisms, there are more needs that flavonoid compounds should be identified by extensive screening. However, current drug research mostly relies on static, single-type cell cultures. In this study, an innovative bionic microfluidic chip system tailored for both soft and hard tissues was developed to screen for flavonoids suitable for treating periodontitis. METHODS This study developed a microfluidic system that bionically simulates the soft and hard structures of periodontal tissues. Live/dead staining, reactive oxygen species (ROS) staining, and RT-qPCR analysis were employed. These techniques evaluated the effects of flavonoid compounds on the levels of inflammatory factors and ROS contents in HGF and HBMSC under LPS stimulation. Additionally, the impact of these compounds on osteogenic induction in HBMSC and the exploration of the underlying mechanisms were assessed. RESULTS The microfluidic chip used in this study features dual chambers separated by a porous membrane, allowing cellular signal communication via bioactive factors secreted by cells in both layers under perfusion. The inflammatory response within the chip under LPS stimulation was lower compared to individual static cultures of HGF and HBMSC. The selected flavonoids-myricetin, catechin, and quercetin-significantly reduced cellular inflammation, decreased ROS levels, and enhanced osteogenic differentiation of BMSCs. Additionally, fisetin, silybin, and icariside II also demonstrated favorable outcomes in reducing inflammation, lowering ROS levels, and promoting osteogenic differentiation through the Wnt/β-catenin pathway. CONCLUSIONS The bionic microfluidic chip system provides enhanced capabilities for drug screening and evaluation, delivering a more precise assessment of drug efficacy and safety compared to traditional in vitro methods. This study demonstrates the efficacy of flavonoids in influencing osteogenic processes in BMSCs primarily through the Wnt/β-catenin pathway. These results uncover the potential of flavonoids as therapeutic medicine for treating periodontitis, meriting further research and development.
Collapse
Affiliation(s)
- Sa Du
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
- Center for Digital Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Zhongyu Wang
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Huilin Zhu
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Zhihui Tang
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| | - Qing Li
- Center for Digital Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
45
|
Rushendran R, Vellapandian C. Unlocking the potential of luteolin: A natural migraine management approach through network pharmacology. J Tradit Complement Med 2024; 14:611-621. [PMID: 39850605 PMCID: PMC11752114 DOI: 10.1016/j.jtcme.2024.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/07/2024] [Accepted: 04/29/2024] [Indexed: 01/25/2025] Open
Abstract
Background Luteolin, a natural flavonoid, exhibits antioxidant and anti-inflammatory properties and has been investigated for potential health benefits. Its focus on migraine management arises from its ability to mitigate neuroinflammation, a key factor in migraine attacks. Methods pkCSM and Swiss ADME were employed to assess luteolin's pharmacokinetic properties, revealing challenges such as low water solubility and limited skin permeability. OSIRIS Property Explorer is used to check the toxicity. Ligand binding simulations indicated luteolin's potential to interact with calcitonin gene related peptide proteins, crucial in migraine pathophysiology. DisGeNet identified common targets related to migraine, with subsequent network analysis emphasizing promising targets. Results and Discussion Luteolin demonstrated good intestinal absorption but faced BBB limitations, suggesting a potential for oral administration but questioning direct brain impact. Nanoformulation was proposed to address solubility challenges, emphasizing the need for in vivo validation. The highest binding affinity with CGRP proteins PDBID: 6PFO (-7.63 kcal/mol) suggested a potential for migraine treatment, requiring empirical confirmation. Enrichment network analysis illustrated luteolin's potential in migraine treatment, emphasizing key targets such as PTGS2, AKT1, ESR1, MMP2, and MMP9. Luteolin shows promise for migraine management, evident in its pharmacokinetic, toxicological profiles, and interactions with CGRP proteins. Challenges like low solubility suggest the need for nanoformulations and empirical validation. Target identification and network analysis offer insights, highlighting potential therapeutic avenues in migraine treatment. Conclusion Luteolin holds promise in migraine management, necessitating further research for translation into effective interventions, considering its neuroprotective potential in broader neurological conditions.
Collapse
Affiliation(s)
- Rapuru Rushendran
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpattu, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpattu, Tamil Nadu, India
| |
Collapse
|
46
|
Li Q, Tong Y, Chen J, Xie T. Targeting programmed cell death via active ingredients from natural plants: a promising approach to cancer therapy. Front Pharmacol 2024; 15:1491802. [PMID: 39584140 PMCID: PMC11582395 DOI: 10.3389/fphar.2024.1491802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/09/2024] [Indexed: 11/26/2024] Open
Abstract
Cancer is a serious public health problem in humans, and prevention and control strategies are still necessary. Therefore, the development of new therapeutic drugs is urgently needed. Targeting programmed cell death, particularly via the induction of cancer cell apoptosis, is one of the cancer treatment approaches employed. Recently, an increasing number of studies have shown that compounds from natural plants can target programmed cell death and kill cancer cells, laying the groundwork for use in future anticancer treatments. In this review, we focus on the latest research progress on the role and mechanism of natural plant active ingredients in different forms of programmed cell death, such as apoptosis, autophagy, necroptosis, ferroptosis, and pyroptosis, to provide a strong theoretical basis for the clinical development of antitumor drugs.
Collapse
Affiliation(s)
- Qian Li
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yan Tong
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jianxiang Chen
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Tian Xie
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
47
|
Zhai P, Ouyang XH, Yang ML, Lin L, Li JY, Li YM, Cheng X, Zhu R, Hu DS. Luteolin protects against myocardial ischemia/reperfusion injury by reducing oxidative stress and apoptosis through the p53 pathway. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:652-664. [PMID: 39343710 DOI: 10.1016/j.joim.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/13/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVE Myocardial ischemia/reperfusion injury (MIRI) is an obstacle to the success of cardiac reperfusion therapy. This study explores whether luteolin can mitigate MIRI by regulating the p53 signaling pathway. METHODS Model mice were subjected to a temporary surgical ligation of the left anterior descending coronary artery, and administered luteolin. The myocardial infarct size, myocardial enzyme levels, and cardiac function were measured. Latent targets and signaling pathways were screened using network pharmacology and molecular docking. Then, proteins related to the p53 signaling pathway, apoptosis and oxidative stress were measured. Hypoxia/reoxygenation (HR)-incubated HL1 cells were used to validate the effects of luteolin in vitro. In addition, a p53 agonist and an inhibitor were used to investigate the mechanism. RESULTS Luteolin reduced the myocardial infarcted size and myocardial enzymes, and restored cardiac function in MIRI mice. Network pharmacology identified p53 as a hub target. The bioinformatic analyses showed that luteolin had anti-apoptotic and anti-oxidative properties. Additionally, luteolin halted the activation of p53, and prevented both apoptosis and oxidative stress in myocardial tissue in vivo. Furthermore, luteolin inhibited cell apoptosis, JC-1 monomer formation, and reactive oxygen species elevation in HR-incubated HL1 cells in vitro. Finally, the p53 agonist NSC319726 downregulated the protective attributes of luteolin in the MIRI mouse model, and both luteolin and the p53 inhibitor pifithrin-α demonstrated a similar therapeutic effect in the MIRI mice. CONCLUSION Luteolin effectively treats MIRI and may ameliorate myocardial damage by regulating apoptosis and oxidative stress through its targeting of the p53 signaling pathway. Please cite this article as: Zhai P, Ouyang XH, Yang ML, Lin L, Li JY, Li YM, Cheng X, Zhu R, Hu DS. Luteolin protects against myocardial ischemia/reperfusion injury by reducing oxidative stress and apoptosis through the p53 pathway. J Integr Med. 2024; 22(6): 652-664.
Collapse
Affiliation(s)
- Pan Zhai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Xiao-Hu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Meng-Ling Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Lan Lin
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Jun-Yi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Yi-Ming Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Rui Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| | - De-Sheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China; China-Russia Medical Research Center for Stress Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| |
Collapse
|
48
|
Mod Razif MRF, Chan SY, Chew YL, Hassan M, Ahmad Hisham S, Abdul Rahman S, Mai CW, Teo MYM, Kee PE, Khoo KS, Lee SK, Liew KB. Recent Developments in Luteolin-Loaded Nanoformulations for Enhanced Anti-Carcinogenic Activities: Insights from In Vitro and In Vivo Studies. SCI 2024; 6:68. [DOI: 10.3390/sci6040068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2025] Open
Abstract
With approximately 18 million people affected by cancer in 2020 globally, scientists are exploring innovative approaches to develop effective treatments for various types of cancer. Traditional chemotherapy drugs, although effective against cancer cells, often lead to significant side effects on healthy tissues, such as hair loss, anemia, and nausea. To discover safer alternatives, researchers are investigating natural bioactive compounds found abundantly in plants. Luteolin, a flavonoid found in celery and artichokes, stands out due to its diverse anti-carcinogenic properties, including inhibiting proliferation, inducing apoptosis, activating autophagy, and inhibiting angiogenesis and metastasis. However, the therapeutic potential of luteolin is hindered by challenges related to its bioavailability and solubility. This critical review explores the specific anti-carcinogenic properties of luteolin while analyzing the impact of its limited bioavailability and solubility on effectiveness. Additionally, it investigates the outcomes of encapsulating luteolin in nanoformulations, providing insights into potential strategies for enhancing its anti-carcinogenic effects. Finally, the review compares the efficacy of luteolin with and without nanoformulations. This review provides valuable insights into the potential of utilizing luteolin-loaded nanoformulations as a safer and more effective method for treating cancer, contributing to the ongoing efforts in improving cancer care and outcomes worldwide.
Collapse
Affiliation(s)
| | - Siok Yee Chan
- School of Pharmaceutical Science, Universiti Sains Malaysia, Jalan Universiti, Gelugor 11700, PNG, Malaysia
| | - Yik-Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights, Jalan Puncak Menara Gading, Taman Connaught, Cheras 56000, KUL, Malaysia
| | - Masriana Hassan
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Jalan Universiti 1, Serdang 43400, SGR, Malaysia
| | - Shairyzah Ahmad Hisham
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya 63000, SGR, Malaysia
| | - Shamima Abdul Rahman
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya 63000, SGR, Malaysia
| | - Chun-Wai Mai
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights, Jalan Puncak Menara Gading, Taman Connaught, Cheras 56000, KUL, Malaysia
| | - Michelle Yee Mun Teo
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Jalan Puncak Menara Gading, Taman Connaught, Cheras 56000, KUL, Malaysia
| | - Phei Er Kee
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, TN, India
| | - Siew-Keah Lee
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, SGR, Malaysia
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya 63000, SGR, Malaysia
| |
Collapse
|
49
|
Wen L, Zhang W, Hu J, Chen T, Wang Y, Lv C, Li M, Wang L, Xiao F. Luteolin target HSPB1 regulates endothelial cell ferroptosis to protect against radiation vascular injury. PLoS One 2024; 19:e0311922. [PMID: 39392831 PMCID: PMC11469493 DOI: 10.1371/journal.pone.0311922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/26/2024] [Indexed: 10/13/2024] Open
Abstract
Vascular endothelial damage due to ionizing radiation is the main pathological process of radiation injury and the main cause of damage to various organs in nuclear accidents. Ferroptosis plays an important role in ionizing radiation-induced cell death. We have previously reported that luteolin is highly resistant to ferroptosis. In the present study, body weight, microvessel count, H&E, and Masson staining results showed that luteolin rescued radial vascular injury in vivo. Cell Counting Kit 8 (CCK8), Giemsa staining clarified the anti-ferroptosis ability of luteolin with low toxicity. Malondialdehyde (MDA), superoxide dismutase (SOD), NADP+/NADPH, Fe2+ staining, dihydroethidium (DHE) and MitoTracker assays for ferroptosis-related metrics, we found that luteolin enhances human umbilical vein endothelial cells (HUVECs) antioxidant damage capacity. Drug affinity responsive target stability (DARTS), surface plasmon resonance (SPR), computer simulated docking and western blot showed that heat shock protein beta-1 (HSPB1) is one of the targets of luteolin action. Luteolin inhibits ferroptosis by promoting the protein expression of HSPB1/solute carrier family 7 member 11 (SLC7A11)/ glutathione peroxidase 4 (GPX4). In conclusion, we have preliminarily elucidated the antioxidant damage ferroptosis ability and the target of action of luteolin to provide a theoretical basis for the application of luteolin in radiation injury diseases.
Collapse
Affiliation(s)
- Li Wen
- School of Nursing, Jilin University, Changchun, P. R. China
| | - Weiyuan Zhang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, P. R. China
- Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Jia Hu
- Department of Cardiovascular, The Sixth Medical Center of Chinese PLA General Hospital, Haidian District, Beijing, China
| | - Tao Chen
- Department of Cardiovascular, The Sixth Medical Center of Chinese PLA General Hospital, Haidian District, Beijing, China
| | - Yiming Wang
- School of Nursing, Jilin University, Changchun, P. R. China
| | - Changchang Lv
- School of Nursing, Jilin University, Changchun, P. R. China
| | - Min Li
- Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Lisheng Wang
- School of Nursing, Jilin University, Changchun, P. R. China
- Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Fengjun Xiao
- Beijing Institute of Radiation Medicine, Beijing, P. R. China
| |
Collapse
|
50
|
Hou M, John Martin JJ, Song Y, Wang Q, Cao H, Li W, Sun C. Dynamics of flavonoid metabolites in coconut water based on metabolomics perspective. FRONTIERS IN PLANT SCIENCE 2024; 15:1468858. [PMID: 39435019 PMCID: PMC11491327 DOI: 10.3389/fpls.2024.1468858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024]
Abstract
Coconut meat and coconut water have garnered significant attention for their richness in healthful flavonoids. However, the dynamics of flavonoid metabolites in coconut water during different developmental stages remain poorly understood. This study employed the metabolomics approach using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to investigate the changes in flavonoid metabolite profiles in coconut water from two varieties, 'Wenye No.5'(W5) and Hainan local coconut (CK), across six developmental stages. The results showed that a total of 123 flavonoid metabolites including chalcones, dihydroflavonoids, dihydroflavonols, flavonoids, flavonols, flavonoid carboglycosides, and flavanols were identified in the coconut water as compared to the control. The total flavonoid content in both types of coconut water exhibited a decreasing trend with developmental progression, but the total flavonoid content in CK was significantly higher than that in W5. The number of flavonoid metabolites that differed significantly between the W5 and CK groups at different developmental stages were 74, 74, 60, 92, 40 and 54, respectively. KEGG pathway analysis revealed 38 differential metabolites involved in key pathways for flavonoid biosynthesis and secondary metabolite biosynthesis. This study provides new insights into the dynamics of flavonoid metabolites in coconut water and highlights the potential for selecting and breeding high-quality coconuts with enhanced flavonoid content. The findings have implications for the development of coconut-based products with improved nutritional and functional properties.
Collapse
Affiliation(s)
- Mingming Hou
- School of Life Sciences, Henan University, Kaifeng, Henan, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Jerome Jeyakumar John Martin
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yuqiao Song
- School of Life Sciences, Henan University, Kaifeng, Henan, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Qi Wang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- College of Wine and Horticulture, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Hongxing Cao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenrao Li
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Chengxu Sun
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| |
Collapse
|