1
|
Shiraki K, Mishima M, Sato N, Imoto Y, Nishiwaki K. Convenient screening of the reproductive toxicity of favipiravir and antiviral drugs in Caenorhabditis elegans. Heliyon 2024; 10:e35331. [PMID: 39165990 PMCID: PMC11334893 DOI: 10.1016/j.heliyon.2024.e35331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Reproductive toxicity is one of the major concerns in drug development. Thus, we have developed its screening system using Caenorhabditis elegans, which has a life cycle of three days and similar coding genes as humans. Antiviral nucleoside analogs used for acute infections are known to cause reproductive toxicity, contraindicated for pregnant women, and are used for comparing their reproductive toxicity in C. elegans and experimental animals. None of the drug treatments affected the number of offspring and the concentrations without toxicity to nematodes were consistent with no cytotoxicity or toxicity in experimental animals or humans. Favipiravir, ribavirin, molnupiravir (NHC), acyclovir, ganciclovir, zidovudine, and thalidomide significantly increased the incidence of arrested embryos but amenamevir, letermovir, and guanosine did not. RNA-dependent RNA polymerase (RdRp) inhibitors, in the order of favipiravir, ribavirin, and NHC increased the incidence of arrested embryos, possibly due to the specificity of favipiravir for RdRp and less cytotoxicity. RdRp inhibitors would impair RNA interference through RdRp expressed by telomerase reverse transcriptase during embryogenesis and cause embryo-fetal toxicity. The incidence of arrested embryos may be affected by differences in the substrate specificity of DNA polymerases and metabolism between C. elegans, animals, and humans. The concordance between the results of the screening system for reproductive toxicity of antivirals in C. elegans and those in experimental animals based on the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, reproductive toxicology confirms its appropriateness as a screening system for reproductive toxicity. Favipiravir and zidovudine were the least toxic to C. e legans among the antiviral drugs examined.
Collapse
Affiliation(s)
| | - Mizuki Mishima
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1339, Japan
| | - Noriaki Sato
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yasuo Imoto
- Japan Textile Products Quality and Technology Center, 5-7-3 Shimoyamatedori, Chuo-ku, Kobe, 650-0011, Japan
| | - Kiyoji Nishiwaki
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1339, Japan
| |
Collapse
|
2
|
Kulkarni S, Alampally H, Guddattu V, Rodrigues G, Carnelio S. Expression of Fascin and SALL4 in odontogenic cysts and tumors: an immunohistochemical appraisal. F1000Res 2024; 11:1578. [PMID: 38895097 PMCID: PMC11184278 DOI: 10.12688/f1000research.126091.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 06/21/2024] Open
Abstract
Background Various stemness markers (SOX2, OCT4, and NANOG) have been studied in odontogenic cysts and tumors. However, studies on SALL4 having similar properties of stemness has not been documented. Additionally, insight into fascin as a migratory molecule is less explored. In this study, the expression of SALL4 and fascin were evaluated in ameloblastoma, adenomatoid odontogenic tumor (AOT), odontogenic keratocyst (OKC), dentigerous cyst (DC), radicular cyst (RC), and calcifying odontogenic cyst (COC). Methods Semi-quantitative analysis of fascin and SALL4 immuno-positive cells was done in a total of 40 cases of ameloblastoma (11 plexiform, 12 follicular, 12 unicystic, and 5 desmoplastic) variants, 6 cases of AOT, 15 each of OKC, DC, RC and 5 of COC. Chi-square test was applied to evaluate the association between SALL4 and fascin expression in odontogenic cysts and tumors. Results Fascin immunopositivity was observed in peripheral ameloblast-like cells, and the expression was weak or absent in stellate reticulum-like cells. A moderate to weak immune-reactivity to SALL4 was observed in the cytoplasm of ameloblastoma, epithelial cells of dentigerous and radicular cysts, having a marked inflammatory infiltrate, which was an interesting observation. COC and AOT had negative to weak expressions. No recurrence has been reported. Conclusions Expression of fascin in ameloblastomas elucidate their role in motility and localized invasion. Its expression in less aggressive lesions like DC, COC, AOT will incite to explore the other functional properties of fascin. SALL4 expression in the cytoplasm of odontogenic cysts and tumors may represent inactive or mutant forms which requires further validation.
Collapse
Affiliation(s)
- Spoorti Kulkarni
- Oral Pathology and Microbiology, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Harishanker Alampally
- Oral Pathology and Microbiology, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Vasudev Guddattu
- Department of Data Science, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gabriel Rodrigues
- Department of General Surgery, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sunitha Carnelio
- Oral Pathology and Microbiology, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| |
Collapse
|
3
|
Rengel BD, Schuler-Faccini L, Fraga LR, Vianna FSL, Kowalski TW. Possible New Candidates Involved to Thalidomide-Related Limbs and Cardiac Defects: A Systems Biology Approach. Biochem Genet 2024:10.1007/s10528-024-10790-w. [PMID: 38689186 DOI: 10.1007/s10528-024-10790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/19/2024] [Indexed: 05/02/2024]
Abstract
Thalidomide is a known teratogen that causes malformations especially in heart and limbs. Its mechanism of teratogenicity is still not fully elucidated. Recently, a new target of thalidomide was described, TBX5, and was observed a new interaction between HAND2 and TBX5 that is disrupted in the presence of thalidomide. Therefore, our study aimed to raise potential candidates for thalidomide teratogenesis, through systems biology, evaluating HAND2 and TBX5 interaction and heart and limbs malformations of thalidomide. Genes and proteins related to TBX5 and HAND2 were selected through TF2DNA, REACTOME, Human Phenotype Ontology, and InterPro databases. Networks were assembled using STRING © database. Network analysis were performed in Cytoscape © and R v3.6.2. Differential gene expression (DGE) analysis was performed through gene expression omnibus. We constructed a network for HAND2 and TBX5 interaction; a network for heart and limbs malformations of TE; and the two joined networks. We observed that EP300 protein seemed to be important in all networks. We also looked for proteins containing C2H2 domain in the assembled networks. ZIC3, GLI1, GLI3, ZNF148, and PRDM16 were the ones present in both heart and limbs malformations of TE networks. Furthermore, in the DGE analysis after treatment with thalidomide, we observed that FANCB, ESCO2, and XRCC2 were downregulated and present both in heart and limbs networks. Through systems biology, we were able to point to different new proteins and genes, and selected specially EP300, which was important in all the analyzed networks, to be further evaluated in the TE teratogenicity.
Collapse
Affiliation(s)
- Bruna Duarte Rengel
- Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Brazilian Teratogen Information Service (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lavínia Schuler-Faccini
- Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil
- Brazilian Teratogen Information Service (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Lucas Rosa Fraga
- National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil
- Brazilian Teratogen Information Service (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil.
- Brazilian Teratogen Information Service (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Genomic Medicine Laboratory, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos Street, 2350, Porto Alegre, CEP 90035-903, Brazil.
| | - Thayne Woycinck Kowalski
- Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- National Institute of Population Medical Genetics (INAGEMP), Porto Alegre, Brazil.
- Brazilian Teratogen Information Service (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Genomic Medicine Laboratory, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos Street, 2350, Porto Alegre, CEP 90035-903, Brazil.
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil.
| |
Collapse
|
4
|
Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther 2024; 9:92. [PMID: 38637540 PMCID: PMC11026526 DOI: 10.1038/s41392-024-01808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Cancer, a complex and multifactorial disease, presents a significant challenge to global health. Despite significant advances in surgical, radiotherapeutic and immunological approaches, which have improved cancer treatment outcomes, drug therapy continues to serve as a key therapeutic strategy. However, the clinical efficacy of drug therapy is often constrained by drug resistance and severe toxic side effects, and thus there remains a critical need to develop novel cancer therapeutics. One promising strategy that has received widespread attention in recent years is drug repurposing: the identification of new applications for existing, clinically approved drugs. Drug repurposing possesses several inherent advantages in the context of cancer treatment since repurposed drugs are typically cost-effective, proven to be safe, and can significantly expedite the drug development process due to their already established safety profiles. In light of this, the present review offers a comprehensive overview of the various methods employed in drug repurposing, specifically focusing on the repurposing of drugs to treat cancer. We describe the antitumor properties of candidate drugs, and discuss in detail how they target both the hallmarks of cancer in tumor cells and the surrounding tumor microenvironment. In addition, we examine the innovative strategy of integrating drug repurposing with nanotechnology to enhance topical drug delivery. We also emphasize the critical role that repurposed drugs can play when used as part of a combination therapy regimen. To conclude, we outline the challenges associated with repurposing drugs and consider the future prospects of these repurposed drugs transitioning into clinical application.
Collapse
Affiliation(s)
- Ying Xia
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
- Division of Gastroenterology and Hepatology, Department of Medicine and, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ming Sun
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China.
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
5
|
Huynh M, Vinck R, Gibert B, Gasser G. Strategies for the Nuclear Delivery of Metal Complexes to Cancer Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311437. [PMID: 38174785 DOI: 10.1002/adma.202311437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Indexed: 01/05/2024]
Abstract
The nucleus is an essential organelle for the function of cells. It holds most of the genetic material and plays a crucial role in the regulation of cell growth and proliferation. Since many antitumoral therapies target nucleic acids to induce cell death, tumor-specific nuclear drug delivery could potentiate therapeutic effects and prevent potential off-target side effects on healthy tissue. Due to their great structural variety, good biocompatibility, and unique physico-chemical properties, organometallic complexes and other metal-based compounds have sparked great interest as promising anticancer agents. In this review, strategies for specific nuclear delivery of metal complexes are summarized and discussed to highlight crucial parameters to consider for the design of new metal complexes as anticancer drug candidates. Moreover, the existing opportunities and challenges of tumor-specific, nucleus-targeting metal complexes are emphasized to outline some new perspectives and help in the design of new cancer treatments.
Collapse
Affiliation(s)
- Marie Huynh
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Robin Vinck
- Orano, 125 avenue de Paris, Châtillon, 92320, France
| | - Benjamin Gibert
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
| |
Collapse
|
6
|
Kaplan BLF, Hoberman AM, Slikker W, Smith MA, Corsini E, Knudsen TB, Marty MS, Sobrian SK, Fitzpatrick SC, Ratner MH, Mendrick DL. Protecting Human and Animal Health: The Road from Animal Models to New Approach Methods. Pharmacol Rev 2024; 76:251-266. [PMID: 38351072 PMCID: PMC10877708 DOI: 10.1124/pharmrev.123.000967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/18/2023] [Accepted: 12/01/2023] [Indexed: 02/16/2024] Open
Abstract
Animals and animal models have been invaluable for our current understanding of human and animal biology, including physiology, pharmacology, biochemistry, and disease pathology. However, there are increasing concerns with continued use of animals in basic biomedical, pharmacological, and regulatory research to provide safety assessments for drugs and chemicals. There are concerns that animals do not provide sufficient information on toxicity and/or efficacy to protect the target population, so scientists are utilizing the principles of replacement, reduction, and refinement (the 3Rs) and increasing the development and application of new approach methods (NAMs). NAMs are any technology, methodology, approach, or assay used to understand the effects and mechanisms of drugs or chemicals, with specific focus on applying the 3Rs. Although progress has been made in several areas with NAMs, complete replacement of animal models with NAMs is not yet attainable. The road to NAMs requires additional development, increased use, and, for regulatory decision making, usually formal validation. Moreover, it is likely that replacement of animal models with NAMs will require multiple assays to ensure sufficient biologic coverage. The purpose of this manuscript is to provide a balanced view of the current state of the use of animal models and NAMs as approaches to development, safety, efficacy, and toxicity testing of drugs and chemicals. Animals do not provide all needed information nor do NAMs, but each can elucidate key pieces of the puzzle of human and animal biology and contribute to the goal of protecting human and animal health. SIGNIFICANCE STATEMENT: Data from traditional animal studies have predominantly been used to inform human health safety and efficacy. Although it is unlikely that all animal studies will be able to be replaced, with the continued advancement in new approach methods (NAMs), it is possible that sometime in the future, NAMs will likely be an important component by which the discovery, efficacy, and toxicity testing of drugs and chemicals is conducted and regulatory decisions are made.
Collapse
Affiliation(s)
- Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Alan M Hoberman
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - William Slikker
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Mary Alice Smith
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Emanuela Corsini
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Thomas B Knudsen
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - M Sue Marty
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Sonya K Sobrian
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Suzanne C Fitzpatrick
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Marcia H Ratner
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Donna L Mendrick
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| |
Collapse
|
7
|
Kanaoka D, Yamada M, Yokoyama H, Nishino S, Kunimura N, Satoyoshi H, Wakabayashi S, Urabe K, Ishii T, Nakanishi M. FPFT-2216, a Novel Anti-lymphoma Compound, Induces Simultaneous Degradation of IKZF1/3 and CK1α to Activate p53 and Inhibit NFκB Signaling. CANCER RESEARCH COMMUNICATIONS 2024; 4:312-327. [PMID: 38265263 PMCID: PMC10846380 DOI: 10.1158/2767-9764.crc-23-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/03/2023] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Reducing casein kinase 1α (CK1α) expression inhibits the growth of multiple cancer cell lines, making it a potential therapeutic target for cancer. Herein, we evaluated the antitumor activity of FPFT-2216-a novel low molecular weight compound-in lymphoid tumors and elucidated its molecular mechanism of action. In addition, we determined whether targeting CK1α with FPFT-2216 is useful for treating hematopoietic malignancies. FPFT-2216 strongly degraded CK1α and IKAROS family zinc finger 1/3 (IKZF1/3) via proteasomal degradation. FPFT-2216 exhibited stronger inhibitory effects on human lymphoma cell proliferation than known thalidomide derivatives and induced upregulation of p53 and its transcriptional targets, namely, p21 and MDM2. Combining FPFT-2216 with an MDM2 inhibitor exhibited synergistic antiproliferative activity and induced rapid tumor regression in immunodeficient mice subcutaneously transplanted with a human lymphoma cell line. Nearly all tumors in mice disappeared after 10 days; this was continuously observed in 5 of 7 mice up to 24 days after the final FPFT-2216 administration. FPFT-2216 also enhanced the antitumor activity of rituximab and showed antitumor activity in a patient-derived diffuse large B-cell lymphoma xenograft model. Furthermore, FPFT-2216 decreased the activity of the CARD11/BCL10/MALT1 (CBM) complex and inhibited IκBα and NFκB phosphorylation. These effects were mediated through CK1α degradation and were stronger than those of known IKZF1/3 degraders. In conclusion, FPFT-2216 inhibits tumor growth by activating the p53 signaling pathway and inhibiting the CBM complex/NFκB pathway via CK1α degradation. Therefore, FPFT-2216 may represent an effective therapeutic agent for hematopoietic malignancies, such as lymphoma. SIGNIFICANCE We found potential vulnerability to CK1α degradation in certain lymphoma cells refractory to IKZF1/3 degraders. Targeting CK1α with FPFT-2216 could inhibit the growth of these cells by activating p53 signaling. Our study demonstrates the potential therapeutic application of CK1α degraders, such as FPFT-2216, for treating lymphoma.
Collapse
Affiliation(s)
- Daiki Kanaoka
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Mitsuo Yamada
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Hironori Yokoyama
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Satoko Nishino
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Naoshi Kunimura
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Hiroshi Satoyoshi
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Shota Wakabayashi
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Kazunori Urabe
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Takafumi Ishii
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| | - Masato Nakanishi
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, Nishi-otsuka, Matsubara, Osaka, Japan
| |
Collapse
|
8
|
Kowalski TW, Feira MF, Lord VO, Gomes JDA, Giudicelli GC, Fraga LR, Sanseverino MTV, Recamonde-Mendoza M, Schuler-Faccini L, Vianna FSL. A New Strategy for the Old Challenge of Thalidomide: Systems Biology Prioritization of Potential Immunomodulatory Drug (IMiD)-Targeted Transcription Factors. Int J Mol Sci 2023; 24:11515. [PMID: 37511270 PMCID: PMC10380514 DOI: 10.3390/ijms241411515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Several molecular mechanisms of thalidomide embryopathy (TE) have been investigated, from anti-angiogenesis to oxidative stress to cereblon binding. Recently, it was discovered that thalidomide and its analogs, named immunomodulatory drugs (IMiDs), induced the degradation of C2H2 transcription factors (TFs). This mechanism might impact the strict transcriptional regulation of the developing embryo. Hence, this study aims to evaluate the TFs altered by IMiDs, prioritizing the ones associated with embryogenesis through transcriptome and systems biology-allied analyses. This study comprises only the experimental data accessed through bioinformatics databases. First, proteins and genes reported in the literature as altered/affected by the IMiDs were annotated. A protein systems biology network was evaluated. TFs beta-catenin (CTNNB1) and SP1 play more central roles: beta-catenin is an essential protein in the network, while SP1 is a putative C2H2 candidate for IMiD-induced degradation. Separately, the differential expressions of the annotated genes were analyzed through 23 publicly available transcriptomes, presenting 8624 differentially expressed genes (2947 in two or more datasets). Seventeen C2H2 TFs were identified as related to embryonic development but not studied for IMiD exposure; these TFs are potential IMiDs degradation neosubstrates. This is the first study to suggest an integration of IMiD molecular mechanisms through C2H2 TF degradation.
Collapse
Affiliation(s)
- Thayne Woycinck Kowalski
- Graduate Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
- Teratogen Information System (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
- Biomedical Sciences Course, Centro Universitário CESUCA, Cachoeirinha 94935-630, Brazil
| | - Mariléa Furtado Feira
- Graduate Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
| | - Vinícius Oliveira Lord
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
- Biomedical Sciences Course, Centro Universitário CESUCA, Cachoeirinha 94935-630, Brazil
| | - Julia do Amaral Gomes
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
| | - Giovanna Câmara Giudicelli
- Graduate Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
| | - Lucas Rosa Fraga
- Teratogen Information System (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
- Post-Graduation Program in Medicine, Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Brazil
- Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil
| | - Maria Teresa Vieira Sanseverino
- Graduate Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
- Teratogen Information System (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
- School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil
| | - Mariana Recamonde-Mendoza
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
- Post-Graduation Program in Computer Science, Institute of Informatics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| | - Lavinia Schuler-Faccini
- Graduate Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
- Teratogen Information System (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
| | - Fernanda Sales Luiz Vianna
- Graduate Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
- Teratogen Information System (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
- Post-Graduation Program in Medicine, Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Brazil
| |
Collapse
|
9
|
Okuyama R. Advancements in Drug Repurposing: Examples in Psychiatric Medications. Int J Mol Sci 2023; 24:11000. [PMID: 37446178 DOI: 10.3390/ijms241311000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Because there are a limited number of animal models for psychiatric diseases that can be extrapolated to humans, drug repurposing has been actively pursued. This study was aimed at uncovering recent trends in drug repurposing approaches and new technologies that can predict efficacy on humans based on animal models used in psychiatric drug development. Psychiatric drugs that were approved by the FDA between 2002 and 2022 were listed, and the method of how the drug repurposing has been applied was analyzed. Drug repurposing has been increasingly applied to recently approved psychiatric drugs. The development concepts of psychiatric drugs that have been developed through drug repurposing over the past 20 years were found to be divided into six categories: new application exploration, reduction of side effects, improvement of symptom control, improvement of medication compliance, enhancement of drug efficacy, and reduction of drug-drug interactions. All repurposed drugs approved before 2016 used either prodrugs or active metabolites, while all drugs approved in 2021 and beyond used fixed-dose combinations with sophisticated ideas. SmartCube®, which uses artificial intelligence to predict human drug efficacy from animal phenotypes, was developed and produced novel drugs that show clinical efficacy. Well-designed drug repurposing approaches and new technologies for predicting human drug efficacy based off of animal models would contribute to novel psychiatric drug development.
Collapse
Affiliation(s)
- Ryo Okuyama
- College of International Management, Ritsumeikan Asia Pacific University, Beppu 874-8577, Japan
| |
Collapse
|
10
|
Dsouza NN, Alampady V, Baby K, Maity S, Byregowda BH, Nayak Y. Thalidomide interaction with inflammation in idiopathic pulmonary fibrosis. Inflammopharmacology 2023; 31:1167-1182. [PMID: 36966238 PMCID: PMC10039777 DOI: 10.1007/s10787-023-01193-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/04/2023] [Indexed: 03/27/2023]
Abstract
The "Thalidomide tragedy" is a landmark in the history of the pharmaceutical industry. Despite limited clinical trials, there is a continuous effort to investigate thalidomide as a drug for cancer and inflammatory diseases such as rheumatoid arthritis, lepromatous leprosy, and COVID-19. This review focuses on the possibilities of targeting inflammation by repurposing thalidomide for the treatment of idiopathic pulmonary fibrosis (IPF). Articles were searched from the Scopus database, sorted, and selected articles were reviewed. The content includes the proven mechanisms of action of thalidomide relevant to IPF. Inflammation, oxidative stress, and epigenetic mechanisms are major pathogenic factors in IPF. Transforming growth factor-β (TGF-β) is the major biomarker of IPF. Thalidomide is an effective anti-inflammatory drug in inhibiting TGF-β, interleukins (IL-6 and IL-1β), and tumour necrosis factor-α (TNF-α). Thalidomide binds cereblon, a process that is involved in the proposed mechanism in specific cancers such as breast cancer, colon cancer, multiple myeloma, and lung cancer. Cereblon is involved in activating AMP-activated protein kinase (AMPK)-TGF-β/Smad signalling, thereby attenuating fibrosis. The past few years have witnessed an improvement in the identification of biomarkers and diagnostic technologies in respiratory diseases, partly because of the COVID-19 pandemic. Hence, investment in clinical trials with a systematic plan can help repurpose thalidomide for pulmonary fibrosis.
Collapse
Affiliation(s)
- Nikitha Naomi Dsouza
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Varun Alampady
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishnaprasad Baby
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Swastika Maity
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Bharath Harohalli Byregowda
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
11
|
Pugnetti L, Curci D, Bidoli C, Gerdol M, Celsi F, Renzo S, Paci M, Lega S, Nonnis M, Maestro A, Brumatti LV, Lionetti P, Pallavicini A, Licastro D, Edomi P, Decorti G, Stocco G, Lucafò M, Bramuzzo M. Gene expression profiling in white blood cells reveals new insights into the molecular mechanisms of thalidomide in children with inflammatory bowel disease. Biomed Pharmacother 2023; 164:114927. [PMID: 37257228 DOI: 10.1016/j.biopha.2023.114927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
Thalidomide has emerged as an effective immunomodulator in the treatment of pediatric patients with inflammatory bowel disease (IBD) refractory to standard therapies. Cereblon (CRBN), a component of E3 protein ligase complex that mediates ubiquitination and proteasomal degradation of target proteins, has been identified as the primary target of thalidomide. CRBN plays a crucial role in thalidomide teratogenicity, however it is unclear whether it is also involved in the therapeutic effects in IBD patients. This study aimed at identifying the molecular mechanisms underpinning thalidomide action in pediatric IBD. In this study, ten IBD pediatric patients responsive to thalidomide were prospectively enrolled. RNA-sequencing (RNA-seq) analysis and functional enrichment analysis were carried out on peripheral blood mononuclear cells (PBMC) obtained before and after twelve weeks of treatment with thalidomide. RNA-seq analysis revealed 378 differentially expressed genes before and after treatment with thalidomide. The most deregulated pathways were cytosolic calcium ion concentration, cAMP-mediated signaling, eicosanoid signaling and inhibition of matrix metalloproteinases. Neuronal signaling mechanisms such as CREB signaling in neurons and axonal guidance signaling also emerged. Connectivity Map analysis revealed that thalidomide gene expression changes were similar to those exposed to MLN4924, an inhibitor of NEDD8 activating enzyme, suggesting that thalidomide exerts its immunomodulatory effects by acting on the ubiquitin-proteasome pathway. In vitro experiments on cell lines confirmed the effect of thalidomide on candidate altered pathways observed in patients. These results represent a unique resource for enhanced understanding of thalidomide mechanism in pediatric patients with IBD, providing novel potential targets associated with drug response.
Collapse
Affiliation(s)
- Letizia Pugnetti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Debora Curci
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Carlotta Bidoli
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Fulvio Celsi
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Sara Renzo
- Gastroenterology and Nutrition Unit, Meyer Children's Hospital IRCSS, 50139 Florence, Italy
| | - Monica Paci
- Gastroenterology and Nutrition Unit, Meyer Children's Hospital IRCSS, 50139 Florence, Italy
| | - Sara Lega
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Martina Nonnis
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Alessandra Maestro
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Liza Vecchi Brumatti
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Paolo Lionetti
- Gastroenterology and Nutrition Unit, Meyer Children's Hospital IRCSS, 50139 Florence, Italy; Department NEUROFARBA, University of Florence, 50139 Florence, Italy
| | | | | | - Paolo Edomi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuliana Decorti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy; Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Gabriele Stocco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy; Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Marianna Lucafò
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Matteo Bramuzzo
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| |
Collapse
|
12
|
Sorouri K, Loren AW, Amant F, Partridge AH. Patient-Centered Care in the Management of Cancer During Pregnancy. Am Soc Clin Oncol Educ Book 2023; 43:e100037. [PMID: 37220323 DOI: 10.1200/edbk_100037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The management of cancer during pregnancy requires a patient-centered, multidisciplinary approach to balance maternal and fetal well-being given the rarity of this clinical scenario and lack of substantial data. Involvement of oncology and nononcology medical specialists and ethical, legal, and psychosocial supports, as needed, is instrumental in navigating the complexities of care for this patient population. Critical periods of fetal development and physiological changes in pregnancy must be considered when planning diagnostic and therapeutic approaches during pregnancy. The complexity of symptom recognition and interventional approaches contributes to diagnostic delays of cancers during pregnancy. Ultrasound and whole-body diffusion-weighted magnetic resonance imaging are safe throughout pregnancy. Surgery can be safely performed throughout pregnancy, with the early second trimester preferred for intra-abdominal surgery. Chemotherapy can be safely administered after 12-14 weeks of gestation until 1-3 weeks before the anticipated delivery. Most targeted and immunotherapeutic agents are contraindicated during pregnancy because of limited data. Pelvic radiation during pregnancy is absolutely contraindicated, while if radiation to the upper body is needed, administration should only be considered early in pregnancy. To ensure that the total cumulative fetal exposure to ionizing radiation does not exceed 100 mGy, early inclusion of the radiology team in the care plan is required. Closer prenatal monitoring is recommended for maternal and fetal treatment-related toxicities. Delivery before 37 weeks of gestation should be avoided if possible, and vaginal delivery is preferred unless obstetrically indicated or specific clinical scenarios. Postpartum, breastfeeding should be discussed, and the neonate should receive blood work to assess for acute toxicities with follow-up arranged for long-term monitoring.
Collapse
Affiliation(s)
- Kimia Sorouri
- Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Alison W Loren
- Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA
| | - Frédéric Amant
- Netherlands Cancer Institute, Amsterdam, the Netherlands
- KU Leuven, Leuven, Belgium
- University of Amsterdam, Amsterdam, the Netherlands
| | - Ann H Partridge
- Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
13
|
Kopp KO, Greer ME, Glotfelty EJ, Hsueh SC, Tweedie D, Kim DS, Reale M, Vargesson N, Greig NH. A New Generation of IMiDs as Treatments for Neuroinflammatory and Neurodegenerative Disorders. Biomolecules 2023; 13:biom13050747. [PMID: 37238617 DOI: 10.3390/biom13050747] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
The immunomodulatory imide drug (IMiD) class, which includes the founding drug member thalidomide and later generation drugs, lenalidomide and pomalidomide, has dramatically improved the clinical treatment of specific cancers, such as multiple myeloma, and it combines potent anticancer and anti-inflammatory actions. These actions, in large part, are mediated by IMiD binding to the human protein cereblon that forms a critical component of the E3 ubiquitin ligase complex. This complex ubiquitinates and thereby regulates the levels of multiple endogenous proteins. However, IMiD-cereblon binding modifies cereblon's normal targeted protein degradation towards a new set of neosubstrates that underlies the favorable pharmacological action of classical IMiDs, but also their adverse actions-in particular, their teratogenicity. The ability of classical IMiDs to reduce the synthesis of key proinflammatory cytokines, especially TNF-α levels, makes them potentially valuable to reposition as drugs to mitigate inflammatory-associated conditions and, particularly, neurological disorders driven by an excessive neuroinflammatory element, as occurs in traumatic brain injury, Alzheimer's and Parkinson's diseases, and ischemic stroke. The teratogenic and anticancer actions of classical IMiDs are substantial liabilities for effective drugs in these disorders and can theoretically be dialed out of the drug class. We review a select series of novel IMiDs designed to avoid binding with human cereblon and/or evade degradation of downstream neosubstrates considered to underpin the adverse actions of thalidomide-like drugs. These novel non-classical IMiDs hold potential as new medications for erythema nodosum leprosum (ENL), a painful inflammatory skin condition associated with Hansen's disease for which thalidomide remains widely used, and, in particular, as a new treatment strategy for neurodegenerative disorders in which neuroinflammation is a key component.
Collapse
Affiliation(s)
- Katherine O Kopp
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, Biomedical Research Center, 251 Bayview Blvd., NIH, Baltimore, MD 21224, USA
| | - Margaret E Greer
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, Biomedical Research Center, 251 Bayview Blvd., NIH, Baltimore, MD 21224, USA
- Faculty of Medicine, Georgetown University School of Medicine, Washington, DC 20007, USA
| | - Elliot J Glotfelty
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, Biomedical Research Center, 251 Bayview Blvd., NIH, Baltimore, MD 21224, USA
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Shih-Chang Hsueh
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, Biomedical Research Center, 251 Bayview Blvd., NIH, Baltimore, MD 21224, USA
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, Biomedical Research Center, 251 Bayview Blvd., NIH, Baltimore, MD 21224, USA
| | - Dong Seok Kim
- Aevisbio Inc., Gaithersburg, MD 20878, USA
- Aevis Bio Inc., Daejeon 34141, Republic of Korea
| | - Marcella Reale
- Department of Innovative Technologies in Medicine and Dentistry, G. d'Annunzio University of Chieti and Pescara, 66100 Chieti, Italy
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, Biomedical Research Center, 251 Bayview Blvd., NIH, Baltimore, MD 21224, USA
| |
Collapse
|
14
|
Yang J, Kong J, Li B, Ji Z, Liu A, Chen J, Liu M, Fan Y, Peng L, Song J, Wu X, Gao L, Ma W, Dong Y, Luo S, Bao F. Seventy years of evidence on the efficacy and safety of drugs for treating leprosy: a network meta-analysis. J Infect 2023; 86:338-351. [PMID: 36796681 DOI: 10.1016/j.jinf.2023.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
OBJECTIVE The World Health Organization (WHO) recommends multidrug therapy (MDT) with rifampicin, dapsone, and clofazimine for treating leprosy, which is based on very low-quality evidence. Here, we performed a network meta-analysis (NMA) to produce quantitative evidence to strengthen current WHO recommendations. METHOD All studies were obtained from Embase and PubMed from the date of establishment to October 9, 2021. Data were synthesized with frequentist random-effects network meta-analyses. Outcomes were assessed using odds ratios (ORs), 95% confidence intervals (95% CIs), and P score. RESULTS Sixty controlled clinical trials and 9256 patients were included. MDT was effective (range of OR: 1.06-1255584.25) for treating leprosy and multibacillary leprosy. Six treatments (Range of OR: 1.199-4.50) were more effective than MDT. Clofazimine (P score=0.9141) and dapsone+rifampicin (P score=0.8785) were effective for treating type 2 leprosy reaction. There were no significant differences in the safety of any of the tested drug regimens. CONCLUSIONS The WHO MDT is effective for treating leprosy and multibacillary leprosy, but it may not be effective enough. Pefloxacin and ofloxacin may be good adjunct drugs for increasing MDT efficacy. Clofazimine and dapsone+rifampicin can be used in the treatment of a type 2 leprosy reaction. Single-drug regimens are not efficient enough to treat leprosy, multibacillary leprosy, or a type 2 leprosy reaction. AVAILABILITY OF DATA AND MATERIALS All data generated or analyzed during this study are included in this published article [and its supplementary information files].
Collapse
Affiliation(s)
- Jiaru Yang
- Evidence-Based Medicine Team, The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, Yunnan, China; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Jing Kong
- Evidence-Based Medicine Team, The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Bingxue Li
- Evidence-Based Medicine Team, The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Zhenhua Ji
- Evidence-Based Medicine Team, The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, Yunnan, China; The Institute of Oncology, Yunnan Cancer Hospital, Kunming Medical University, Kunming 650100, Yunnan, China
| | - Aihua Liu
- Evidence-Based Medicine Team, The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, Yunnan, China; Yunnan Province Key Laboratory of Children's Major Diseases Research, The Affiliated Children Hospital, Kunming Medical University, Kunming 650030, Yunnan, China.
| | - Jingjing Chen
- Evidence-Based Medicine Team, The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Meixiao Liu
- Evidence-Based Medicine Team, The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Yuxin Fan
- Evidence-Based Medicine Team, The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Li Peng
- Evidence-Based Medicine Team, The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jieqin Song
- Evidence-Based Medicine Team, The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Xinya Wu
- Evidence-Based Medicine Team, The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Li Gao
- Evidence-Based Medicine Team, The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Weijiang Ma
- Evidence-Based Medicine Team, The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Yan Dong
- Evidence-Based Medicine Team, The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Suyi Luo
- Evidence-Based Medicine Team, The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Fukai Bao
- Evidence-Based Medicine Team, The Institute for Tropical Medicine, Kunming Medical University, Kunming 650500, Yunnan, China; Yunnan Province Key Laboratory of Children's Major Diseases Research, The Affiliated Children Hospital, Kunming Medical University, Kunming 650030, Yunnan, China.
| |
Collapse
|
15
|
Tawfik NM, Teiama MS, Iskandar SS, Osman A, Hammad SF. A Novel Nanoemulsion Formula for an Improved Delivery of a Thalidomide Analogue to Triple-Negative Breast Cancer; Synthesis, Formulation, Characterization and Molecular Studies. Int J Nanomedicine 2023; 18:1219-1243. [PMID: 36937550 PMCID: PMC10016366 DOI: 10.2147/ijn.s385166] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/20/2022] [Indexed: 03/13/2023] Open
Abstract
Background Thalidomide (THD) and its analogues were recently reported as a promising treatment for different types of solid tumors due to their antiangiogenic effect. Methods In this work, we synthesized a novel THD analogue (TA), and its chemistry was confirmed with different techniques such as IR, mass spectroscopy, elemental analysis as well as 1H and 13C NMR. To increase solubility and anticancer efficacy, a new oil in water (O/W) nanoemulsion (NE) was used in the formulation of the analogue. The novel formula's surface charge, size, stability, FTIR, FE-TEM, in vitro drug release and physical characteristics were investigated. Furthermore, molecular docking studies were conducted to predict the possible binding modes and molecular interactions behind the inhibitory activities of the THD and TA. Results TA showed a significant cytotoxic activity with IC50 ranging from 0.326 to 43.26 µmol/mL when evaluated against cancerous cells such as MCF-7, HepG2, Caco-2, LNCaP and RKO cell lines. The loaded analogue showed more potential cytotoxicity against MDA-MB-231 and MCF-7-ADR cell lines with IC50 values of 0.0293 and 0.0208 nmol/mL, respectively. Moreover, flow cytometry of cell cycle analysis and apoptosis were performed showing a suppression in the expression levels of TGF-β, MCL-1, VEGF, TNF-α, STAT3 and IL-6 in the MDA-MB-231 cell line. Conclusion The novel NE formula dramatically reduced the anticancer dosage of TA from micromolar efficiency to nanomolar efficiency. This indicates that the synthesized analogue exhibited high potency in the NE formulation and proved its efficacy against triple-negative breast cancer cell line.
Collapse
Affiliation(s)
- Noran M Tawfik
- Biotechnology Program, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, Alexandria, Egypt
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Mohammed S Teiama
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Galala University, Suez, Egypt
| | - Sameh Samir Iskandar
- Fellow and Head of Surgical Oncology Department, Ismailia Teaching Oncology Hospital (GOTHI), Ismailia, Egypt
| | - Ahmed Osman
- Biotechnology Program, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, Alexandria, Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sherif F Hammad
- PharmD Programs, Egypt-Japan University of Science and Technology, Alexandria, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
16
|
Lecca D, Jung YJ, Scerba MT, Hwang I, Kim YK, Kim S, Modrow S, Tweedie D, Hsueh S, Liu D, Luo W, Glotfelty E, Li Y, Wang J, Luo Y, Hoffer BJ, Kim DS, McDevitt RA, Greig NH. Role of chronic neuroinflammation in neuroplasticity and cognitive function: A hypothesis. Alzheimers Dement 2022; 18:2327-2340. [PMID: 35234334 PMCID: PMC9437140 DOI: 10.1002/alz.12610] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Evaluating the efficacy of 3,6'-dithioPomalidomide in 5xFAD Alzheimer's disease (AD) mice to test the hypothesis that neuroinflammation is directly involved in the development of synaptic/neuronal loss and cognitive decline. BACKGROUND Amyloid-β (Aβ) or tau-focused clinical trials have proved unsuccessful in mitigating AD-associated cognitive impairment. Identification of new drug targets is needed. Neuroinflammation is a therapeutic target in neurodegenerative disorders, and TNF-α a pivotal neuroinflammatory driver. NEW HYPOTHESIS AD-associated chronic neuroinflammation directly drives progressive synaptic/neuronal loss and cognitive decline. Pharmacologically mitigating microglial/astrocyte activation without altering Aβ generation will define the role of neuroinflammation in AD progression. MAJOR CHALLENGES Difficulty of TNF-α-lowering compounds reaching brain, and identification of a therapeutic-time window to preserve the beneficial role of neuroinflammatory processes. LINKAGE TO OTHER MAJOR THEORIES Microglia/astroglia are heavily implicated in maintenance of synaptic plasticity/function in healthy brain and are disrupted by Aβ. Mitigation of chronic gliosis can restore synaptic homeostasis/cognitive function.
Collapse
Affiliation(s)
- Daniela Lecca
- Drug Design & Development SectionTranslational Gerontology BranchIntramural Research Program National Institute on AgingNIHBaltimoreMarylandUSA
| | - Yoo Jin Jung
- Drug Design & Development SectionTranslational Gerontology BranchIntramural Research Program National Institute on AgingNIHBaltimoreMarylandUSA,Stanford Neurosciences Interdepartmental ProgramStanford University School of MedicineStanfordCaliforniaUSA
| | - Michael T. Scerba
- Drug Design & Development SectionTranslational Gerontology BranchIntramural Research Program National Institute on AgingNIHBaltimoreMarylandUSA
| | | | | | - Sun Kim
- Aevis Bio, Inc.DaejeonRepublic of Korea
| | - Sydney Modrow
- Comparative Medicine SectionNational Institute on AgingBaltimoreMarylandUSA
| | - David Tweedie
- Drug Design & Development SectionTranslational Gerontology BranchIntramural Research Program National Institute on AgingNIHBaltimoreMarylandUSA
| | - Shih‐Chang Hsueh
- Drug Design & Development SectionTranslational Gerontology BranchIntramural Research Program National Institute on AgingNIHBaltimoreMarylandUSA
| | - Dong Liu
- Drug Design & Development SectionTranslational Gerontology BranchIntramural Research Program National Institute on AgingNIHBaltimoreMarylandUSA
| | - Weiming Luo
- Drug Design & Development SectionTranslational Gerontology BranchIntramural Research Program National Institute on AgingNIHBaltimoreMarylandUSA
| | - Elliot Glotfelty
- Drug Design & Development SectionTranslational Gerontology BranchIntramural Research Program National Institute on AgingNIHBaltimoreMarylandUSA,Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Yazhou Li
- Drug Design & Development SectionTranslational Gerontology BranchIntramural Research Program National Institute on AgingNIHBaltimoreMarylandUSA
| | - Jia‐Yi Wang
- Graduate Institute of Medical SciencesTaipei Medical UniversityTaipeiTaiwan,Department of NeurosurgeryTaipei Medical University HospitalTaipei Medical UniversityTaipeiTaiwan,Neuroscience Research CenterTaipei Medical UniversityTaipeiTaiwan
| | - Yu Luo
- Department of Molecular Genetics and BiochemistryCollege of MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Barry J. Hoffer
- Department of Neurological SurgeryCase Western Reserve University HospitalClevelandOhioUSA
| | - Dong Seok Kim
- Aevis Bio, Inc.DaejeonRepublic of Korea,AevisBio, Inc.GaithersburgMarylandUSA
| | - Ross A. McDevitt
- Comparative Medicine SectionNational Institute on AgingBaltimoreMarylandUSA
| | - Nigel H. Greig
- Drug Design & Development SectionTranslational Gerontology BranchIntramural Research Program National Institute on AgingNIHBaltimoreMarylandUSA
| |
Collapse
|
17
|
de-Carvalho RR, Gomes-Carneiro MR, Geraldino BR, Lopes GDS, Paumgartten FJR. Evaluation of the developmental toxicity of solvents, metals, drugs, and industrial chemicals using a freshwater snail ( Biomphalaria glabrata) assay. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:798-814. [PMID: 35723169 DOI: 10.1080/15287394.2022.2089413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A freshwater snail assay was employed to assess the embryotoxicity of solvents including acetone, methanol, ethanol, isopropanol, dimethyl-sulfoxide, glycerin, metals/metalloids including mercuric chloride (HgCl2), cadmium chloride (CdCl2,), antimony salts Sb+3 and Sb+5, drugs including colchicine, hydroxyurea, cyclophosphamide, an industrial chemical sodium azide (SA), an anionic surfactant dodecyl sodium sulfate-(DSS), H2O2 and sodium chloride (NaCl). The assay consists of exposing Biomphalaria glabrata egg masses (EM) to the substances for 96-hr and following up embryo/snail development for lethality, abnormal morphology (teratogenicity), and day of hatching up to day 10 or 14 after spawning. Based upon concentration-response relationships, LC50%s (embryolethality), EC50%s (teratogenicity) and IC50%s (hatching retardation) and 95%CIs were determined for tested chemicals. The LOECs indicated that HgCl2 (37 nM) and CdCl2 (140 nM) are potent embryotoxic agents in snails. Teratogenic indices (TI = LC50/EC50) for almost all tested chemicals were lower than or close to unity suggesting that these compounds were not teratogenic in this assay. The snail assay may be adequately performed in a cost-effective standardized protocol which enables testing a number of environmental chemicals over a broad concentration range. The snail assay needs to undergo further validation to be recognized for an internationally harmonized hazard identification in ecotoxicity risk assessment.
Collapse
Affiliation(s)
- Rosângela Ribeiro de-Carvalho
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria Regina Gomes-Carneiro
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Barbara Rodrigues Geraldino
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Gabrielle da Silveira Lopes
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | |
Collapse
|
18
|
Costa BA, Mouhieddine TH, Richter J. What's Old is New: The Past, Present and Future Role of Thalidomide in the Modern-Day Management of Multiple Myeloma. Target Oncol 2022; 17:383-405. [PMID: 35771402 DOI: 10.1007/s11523-022-00897-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 10/17/2022]
Abstract
Immunomodulatory drugs (IMiDs) have become an integral part of therapy for both newly diagnosed and relapsed/refractory multiple myeloma (RRMM). IMiDs bind to cereblon, leading to the degradation of proteins involved in B-cell survival and proliferation. Thalidomide, a first-generation IMiD, has little to no myelosuppressive potential, negligible renal clearance, and long-proven anti-myeloma activity. However, thalidomide's adverse effects (e.g., somnolence, constipation, and peripheral neuropathy) and the advent of more potent therapeutic options has led to the drug being less frequently used in many countries, including the US and Canada. Newer-generation IMiDs, such as lenalidomide and pomalidomide, are utilized far more frequently. In numerous previous trials, salvage therapy with thalidomide (50-200 mg/day) plus corticosteroids (with or without selected cytotoxic or targeted agents) has been shown to be effective and well-tolerated in the RRMM setting. Hence, thalidomide-based regimens remain important alternatives for heavily pretreated patients, especially for those who have no access to novel therapies and/or are not eligible for their use (due to renal failure, high-grade myelosuppression, or significant comorbidities). Ongoing and future trials may provide further insights into the current role of thalidomide, especially by comparing thalidomide-containing regimens with protocols based on newer-generation IMiDs and by investigating thalidomide's association with novel therapies (e.g., antibody-drug conjugates, bispecific antibodies, and chimeric antigen receptor T cells).
Collapse
Affiliation(s)
- Bruno Almeida Costa
- Department of Medicine, Mount Sinai Morningside and West, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tarek H Mouhieddine
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1185, New York, NY, 10029, USA
| | - Joshua Richter
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1185, New York, NY, 10029, USA.
| |
Collapse
|
19
|
Abhijit Saha, Sarker K, Ghosh A, Mishra S, Sen S. Analogue Based Design, Synthesis, Biological Evaluation, and Molecular Docking of Some Thalidomide Metabolites as Selective Cytotoxic and Antiangiogenic Agents against Multiple Myeloma. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Costa PDSS, Maciel-Fiuza MF, Kowalski TW, Fraga LR, Feira MF, Camargo LMA, Caldoncelli DIDO, Silveira MIDS, Schuler-Faccini L, Vianna FSL. Evaluation of the influence of genetic variants in Cereblon gene on the response to the treatment of erythema nodosum leprosum with thalidomide. Mem Inst Oswaldo Cruz 2022; 117:e220039. [DOI: 10.1590/0074-02760220039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Perpétua do Socorro Silva Costa
- Universidade Federal do Rio Grande do Sul, Brazil; Instituto Nacional de Genética Médica Populacional, Brasil; Universidade Federal do Maranhão, Brazil
| | - Miriãn Ferrão Maciel-Fiuza
- Universidade Federal do Rio Grande do Sul, Brazil; Instituto Nacional de Genética Médica Populacional, Brasil; Hospital de Clínicas de Porto Alegre, Brasil; Universidade Federal do Rio Grande do Sul, Brazil
| | - Thayne Woycinck Kowalski
- Universidade Federal do Rio Grande do Sul, Brazil; Instituto Nacional de Genética Médica Populacional, Brasil; Hospital de Clínicas de Porto Alegre, Brasil; Universidade Federal do Rio Grande do Sul, Brazil; Hospital de Clínicas de Porto Alegre, Brasil
| | - Lucas Rosa Fraga
- Hospital de Clínicas de Porto Alegre, Brasil; Universidade Federal do Rio Grande do Sul, Brazil; Hospital de Clínicas de Porto Alegre, Brasil; Universidade Federal do Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Brazil
| | - Mariléa Furtado Feira
- Universidade Federal do Rio Grande do Sul, Brazil; Instituto Nacional de Genética Médica Populacional, Brasil; Hospital de Clínicas de Porto Alegre, Brasil; Universidade Federal do Rio Grande do Sul, Brazil
| | - Luís Marcelo Aranha Camargo
- Universidade de São Paulo, Brazil; Centro de Pesquisa em Medicina Tropical, Brasil; Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental, Brasil; Centro Universitário São Lucas, Brazil
| | | | | | - Lavínia Schuler-Faccini
- Universidade Federal do Rio Grande do Sul, Brazil; Instituto Nacional de Genética Médica Populacional, Brasil; Hospital de Clínicas de Porto Alegre, Brasil
| | - Fernanda Sales Luiz Vianna
- Universidade Federal do Rio Grande do Sul, Brazil; Instituto Nacional de Genética Médica Populacional, Brasil; Hospital de Clínicas de Porto Alegre, Brasil; Universidade Federal do Rio Grande do Sul, Brazil; Hospital de Clínicas de Porto Alegre, Brasil; Universidade Federal do Rio Grande do Sul, Brazil
| |
Collapse
|
21
|
Kowalski TW, Caldas-Garcia GB, Gomes JDA, Fraga LR, Schuler-Faccini L, Recamonde-Mendoza M, Paixão-Côrtes VR, Vianna FSL. Comparative Genomics Identifies Putative Interspecies Mechanisms Underlying Crbn-Sall4-Linked Thalidomide Embryopathy. Front Genet 2021; 12:680217. [PMID: 34249098 PMCID: PMC8262662 DOI: 10.3389/fgene.2021.680217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/18/2021] [Indexed: 11/21/2022] Open
Abstract
The identification of thalidomide–Cereblon-induced SALL4 degradation has brought new understanding for thalidomide embryopathy (TE) differences across species. Some questions, however, regarding species variability, still remain. The aim of this study was to detect sequence divergences between species, affected or not by TE, and to evaluate the regulated gene co-expression in a murine model. Here, we performed a comparative analysis of proteins experimentally established as affected by thalidomide exposure, evaluating 14 species. The comparative analysis, regarding synteny, neighborhood, and protein conservation, was performed in 42 selected genes. Differential co-expression analysis was performed, using a publicly available assay, GSE61306, which evaluated mouse embryonic stem cells (mESC) exposed to thalidomide. The comparative analyses evidenced 20 genes in the upstream neighborhood of NOS3, which are different between the species who develop, or not, the classic TE phenotype. Considering protein sequence alignments, RECQL4, SALL4, CDH5, KDR, and NOS2 proteins had the biggest number of variants reported in unaffected species. In co-expression analysis, Crbn was a gene identified as a driver of the co-expression of other genes implicated in genetic, non-teratogenic, limb reduction defects (LRD), such as Tbx5, Esco2, Recql4, and Sall4; Crbn and Sall4 were shown to have a moderate co-expression correlation, which is affected after thalidomide exposure. Hence, even though the classic TE phenotype is not identified in mice, a deregulatory Crbn-induced mechanism is suggested in this animal. Functional studies are necessary, especially evaluating the genes responsible for LRD syndromes and their interaction with thalidomide–Cereblon.
Collapse
Affiliation(s)
- Thayne Woycinck Kowalski
- Post-Graduation Program in Genetics and Molecular Biology, PPGBM, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil.,National Institute of Medical Population Genetics, INAGEMP, Porto Alegre, Brazil.,Bioinformatics Core, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil.,Centro Universitário CESUCA, Cachoeirinha, Brazil
| | - Gabriela Barreto Caldas-Garcia
- Post-Graduation Program in Genetics and Molecular Biology, PPGBM, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Post-Graduation Program in Biodiversity and Evolution, PPGBioEvo Institute of Biology, Universidade Federal da Bahia, UFBA, Salvador, Brazil
| | - Julia do Amaral Gomes
- Post-Graduation Program in Genetics and Molecular Biology, PPGBM, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil.,National Institute of Medical Population Genetics, INAGEMP, Porto Alegre, Brazil
| | - Lucas Rosa Fraga
- Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil.,National Institute of Medical Population Genetics, INAGEMP, Porto Alegre, Brazil.,Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Post-Graduation Program in Medical Science, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Teratogen Information System, SIAT, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | - Lavínia Schuler-Faccini
- Post-Graduation Program in Genetics and Molecular Biology, PPGBM, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,National Institute of Medical Population Genetics, INAGEMP, Porto Alegre, Brazil.,Teratogen Information System, SIAT, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | - Mariana Recamonde-Mendoza
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil.,Institute of Informatics, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Vanessa Rodrigues Paixão-Côrtes
- Post-Graduation Program in Biodiversity and Evolution, PPGBioEvo Institute of Biology, Universidade Federal da Bahia, UFBA, Salvador, Brazil
| | - Fernanda Sales Luiz Vianna
- Post-Graduation Program in Genetics and Molecular Biology, PPGBM, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratory of Medical Genetics and Evolution, Genetics Department, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratory of Genomic Medicine, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil.,National Institute of Medical Population Genetics, INAGEMP, Porto Alegre, Brazil.,Post-Graduation Program in Medical Science, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Teratogen Information System, SIAT, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| |
Collapse
|
22
|
Barbarossa A, Iacopetta D, Sinicropi MS, Franchini C, Carocci A. Recent Advances in the Development of Thalidomide-Related Compounds as Anticancer Drugs. Curr Med Chem 2021; 29:19-40. [PMID: 34165402 DOI: 10.2174/0929867328666210623143526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Thalidomide is an old well-known drug that was first used as morning sickness relief in pregnant women before being withdrawn from the market due to its severe side effects on normal fetal development, However, over the last few decades, the interest in this old drug has been renewed because of its efficacy in several important disorders for instance, multiple myeloma, breast cancer, and HIV-related diseases due to its antiangiogenic and immunomodulatory properties. Unfortunately, even in these cases, many aftereffects as deep vein thrombosis, peripheral neuropathy, constipation, somnolence, pyrexia, pain, and teratogenicity have been reported, showing the requirement of careful and monitored use. For this reason, research efforts are geared toward the synthesis and optimization of new thalidomide analogues lacking in toxic effects to erase these limits and improve the pharmacological profile. AIMS This review aims to examine the state-of-the-art concerning the current studies on thalidomide and its analogues towards cancer diseases (with few hints regarding the antimicrobial activity), focusing the attention on the possible mechanisms of action involved and the lack of toxicity. CONCLUSION In the light of the collected data, thalidomide analogues and their ongoing optimization could lead, in the future, to the realization of a promising therapeutic alternative for cancer-fighting.
Collapse
Affiliation(s)
- Alexia Barbarossa
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Carlo Franchini
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Alessia Carocci
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
23
|
Ventura F, Williams E, Ikeya M, Bullock AN, ten Dijke P, Goumans MJ, Sanchez-Duffhues G. Challenges and Opportunities for Drug Repositioning in Fibrodysplasia Ossificans Progressiva. Biomedicines 2021; 9:biomedicines9020213. [PMID: 33669809 PMCID: PMC7922784 DOI: 10.3390/biomedicines9020213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 01/05/2023] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an ultrarare congenital disease that progresses through intermittent episodes of bone formation at ectopic sites. FOP patients carry heterozygous gene point mutations in activin A receptor type I ACVR1, encoding the bone morphogenetic protein (BMP) type I serine/threonine kinase receptor ALK2, termed activin receptor-like kinase (ALK)2. The mutant ALK2 displays neofunctional responses to activin, a closely related BMP cytokine that normally inhibits regular bone formation. Moreover, the mutant ALK2 becomes hypersensitive to BMPs. Both these activities contribute to enhanced ALK2 signalling and endochondral bone formation in connective tissue. Being a receptor with an extracellular ligand-binding domain and intrinsic intracellular kinase activity, the mutant ALK2 is a druggable target. Although there is no approved cure for FOP yet, a number of clinical trials have been recently initiated, aiming to identify a safe and effective treatment for FOP. Among other targeted approaches, several repurposed drugs have shown promising results. In this review, we describe the molecular mechanisms underlying ALK2 mutation-induced aberrant signalling and ectopic bone formation. In addition, we recapitulate existing in vitro models to screen for novel compounds with a potential application in FOP. We summarize existing therapeutic alternatives and focus on repositioned drugs in FOP, at preclinical and clinical stages.
Collapse
Affiliation(s)
- Francesc Ventura
- Department de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
| | - Eleanor Williams
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; (E.W.); (A.N.B.)
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
| | - Alex N. Bullock
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; (E.W.); (A.N.B.)
| | - Peter ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands;
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Cardiovascular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands;
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology, Cardiovascular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands;
- Correspondence:
| |
Collapse
|
24
|
Kesserwani H. Death and Rebirth of the Thalidomide Molecule: A Case of Thalidomide-Induced Sensory Neuropathy. Cureus 2021; 13:e13140. [PMID: 33728154 PMCID: PMC7936918 DOI: 10.7759/cureus.13140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The thalidomide molecule is a remarkable molecule that exists in a racemic mixture of optical isomers. In the 1950s, due to its teratogenicity, the levorotatory isomer led to its dramatic downfall. However, the molecule with its panoramic mechanisms of action and its uncanny ability to intercalate within the geometry of deoxyribonucleic acid (DNA), led to its remarkable renaissance; thalidomide being United States Food and Drug Administration (FDA)-approved for at least 13 different indications ranging from multiple myeloma to leprosy to glioblastoma. Thalidomide-induced polyneuropathy is usually reversible and is the rate-limiting step in its long-term use. The development of a polyneuropathy is invariably associated with a cumulative dose exceeding 20 grams. However, the polyneuropathy is almost always a sensory neuropathy. Asymmetry, bona fide weakness such as difficulty standing on the heels, a poly-ganglioneuropathy pattern with widespread or patchy numbness and sensory ataxia should raise a red flag and an alternative diagnosis should be considered. We present a typical case of a thalidomide-induced sensory neuropathy in order to highlight the resurgence of thalidomide use in clinical practice. We review the literature and outline the molecular biology of the thalidomide molecule.
Collapse
|
25
|
Ollauri-Ibáñez C, Astigarraga I. Use of Antiangiogenic Therapies in Pediatric Solid Tumors. Cancers (Basel) 2021; 13:E253. [PMID: 33445470 PMCID: PMC7827326 DOI: 10.3390/cancers13020253] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/23/2022] Open
Abstract
Cancer is an important cause of death in childhood. In recent years, scientists have made an important effort to achieve greater precision and more personalized treatments against cancer. But since only a few pediatric patients have identifiable therapeutic targets, other ways to stop the neoplastic cell proliferation and dissemination are needed. Therefore, the inhibition of general processes involved in the growth and behavior of tumors can be a relevant strategy for the development of new cancer therapies. In the case of solid tumors, one of these processes is angiogenesis, essential for tumor growth and generation of metastases. This review summarizes the results obtained with the use of antiangiogenic drugs in the main pediatric malignant solid tumors and also an overview of clinical trials currently underway. It should be noted that due to the rarity and heterogeneity of the different types of pediatric cancer, most studies on antiangiogenic drugs include only a small number of patients or isolated clinical cases, so they are not conclusive and further studies are needed.
Collapse
Affiliation(s)
- Claudia Ollauri-Ibáñez
- Pediatric Oncology Group, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
| | - Itziar Astigarraga
- Pediatric Oncology Group, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
- Pediatrics Department, Hospital Universitario Cruces, 48903 Barakaldo, Spain
- Pediatrics Department, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|