1
|
Binmahfouz LS, Al Otaibi A, Binmahfouz NS, Abdel-Naim AB, Eid BG, Shaik RA, Bagher AM. Luteolin modulates the TGFB1/PI3K/PTEN axis in hormone-induced uterine leiomyomas: Insights from a rat model. Eur J Pharmacol 2025; 996:177439. [PMID: 40043870 DOI: 10.1016/j.ejphar.2025.177439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/28/2025] [Accepted: 02/26/2025] [Indexed: 03/09/2025]
Abstract
Uterine leiomyomas (UL), or fibroids, are non-cancerous tumors of the uterine smooth muscle, affecting approximately 70% of women of reproductive age. They are the most prevalent solid tumors in the gynecological tract and a major indication for hysterectomy. The pathogenesis of UL involves uterine inflammation, uncontrolled cell division, and suppressed apoptosis. This study evaluated the protective effects of luteolin, a flavonoid known for its anti-inflammatory and antioxidant properties, against diethylstilbestrol and progesterone-induced UL in female rats. Twenty-four female Wistar rats were divided into four groups: (1) control, (2) luteolin (10 mg/kg, PO), (3) UL (diethylstilbestrol 1.35 mg/kg + progesterone 1 mg/kg, SC), and (4) UL + luteolin (10 mg/kg). The treatment duration was five weeks. Histological analyses were performed using hematoxylin and eosin (H&E) staining and Masson's Trichrome staining to evaluate uterine architecture and fibrosis. Histological results demonstrated normal uterine architecture in the control and luteolin groups, with marked neoplastic cell proliferation and fibrosis in the UL group, significantly mitigated by luteolin treatment. Luteolin reduced uterine weights and exhibited antioxidant, anti-inflammatory, pro-apoptotic, and anti-proliferative effects. Immunohistochemical analysis revealed that luteolin significantly reduced α-SMA protein expression, suggesting its role in modulating fibrotic pathways by inhibiting TGF-β1 and PI3K and enhancing PTEN production. These findings highlight luteolin's potential as a non-invasive therapeutic option for UL and suggest the need for further clinical studies to establish its efficacy, optimize dosage, and evaluate its safety profile in humans.
Collapse
Affiliation(s)
- Lenah S Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Abdullah Al Otaibi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Department of Pharmaceutical Care, Maternal and Children Specialist Hospital, Jeddah, 23816, Saudi Arabia
| | - Najlaa S Binmahfouz
- Department of Anatomical Histopathology, East Jeddah General Hospital, Jeddah, 22253, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rasheed A Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amina M Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
2
|
de Oliveira MR. Pre-clinical evidence for mitochondria as a therapeutic target for luteolin: A mechanistic view. Chem Biol Interact 2025; 413:111492. [PMID: 40154935 DOI: 10.1016/j.cbi.2025.111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/05/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Pre-clinical evidence indicates that mitochondria may be a therapeutic target for luteolin (3',4',5,7-tetrahydroxyflavone; LUT) in different conditions. LUT modulates mitochondrial physiology in in vitro, ex vivo, and in vivo experimental models. This flavone exerted mitochondria-related antioxidant and anti-apoptotic effects, stimulated mitochondrial fusion and fission, induced mitophagy, and promoted mitochondrial biogenesis in human and animal cells and tissues. Moreover, LUT modulated the activity of components of the oxidative phosphorylation (OXPHOS) system, improving the ability of mitochondria to produce adenosine triphosphate (ATP) in certain circumstances. The mechanism of action by which LUT promoted mitochondrial benefits and protection are not completely clear yet. Nonetheless, LUT is a potential candidate to be utilized in mitochondrial therapy in the future. In this work, it is explored the mechanisms of action by which LUT modulates mitochondrial physiology in different pre-clinical experimental models.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), CEP 78060-900, Cuiaba, Mato Grosso, Brazil; Grupo de Estudos em Terapia Mitocondrial, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
3
|
La X, He X, Liang J, Zhang Z, Li Z. Investigating the separation and purification of flavonoids extracted from foxtail millet, with an in-depth study on its functions in alleviating metabolic syndrome through suppressing lipid absorption. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40285665 DOI: 10.1002/jsfa.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 03/01/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Rising living standards alongside high-fat diets (HFDs) have fueled the prevalence of metabolic syndrome (MetS), posing a significant health challenge with limited effective therapies. Foxtail millet is recognized as a health food with rich flavonoids. The objective of this work is to isolate and purify flavonoids from foxtail millet, which have the potential to alleviate MetS and to clarify their mechanism. RESULTS Our research combined single-factor experiments and a Box-Behnken design to optimize the extraction processes for millet whole-grain flavonoids (MWGFs) followed by the purification using D101 resin. Components were eluted using varied alcohol concentrations. Additionally, the investigation revealed that MWGF30 notably decreased triglyceride (TG) levels, mitigated lipid uptake in Caco-2 cells induced by free fatty acids, and suppressed lipid absorption in HFD mice while modulating TG, high‑ and low-density lipoprotein cholesterol and total cholesterol levels. Further investigation uncovered that MWGF30 achieved this lipid uptake reduction ability by downregulating the CD36 protein level. CONCLUSION Collectively, MWGF30 demonstrated a potent ability to regulate blood lipids and curb lipid absorption, enhancing our comprehension of millet's benefits and furnishing a scientifically grounded dietary approach for MetS. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoqin La
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
| | - Xiaoting He
- School of Life Science, Shanxi University, Taiyuan, China
| | - Jingyi Liang
- Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Zhaoyan Zhang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
| | - Zhuoyu Li
- Institute of Biotechnology, Shanxi University, Taiyuan, China
| |
Collapse
|
4
|
Wu L, Wu J, Wang X, Xu Y, Lin Z, Chen J, Wu X. Natural product-based nanotechnological formulations for colorectal cancer treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04175-y. [PMID: 40274619 DOI: 10.1007/s00210-025-04175-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025]
Abstract
Colorectal cancer is one of the most common malignancies affecting the gastrointestinal tract. A silent onset often marks it and carries a poor prognosis. Studies have shown that natural products can suppress the growth of colorectal cancer and exert therapeutic effects at the molecular level. However, unfavorable physicochemical properties frequently hinder their clinical application, such as low solubility, limited bioavailability, short half-life, and rapid systemic clearance. As scientific and technological progress continues, increasing attention has been directed toward nanotechnology-based approaches. Techniques involving nanoparticles, liposomes, and micelles are being explored to improve drug delivery. These advancements provide a promising foundation for overcoming the limitations associated with natural products. This review systematically examines the application of nano-formulations for natural ingredients to offer meaningful insights into their. potential use in treating colorectal cancer.
Collapse
Affiliation(s)
- Lanfang Wu
- Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Fuzhou, 350122, China
| | - Jiali Wu
- Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Fuzhou, 350122, China
| | - Xinyu Wang
- , Shanghai Wei Er Lab, Shanghai, 201707, China
| | - Youfa Xu
- , Shanghai Wei Er Lab, Shanghai, 201707, China
| | - Zhizhe Lin
- , Shanghai Wei Er Lab, Shanghai, 201707, China
| | - Jianming Chen
- Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Fuzhou, 350122, China.
- , Shanghai Wei Er Lab, Shanghai, 201707, China.
| | - Xin Wu
- Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Fuzhou, 350122, China.
- , Shanghai Wei Er Lab, Shanghai, 201707, China.
| |
Collapse
|
5
|
Zeng F, Li Y, Xu Y, Yu C, Li S, Wei N, Lin L, Yang W, Yang H, Li F, Shang J, Guo M, Yang F, Ji Z, Li K, Liu F, Zhai H. Exploring the optimal timing of HanChuan Zupa Granule for asthma treatment using a comprehensive research approach of "Disease circadian rhythm-drug target prediction-drug efficacy validation". JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119836. [PMID: 40254112 DOI: 10.1016/j.jep.2025.119836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/09/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hanchuan Zupa Granule(HCZP) is a classic Uygur medicine compound with a long history and proven efficacy. They have been included in the National Essential Medicines List of China and are commonly used in the treatment of asthma. It is of significant importance to elucidate its mechanisms through modern pharmacological research. AIM OF THE STUDY This study proposes a comprehensive research approach combining "disease circadian rhythm-drug target prediction-drug efficacy validation" to explore the optimal timing and mechanism of asthma treatment by examining the relationship between disease, medication, and time, supplemented by experimental investigations. MATERIALS AND METHODS ①Network pharmacology predicted the targets and mechanisms of HCZP's immune modulation in asthma. ②Preliminary research on antiasthmatic medication times from ancient and modern sources identified the most frequent time, which was used for grouping in this study. An ovalbumin-induced asthma model and the lung pathology, pulmonary function, and bronchial obstruction were used to detect the lung condition of asthmatic mice. Serum and lung tissue were analyzed for immunoglobulins and Th2 cytokines. MUC5AC mRNA and protein levels, along with mucus staining, were measured to evaluate airway mucus secretion. RESULTS ①Network pharmacological analyses showed that among the immune response-related pathways, the IL-17 signalling pathway had the highest aggregation and was associated with Th2 cells in asthma pathogenesis. ②In biological effect experiments, HCZP of all time subgroups could delay the progression of asthma pathology to a certain extent, increased FVC, FEV75, PEF, MMEF, IC to different degrees, and down-regulated IgE and Th2 characteristic cytokine expression. In terms of reducing mucus expression, the expression of MUC5AC was inhibited to varying degrees. In the treatment of asthma, the reasonable time to take the medicine is "evening (before going to bed)" CONCLUSION: This study, grounded in the disease circadian rhythm, applies an integrated approach combining drug target prediction and drug efficacy validation to explore the optimal timing for asthma treatment. This method is anticipated to introduce a novel strategy for clinical therapy.
Collapse
Affiliation(s)
- Fengping Zeng
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yixuan Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yan Xu
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chenqian Yu
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Siyu Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Namin Wei
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Li Lin
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wanjun Yang
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Huanfei Yang
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Feiyu Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jing Shang
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Mengrui Guo
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Fanlin Yang
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhihong Ji
- New Cicon Pharmaceutical Co. LTD., Urumchi, 830001, China
| | - Keao Li
- New Cicon Pharmaceutical Co. LTD., Urumchi, 830001, China
| | - Fangyao Liu
- Southwest Minzu University, Chengdu, 610041, China.
| | - Huaqiang Zhai
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
6
|
Li X, Guo Y, Deng X, Jiao Y, Hao H, Dong Q, Sun H, Han S. Taraxacum mongolicum Hand.-Mazz. extract disrupts the interaction between triple-negative breast cancer cells and tumor-associated macrophages by inhibiting RAC2/NF-κB p65/p38 MAPK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119757. [PMID: 40199407 DOI: 10.1016/j.jep.2025.119757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/31/2025] [Accepted: 04/05/2025] [Indexed: 04/10/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taraxacum mongolicum Hand.-Mazz., generally known as dandelion, is a herb renowned for its pharmacological properties, including detoxifying and anti-inflammatory effects. Historically, this herb has been extensively utilized in the treatment of breast diseases. Recent studies have demonstrated that dandelion exhibits inhibitory properties against triple-negative breast cancer (TNBC) and modulates the tumor-associated macrophages (TAMs) microenvironment. However, the primary pharmacological mechanisms remain to be completely revealed. AIM OF THE STUDY This study is focused on examining the mechanism by which dandelion extract regulates the communication between TNBC and TAMs through an integrative approach of network-based pharmacology and experimental verification. MATERIALS AND METHODS A three-dimensional (3D) co-culture cell model was employed to visualize the impact of dandelion extract on the crosstalk between TAMs and TNBC. To shed light on the crucial mechanisms of dandelion inhibitory effects on TNBC, a network pharmacology analysis was undertaken. Transwell assays were utilized to assess cell capabilities to migrate and infiltrate. Small interfering RNA (siRNA) and an overexpression plasmid targeting Ras-related C3 botulinum toxin substrate 2 (RAC2) were applied to knock down or upregulate the expression levels of RAC2. The altered expression levels of associated molecules were evaluated using quantitative real-time PCR, Western blotting, and immunohistochemistry. RESULTS The results from 3D co-culture model demonstrated that dandelion extract significantly hindered the consolidating strength between TNBC cells and TAMs. The extract effectively suppressed TAM-induced epithelial-mesenchymal transition (EMT) in TNBC cells and inhibited the recruitment of TAMs and M2 polarization mediated by TNBC cells. Network pharmacology analysis predicted that dandelion extract attenuates the inflammatory response in TNBC through NF-κB p65/p38 MAPK. Notably, dandelion extract reduced the levels of NF-κB p65/p38 MAPK-related cytokines, including TNF-α, IL-1β, and IL-6 in TNBC cells, while increasing them in TAMs. Overexpression of RAC2 in TNBC cells not only augmented their proliferation, migration, invasion, and EMT processes but also facilitated increased recruitment and M2 polarization of TAMs. TAMs were observed to promote lung metastasis, whereas dandelion extract significantly inhibited lung metastasis and EMT in 231 xenografts. Mechanically, dandelion extract significantly mitigated the RAC2/NF-κB p65/p38 MAPK-mediated inflammatory response both in TNBC cells and 231 xenografts, thereby disrupting the crosstalk between TNBC cells and TAMs. CONCLUSION Dandelion extract inhibits the crosstalk between TNBC and TAMs through RAC2/NF-κB p65/p38 MAPK inflammatory pathway, thereby suppressing lung metastasis in TNBC. This study revealed dandelion extract exerts a bidirectional regulatory effect on inflammation in modulating the interaction between TNBC and TAMs, offering a promising therapeutic insight for TNBC treatment.
Collapse
Affiliation(s)
- Xinrui Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, PR China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Yang Guo
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, PR China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Xinxin Deng
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, PR China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Yanna Jiao
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, PR China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Huifeng Hao
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, PR China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Qingqing Dong
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, PR China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Hong Sun
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, PR China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, PR China.
| | - Shuyan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, PR China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, PR China.
| |
Collapse
|
7
|
Zhou J, Wu Z, Zhao P. Luteolin and its antidepressant properties: From mechanism of action to potential therapeutic application. J Pharm Anal 2025; 15:101097. [PMID: 40276566 PMCID: PMC12018562 DOI: 10.1016/j.jpha.2024.101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/18/2024] [Accepted: 09/03/2024] [Indexed: 04/26/2025] Open
Abstract
Luteolin is a natural flavonoid compound exists in various fruits and vegetables. Recent studies have indicated that luteolin has variety pharmacological effects, including a wide range of antidepressant properties. Here, we systematically review the preclinical studies and limited clinical evidence on the antidepressant and neuroprotective effects of luteolin to fully explore its antidepressant power. Network pharmacology and molecular docking analyses contribute to a better understanding of the preclinical models of depression and antidepressant properties of luteolin. Seventeen preclinical studies were included that combined network pharmacology and molecular docking analyses to clarify the antidepressant mechanism of luteolin and its antidepressant targets. The antidepressant effects of luteolin may involve promoting intracellular noradrenaline (NE) uptake; inhibiting 5-hydroxytryptamine (5-HT) reuptake; upregulating the expression of synaptophysin, postsynaptic density protein 95, brain-derived neurotrophic factor, B cell lymphoma protein-2, superoxide dismutase, and glutathione S-transferase; and decreasing the expression of malondialdehyde, caspase-3, and amyloid-beta peptides. The antidepressant effects of luteolin are mediated by various mechanisms, including anti-oxidative stress, anti-apoptosis, anti-inflammation, anti-endoplasmic reticulum stress, dopamine transport, synaptic protection, hypothalamic-pituitary-adrenal axis regulation, and 5-HT metabolism. Additionally, we identified insulin-like growth factor 1 receptor (IGF1R), AKT serine/threonine kinase 1 (AKT1), prostaglandin-endoperoxide synthase 2 (PTGS2), estrogen receptor alpha (ESR1), and epidermal growth factor receptor (EGFR) as potential targets, luteolin has an ideal affinity for these targets, suggesting that it may play a positive role in depression through multiple targets, mechanisms, and pathways. However, the clinical efficacy of luteolin and its potential direct targets must be confirmed in further multicenter clinical case-control and molecular targeting studies.
Collapse
Affiliation(s)
- Jiayu Zhou
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| |
Collapse
|
8
|
Yang L, Zhang Y, Liu J, Wang X, Zhang L, Wan H. A tumor-targeting black phosphorus-based nanoplatform for controlled chemo-photothermal therapy of breast cancer. Mater Today Bio 2025; 31:101563. [PMID: 40026630 PMCID: PMC11870200 DOI: 10.1016/j.mtbio.2025.101563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/20/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Combination therapy with high efficacy and precision shows great potential in breast cancer treatment. Herein, we developed a multifunctional nanocarrier (NBP@mSiO2-PEG-cRGD) for tumor-targeting chemo-photothermal therapy of breast cancer in a controlled manner. The nanocarrier was constructed by enveloping nano-sized black phosphorus (NBP) within a mesoporous silica shell (mSiO2) modified with the tumor-targeting peptide c(Arg-Gly-Asp-dPhe-Cys) (cRGD). Due to the existence of pore channels within mSiO2, NBP@mSiO2-PEG-cRGD achieved high loading efficiency of indole-3-carbinol (I3C) molecules (NBP@mSiO2-PEG-cRGD/I3C), an anti-tumor agent derived from food. Mediated by cRGD/integrin αvβ3 interaction, NBP@mSiO2-PEG-cRGD/I3C reached breast tumors in a targeted manner. Once irradiated by the near-infrared laser, our nanocarrier exhibited superior photothermal conversion, which not only induced photothermal therapy but also facilitated the release of I3C from NBP@mSiO2-PEG-cRGD/I3C within tumor cells to inhibit the activation of proto-oncogenic phosphoinositide 3-kinase (PI3K)-AKT signaling pathway and drive chemotherapy. All these attributes contributed to a satisfactory therapeutic effect toward breast tumors, manifesting in significant inhibition of cell proliferation, promotion of cell apoptosis, and reduction of tumor micro-vessel formation, which led to the efficient inhibition of tumor growth. Collectively, the nanocarrier developed here provided useful insights into the development of multifunctional platforms to effectively combat cancer.
Collapse
Affiliation(s)
- Lin Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Ying Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Xiaofen Wang
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China
| | - Li Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Hao Wan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| |
Collapse
|
9
|
Zhang R, Li W, Yang J, Fan X, Fan H, Li W. The Role of Luteolin in Inhibiting Prostaglandin-Endoperoxide Synthase 2 to Relieve Neointimal Hyperplasia in Arteriovenous Fistula. Adv Biol (Weinh) 2025; 9:e2400437. [PMID: 39960128 DOI: 10.1002/adbi.202400437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/24/2025] [Indexed: 04/17/2025]
Abstract
This study aims to investigate the role and mechanism of luteolin in inflammation and phenotypic switch of vascular smooth muscle cells (VSMCs) in an arteriovenous fistula (AVF) model, for providing a potential agent for the prevention and therapy of AVF neointimal hyperplasia. In vivo, an AVF model is created in Sprague Dawley rats. In vitro, rat VSMCs are treated with platelet-derived growth factor-BB (PDGF-BB) to induce the phenotypic switch of VSMCs. Histological AVF changes are analyzed using hematoxylin-eosin. Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) are utilized to detect prostaglandin-endoperoxide synthase 2 (PTGS2) expression. In vivo, luteolin inhibits neointima formation and reduces vimentin, α-SMA, MCP-1, MMP-9, TNF-α, and IL-6 levels. In vitro, under PDGF-BB treatment, luteolin inhibits proliferation and migration and reduces TNF-α, vimentin, α-SMA, MCP-1, MMP-9, and IL-6 levels in VSMCs. In rat AVF tissues, PTGS2 expression is increased. Luteolin inhibits PTGS2 expression in vivo and in vitro. PTGS2 overexpression reverses the role of luteolin in extracellular matrix protein expression, proliferation, inflammation, and migration in VSMCs treated with PDGF-BB. Altogether, in the AVF, luteolin inhibits proliferation, migration, the phenotypic switch of VSMCs, neointima formation, and the inflammatory response through inhibiting PTGS2 expression.
Collapse
Affiliation(s)
- Ruibin Zhang
- The First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, P. R. China
- Department of Nephrology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, P. R. China
| | - Wei Li
- Department of hand and foot, Gaomi People's Hospital, Gaomi, Shandong, 261500, P. R. China
| | - Jihua Yang
- Department of Ultrasound, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, P. R. China
| | - Xiujie Fan
- Department of Medical Experimental Diagnosis Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, P. R. China
| | - Huili Fan
- Department of Nephrology, Jinxiang Affiliated Hospital of Jining Medical University, Jining, Shandong, 272200, P. R. China
| | - Wei Li
- Department of Nephrology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, 250014, P. R. China
| |
Collapse
|
10
|
Muro P, Jing C, Zhao Z, Jin T, Mao F. The emerging role of honeysuckle flower in inflammatory bowel disease. Front Nutr 2025; 12:1525675. [PMID: 40225345 PMCID: PMC11985448 DOI: 10.3389/fnut.2025.1525675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC), referred to as inflammatory bowel disease (IBD), pose considerable challenges in treatment because they are chronic conditions that easily relapse. The occurrence of IBD continues to rise in developing countries. Nonetheless, the existing therapies for IBD have limitations and fail to address the needs of the patients thoroughly. There is an increasing need for new, safe, and highly effective alternative medications for IBD patients. Traditional Chinese Medicine (TCM) is employed in drug development and disease management due to its wide-range of biological activities, minimal toxicity, and limited side effects. Extensive research has shown that certain TCM exhibits significant therapeutic benefits for IBD treatments. Honeysuckle (Lonicera japonica) was used in TCM research and clinical settings for the treatment of IBD. Bioactive metabolites in L. japonica, such as luteolin, quercetin, cyanidin, chlorogenic acid (CGA), caffeic acid (CA), and saponin, exhibit significant therapeutic benefits for managing IBD. The honeysuckle flower is a potential candidate in the treatment of IBD due to its anti-inflammatory, immune system-regulating, and antioxidant qualities. This paper reviews the metabolites of the honeysuckle flower as a candidate for the treatment of IBD. It discusses the fundamental mechanism of L. japonica and the potential of its bioactive metabolites in the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Peter Muro
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Caihong Jing
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu, China
| | - Zhihan Zhao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tao Jin
- Department of Gastrointestinal and Endoscopy, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Fei Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
11
|
Xiong M, Peng J, Zhou S, Gao Q, Lu J, Ou C, Song H, Peng Q. Lycium barbarum L.: a potential botanical drug for preventing and treating retinal cell apoptosis. Front Pharmacol 2025; 16:1571554. [PMID: 40183099 PMCID: PMC11965601 DOI: 10.3389/fphar.2025.1571554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Retinal cell apoptosis is the primary pathological process in many retinal diseases, including retinitis pigmentosa and age-related macular degeneration, which can cause severe visual impairment and blindness. Lycium barbarum L., a traditional Chinese medicinal botanical drug, has a long history and extensive application in ophthalmic disease prevention and treatment. This study systematically reviewed the key active metabolites in L. barbarum L., including L. barbarum polysaccharides, carotenoids, and flavonoids, that exert retinal protective effects. A comprehensive analysis of the pharmacological effects and underlying molecular mechanisms of L. barbarum L. and its active metabolites in the prevention and treatment of retinal cell apoptosis, including essential aspects such as antioxidant activity, anti-inflammatory properties, autophagy regulation, and mitochondrial function preservation, is essential to establish a comprehensive and solid theoretical basis for further investigation of the medicinal value of L. barbarum L. in ophthalmology and provide a reference for future research directions.
Collapse
Affiliation(s)
- Meng Xiong
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jun Peng
- Department of Ophthalmology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Shunhua Zhou
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qing Gao
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Lu
- Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chen Ou
- Department of Ophthalmology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Houpan Song
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qinghua Peng
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
12
|
Mello dos Santos M, Sostaric T, Lim LY, Locher C. Physicochemical Characteristics, Antioxidant Properties, and Identification of Bioactive Compounds in Australian Stingless Bee Honey Using High-Performance Thin-Layer Chromatography. Molecules 2025; 30:1223. [PMID: 40142000 PMCID: PMC11944790 DOI: 10.3390/molecules30061223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
This study investigates the physiochemical properties, chemical composition, and antioxidant activity of Australian stingless bee honey blends from two bee species, Tetragonula carbonaria and Tetragonula hockingsi, harvested in Burpengary East, Queensland at different times of the year. The moisture content of the honey samples ranged from 26.5% to 30.0%, total soluble solids from 70.0 to 73.5° Brix, and pH from 3.57 to 4.19. The main sugars identified were trehalulose (13.9 to 30.3 g/100 g), fructose (12.9 to 32.3 g/100 g), and glucose (4.80 to 23.7 g/100 g). The total phenolic content (TPC), measured using the Folin-Ciocalteu assay, ranged from 26.1 to 58.6 mg of gallic acid equivalents/100 g. The antioxidant activity was investigated with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, with values ranging from 1.39 to 6.08 mmol of Trolox equivalents/kg. Antioxidant constituents were determined using a High-Performance Thin-Layer Chromatography (HPTLC)-DPPH assay. The HPTLC-DPPH analysis revealed that honey samples collected in May 2022 contained the highest number of antioxidant compounds. Some constituents were identified using an HPTLC-derived database and also quantified utilising HPTLC analysis. Lumichrome was present in all honey samples, while luteolin and kaempferide were detected only in some. Kaempferol or isorhamnetin was also found to be present, although a definitive distinction between these two chemically closely related compounds could not be made by HPTLC analysis. The results showed that honey produced by Tetragonula hockingsi and Tetragonula carbonaria shares similar properties and composition when harvested at the same time, with only minor differences in moisture, fructose, and glucose content.
Collapse
Affiliation(s)
- Mariana Mello dos Santos
- Centre for Optimisation of Medicines, Division of Pharmacy, School of Allied Health, The University of Western Australia, Crawley, WA 6009, Australia; (M.M.d.S.); (T.S.); (L.Y.L.)
| | - Tomislav Sostaric
- Centre for Optimisation of Medicines, Division of Pharmacy, School of Allied Health, The University of Western Australia, Crawley, WA 6009, Australia; (M.M.d.S.); (T.S.); (L.Y.L.)
| | - Lee Yong Lim
- Centre for Optimisation of Medicines, Division of Pharmacy, School of Allied Health, The University of Western Australia, Crawley, WA 6009, Australia; (M.M.d.S.); (T.S.); (L.Y.L.)
- Institute for Paediatric Perioperative Excellence, The University of Western Australia, Crawley, WA 6009, Australia
| | - Cornelia Locher
- Centre for Optimisation of Medicines, Division of Pharmacy, School of Allied Health, The University of Western Australia, Crawley, WA 6009, Australia; (M.M.d.S.); (T.S.); (L.Y.L.)
- Institute for Paediatric Perioperative Excellence, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
13
|
Lai Z, Pang Y, Zhou Y, Chen L, Zheng K, Yuan S, Wang W. Luteolin as an adjuvant effectively enhanced the efficacy of adoptive tumor-specific CTLs therapy. BMC Cancer 2025; 25:411. [PMID: 40050776 PMCID: PMC11887225 DOI: 10.1186/s12885-025-13831-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/27/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Luteolin, a natural flavonoid compound, has demonstrated anti-inflammatory, antioxidant, and broad anti-tumor properties. Recent studies suggest that its anti-tumor effects are linked to enhanced CTL function-including proliferation, survival, and cytotoxicity-via inhibition of the YAP/Wnt signaling pathway in tumor cells. Consequently, luteolin has potential as an adjuvant in combination therapies with adoptive immunotherapy. METHODS This study first assessed luteolin's tumor-inhibitory effects in vitro and in vivo using cytotoxicity assays, Transwell invasion tests, wound healing assays, and analyses of post-treatment tumor growth and survival time. Additionally, we explored whether luteolin combined with a DC/tumor fusion vaccine could synergistically enhance overall antitumor efficacy by boosting activation, proliferation, cytokines secretion, and cytotoxicity of effector T cells. RESULTS Our findings indicate that luteolin, as a standalone agent, can inhibit the proliferation and invasion of colon and lung cancer cells both in vitro and in vivo to a certain extent. When combined with activated CTLs, it upregulated the expression of CD25 and CD69 in effector cells and resulted in higher levels of IL-2, TNF-α, and IFN-γ secretion in vitro. In vivo, this combination significantly curtailed subcutaneous tumor growth and extended the mean survival time of tumor-bearing mice (HCT116, A549), outperforming luteolin monotherapy. Furthermore, the efficacy of this combination therapy may be attributable to enhanced apoptosis in tumor cells, reduced proliferation, and decreased YAP expression. CONCLUSION The combination of luteolin and DC/tumor fusion vaccine-activated CTLs presents a novel approach for cancer treatment. As an adjuvant, luteolin downregulates YAP expression in tumor cells, enhancing CTL proliferation, cytotoxicity, and survival, thus improving tumor recognition and selective targeting. This strategy is promising for safe and effective tumor treatment.
Collapse
Affiliation(s)
- Zhiheng Lai
- Department of Anorectal Surgery, Hainan Traditional Chinese Medicine Hospital, Hainan Medical University, Haikou, China
- Department of Anorectal Surgery, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanyang Pang
- Department of Anorectal Surgery, Hainan Traditional Chinese Medicine Hospital, Hainan Medical University, Haikou, China
| | - Yujing Zhou
- School of Public Health, Hainan Medical University, Haikou, China
| | - Leiyuan Chen
- Department of Anorectal Surgery, Hainan Traditional Chinese Medicine Hospital, Hainan Medical University, Haikou, China
| | - Kai Zheng
- Department of Orthopedics, Hainan Traditional Chinese Medicine Hospital, Hainan Medical University, Haikou, China
- Department of Orthopedics, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shiguo Yuan
- Department of Orthopedics, Hainan Traditional Chinese Medicine Hospital, Hainan Medical University, Haikou, China.
- Department of Orthopedics, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Wu Wang
- Department of Anorectal Surgery, Hainan Traditional Chinese Medicine Hospital, Hainan Medical University, Haikou, China.
| |
Collapse
|
14
|
Shen Y, Hong F, Wu H, Chen X, Xia H, Xu RA, Lin G, Shi L. Inhibitory effect of luteolin on the metabolism of vandetanib in vivo and in vitro. Front Pharmacol 2025; 16:1526159. [PMID: 40098621 PMCID: PMC11911205 DOI: 10.3389/fphar.2025.1526159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
This study aimed to examine the potential drug-drug interaction (DDI) between vandetanib and luteolin in vivo and in vitro, with the objective of establishing a scientific foundation for their appropriate utilization in clinical settings. Sprague-Dawley (SD) rats were randomly divided into two groups: a control group (vandetanib administered by gavage alone) and an experimental group (vandetanib and luteolin administered together). A series of blood samples were collected at different time intervals. The plasma concentrations of vandetanib and its metabolite N-demethyl vandetanib in rats were determined using an ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Incubation systems were set up with rat liver microsomes (RLM) and human liver microsomes (HLM) to measure the Michaelis-Menten constant (Km) and half-maximum inhibitory concentration (IC50) values. Additionally, the inhibitory mechanism of luteolin on vandetanib was also investigated. Ultimately, the molecular mechanism of inhibition was examined through the utilization of molecular docking techniques. In vivo animal experiment results showed that compared with the control group, the AUC(0-t) and Cmax of vandetanib in the experimental group were significantly increased. The findings from the in vitro experiments revealed that luteolin exhibited a moderate inhibitory effect on the metabolism of vandetanib. The IC50 values for RLM and HLM were determined to be 8.56 μM and 15.84 μM, respectively. The identified inhibition mechanism was classified as mixed. This study utilized molecular docking analysis to provide additional evidence supporting the competitive inhibition of luteolin on vandetanib in CYP3A4. The data presented in our study indicated a potential interaction between vandetanib and luteolin, which may necessitate the need for dose adjustment during their co-administration in clinical settings.
Collapse
Affiliation(s)
- Yuxin Shen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fengsheng Hong
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hualu Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaohai Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hailun Xia
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guanyang Lin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Shi
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
15
|
Zhou R, Peng X, Teng Y, Liu S, Yuan Y. Transcriptome analysis reveals potential medicinal ingredient synthesis in ornamental Dendrobium. Genomics 2025; 117:111003. [PMID: 39855484 DOI: 10.1016/j.ygeno.2025.111003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Dendrobium is divided into ornamental and medicinal varieties due to ornamental and medicinal values. However, current research mainly focuses on medicinal Dendrobium, with less study on the medicinal value of ornamental Dendrobium. We analyzed the microstructures, active components of the stems from twelve ornamental Dendrobium, and explored the biosynthetic networks of these active components based on transcriptome sequencing. This study found the Dendrobium with the highest content of polysaccharide, alkaloid, and flavonoid was Dendrobium aphyllum (53.89 %), Dendrobium thyrsiflorum (2.11 %) and Dendrobium loddigesii (7.21 %). Further research revealed 9 DEGs associated with polysaccharide biosynthesis were highly expressed in D. aphyllum; 4 DEGs related to alkaloid biosynthesis were highly expressed in D. thyrsiflorum; 8 DEGs associated with flavonoid biosynthesis were highly expressed in D. loddigesii. This study revealed the potential medicinal value of ornamental Dendrobium and the synthetic mechanisms of its medicinal components, providing a foundation for the medical applications of ornamental Dendrobium.
Collapse
Affiliation(s)
- Runyang Zhou
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Xi Peng
- Guizhou Academy of Sciences, Institute of Mountain Resources of Guizhou Province, Guiyang, China
| | - Yao Teng
- Guizhou Academy of Sciences, Institute of Mountain Resources of Guizhou Province, Guiyang, China.
| | - Sian Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China.
| | - Yingdan Yuan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| |
Collapse
|
16
|
Zhang G, Shang R, Zhong X, Lv S, Yi Y, Lu Y, Xu Z, Wang Y, Teng J. Natural products target pyroptosis for ameliorating neuroinflammation: A novel antidepressant strategy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156394. [PMID: 39826285 DOI: 10.1016/j.phymed.2025.156394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/19/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Depression is a common mental disorder characterized by prolonged loss of interest and low mood, accompanied by symptoms such as sleep disturbances and cognitive impairments. In severe cases, there may be a tendency toward suicide. Depression can be caused by a series of highly complex pathological mechanisms; However, its key pathogenic mechanism remains unclear. As a novel programmed cell death (PCD) pathway and inflammatory cell death mode, pyroptosis involves a series of tightly regulated gene expression events. It may play a significant role in the pathogenesis and management of depression by modulating neuroinflammatory processes. In addition, a large number of studies have shown that various pharmacologically active natural products can regulate pyroptosis through multiple targets and pathways, demonstrating significant potential in the treatment of depression. These natural products offer advantages such as low costs and minimal side effects, making them a viable supplement or alternative to traditional antidepressants. In this review, we summarized recent research on natural products that regulate pyroptosis and neuroinflammation to improve depression. The aim of this review was to contribute to a scientific basis for the discovery and development of more natural antidepressants in the future. METHODS To review the antidepressant effects of natural products targeting pyroptosis-mediated neuroinflammation, data were collected from the Web of Science, ScienceDirect databases, and PubMed to classify and summarize the relationship between pyroptosis and neuroinflammation in depression, as well as the pharmacological mechanisms of natural products. RESULTS Multiple researches have revealed that pyroptosis-mediated neuroinflammation serves as a pivotal contributory factor in the pathological process of depression. Natural products, such as terpenoids, terpenes, phenylethanol glycosides, and alkaloids, have antidepressant effects by regulating pyroptosis to alleviate neuroinflammation. CONCLUSION We comprehensively reviewed the regulatory effects of natural products in depression-related pyroptosis pathways, providing a uniquely insightful perspective for the research, development, and application of natural antidepressants. However, future research should further explore the modulatory mechanisms of natural products in regulating pyroptosis, which is of great importance for the genration of effective antidepressants.
Collapse
Affiliation(s)
- Guangheng Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Ruirui Shang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Shimeng Lv
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Yunhao Yi
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Yitong Lu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Zhiwei Xu
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Yilin Wang
- Affiliated Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Jing Teng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China.
| |
Collapse
|
17
|
Acero N, Manrique J, Muñoz-Mingarro D, Martínez Solís I, Bosch F. Vitis vinifera L. Leaves as a Source of Phenolic Compounds with Anti-Inflammatory and Antioxidant Potential. Antioxidants (Basel) 2025; 14:279. [PMID: 40227263 PMCID: PMC11939682 DOI: 10.3390/antiox14030279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025] Open
Abstract
Vitis vinifera is a plant known since ancient times mainly for the interest of its fruits. However, its leaves have traditionally been consumed as food in some regions of the Mediterranean basin and as a medicinal remedy. In this work, the phytochemical profile of this part of the plant, which is considered a bio-residue of viticultural processes, was analyzed (UHPLC-ESI(±)-QTOF-MS). Hydroxybenzoic acids, flavonols, and stilbenes are the main phenolic compounds identified. Its antioxidant and anti-inflammatory capacity were studied both in vitro and in cell culture. Grapevine leaves have a high capacity to scavenge free radicals, as well as to reduce oxidative stress induced by H2O2 in the HepG2 cell line. On the other hand, the methanolic extract of these leaves is capable of inhibiting lipoxygenase, an enzyme involved in inflammatory responses, with an IC50 of 1.63 μg/mL. In addition, the extract showed potent inhibition of NO production in LPS-stimulated RAW 264.7 cells. These results pointed out V. vinifera leaves as a powerful functional food with a high content of biologically active compounds. The enhancement of these by-products can be highly beneficial to food systems and contribute to the development of sustainable agriculture.
Collapse
Affiliation(s)
- Nuria Acero
- Departamento de CC Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain;
| | - Jorge Manrique
- Departamento de CC Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain;
| | - Dolores Muñoz-Mingarro
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain;
| | - Isabel Martínez Solís
- Biomedical Sciences Institute, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (I.M.S.); (F.B.)
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain
- ICBiBE-Botanical Garden, University of Valencia, 46008 Valencia, Spain
| | - Francisco Bosch
- Biomedical Sciences Institute, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (I.M.S.); (F.B.)
- Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain
| |
Collapse
|
18
|
Kong Y, Wang H, Qiao L, Du T, Luo J, Liu Y, Yang B. Exogenous application of luteolin enhances wheat resistance to Puccinia striiformis f. sp. tritici. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109674. [PMID: 40020601 DOI: 10.1016/j.plaphy.2025.109674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
The accumulation of flavonoids facilitates plant resistance to biotic stress. However, few studies have explored the functions of flavonoids during the interaction between wheat and Puccinia striiformis Westendorp f. sp. tritici Eriksson (Pst). This study analyzed the expression profiles of flavonoids and their biosynthesis genes in the resistant accession Y0337 and the susceptible accession Y0402 infected with Pst. The results showed that flavonoid biosynthesis pathway (FBP) genes were induced during early Pst infection. Among these, 29 initial FBP DEGs exhibited higher expression during incompatible interaction. Further, the total levels of 12 identified flavonoids were higher during incompatible interaction; among these, apigenin, luteolin, cynaroside were accumulated and naringenin was decreased, they may play a crucial role in Pst resistance. Integrated analysis of the transcriptome and metabolome showed that 21 DEGs regulated four crucial flavonoids biosynthesis. The gene regulatory network suggested that the transcription factors EFRs, WRKYs, NACs, and bHLHs potentially regulated four flavonoids biosynthesis. Additionally, it was shown that luteolin inhibited spore germination and infection of Pstin vivo and in vitro. In summary, these results enhance our understanding of the flavonoids biosynthesis in wheat resistance to Pst and highlight the role of luteolin in this process.
Collapse
Affiliation(s)
- Yixi Kong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Huiyutang Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Liang Qiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Tingting Du
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jianfei Luo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yiling Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Baoju Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
19
|
Yan Y, Huang H, Su T, Huang W, Wu X, Chen X, Ye S, Zhong J, Li C, Li Y. Luteolin Mitigates Photoaging Caused by UVA-Induced Fibroblast Senescence by Modulating Oxidative Stress Pathways. Int J Mol Sci 2025; 26:1809. [PMID: 40076436 PMCID: PMC11899068 DOI: 10.3390/ijms26051809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
As a polyphenolic plant flavone, luteolin (Lut) is widely found in many medicinal plants, flowers, and vegetables. Although Lut has been shown to have the effect of preventing and treating skin photoaging, its role in preventing photoaging specifically induced by ultraviolet A (UVA) radiation remains underreported. In vivo, BALB/c mice were used as models for skin photoaging models and treated with Lut. Additionally, NIH-3T3 fibroblasts were utilized in vitro to further investigate whether Lut exerts its anti-photoaging effects by enhancing fibroblast vitality and function. Several biochemical assays (CCK-8, catalase, superoxide dismutase, malondialdehyde, dichloro-dihydro-fluorescein diacetate, quantitative real-time-PCR, gene expression patterns) and histochemical (histological staining, immunofluorescent staining, SA-β-Gal experiments, western blotting analysis) were conducted. The findings demonstrate that the Lut pretreatment could enhance the vitality and function of fibroblasts in both in vitro and in vivo experiments and inhibit UVA-induced collagen degradation, thereby improving the skin's resistance to photoaging. We confirmed that the Lut pretreatment inhibited the expression of UVA-induced senescent factors P21, P16, and pro-inflammatory senescence-associated secretory phenotype (SASP) factors. Additionally, Lut exhibited potent antioxidant effects during UVA exposure. Bioinformatics and network pharmacology analyses revealed that Lut's anti-photoaging effects may be mediated through the regulation of oxidative stress-related pathways and anti-aging genes. Upon utilizing inhibitors and agonists of oxidative stress, we further confirmed that Lut prevents UVA-induced fibroblast senescence by suppressing oxidative stress, and ultimately protects the skin from photoaging damage. These findings indicate that lutein mitigates photoaging caused by UVA-induced fibroblast senescence through the modulation of oxidative stress pathways.
Collapse
Affiliation(s)
- Yu Yan
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (Y.Y.); (H.H.); (T.S.); (W.H.); (X.W.); (X.C.)
- Nursing Interdisciplinary Platform, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Haiting Huang
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (Y.Y.); (H.H.); (T.S.); (W.H.); (X.W.); (X.C.)
- Nursing Interdisciplinary Platform, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Tongshan Su
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (Y.Y.); (H.H.); (T.S.); (W.H.); (X.W.); (X.C.)
- Nursing Interdisciplinary Platform, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wenyi Huang
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (Y.Y.); (H.H.); (T.S.); (W.H.); (X.W.); (X.C.)
- Nursing Interdisciplinary Platform, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xinyu Wu
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (Y.Y.); (H.H.); (T.S.); (W.H.); (X.W.); (X.C.)
- Nursing Interdisciplinary Platform, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xianxian Chen
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (Y.Y.); (H.H.); (T.S.); (W.H.); (X.W.); (X.C.)
- Nursing Interdisciplinary Platform, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Sen Ye
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (S.Y.); (J.Z.)
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jun Zhong
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (S.Y.); (J.Z.)
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Chun Li
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (Y.Y.); (H.H.); (T.S.); (W.H.); (X.W.); (X.C.)
- Nursing Interdisciplinary Platform, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yu Li
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (Y.Y.); (H.H.); (T.S.); (W.H.); (X.W.); (X.C.)
- Nursing Interdisciplinary Platform, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
20
|
Pan J, Chen MY, Jiang CY, Zhang ZY, Yan JL, Meng XF, Han YP, Lou YY, Yang JT, Qian LB. Luteolin alleviates diabetic cardiac injury related to inhibiting SHP2/STAT3 pathway. Eur J Pharmacol 2025; 989:177259. [PMID: 39788407 DOI: 10.1016/j.ejphar.2025.177259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/15/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
Diabetic cardiomyopathy, a heart disease resulting from diabetes mellitus, inflicts structural and functional damage to the heart. Recent studies have highlighted the potential role of luteolin, a flavonoid, in mitigating diabetic cardiovascular injuries. The Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) is implicated in exacerbating diabetes- and obesity-related complications. Interestingly, luteolin has been shown to inhibit protein tyrosine phosphatases, but it's unclear how SHP2 relates to luteolin's protective effects against diabetic heart disease. Here, we hypothesized that the inhibition of SHP2 signaling could play a role in luteolin's protective action against diabetic heart injury. Diabetes was induced in male Sprague-Dawley rats through a high-fat diet followed by a single intraperitoneal dose of streptozotocin (30 mg/kg). Five weeks post-diabetes induction, these rats were intraperitoneally injected with luteolin at varying doses (5, 10, 20 mg/kg) every other day for an additional 5 weeks. Then cardiac function was assessed, and hearts were isolated for further analysis. We found that luteolin notably improved cardiac function, inhibited cardiac hypertrophy and fibrosis, reduced levels of inflammatory factors and reactive oxygen species, and activated superoxide dismutase. Importantly, luteolin treatment also reduced the expression of SHP2 and phosphorylated signal transducer and activator of transcription 3 (STAT3) in a dose-dependent manner. These findings suggest that luteolin protects the diabetic heart against inflammation, oxidative stress, hypertrophy, and fibrosis, which may relate to down-regulating cardiac SHP2/STAT3 signaling.
Collapse
Affiliation(s)
- Jie Pan
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Meng-Yuan Chen
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China; Department of Clinical Laboratory Medicine, First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Chun-Yan Jiang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Zi-Yan Zhang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Jia-Lin Yan
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Xiang-Fei Meng
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Yu-Peng Han
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yang-Yun Lou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Jin-Ting Yang
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Ling-Bo Qian
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China.
| |
Collapse
|
21
|
Liu F, Guo C, Liu X, Gu Z, Zou W, Tang X, Tang J. Luteolin in Inflammatory Bowel Disease and Colorectal Cancer: A Disease Continuum Perspective. Curr Issues Mol Biol 2025; 47:126. [PMID: 39996847 PMCID: PMC11853781 DOI: 10.3390/cimb47020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that may progress to colorectal cancer (CRC), presenting significant challenges to global health. With shifts in lifestyle, the incidence of both conditions continues to rise, underscoring the urgent need for effective treatments. While traditional therapies can be effective, their high recurrence rates and associated adverse reactions limit their broader application. Luteolin, a flavonoid derived from natural plants, has emerged as a promising focus in both IBD and CRC research due to its multi-target therapeutic potential. This article reviews the molecular mechanisms and signaling pathways through which luteolin regulates immune cell differentiation, mitigates inflammation and oxidative stress, modulates gut microbiota, and restores intestinal mucosal barrier function in IBD. In the context of CRC, luteolin demonstrates significant anti-tumor effects by inhibiting cancer cell proliferation, inducing apoptosis, and suppressing cell migration and invasion. Notably, luteolin has demonstrated significant improvements in IBD symptoms by influencing the differentiation of T cell subsets, decreasing the expression of inflammatory mediators, activating antioxidant pathways, and enhancing the structure of gut microbiota. Furthermore, advancements in formulation technology, such as the use of polymer micelles and responsive nanoparticles, have greatly improved the bioavailability and efficacy of luteolin. However, further investigation is needed to address the bioavailability and potential toxicity of luteolin, particularly in the critical transition from IBD to CRC. This article emphasizes the potential of luteolin in the treatment of IBD and CRC and anticipates its promising prospects for future clinical applications as a natural therapeutic agent.
Collapse
Affiliation(s)
- Fang Liu
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (F.L.); (C.G.)
- Clinical Medicine College of Integrated Chinese and Western Medicine, North Sichuan Medical College, Nanchong 637100, China; (X.L.); (Z.G.); (W.Z.)
| | - Cui Guo
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (F.L.); (C.G.)
| | - Xue Liu
- Clinical Medicine College of Integrated Chinese and Western Medicine, North Sichuan Medical College, Nanchong 637100, China; (X.L.); (Z.G.); (W.Z.)
| | - Zhili Gu
- Clinical Medicine College of Integrated Chinese and Western Medicine, North Sichuan Medical College, Nanchong 637100, China; (X.L.); (Z.G.); (W.Z.)
| | - Wenxuan Zou
- Clinical Medicine College of Integrated Chinese and Western Medicine, North Sichuan Medical College, Nanchong 637100, China; (X.L.); (Z.G.); (W.Z.)
| | - Xuegui Tang
- Clinical Medicine College of Integrated Chinese and Western Medicine, North Sichuan Medical College, Nanchong 637100, China; (X.L.); (Z.G.); (W.Z.)
| | - Jianyuan Tang
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (F.L.); (C.G.)
| |
Collapse
|
22
|
de Lima EP, Laurindo LF, Catharin VCS, Direito R, Tanaka M, Jasmin Santos German I, Lamas CB, Guiguer EL, Araújo AC, Fiorini AMR, Barbalho SM. Polyphenols, Alkaloids, and Terpenoids Against Neurodegeneration: Evaluating the Neuroprotective Effects of Phytocompounds Through a Comprehensive Review of the Current Evidence. Metabolites 2025; 15:124. [PMID: 39997749 PMCID: PMC11857241 DOI: 10.3390/metabo15020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/26/2025] Open
Abstract
Neurodegenerative diseases comprise a group of chronic, usually age-related, disorders characterized by progressive neuronal loss, deformation of neuronal structure, or loss of neuronal function, leading to a substantially reduced quality of life. They remain a significant focus of scientific and clinical interest due to their increasing medical and social importance. Most neurodegenerative diseases present intracellular protein aggregation or their extracellular deposition (plaques), such as α-synuclein in Parkinson's disease and amyloid beta (Aβ)/tau aggregates in Alzheimer's. Conventional treatments for neurodegenerative conditions incur high costs and are related to the development of several adverse effects. In addition, many patients are irresponsive to them. For these reasons, there is a growing tendency to find new therapeutic approaches to help patients. This review intends to investigate some phytocompounds' effects on neurodegenerative diseases. These conditions are generally related to increased oxidative stress and inflammation, so phytocompounds can help prevent or treat neurodegenerative diseases. To achieve our aim to provide a critical assessment of the current literature about phytochemicals targeting neurodegeneration, we reviewed reputable databases, including PubMed, EMBASE, and COCHRANE, seeking clinical trials that utilized phytochemicals against neurodegenerative conditions. A few clinical trials investigated the effects of phytocompounds in humans, and after screening, 13 clinical trials were ultimately included following PRISMA guidelines. These compounds include polyphenols (flavonoids such as luteolin and quercetin, phenolic acids such as rosmarinic acid, ferulic acid, and caffeic acid, and other polyphenols like resveratrol), alkaloids (such as berberine, huperzine A, and caffeine), and terpenoids (such as ginkgolides and limonene). The gathered evidence underscores that quercetin, caffeine, ginkgolides, and other phytochemicals are primarily anti-inflammatory, antioxidant, and neuroprotective, counteracting neuroinflammation, neuronal oxidation, and synaptic dysfunctions, which are crucial aspects of neurodegenerative disease intervention in various included conditions, such as Alzheimer's and other dementias, depression, and neuropsychiatric disorders. In summary, they show that the use of these compounds is related to significant improvements in cognition, memory, disinhibition, irritability/lability, aberrant behavior, hallucinations, and mood disorders.
Collapse
Affiliation(s)
- Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Vitor Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos Krt. 113, H-6725 Szeged, Hungary
| | - Iris Jasmin Santos German
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, São Paulo, Brazil
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, São Paulo, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Adriana Maria Ragassi Fiorini
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| |
Collapse
|
23
|
Lv J, Song X, Luo Z, Huang D, Xiao L, Zou K. Luteolin: exploring its therapeutic potential and molecular mechanisms in pulmonary diseases. Front Pharmacol 2025; 16:1535555. [PMID: 40012626 PMCID: PMC11861102 DOI: 10.3389/fphar.2025.1535555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/22/2025] [Indexed: 02/28/2025] Open
Abstract
Luteolin is a flavonoid widely found in plants, including vegetables, botanical drugs, and fruits. Owing to its diverse pharmacological activities, such as anticancer, oxidative stress protection, anti-inflammatory, and neuron-preserving effects, luteolin has attracted attention in research and medicine. Luteolin exhibits therapeutic effects on various pulmonary disease models through multiple molecular mechanisms; these include inhibition of activation of the PI3K/Akt-mediated Nuclear Factor kappa-B (NF-κB) and MAPK signaling pathways, as well as the promotion of regulatory T cell (Treg) function and enhancement of alveolar epithelial sodium channel (ENaC) activity (alleviating inflammation and oxidative stress responses). Luteolin has therapeutic effects on chronic obstructive pulmonary disease (COPD), acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pulmonary fibrosis, allergic asthma, and lung cancer. Luteolin, a naturally occurring polyphenol, is poorly water-soluble. The oral route may be ineffective because the gut poorly absorbs this type of flavonoid. Therefore, although luteolin exhibits significant biological activity, its clinical application is limited by challenges associated with its poor water solubility and low bioavailability, which are critical factors for its efficacy and pharmacological application. These challenges can be addressed by modifying the chemical structure and enhancing pharmaceutical formulations. We summarized the research advancements in improving the solubility and bioavailability of luteolin, as well as the effects of luteolin on various pulmonary diseases and their related mechanisms, with the aim of providing new ideas for researchers.
Collapse
Affiliation(s)
- Jialian Lv
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinyue Song
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zixin Luo
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Duoqin Huang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Li Xiao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Kang Zou
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
24
|
Cao DM, Rao Y, Liu T, Yuan WQ. Combination of Metabolomics and Bioinformatics to Reveal the Mechanism of Luteolin in the Treatment of Cervical Cancer. Chem Biol Drug Des 2025; 105:e70059. [PMID: 39887883 DOI: 10.1111/cbdd.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/05/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
The incidence of cervical cancer is high among women globally. The potential therapeutic efficacy of luteolin in the treatment of cervical cancer has been identified. Therefore, we aim to elucidate the mechanism of action of luteolin in the treatment of cervical cancer through a comprehensive approach that integrates metabolomics with bioinformatics. The first step involved the identification of differential metabolites through UHPLC-Q-Orbitrap-MS, which were then utilized for enrichment analysis of metabolic pathways and to determine the targets associated with these differential metabolites. Subsequently, the differential analysis and WGCNA were employed to identify DEGs and functional module genes respectively. The common targets were obtained by intersecting the results from the aforementioned three analyses, followed by conducting GO and KEGG pathway enrichment analysis on these targets. Subsequently, PPI networks were constructed using these common targets, and key targets were identified utilizing the MCC, EPC, Degree, Closeness Centrality, Betweenness Centrality, and Bottleneck algorithms in the CytoHubba plug-in. The subsequent steps involved the analysis of key genes for constructing a nomogram, conducting a ROC curve, examining content expression and survival analysis, and ultimately employing molecular docking to investigate the interaction between luteolin and crucial targets. The metabolomics analysis revealed the identification of a total of 45 distinct metabolites in this study, primarily associated with amino acid and nucleotide metabolism. The intersection of 773 differential metabolite targets, 3493 cervical cancer differential genes, and 3245 WGCNA-associated module genes yielded a set of 32 target genes associated with luteolin therapy for cervical cancer. The GO and KEGG pathway enrichment analysis also revealed that these targets were primarily associated with amino acid metabolism and nucleotide metabolism. The CytoHubba plug-in was utilized to identify three key genes (DMNT1, EZH2, and GMPS) through the application of multiple algorithms. Additionally, the datasets GSE63514, GSE67522, and GEPIA2 revealed a significant upregulation of all three genes in tumor tissue. ROC analysis demonstrated the good predictive ability of these three hub genes. Finally, the molecular docking results demonstrated the high binding affinity of luteolin towards DMNT1, EZH2, and GMPS. In conclusion, this study has unveiled the potential of luteolin in modulating amino acid and nucleotide metabolism for the treatment of cervical cancer, thereby providing a theoretical foundation for further investigation into the intricate association between luteolin and cervical cancer.
Collapse
Affiliation(s)
- Dong-Min Cao
- Department of Acupuncture, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Zhongshan, China
| | - Yin Rao
- Department of Acupuncture, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Tao Liu
- School of Mathematics and Big Data, Foshan University, Foshan, China
| | - Wei-Qu Yuan
- Department of Acupuncture, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- School of Mathematics and Big Data, Foshan University, Foshan, China
| |
Collapse
|
25
|
Jiang J, Zhu X, Li S, Yan Q, Ma J. Building a Bridge Between the Mechanism of EBV Reactivation and the Treatment of EBV-Associated Cancers. J Med Virol 2025; 97:e70192. [PMID: 39868897 DOI: 10.1002/jmv.70192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/15/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025]
Abstract
Epstein-Barr virus (EBV) infection is closely associated with the development of various tumors such as lymphomas and epithelial cancers. EBV has a discrete life cycle with latency and lytic phases. In recent years, significant progress has been made in the understanding of the mechanism underlying the transition of EBV from latency to lytic replication. Multiple new lytic activation factors have been emerged and promoted our understanding of this field. In addition, we have comprehensively presented the existing therapeutic strategies and their relationship to the mechanism underlying the transition of EBV from latency to lytic replication in this review, such as lytic induction therapy and drugs to prevent EBV from entering the lytic phase fully utilize the EBV reactivation mechanisms. This year marks the 60th anniversary of the discovery of EBV, and building a bridge between the mechanism of EBV reactivation and the treatment may help us to design new approaches for treating EBV-associated diseases.
Collapse
Affiliation(s)
- Jialin Jiang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, School of Basic Medicine Sciences, Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, and Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Xinlei Zhu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, School of Basic Medicine Sciences, Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, and Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Shukun Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, School of Basic Medicine Sciences, Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, and Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, School of Basic Medicine Sciences, Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, and Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| |
Collapse
|
26
|
Choudhary MK, Pancholi B, Kumar M, Babu R, Garabadu D. A review on endoplasmic reticulum-dependent anti-breast cancer activity of herbal drugs: possible challenges and opportunities. J Drug Target 2025; 33:206-231. [PMID: 39404107 DOI: 10.1080/1061186x.2024.2417189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Breast cancer (BC) is a major cause of cancer-related mortality across the globe and is especially highly prevalent in females. Based on the poor outcomes and several limitations of present management approaches in BC, there is an urgent need to focus and explore an alternate target and possible drug candidates against the target in the management of BC. The accumulation of misfolded proteins and subsequent activation of unfolded protein response (UPR) alters the homeostasis of endoplasmic reticulum (ER) lumen that ultimately causes oxidative stress in ER. The UPR activates stress-detecting proteins such as IRE1α, PERK, and ATF6, these proteins sometimes may lead to the activation of pro-apoptotic signaling pathways in cancerous cells. The ER stress-dependent antitumor activity could be achieved either through suppressing the adaptive UPR to make cells susceptible to ER stress or by causing chronic ER stress that may lead to triggering of pro-apoptotic signaling pathways. Several herbal drugs trigger ER-dependent apoptosis in BC cells. Therefore, this review discussed the role of fifty-two herbal drugs and their active constituents, focusing on disrupting the balance of the ER within cancer cells. Further, several challenges and opportunities have also been discussed in ER-dependent management in BC.Breast cancer (BC) is a major cause of cancer-related mortality across the globe and is especially highly prevalent in females. Based on the poor outcomes and several limitations of present management approaches in BC, there is an urgent need to focus and explore an alternate target and possible drug candidates against the target in the management of BC. The accumulation of misfolded proteins and subsequent activation of unfolded protein response (UPR) alters the homeostasis of endoplasmic reticulum (ER) lumen that ultimately causes oxidative stress in ER. The UPR activates stress-detecting proteins such as IRE1α, PERK, and ATF6, these proteins sometimes may lead to the activation of pro-apoptotic signaling pathways in cancerous cells. The ER stress-dependent antitumor activity could be achieved either through suppressing the adaptive UPR to make cells susceptible to ER stress or by causing chronic ER stress that may lead to triggering of pro-apoptotic signaling pathways. Several herbal drugs trigger ER-dependent apoptosis in BC cells. Therefore, this review discussed the role of fifty-two herbal drugs and their active constituents, focusing on disrupting the balance of the ER within cancer cells. Further, several challenges and opportunities have also been discussed in ER-dependent management in BC.
Collapse
Affiliation(s)
- Mayank Kumar Choudhary
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Bhaskaranand Pancholi
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Manoj Kumar
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Raja Babu
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Debapriya Garabadu
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
27
|
Singh D, Shukla G. The multifaceted anticancer potential of luteolin: involvement of NF-κB, AMPK/mTOR, PI3K/Akt, MAPK, and Wnt/β-catenin pathways. Inflammopharmacology 2025; 33:505-525. [PMID: 39543054 DOI: 10.1007/s10787-024-01596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Cancer is the predominant and major cause of fatality worldwide, based on the different types of cancer. There is a limitation in the current treatment. So we need better therapeutic agents that counteract the progression and development of malignant tumours. Plant-derived products are closely related and useful for human health. Luteolin is a polyphenolic flavonoid bioactive molecule that is present in various herbs, vegetables, fruits, and flowers and exhibits chemoprotective and pharmacological activity against different malignancies. To offer innovative approaches for the management of various cancers, we present a comprehensive analysis of the latest discoveries on luteolin. The aim is to inspire novel concepts for the development of advanced pharmaceuticals targeting cancer and search specifically targeted reviews and research articles published from January 1999 to January 2024 that investigated the application of luteolin in various cancer management. A thorough literature search utilizing the keywords "luteolin" "Signalling Pathway" "cancer" and nanoparticles was performed in the databases of Google Scholar, Web of Science, SCOPUS, UGC care list and PubMed. Through the compilation of existing research, we have discovered that luteolin possesses several therapeutic actions against various cancer via a signaling pathway involving the of NF-κB regulation, AMPK/mTOR, toll-like receptor, Nrf-2, PI3K/Akt MAPK and Wnt/β-catenin and their underlying mechanism of action has been well understood. This review intended to completely integrate crucial information on natural sources, biosynthesis, pharmacokinetics, signaling pathways, chemoprotective and therapeutic properties against various cancers, and nanoformulation of luteolin.
Collapse
Affiliation(s)
- Deepika Singh
- Faculty of Health Sciences, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India.
| | - Gaurav Shukla
- Faculty of Health Sciences, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
28
|
Dai X, Liang B, Sun Y. Luteolin ameliorates rat model of metabolic syndrome-induced cardiac injury by apoptosis suppression and autophagy promotion via NR4A2/p53 regulation. BMC Complement Med Ther 2025; 25:14. [PMID: 39833877 PMCID: PMC11744851 DOI: 10.1186/s12906-025-04749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Reduced cardiac autophagy, inflammation, and apoptosis contribute to cardiovascular complications caused by metabolic syndrome (MetS). It is documented that the nuclear receptor 4A2 (NR4A2) could modulate autophagy and apoptosis in cardiac complications. The aim of this investigation was to assess the therapeutic potential of luteolin, with documented beneficial properties, against MetS-associated cardiac injury. METHODS Forty male albino Wistar rats were divided into 5 groups randomly as controls, MetS, and MetS animals treated with luteolin (25, 50, 100 mg/kg ip). The animal's weight, blood pressure, lipid profile, tolerance to glucose and insulin, and cardiac histopathology were evaluated. Moreover, troponin T, creatine kinase-myocardial band (CK-MB), inflammatory profile (IL-6, IL-1β, TNF-α), transforming growth factor-β1 (TGF-β1), oxidative stress, and matrix metalloproteinase-9 (MMP-9) were analyzed to determine the cardiac state. Cardiac NR4A2 and p53, as well as apoptotic (B-cell leukemia/lymphoma 2 [BCL-2], Caspase [CASP]-3, and CASP-9) and autophagic mediators (Sequestosome-1/p62, Microtubule-associated protein 1 A/1B-light chain 3 [LC3], and Beclin-1) were measured by RT-qPCR and ELISA. RESULTS Luteolin remarkably restored MetS-induced biochemical derangements and related cardiac injury via the suppression of apoptosis, inflammation, and stress but promotion of autophagy (p-value < 0.001). CONCLUSION Current findings revealed the promising therapeutical properties of luteolin against MetS-associated cardiovascular risks.
Collapse
Affiliation(s)
- Xiyan Dai
- Department of Comprehensive, Maoming People's Hospital, Maoming, 525000, China
| | - Bo Liang
- Department of MRI, Maoming People's Hospital, Maoming, 525000, China
| | - Yaolin Sun
- Department of Cardiovascular Medicine, First Hospital of Northwest University, Xi'an, 710043, China.
| |
Collapse
|
29
|
Herlina T, Rizaldi Akili AW, Nishinarizki V, Hardianto A, Latip JB. Review on antibacterial flavonoids from genus Erythrina: Structure-activity relationship and mode of action. Heliyon 2025; 11:e41395. [PMID: 39811340 PMCID: PMC11729662 DOI: 10.1016/j.heliyon.2024.e41395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
The Fabaceae family, particularly genus Erythrina, is renowned for significant medicinal properties. These plants have been used as natural remedies to address various health issues and are rich in flavonoids. Therefore, this review aimed to provide a comprehensive overview of antibacterial activity, structure-activity relationship, especially against drug-resistance Staphylococcus aureus, and mode of action for flavonoids isolated from Erythrina. Data were collected from reputable electronic scholarly resources focusing on publications from 2000 to 2022. The results showed that the evaluated flavonoids include 31 % pterocarpans, 22 % flavanones, 20 % isoflavanones, 18 % isoflavones, 4 % isoflavans, 3 % isoflav-3-enes, 1 % 3-arylcoumarins, and 1 % coumestans. Most of these compounds in Erythrina plants were extracted from the roots and stem bark. Among these group of flavonoids, pterocarpan stands out as the most active class against S. aureus. Structure-activity relationship study emphasized pivotal contribution of the prenyl functional group to enhance antibacterial activity of flavonoids. Increasing the number of prenyl groups enhanced antibacterial effectiveness while modifying the group reduced this activity. The proposed antibacterial mechanisms of these flavonoids include the suppression of nucleic acid synthesis, disruption of cytoplasmic membrane function, and modulation of energy metabolism. Among the potent antibacterial flavonoids from genus Erythrina, compound 3,9-dihyroxy-10-γ,γ-dimethylallyl-6a,11a-dehydropterocarpan was found as the most potent against Methicillin-Resistant Staphylococcus aureus (MRSA) through the inhibition of nucleic acid synthesis. Other common flavonoids such as genistein, daidzein, apigenin, and luteolin exert antibacterial activity through the inhibition of ATP synthase.
Collapse
Affiliation(s)
- Tati Herlina
- Department of Chemistry, Faculty of Mathematics and Natural Science, Padjadjaran University, Jatinangor, 45363, Sumedang, West Java, Indonesia
| | - Abd Wahid Rizaldi Akili
- Department of Chemistry, Faculty of Mathematics and Natural Science, Padjadjaran University, Jatinangor, 45363, Sumedang, West Java, Indonesia
| | - Vicki Nishinarizki
- Department of Chemistry, Faculty of Mathematics and Natural Science, Padjadjaran University, Jatinangor, 45363, Sumedang, West Java, Indonesia
| | - Ari Hardianto
- Department of Chemistry, Faculty of Mathematics and Natural Science, Padjadjaran University, Jatinangor, 45363, Sumedang, West Java, Indonesia
| | - Jalifah Binti Latip
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 46300, Bangi, Selangor, Malaysia
| |
Collapse
|
30
|
Yang S, Duan H, Yan Z, Xue C, Niu T, Cheng W, Zhang Y, Zhao X, Hu J, Zhang L. Luteolin Alleviates Ulcerative Colitis in Mice by Modulating Gut Microbiota and Plasma Metabolism. Nutrients 2025; 17:203. [PMID: 39861331 PMCID: PMC11768085 DOI: 10.3390/nu17020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Ulcerative colitis (UC) is a chronic and easily recurrent inflammatory bowel disease. The gut microbiota and plasma metabolites play pivotal roles in the development and progression of UC. Therefore, therapeutic strategies targeting the intestinal flora or plasma metabolites offer promising avenues for the treatment of UC. Luteolin (Lut), originating from a variety of vegetables and fruits, has attracted attention for its potent anti-inflammatory properties and potential to modulate intestinal flora. METHODS The therapeutic efficacy of Lut was evaluated in an established dextran sodium sulfate (DSS)-induced colitis mice model. The clinical symptoms were analyzed, and biological samples were collected for microscopic examination and the evaluation of the epithelial barrier function, microbiome, and metabolomics. RESULTS The findings revealed that Lut administration at a dose of 25 mg/kg significantly ameliorated systemic UC symptoms in mice, effectively reduced the systemic inflammatory response, and significantly repaired colonic barrier function. Furthermore, Lut supplementation mitigated gut microbiota dysbiosis in a UC murine model, increasing the abundance of Muribaculaceae, Rikenella, and Prevotellaceae while decreasing Escherichia_Shigella and Bacteroides levels. These alterations in gut microbiota also influenced plasma metabolism, significantly increasing phosphatidylcholine (PC), 6'-Deamino- 6'-hydroxyneomycin C, and gamma-L-glutamyl-butyrosine B levels and decreasing Motapizone and Arachidoyl-Ethanolamide (AEA) levels. CONCLUSIONS This study reveals that Lut supplementation modulates intestinal inflammation by restoring the gut microbiota community structure, thereby altering the synthesis of inflammation-related metabolites. Lut is a potential nutritional supplement with anti-inflammatory properties and offers a novel alternative for UC intervention and mitigation. In addition, further studies are needed to ascertain whether specific microbial communities or metabolites can mediate the recovery from UC.
Collapse
Affiliation(s)
- Shuai Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Zhenxing Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Chen Xue
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Tian Niu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Wenjing Cheng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Lihong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (S.Y.); (H.D.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
31
|
Kong D, Duan J, Chen S, Wang Z, Ren J, Lu J, Chen T, Song Z, Wu D, Chang Y, Yin Z, Shen Z, Zheng H. Transplant oncology and anti-cancer immunosuppressants. Front Immunol 2025; 15:1520083. [PMID: 39840041 PMCID: PMC11747528 DOI: 10.3389/fimmu.2024.1520083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Organ transplantation is a life-saving intervention that enhances the quality of life for patients with end-stage organ failure. However, long-term immunosuppressive therapy is required to prevent allogeneic graft rejection, which inadvertently elevates the risk of post-transplant malignancies, especially for liver transplant recipients with a prior history of liver cancer. In response, the emerging field of transplant oncology integrates principles from oncology and immunology to improve outcomes for patients at high risk of tumor occurrence or recurrence following transplantation. Therefore, it is of substantial clinical significance to develop immunosuppressants that possess both immunosuppressive and anti-tumor properties. For instance, mTOR inhibitors demonstrate anti-tumor effects among antimetabolite immunosuppressive drugs, and recent studies indicate that capecitabine, an antimetabolite chemotherapeutic, may also exhibit immunosuppressive activity in the clinic for liver transplants suffering from hepatocellular carcinoma. This review systematically explores potential immunosuppressants with dual anti-tumor and immunosuppressive effects to support the management of transplant patients at elevated risk of tumor occurrence or recurrence.
Collapse
Affiliation(s)
- Dejun Kong
- Nankai University School of Medicine, Tianjin, China
| | - Jinliang Duan
- Nankai University School of Medicine, Tianjin, China
| | - Shaofeng Chen
- Nankai University School of Medicine, Tianjin, China
| | - Zhenglu Wang
- Tianjin Organ Transplantation Research Center, Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Jiashu Ren
- Tianjin First Central Clinical College, Tianjin, China
| | - Jianing Lu
- Tianjin First Central Clinical College, Tianjin, China
| | - Tao Chen
- Nankai University School of Medicine, Tianjin, China
| | - Zhuolun Song
- Tianjin Organ Transplantation Research Center, Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
| | - Di Wu
- Tianjin Organ Transplantation Research Center, Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
| | - Yuan Chang
- Nankai University School of Medicine, Tianjin, China
| | - Zhongqian Yin
- Tianjin First Central Clinical College, Tianjin, China
| | - Zhongyang Shen
- Tianjin Organ Transplantation Research Center, Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin, China
| | - Hong Zheng
- Tianjin Organ Transplantation Research Center, Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin, China
| |
Collapse
|
32
|
Pandey P, Lakhanpal S, Mahmood D, Kang HN, Kim B, Kang S, Choi J, Choi M, Pandey S, Bhat M, Sharma S, Khan F, Park MN, Kim B. An updated review summarizing the anticancer potential of flavonoids via targeting NF-kB pathway. Front Pharmacol 2025; 15:1513422. [PMID: 39834817 PMCID: PMC11743680 DOI: 10.3389/fphar.2024.1513422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Nuclear factor-κB (NF-κB) cell signaling pathway is essential for the progression and development of numerous human disorders, including cancer. NF-κB signaling pathway regulates a wide range of physiological processes, such as cell survival, growth, and migration. Deregulated NF-kB signaling resulted in unregulated cell proliferation, viability, movement, and invasion, thus promoting tumor development. Recent findings have increasingly shown that plant derived phytochemicals that inhibit NF-κB signaling have the potential to be employed in cancer therapeutics. Flavonoids are a group of polyphenolic natural compounds present in various plants and their fruits, vegetables, and leaves. These compounds have numerous medicinal properties owing to their antioxidant, anti-inflammatory, antiviral, and antitumor characteristics. The main mechanism by which these flavonoids exhibit their anticancer potential is via potent antioxidative and immunomodulatory actions. Current research reports have demonstrated that these flavonoids exhibited their anticancer effects via suppressing the NF-κB signaling. Based on these facts, we have comprehensively outlined the cancer promoting role of NF-κB pathway in various processes including tumor progression, drug resistance, angiogenesis and metastasis. In addition to these, we also summarize the anticancer potential of flavonoids by specifically targeting the NF-κB pathway in various types of cancers.
Collapse
Affiliation(s)
- Pratibha Pandey
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Danish Mahmood
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Han Na Kang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Byunggyu Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Min Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Mahakshit Bhat
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bonglee Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
33
|
Tong X, Fu X, Gong A, Yu G, Chen N, Chen B, Gu J, Liu Z. Effect of Luteolin on cadmium-inhibited bone growth via suppressing osteoclastogenesis in laying chickens. J Anim Sci 2025; 103:skaf033. [PMID: 39921628 PMCID: PMC11912829 DOI: 10.1093/jas/skaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/07/2025] [Indexed: 02/10/2025] Open
Abstract
Luteolin (Lut) is a flavonoid derived from several plant sources. Cadmium (Cd) is a widespread environmental contaminant and potential toxin with detrimental effects on animal health. However, the effect of Lut on Cd-induced inhibition of bone growth in laying chickens remains unclear. This study investigates the effects of Lut on Cd-induced inhibition of bone growth in the femur and tibia of laying chickens. A total of sixty 1-d-old green-eggshell yellow feather laying chickens were randomly assigned to 4 groups after a 5-d acclimation period: basal diet (Con), cadmium chloride (CdCl2, Cd), Lut, and Lut + Cd. Bone microstructure, serum biomarkers of bone remodeling, the levels of Cd, calcium (Ca), phosphorus (P), and trace metal elements were assessed using the micro-computed tomography (Micro-CT), enzyme-linked immunosorbent assay (ELISA), and microwave digestion, respectively. Bone remodeling biomarkers, late endosomal/lysosomal adaptor and MAPK and mTOR activator 1 (LAMTOR1), as well as the phosphorylation of AMP-activated protein kinase α (AMPKα) and protein kinase B (Akt), were quantified using the qRT-PCR and western blot. The results indicated that Lut effectively mitigated Cd-induced bone mass loss compared to the Cd group, resulting in increased bone volume (BV), bone surface/BV (BS/BV), connectivity density (Conn.Dn), and the length and weight of the femur and tibia in laying chickens. Mechanistically, compared to the Cd group, Lut restored the ratio of osteoprotegerin (OPG)/receptor activator of NF-κB ligand (RANKL) in serum and bone tissue, enhanced the expression of bone morphogenetic protein-2 (BMP-2), runt-related transcription factor 2 (Runx2), osteocalcin (OCN), and Osterix (OSX), while reducing the levels of Ca, Cd, and alkaline phosphatase (ALP) activity, as well as the expression of osteopontin (OPN), c-Fos, osteoclast stimulatory-transmembrane protein (OC-STAMP), tartrate-resistant acid phosphatase, cathepsin K (CTSK), matrix metalloprotein-9 (MMP-9), LAMTOR1, and the phosphorylation of AMPKα and Akt. Therefore, Lut alleviates Cd-induced damage to the femur and tibia of chickens by promoting osteogenesis and inhibiting osteoclastogenesis, positioning Lut as a potential therapeutic plant extract for enhancing bone growth in laying chickens.
Collapse
Affiliation(s)
- Xishuai Tong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Xiaohui Fu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Anqing Gong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Gengsheng Yu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Naineng Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Bing Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Jianhong Gu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Zongping Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
34
|
Ge X, Liu T, Wang Y, Wen H, Huang Z, Chen L, Xu J, Zhou H, Wu Q, Zhao C, Shao R, Xu W. Porous starch microspheres loaded with luteolin exhibit hypoglycemic activities and alter gut microbial communities in type 2 diabetes mellitus mice. Food Funct 2025; 16:54-70. [PMID: 39377562 DOI: 10.1039/d4fo02907k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Luteolin (LUT), a natural flavonoid known for its hypoglycemic properties, is primarily sourced from vegetables such as celery and broccoli. However, its poor stability and low bioavailability in the upper digestive tract hinder its application in the functional food industry. To address these challenges, this study employed porous starch (PS) as a carrier to develop PS microspheres loaded with luteolin (PSLUT), simulating its release in vitro. The research assessed the hypoglycemic effects of LUT in type 2 diabetes mellitus (T2DM) mice both before and after PS treatment. In vitro findings demonstrated that PS improved LUT's stability in simulated gastric fluids and enhanced its in vivo bioavailability, aligning with experimental outcomes. PSLUT administration significantly improved body weight, fasting blood glucose (FBG), oral glucose tolerance test (OGTT), pancreatic islet function, and other relevant indicators in T2DM mice. Moreover, PSLUT alleviated abnormal liver biochemical indicators and liver tissue injury caused by T2DM. The underlying hypoglycemic mechanism of PSLUT is thought to involve the regulation of protein kinase B (AKT-1) and glucose transporter 2 (GLUT-2). After four weeks of intervention, various PSLUT doses significantly reduced the Firmicutes to Bacteroidetes ratio at the phylum level and decreased the relative abundance of harmful bacteria at the genus level, including Acetatifactor, Candidatus-Arthromitus, and Turicibacter. This microbial shift was associated with improvements in hyperglycemia-related indicators such as FBG, the area under the curve (AUC) of OGTT, and homeostasis model assessment of insulin resistance (HOMA-IR), which are closely linked to these bacterial genera. Additionally, Lachnoclostridium, Parasutterella, Turicibacter, and Papillibacter were identified as key intestinal marker genera involved in T2DM progression through Spearman correlation analysis. In conclusion, PS enhanced LUT's hypoglycemic efficacy by modulating the transcription and protein expression levels of AKT-1 and GLUT-2, as well as the relative abundance of potential gut pathogens in T2DM mice. These results provide a theoretical foundation for advancing luteolin's application in the functional food industry and further investigating its hypoglycemic potential.
Collapse
Affiliation(s)
- Xiaodong Ge
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Tingting Liu
- Clinical Pharmacy Department, Yancheng Second People's Hospital, Yancheng, 224051, China
| | - Yaolin Wang
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Huanhuan Wen
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Zirui Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ligen Chen
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Jianda Xu
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, Changzhou, 213003, China
| | - Hongcheng Zhou
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, 224051, China
| | - Qin Wu
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, 224051, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rong Shao
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Wei Xu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
35
|
Huseynova N, Çetinkaya M, Baran Z, Khalilov R, Mammadova A, Baran Y. Flavonoids as Chemosensitizers in Leukemias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1479:205-234. [PMID: 39503945 DOI: 10.1007/5584_2024_828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Flavonoids, a diverse group of natural compounds abundant in plants, fruits, and seeds, are not only responsible for the vibrant colors, fragrances, and flavors found in nature but also possess significant health benefits. Representing a secondary metabolite, these phytonutrients contribute to overall well-being. They have garnered considerable interest due to their diverse biological roles, encompassing antioxidant, anti-inflammatory, and anticancer properties. Flavonoids exert anticancer properties by interfering with different signaling pathways and molecules. Also, they have been demonstrated to exert chemosensitization features, where flavonoids may enhance the effectiveness of chemotherapy, and hold promise for improving cancer treatment outcomes as they have been discovered to make cancer cells more responsive to treatment. Understanding their influence on the regulation of cellular signaling provides a foundation for exploring their potential in combination with different chemotherapy agents and their possible single use for cancer treatment. Besides, they are believed to present a cost-effective approach to cancer therapeutics with possible implications for reducing the side effects of the current chemotherapy regimens, which can be a great therapeutic strategy for treating cancer types, including leukemia. This chapter explores potential approaches for creating anticancer treatments, focusing on leukemia, through integrating flavonoid nutraceuticals with traditional chemotherapy agents.
Collapse
Affiliation(s)
- Nigar Huseynova
- Department of Biophysics and Biochemistry, Baku State University, Baku, Azerbaijan
- Department of Natural Sciences, Western Caspian University, Baku, Azerbaijan
| | - Melisa Çetinkaya
- Department of Molecular Biology and Genetics, Laboratory of Cancer Genetics, İzmir Institute of Technology, İzmir, Turkey
| | - Züleyha Baran
- Department of Pharmacology, Laboratory of Molecular Pharmacology, Anadolu University, Eskişehir, Turkey
| | - Rovshan Khalilov
- Department of Biophysics and Biochemistry, Baku State University, Baku, Azerbaijan
| | - Afat Mammadova
- Department of Botany and Plant Physiology, Baku State University, Baku, Azerbaijan
| | - Yusuf Baran
- Department of Molecular Biology and Genetics, Laboratory of Cancer Genetics, İzmir Institute of Technology, İzmir, Turkey.
| |
Collapse
|
36
|
Vazhappilly CG, Alsawaf S, Mathew S, Nasar NA, Hussain MI, Cherkaoui NM, Ayyub M, Alsaid SY, Thomas JG, Cyril AC, Ramadan WS, Chelakkot AL. Pharmacodynamics and safety in relation to dose and response of plant flavonoids in treatment of cancers. Inflammopharmacology 2025; 33:11-47. [PMID: 39580755 DOI: 10.1007/s10787-024-01581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/02/2024] [Indexed: 11/26/2024]
Abstract
Despite the recent advancements in developing bioactive nutraceuticals as anticancer modalities, their pharmacodynamics, safety profiles, and tolerability remain elusive, limiting their success in clinical trials. The failure of anticancer drugs in clinical trials can be attributed to the changes in drug clearance, absorption, and cellular responses, which alter the dose-response efficacy, causing adverse health effects. Flavonoids demonstrate a biphasic dose-response phenomenon exerting a stimulatory or inhibitory effect and often follow a U-shaped curve in different preclinical cancer models. A double-edged sword, bioflavonoids' antioxidant or prooxidant properties contribute to their hormetic behavior and facilitate redox homeostasis by regulating the levels of reactive oxygen species (ROS) in cells. Emerging reports suggest a need to discuss the pharmacodynamic broad-spectrum of plant flavonoids to improve their therapeutic efficacy, primarily to determine the ideal dose for treating cancer. This review discusses the dose-response effects of a few common plant flavonoids against some types of cancers and assesses their safety and tolerability when administered to patients. Moreover, we have emphasized the role of dietary-rich plant flavonoids as nutraceuticals in cancer treatment and prevention.
Collapse
Affiliation(s)
- Cijo George Vazhappilly
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE.
| | - Seba Alsawaf
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Shimy Mathew
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, UAE
| | - Noora Ali Nasar
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Maheen Imtiaz Hussain
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Noor Mustapha Cherkaoui
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Mohammed Ayyub
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Serin Yaser Alsaid
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Joshua George Thomas
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Asha Caroline Cyril
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | | |
Collapse
|
37
|
Xu Y, Zhang YX, Chen HY, Chang LS, Gou XJ, Chen WL. Integrating Network Pharmacology and In vivo Experimental Validation to Reveal the Mechanism of FuZheng YiLiu Formula on Estrogen Receptor Positive Breast Cancer. Comb Chem High Throughput Screen 2025; 28:49-63. [PMID: 37957900 DOI: 10.2174/0113862073255044231027061742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/04/2023] [Accepted: 09/14/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND AND PURPOSE FuZheng YiLiu Formula (FZYL) is a commonly used formula for postoperative estrogen receptor-positive (ER+) breast cancer and post-radiotherapy deficiency of both Qi and Yin. FZYL has been used in clinical practice for decades because of its ability to effectively improve the symptoms of deficiency in cancer patients. However, its mechanism needs to be further clarified. In this paper, we will observe the effect of FZYL on mice with ER+ breast cancer and explore the mechanism by which it improves the symptoms of ER+ breast cancer. MATERIALS AND METHODS A tumor xenograft mouse model was established to detect tumor growth in vivo in order to evaluate the pharmacological effects of FZYL on ER+ breast cancer. The main targets of FZYL were identified by extracting the FZYL components and the corresponding potential target genes of breast cancer from the established database and constructing a proteinprotein interaction network of shared genes using the string database. GO functional annotation and KEGG pathway enrichment analysis were performed, and molecular docking, molecular dynamics simulations, western blotting analysis, and RT-qPCR were performed to confirm the validity of targets in the relevant pathways. RESULTS FZYL was able to significantly reduce the size of tumors in vivo and had a significant therapeutic effect on tumor xenograft mice. GO and KEGG pathway enrichment analyses indicated that the effects of FZYL may be mediated by oxidative stress levels, apoptotic signaling pathways, and cell cycle proliferation. By RT-qPCR and protein blotting assays, FZYL targeted the key targets of TP53, JUN, ESR1, RELA, MYC, and MAPK1 to exert its effects. The key active components of FZYL are quercetin, luteolin, stigmasterol, and glycitein. Molecular docking and molecular dynamics simulation results further demonstrated that the key active components of FZYL are stably bound to the core targets. CONCLUSION In this study, the potential active ingredients, potential core targets, key biological pathways, and signaling pathways involved in the treatment of breast cancer with FZYL were identified, providing a theoretical basis for further anti ER+ breast cancer research.
Collapse
Affiliation(s)
- Yuan Xu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
- Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China
| | - Ying-Xuan Zhang
- Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China
| | - Hong-Yu Chen
- Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China
| | - Li-Sheng Chang
- Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China
| | - Xiao-Jun Gou
- Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China
| | - Wen-Li Chen
- Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China
| |
Collapse
|
38
|
Song W, Zhang Q, Cao Z, Jing G, Zhan T, Yuan Y, Kang N, Zhang Q. Targeting SERCA2 in Anti-Tumor Drug Discovery. Curr Drug Targets 2025; 26:1-16. [PMID: 39323343 DOI: 10.2174/0113894501325497240918042654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
SERCA2, a P-type ATPase located on the endoplasmic reticulum of cells, plays an important role in maintaining calcium balance within cells by transporting calcium from the cytoplasm to the endoplasmic reticulum against its concentration gradient. A multitude of studies have demonstrated that the expression of SERCA2 is abnormal in a wide variety of tumor cells. Consequently, research exploring compounds that target SERCA2 may offer a promising avenue for the development of novel anti-tumor drugs. This review has summarized the anti-tumor compounds targeting SERCA2, including thapsigargin, dihydroartemisinin, curcumin, galangin, etc. These compounds interact with SERCA2 on the endoplasmic reticulum membrane, disrupting intracellular calcium ion homeostasis, leading to tumor cell apoptosis, autophagy and cell cycle arrest, ultimately producing anti-tumor effects. Additionally, several potential research directions for compounds targeting SERCA2 as clinical anti-cancer drugs have been proposed in the review. In summary, SERCA2 is a promising anti-tumor target for drug discovery and development.
Collapse
Affiliation(s)
- Wanqian Song
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qiuju Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhiyong Cao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guo Jing
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tiancheng Zhan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yongkang Yuan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
39
|
Mahwish, Imran M, Naeem H, Hussain M, Alsagaby SA, Al Abdulmonem W, Mujtaba A, Abdelgawad MA, Ghoneim MM, El‐Ghorab AH, Selim S, Al Jaouni SK, Mostafa EM, Yehuala TF. Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies. Food Sci Nutr 2025; 13:e4682. [PMID: 39830909 PMCID: PMC11742186 DOI: 10.1002/fsn3.4682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/25/2024] [Accepted: 11/30/2024] [Indexed: 01/22/2025] Open
Abstract
Luteolin is widely distributed phytochemical, a flavonoid, in kingdom plantae. Luteolin with potential antioxidant activity prevent ROS-induced damages and reduce oxidative stress which is mainly responsible in pathogenesis of many diseases. Several chemo preventive activities and therapeutic benefits are associated with luteolin. Luteolin prevents cancer via modulation of numerous pathways, that is, by inactivating proteins; such as procaspase-9, CDC2 and cyclin B or upregulation of caspase-9 and caspase-3, cytochrome C, cyclin A, CDK2, and APAF-1, in turn inducing cell cycle arrest as well as apoptosis. It also enhances phosphorylation of p53 and expression level of p53-targeted downstream gene. By Increasing BAX protein expression; decreasing VEGF and Bcl-2 expression it can initiate cell cycle arrest and apoptosis. Luteolin can stimulate mitochondrial-modulated functions to cause cellular death. It can also reduce expression levels of p-Akt, p-EGFR, p-Erk1/2, and p-STAT3. Luteolin plays positive role against cardiovascular disorders by improving cardiac function, decreasing the release of inflammatory cytokines and cardiac enzymes, prevention of cardiac fibrosis and hypertrophy; enhances level of CTGF, TGFβ1, ANP, Nox2, Nox4 gene expressions. Meanwhile suppresses TGFβ1 expression and phosphorylation of JNK. Luteolin helps fight diabetes via inhibition of alpha-glucosidase and ChE activity. It can reduce activity levels of catalase, superoxide dismutase, and GS4. It can improve blood glucose, insulin, HOMA-IR, and HbA1c levels. This review is an attempt to elaborate molecular targets of luteolin and its role in modulating irregularities in cellular pathways to overcome severe outcomes during diseases including cancer, cardiovascular disorders, diabetes, obesity, inflammation, Alzheimer's disease, Parkinson's disease, hepatic disorders, renal disorders, brain injury, and asthma. As luteolin has enormous therapeutic benefits, it could be a potential candidate in future drug development strategies.
Collapse
Affiliation(s)
- Mahwish
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Muhammad Imran
- Department of Food Science and TechnologyUniversity of NarowalNarowalPakistan
| | - Hammad Naeem
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of AgricultureMultanPakistan
| | - Muzzamal Hussain
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityAL‐MajmaahSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of MedicineQassim UniversityBuraidahSaudi Arabia
| | - Ahmed Mujtaba
- Department of Food Sciences and Technology, Faculty of Engineering and TechnologyHamdard University Islamabad campusIslamabadPakistan
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of PharmacyJouf UniversityAljoufSaudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of PharmacyAlMaarefa UniversityRiyadhSaudi Arabia
| | - Ahmed H. El‐Ghorab
- Department of Chemistry, College of ScienceJouf UniversitySakakaSaudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of PharmacyJouf UniversitySakakaSaudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys)Al‐Azhar UniversityCairoEgypt
| | - Tadesse Fenta Yehuala
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of TechnologyBahir Dar UniversityBahir DarEthiopia
| |
Collapse
|
40
|
Ye Z, Yang S, Chen L, Yu W, Xia Y, Li B, Zhou X, Cheng F. Luteolin alleviated calcium oxalate crystal induced kidney injury by inhibiting Nr4a1-mediated ferroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156302. [PMID: 39662099 DOI: 10.1016/j.phymed.2024.156302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND The global incidence of calcium oxalate (CaOx) kidney stones is rising, and effective treatments remain limited. Luteolin (Lut), a naturally flavonoid present in several plants, is recognized for its anti-inflammatory, anti-injury, and neuroprotective effects. However, its effects on CaOx kidney stone formation and the associated kidney damage are still unknown. OBJECTIVE Our study seeks to explore the therapeutic impact of Lut on kidney injury and renal fibrosis caused by CaOx crystal and to elucidate the underlying mechanisms. METHODS CaOx stone models were established in mice via intraperitoneal injection of glyoxylate (Gly, 100 mg/kg) for 12 days. Lut (50 mg/kg or 100 mg/kg) was administered intraperitoneally 7 days before and with the period of Gly treatment. Kidney function and histopathology changes in renal tissues were assessed. RNA sequencing was used to explore potential mechanisms between the model and Lut treatment groups. Molecular docking simulations evaluated the interaction between Lut and the downstream target Nr4a1. Moreover, Nr4a1 knockout mice and knockdown plasmids were used to validate the mechanism of Lut in the treatment of CaOx crystal-induced kidney injury. RESULTS Lut significantly mitigated kidney injury and renal fibrosis induced by CaOx crystal, as evidenced by improved kidney function, histopathology staining and Western blot analysis. Lut treatment also significantly inhibited lipid peroxidation and mitochondrial injury. In vitro experiments further demonstrated that Lut treatment alleviated injury and fibrosis in HK-2 cells. Mechanistically, RNA sequencing and molecular docking simulations indicated that Lut binds to Nr4a1 to regulate ferroptosis, thereby alleviating kidney injury induced by CaOx crystal. Overexpression of Nr4a1 negated Lut's beneficial effects, whereas Nr4a1 knockout exhibited a protective effect against kidney injury. CONCLUSION Lut exerts its protective effects by inhibiting ferroptosis via targeting Nr4a1-Slc7a11-GPX4 pathway, alleviating kidney injury and renal fibrosis caused by CaOx crystal deposition.
Collapse
Affiliation(s)
- Zehua Ye
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060
| | - Songyuan Yang
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060
| | - Lijia Chen
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060
| | - Weimin Yu
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060
| | - Yuqi Xia
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060
| | - Bojun Li
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060
| | - Xiangjun Zhou
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060
| | - Fan Cheng
- Department of Urology, Renmin hospital of Wuhan university, Wuhan, 430060.
| |
Collapse
|
41
|
Ambele MA, Maebele LT, Mulaudzi TV, Kungoane T, Damane BP. Advances in nano-delivery of phytochemicals for glioblastoma treatment. DISCOVER NANO 2024; 19:216. [PMID: 39718730 DOI: 10.1186/s11671-024-04172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Glioblastoma (GBM) is an aggressive brain tumor characterized by cellular and molecular diversity. This diversity presents significant challenges for treatment and leads to poor prognosis. Surgery remains the primary treatment of choice for GBMs, but it often results in tumor recurrence due to complex interactions between GBM cells and the peritumoral brain zone. Phytochemicals have shown promising anticancer activity in in-vitro studies and are being investigated as potential treatments for various cancers, including GBM. However, some phytochemicals have failed to translate their efficacy to pre-clinical studies due to limited penetration into the tumor microenvironment, leading to high toxicity. Thus, combining phytochemicals with nanotechnology has emerged as a promising alternative for treating GBM. This review explores the potential of utilizing specific nanoparticles to deliver known anticancer phytochemicals directly to tumor cells. This method has demonstrated potential in overcoming the challenges of the complex GBM microenvironment, including the tight blood-brain barrier while minimizing damage to healthy brain tissue. Therefore, employing this interdisciplinary approach holds significant promise for developing effective phyto-nanomedicines for GBM and improving patient outcomes.
Collapse
Affiliation(s)
- Melvin Anyasi Ambele
- Department of Oral and Maxillofacial Pathology, Faculty of Health Sciences, School of Dentistry, University of Pretoria, P.O. Box 1266, Pretoria, 0001, South Africa.
- Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, P.O. Box 0084, Gezina, South Africa.
| | - Lorraine Tshegofatso Maebele
- Department of Surgery, Level 7, Bridge E, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Level 7, Bridge E, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Tsholofelo Kungoane
- Department of Oral and Maxillofacial Pathology, Faculty of Health Sciences, School of Dentistry, University of Pretoria, P.O. Box 1266, Pretoria, 0001, South Africa
| | - Botle Precious Damane
- Department of Surgery, Level 7, Bridge E, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa.
| |
Collapse
|
42
|
Mottola S, De Marco I. Designing Microparticles of Luteolin and Naringenin in Different Carriers via Supercritical Antisolvent Process. Polymers (Basel) 2024; 16:3600. [PMID: 39771451 PMCID: PMC11679595 DOI: 10.3390/polym16243600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Antioxidants are contained in fruits and vegetables and are commonly obtained through food. However, it is frequently necessary to supplement the diet with substances that are often poorly soluble in water and sensitive to light and oxygen. For this reason, in this work, luteolin (LUT) and naringenin (NAR), two compounds with antioxidant activity and potential health benefits, were precipitated through the supercritical antisolvent technique using polyvinylpyrrolidone and β-cyclodextrin as the carriers. The precipitation occurred from dimethylsulfoxide using supercritical carbon dioxide as the antisolvent. The influence of pressure (9-12 MPa), active substance/carrier concentration in the solution (20-200 mg/mL), and their ratio (1/1 and 1/2 mol/mol) on morphology, particle mean size, and distribution were investigated. Under the optimized operating conditions, spherical microparticles with a mean diameter equal to 2.7 ± 0.9 μm (for LUT) and 5.5 ± 1.9 μm (for NAR) were obtained. The active ingredients were protected from the external environment by the presence of the carrier, and the dissolution rate was notably increased by processing them with β-cyclodextrin. It was sixty times faster and three times faster than that of the antioxidant alone for LUT and NAR, respectively.
Collapse
Affiliation(s)
- Stefania Mottola
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy;
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy;
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
43
|
Eryilmaz IE, Colakoglu Bergel C, Arioz B, Huriyet N, Cecener G, Egeli U. Luteolin induces oxidative stress and apoptosis via dysregulating the cytoprotective Nrf2-Keap1-Cul3 redox signaling in metastatic castration-resistant prostate cancer cells. Mol Biol Rep 2024; 52:65. [PMID: 39699825 DOI: 10.1007/s11033-024-10178-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND The treatment of metastatic castration-resistant prostate cancer (mCRPC) is still challenging clinically. Due to the refractor and highly metastatic phenotype of mCRPC, novel therapy strategies need to be investigated. Luteolin, a promising anticancer agent with various biological targets in many cancer types, also has a pro-oxidant effect that selectively triggers ROS and apoptosis. In recent years, among its ROS-mediated mechanisms, the inhibitory effect of luteolin on the nuclear factor-E2-related factor 2 (Nrf2), the main ROS scavenger protein in cancer cells, has been reported. However, no evidence exists that luteolin potentially regulates the Nrf2 or its regulator signaling pathway, Nrf2-Keap1-Cul3 axis, concerning its pro-oxidant effects associated with ROS-triggered apoptosis in any PCa cells or tumor model. METHODS AND RESULTS In the present study, we investigated for the first time whether the anticancer effect of luteolin is associated with pro-oxidant activity via the regulation of the Nrf2-Keap1-Cul3 redox signaling in PC3 and DU145 mCRPC cells. The results showed that luteolin significantly caused more cytotoxic, apoptotic, and pro-oxidant effects in a dose-dependent manner in mCRPC cells than in WPMY-1 normal prostate fibroblast cells for 72 h. Moreover, significant inhibition of Nrf2-Keap1-Cul3 redox signaling has occurred in response to increasing doses of luteolin in mCRPC cells. CONCLUSIONS The current study put forth the potential pro-oxidant inhibitory effect of luteolin on the Nrf2-Keap1-Cul3 axis in mCRPC cells for the first time. Thus, luteolin might be an attractive therapy strategy with an inhibitory effect on the cytoprotective Nrf2-Keap1-Cul3 redox signaling for treating mCRPC.
Collapse
Affiliation(s)
- Isil Ezgi Eryilmaz
- Medical Biology Department, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| | | | - Bilge Arioz
- Medical Biology Department, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Nuseybe Huriyet
- Medical Biology Department, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Gulsah Cecener
- Medical Biology Department, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Unal Egeli
- Medical Biology Department, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
44
|
Godiyal Y, Maheshwari D, Taniguchi H, Zinzuwadia SS, Morera-Díaz Y, Tewari D, Bishayee A. Role of PD-1/PD-L1 signaling axis in oncogenesis and its targeting by bioactive natural compounds for cancer immunotherapy. Mil Med Res 2024; 11:82. [PMID: 39690423 DOI: 10.1186/s40779-024-00586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
Cancer is a global health problem and one of the leading causes of mortality. Immune checkpoint inhibitors have revolutionized the field of oncology, emerging as a powerful treatment strategy. A key pathway that has garnered considerable attention is programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1). The interaction between PD-L1 expressed on tumor cells and PD-1 reduces the innate immune response and thus compromises the capability of the body's immune system. Furthermore, it controls the phenotype and functionality of innate and adaptive immune components. A range of monoclonal antibodies, including avelumab, atezolizumab, camrelizumab, dostarlimab, durvalumab, sinitilimab, toripalimab, and zimberelimab, have been developed for targeting the interaction between PD-1 and PD-L1. These agents can induce a broad spectrum of autoimmune-like complications that may affect any organ system. Recent studies have focused on the effect of various natural compounds that inhibit immune checkpoints. This could contribute to the existing arsenal of anticancer drugs. Several bioactive natural agents have been shown to affect the PD-1/PD-L1 signaling axis, promoting tumor cell apoptosis, influencing cell proliferation, and eventually leading to tumor cell death and inhibiting cancer progression. However, there is a substantial knowledge gap regarding the role of different natural compounds targeting PD-1 in the context of cancer. Hence, this review aims to provide a common connection between PD-1/PD-L1 blockade and the anticancer effects of distinct natural molecules. Moreover, the primary focus will be on the underlying mechanism of action as well as the clinical efficacy of bioactive molecules. Current challenges along with the scope of future research directions targeting PD-1/PD-L1 interactions through natural substances are also discussed.
Collapse
Affiliation(s)
- Yogesh Godiyal
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Drishti Maheshwari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552, Magdalenka, Poland
- African Genome Center, Mohammed VI Polytechnic University, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Shweta S Zinzuwadia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Yanelys Morera-Díaz
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology, 11600, Havana, Cuba
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
45
|
Iida M, Kagawa T, Yajima I, Harusato A, Tazaki A, Nishadhi DASM, Taguchi N, Kato M. Anti-Graying Effects of External and Internal Treatments with Luteolin on Hair in Model Mice. Antioxidants (Basel) 2024; 13:1549. [PMID: 39765877 PMCID: PMC11673595 DOI: 10.3390/antiox13121549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Little is known about the anti-graying effects of antioxidants on hair. The anti-graying effects of three antioxidants (luteolin, hesperetin, and diosmetin) on hair were investigated according to the sequential processes of hair graying that were previously clarified in model mice [Ednrb(+/-);RET-mice]. External treatment with luteolin, but not that with hesperetin or diosmetin, alleviated hair graying in Ednrb(+/-);RET-mice. Internal treatment with luteolin also mitigated hair graying in the mice. Although both luteolin treatments had very limited effects on hair cycles, the treatments suppressed the increase in p16ink4a-positive cells in bulges [senescent keratinocyte stem cells (KSCs)]. Both of the treatments also suppressed decreases in the expression levels of endothelins in KSCs and their receptor (Ednrb) in melanocyte stem cells (MSCs) and alleviated hair graying in the mice. Luteolin is a special antioxidant with an anti-graying potency through improvement of age-related dysfunction in signaling between endothelins in KSCs and their receptor in MSCs. Luteolin for topical and oral use is commercially available to people in the form of supplements. Similar processes of hair graying in Ednrb(+/-);RET-mice and humans have been reported. These results are encouraging for the practical application of luteolin as a medicine with an anti-graying effect on hair in humans.
Collapse
Grants
- 19H01147 Ministry of Education, Culture, Sports, Science and Technology
- 23H03147 Ministry of Education, Culture, Sports, Science and Technology
- 23K27837 Ministry of Education, Culture, Sports, Science and Technology
- 22KK0145 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Machiko Iida
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (M.I.); (T.K.); (A.H.); (D.A.S.M.N.)
- Units of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-shi 487-8501, Japan
| | - Takumi Kagawa
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (M.I.); (T.K.); (A.H.); (D.A.S.M.N.)
| | - Ichiro Yajima
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (M.I.); (T.K.); (A.H.); (D.A.S.M.N.)
- Units of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-shi 487-8501, Japan
| | - Akihito Harusato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (M.I.); (T.K.); (A.H.); (D.A.S.M.N.)
| | - Akira Tazaki
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (M.I.); (T.K.); (A.H.); (D.A.S.M.N.)
- Activities of the Institute of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| | - Delgama A. S. M. Nishadhi
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (M.I.); (T.K.); (A.H.); (D.A.S.M.N.)
| | - Nobuhiko Taguchi
- Units of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-shi 487-8501, Japan
- General Research and Development Institute, Hoyu Co., Ltd., 1-12 Rouboku, Nagakute-shi 480-1136, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (M.I.); (T.K.); (A.H.); (D.A.S.M.N.)
- Units of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-shi 487-8501, Japan
- Activities of the Institute of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
46
|
Wang J, Li H, Wang Z, Ruan S. Luteolin: A Comprehensive and Visualized Analysis of Research Hotspots and Its Antitumor Mechanisms. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2377-2401. [PMID: 39686791 DOI: 10.1142/s0192415x24500903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The aim of this study was to analyze the research hotspots and mechanisms of luteolin in tumor-related fields using bibliometric and bioinformatic approaches to guide future research. We conducted a comprehensive screening of all articles on luteolin and tumors in Web of Science from 2008 to 2023. The extracted words from these publications were visualized using VOSviewer, Scimago Graphica, and CiteSpace. Public databases were used to collect luteolin and tumor-related targets. GO and KEGG analyses of luteolin antitumor-related genes were performed using Metascape. Protein interaction networks were built with Cytoscape and STRING, identifying hub targets of luteolin in antitumor activity. Subsequently, the binding capacity of luteolin to these hub targets was assessed using molecular docking technology. We found that China dominated this field, the Egyptian Knowledge Bank published the most articles, and Molecules had the highest number of related publications. Recently, network pharmacology, target, traditional Chinese medicine, and nanoparticles have become research hotspots in luteolin's antitumor research. A total of 483 overlapping genes between luteolin and tumors were identified, and they were closely associated with the cancer-associated pathways, PI3K-Akt, and MAPK signaling pathways. Luteolin forms a complex network of antitumor-related genes, with TP53, TNF, STAT3, AKT1, JUN, IL6, and SRC playing key roles and showing strong binding affinity to luteolin. Computer technology is becoming increasingly integral to the discipline, and future research will focus on more precise antitumor mechanisms and effective clinical applications.
Collapse
Affiliation(s)
- Jiaxuan Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P. R. China
| | - Hao Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University, (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P. R. China
| | - Zhenru Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P. R. China
| | - Shanming Ruan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P. R. China
| |
Collapse
|
47
|
Yang Y, Chen Y, Jia X, Huang X. Association of dietary flavonoid intake with the prevalence and all-cause mortality of depressive symptoms: Findings from analysis of NHANES. J Affect Disord 2024; 366:44-58. [PMID: 39187180 DOI: 10.1016/j.jad.2024.08.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND This study aimed to explore the relationship between flavonoids intake and the prevalence and all-cause mortality of depressive symptoms in American adults. METHODS Analyzing 2007-2008, 2009-2010, and 2017-2018 NHANES data, we examined the association between dietary flavonoid and depressive symptoms, including specific subclasses assessment and mortality outcomes tracking until December 31, 2019. Our methodology included weighted multivariate logistic regression, weighted cox proportional hazards regression and restricted cubic spline (RCS) models, supported by stratified and sensitivity analyses. RESULTS Among the 12,340 participants in total, 1129 exhibited depressive symptoms. The multiple logistic regression analysis showed a significant reduction in total flavonoid and subclass intake in individuals with current depressive symptoms. Adjusted odds ratios (ORs) for the highest quartiles were 0.69 for anthocyanidins and 0.63 for flavones. Interaction effects emerged in non-hypertensive, higher-income, and normal-weight groups for flavones intake. The RCS model indicated an L-shaped association between depressive symptoms and total flavonoid intake, with inflection points at 346 mg/day. During a median follow-up of 119 months, 148 deaths occurred among patients with depressive symptoms. Hazard ratios (HRs) for all-cause mortality showed a significant positive correlation between total flavonoid intake and survival in model 1 (HR = 0.56), with an optimal intake range of 45.2-948.3 mg/day according to the RCS model. LIMITATIONS The study relied on U.S. population survey data, potentially limiting generalizability. Unmeasured confounding factors may exist, and genetic factors were not considered. CONCLUSIONS Adequate intake of flavonoids, especially anthocyanidins and flavones, is associated with reduced odds of depressive symptoms. Additionally, optimal intake ranges of flavonoid intake for mental health benefits were observed for all-cause mortality in population with depressive symptoms.
Collapse
Affiliation(s)
- Yaqin Yang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yuemei Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaotong Jia
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyan Huang
- Department of Nephrology, Hunan Provincial Hospital of Chinese Medicine, Hengyang, China.
| |
Collapse
|
48
|
Demir K, Turgut R, Şentürk S, Işıklar H, Günalan E. The Therapeutic Effects of Bioactive Compounds on Colorectal Cancer via PI3K/Akt/mTOR Signaling Pathway: A Critical Review. Food Sci Nutr 2024; 12:9951-9973. [PMID: 39723045 PMCID: PMC11666977 DOI: 10.1002/fsn3.4534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 12/28/2024] Open
Abstract
Understanding the molecular signaling pathways of colorectal cancer (CRC) can be accepted as the first step in treatment strategy. Permanent mTOR signaling activation stimulates the CRC process via various biological processes. It supplies the survival of CRC stem cells, tumorigenesis, morbidity, and decreased response to drugs in CRC pathogenesis. Therefore, inhibition of the mTOR signaling by numerous bioactive components may be effective against CRC. The study aims to discuss the therapeutic capacity of various polyphenols, terpenoids, and alkaloids on CRC via the PI3K/Akt/mTOR pathway. The potential molecular effects of bioactive compounds on the mTOR pathway's upstream and downstream targets are examined. Each bioactive component causes various physiological processes, such as triggering free radical production, disruption of mitochondrial membrane potential, cell cycle arrest, inhibition of CRC stem cell migration, and suppression of glycolysis through mTOR signaling inhibition. As a result, carcinogenesis is inhibited by inducing apoptosis and autophagy. However, it should be noted that studies are primarily in vitro dose-dependent treatment researchers. This study raises awareness about the role of phenolic compounds in treating CRC, contributing to their future use as anticancer agents. These bioactive compounds have the potential to be developed into food supplementation to prevent and treat various cancer types including CRC. This review has the potential to lead to further development of clinical studies. In the future, mTOR inhibition by applying several bioactive agents using advanced drug delivery systems may contribute to CRC treatment with 3D cell culture and in vivo clinical studies.
Collapse
Affiliation(s)
- Kübra Demir
- Institute of Graduate EducationIstanbul Health and Technology UniversityIstanbulTürkiye
- Faculty of Health Science, Department of Nutrition and DieteticsSabahattin Zaim UniversityIstanbulTürkiye
| | - Rana Turgut
- Institute of Graduate EducationIstanbul Health and Technology UniversityIstanbulTürkiye
| | - Selcen Şentürk
- Institute of Graduate EducationIstanbul Health and Technology UniversityIstanbulTürkiye
| | - Handan Işıklar
- Faculty of Medicine, Department of Internal MedicineYalova UniversityYalovaTürkiye
| | - Elif Günalan
- Faculty of Health Science, Department of Nutrition and DieteticsIstanbul Health and Technology UniversityIstanbulTürkiye
| |
Collapse
|
49
|
Chen J, Ye W. Molecular mechanisms underlying Tao-Hong-Si-Wu decoction treating hyperpigmentation based on network pharmacology, Mendelian randomization analysis, and experimental verification. PHARMACEUTICAL BIOLOGY 2024; 62:296-313. [PMID: 38555860 PMCID: PMC11632782 DOI: 10.1080/13880209.2024.2330609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/26/2024] [Accepted: 03/02/2024] [Indexed: 04/02/2024]
Abstract
CONTEXT Hyperpigmentation, a common skin condition marked by excessive melanin production, currently has limited effective treatment options. OBJECTIVE This study explores the effects of Tao-Hong-Si-Wu decoction (THSWD) on hyperpigmentation and to elucidate the underlying mechanisms. MATERIALS AND METHODS We employed network pharmacology, Mendelian randomization, and molecular docking to identify THSWD's hub targets and mechanisms against hyperpigmentation. The Cell Counting Kit-8 (CCK-8) assay determined suitable THSWD treatment concentrations for PIG1 cells. These cells were exposed to graded concentrations of THSWD-containing serum (2.5%, 5%, 10%, 15%, 20%, 30%, 40%, and 50%) and treated with α-MSH (100 nM) to induce an in vitro hyperpigmentation model. Assessments included melanin content, tyrosinase activity, and Western blotting. RESULTS ALB, IL6, and MAPK3 emerged as primary targets, while quercetin, apigenin, and luteolin were the core active ingredients. The CCK-8 assay indicated that concentrations between 2.5% and 20% were suitable for PIG1 cells, with a 50% cytotoxicity concentration (CC50) of 32.14%. THSWD treatment significantly reduced melanin content and tyrosinase activity in α-MSH-induced PIG1 cells, along with downregulating MC1R and MITF expression. THSWD increased ALB and p-MAPK3/MAPK3 levels and decreased IL6 expression in the model cells. DISCUSSION AND CONCLUSION THSWD mitigates hyperpigmentation by targeting ALB, IL6, and MAPK3. This study paves the way for clinical applications of THSWD as a novel treatment for hyperpigmentation and offers new targeted therapeutic strategies.
Collapse
Affiliation(s)
- Jun Chen
- Department of Geriatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Wenyi Ye
- Department of Traditional Chinese Internal Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
50
|
Thapa R, Gupta S, Gupta G, Bhat AA, Smriti, Singla M, Ali H, Singh SK, Dua K, Kashyap MK. Epithelial-mesenchymal transition to mitigate age-related progression in lung cancer. Ageing Res Rev 2024; 102:102576. [PMID: 39515620 DOI: 10.1016/j.arr.2024.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Epithelial-Mesenchymal Transition (EMT) is a fundamental biological process involved in embryonic development, wound healing, and cancer progression. In lung cancer, EMT is a key regulator of invasion and metastasis, significantly contributing to the fatal progression of the disease. Age-related factors such as cellular senescence, chronic inflammation, and epigenetic alterations exacerbate EMT, accelerating lung cancer development in the elderly. This review describes the complex mechanism among EMT and age-related pathways, highlighting key regulators such as TGF-β, WNT/β-catenin, NOTCH, and Hedgehog signalling. We also discuss the mechanisms by which oxidative stress, mediated through pathways involving NRF2 and ROS, telomere attrition, regulated by telomerase activity and shelterin complex, and immune system dysregulation, driven by alterations in cytokine profiles and immune cell senescence, upregulate or downregulate EMT induction. Additionally, we highlighted pathways of transcription such as SNAIL, TWIST, ZEB, SIRT1, TP53, NF-κB, and miRNAs regulating these processes. Understanding these mechanisms, we highlight potential therapeutic interventions targeting these critical molecules and pathways.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Indore, Madhya Pradesh, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Smriti
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Manoj Kumar Kashyap
- Molecular Oncology Laboratory, Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India.
| |
Collapse
|