1
|
Yao C, Li Z, Sun K, Zhang Y, Shou S, Jin H. Mitochondrial dysfunction in acute kidney injury. Ren Fail 2024; 46:2393262. [PMID: 39192578 PMCID: PMC11360640 DOI: 10.1080/0886022x.2024.2393262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Acute kidney injury (AKI) is a systemic clinical syndrome increasing morbidity and mortality worldwide in recent years. Renal tubular epithelial cells (TECs) death caused by mitochondrial dysfunction is one of the pathogeneses. The imbalance of mitochondrial quality control is the main cause of mitochondrial dysfunction. Mitochondrial quality control plays a crucial role in AKI. Mitochondrial quality control mechanisms are involved in regulating mitochondrial integrity and function, including antioxidant defense, mitochondrial quality control, mitochondrial DNA (mtDNA) repair, mitochondrial dynamics, mitophagy, and mitochondrial biogenesis. Currently, many studies have used mitochondrial dysfunction as a targeted therapeutic strategy for AKI. Therefore, this review aims to present the latest research advancements on mitochondrial dysfunction in AKI, providing a valuable reference and theoretical foundation for clinical prevention and treatment of this condition, ultimately enhancing patient prognosis.
Collapse
Affiliation(s)
- Congcong Yao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Ziwei Li
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Keke Sun
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Zhang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Zhu X, Wu Y, Li Y, Zhou X, Watzlawik JO, Chen YM, Raybuck AL, Billadeau DD, Shapiro VS, Springer W, Sun J, Boothby MR, Zeng H. The nutrient-sensing Rag-GTPase complex in B cells controls humoral immunity via TFEB/TFE3-dependent mitochondrial fitness. Nat Commun 2024; 15:10163. [PMID: 39580479 PMCID: PMC11585635 DOI: 10.1038/s41467-024-54344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/05/2024] [Indexed: 11/25/2024] Open
Abstract
Germinal center (GC) formation, which is an integrant part of humoral immunity, involves energy-consuming metabolic reprogramming. Rag-GTPases are known to signal amino acid availability to cellular pathways that regulate nutrient distribution such as the mechanistic target of rapamycin complex 1 (mTORC1) pathway and the transcription factors TFEB and TFE3. However, the contribution of these factors to humoral immunity remains undefined. Here, we show that B cell-intrinsic Rag-GTPases are critical for the development and activation of B cells. RagA/RagB deficient B cells fail to form GCs, produce antibodies, and to generate plasmablasts during both T-dependent (TD) and T-independent (TI) humoral immune responses. Deletion of RagA/RagB in GC B cells leads to abnormal dark zone (DZ) to light zone (LZ) ratio and reduced affinity maturation. Mechanistically, the Rag-GTPase complex constrains TFEB/TFE3 activity to prevent mitophagy dysregulation and maintain mitochondrial fitness in B cells, which are independent of canonical mTORC1 activation. TFEB/TFE3 deletion restores B cell development, GC formation in Peyer's patches and TI humoral immunity, but not TD humoral immunity in the absence of Rag-GTPases. Collectively, our data establish the Rag GTPase-TFEB/TFE3 pathway as a likely mTORC1 independent mechanism to coordinating nutrient sensing and mitochondrial metabolism in B cells.
Collapse
Affiliation(s)
- Xingxing Zhu
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN, USA
| | - Yue Wu
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yanfeng Li
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN, USA
| | - Xian Zhou
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN, USA
| | | | - Yin Maggie Chen
- Department of Immunology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Ariel L Raybuck
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center and School of Medicine, Nashville, TN, USA
| | | | | | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark R Boothby
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center and School of Medicine, Nashville, TN, USA
| | - Hu Zeng
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic Rochester, Rochester, MN, USA.
| |
Collapse
|
3
|
Tian M, Huang X, Li M, Lou P, Ma H, Jiang X, Zhou Y, Liu Y. Ferroptosis in diabetic cardiomyopathy: from its mechanisms to therapeutic strategies. Front Endocrinol (Lausanne) 2024; 15:1421838. [PMID: 39588340 PMCID: PMC11586197 DOI: 10.3389/fendo.2024.1421838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/15/2024] [Indexed: 11/27/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is defined as structural and functional cardiac abnormalities in diabetes, and cardiomyocyte death is the terminal event of DCM. Ferroptosis is iron-dependent oxidative cell death. Evidence has indicated that iron overload and ferroptosis play important roles in the pathogenesis of DCM. Mitochondria, an important organelle in iron homeostasis and ROS production, play a crucial role in cardiomyocyte ferroptosis in diabetes. Studies have shown some anti-diabetic medicines, plant extracts, and ferroptosis inhibitors might improve DCM by alleviating ferroptosis. In this review, we systematically reviewed the evidence of ferroptosis in DCM. Anti-ferroptosis might be a promising therapeutic strategy for the treatment of DCM.
Collapse
Affiliation(s)
- Meimei Tian
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xinli Huang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Min Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pingping Lou
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Xinli Jiang
- Department of Ophthalmology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yaru Zhou
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Todorova MN, Savova MS, Mihaylova LV, Georgiev MI. Punica granatum L. leaf extract enhances stress tolerance and promotes healthy longevity through HLH-30/TFEB, DAF16/FOXO, and SKN1/NRF2 crosstalk in Caenorhabditis elegans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155971. [PMID: 39197398 DOI: 10.1016/j.phymed.2024.155971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/24/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Punica granatum L., commonly known as pomegranate, is renowned for its health benefits, primarily associated with the consumption of its fruit and seeds. However, its non-edible parts, including leaves, have been used in traditional medicine as a remedy with anti-inflammatory and anti-diabetic properties. Considering the abundance of bioactive compounds, predominantly flavonols, flavones, and tannins P. granatum leaf (PGL) extract holds potential as health-promoting agent. Yet, its effect on longevity and healthspan remains largely unexplored. PURPOSE Our study aims to explore the potential of PGL extract to enhance healthspan and ameliorate age-related frailty in Caenorhabditis elegans. Additionally, we seek to elucidate its effect on the molecular signaling networks associated with stress resistance and longevity. METHODS After characterizing the extract metabolite profile by NMR spectroscopy, phenotypic and stress analyses were performed. In order to establish the molecular mechanism of action, the involvement of signaling pathways key to longevity were investigated by means of real-time quantitative PCR (RT-qPCR) and the use of transgenic strains (MIR13, MAH240, LD1, and OH16024). In addition, the effect of PGL on metabolism and lipid accumulation, as well as mitochondrial homeostasis, was examined. RESULTS The PGL extract supplementation significantly enhanced stress resistance and extended the lifespan of C. elegans. Additionally, it improved locomotion, as well as metabolic and mitochondrial functions, indicating an overall improvement in health. The molecular mechanisms highlight the coordinated regulation of stress response, metabolic homeostasis, and longevity signaling pathways. Specifically, our results demonstrate the essential roles of HLH-30/TFEB, in conjunction with DAF-16/FOXO and SKN-1/NRF2, as mediators of the PGL extract effect on healthspan. CONCLUSION Our findings emphasize the potential of PGL extract to ameliorate age-related decline, induce longevity and further enhance healthspan. Given the diverse effects on the molecular network associated with stress-adaptations, longevity and metabolic control, PGL extract might become a promising natural product with a particular importance to the field of gerontology.
Collapse
Affiliation(s)
- Monika N Todorova
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., Plovdiv 4000, Bulgaria
| | - Martina S Savova
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., Plovdiv 4000, Bulgaria; Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Liliya V Mihaylova
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., Plovdiv 4000, Bulgaria; Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Milen I Georgiev
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., Plovdiv 4000, Bulgaria; Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria.
| |
Collapse
|
5
|
Zhou M, Zhang S, Bai X, Cai Y, Zhang Z, Zhang P, Xue C, Zheng H, Sun Q, Han D, Lou L, Wang Y, Liu W. Acteoside delays the fibrosis process of diabetic nephropathy by anti-oxidation and regulating the autophagy-lysosome pathway. Eur J Pharmacol 2024; 978:176715. [PMID: 38852699 DOI: 10.1016/j.ejphar.2024.176715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Renal fibrosis is the final pathological change of kidney disease, it has also been recognized to be critical for the final progression of diabetic nephropathy (DN) to kidney failure. Acteoside (ACT) is a phenylethanoid glycoside widely distributed in dicotyledonous plants. It has many pharmacological activities, such as anti-oxidation, anti-inflammation, anti-cancer, neuroprotection, cardiovascular protection, anti-diabetes, bone and cartilage protection, liver and kidney protection, and antibacterial activity. This study aims to investigate the protective effects of ACT on renal interstitial fibrosis in rats with DN induced by intraperitoneal injection of streptozocin (STZ) combined with unilateral nephrectomy and its mechanism. In vivo and in vitro, the effects of ACT on reactive oxygen species (ROS) level, oxidative tubular injury, as well as damage of autophagic flux and lysosome in the DN model were detected. Results indicate that administration of ACT delayed the progression of renal interstitial fibrosis in DN by anti-oxidation and regulating the autophagy-lysosome pathway, which may potentially be attributed to the regulatory influence of ACT on transcription factor EB (TFEB).
Collapse
Affiliation(s)
- Mengqi Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shujiao Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xuehui Bai
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuzi Cai
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zeyu Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Pingna Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chengyuan Xue
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Huijuan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Quanmei Sun
- National Centre for Nanoscience and Technology, Beijing, China
| | - Dong Han
- National Centre for Nanoscience and Technology, Beijing, China
| | - Lixia Lou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Yaoxian Wang
- Henan University of Chinese Medicine, Zhengzhou, China; Renal Research Institution of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Weijing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Renal Research Institution of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
6
|
Suzuki Y, Hayashi K, Goto F, Nomura Y, Fujimoto C, Makishima M. Premature senescence is regulated by crosstalk among TFEB, the autophagy lysosomal pathway and ROS derived from damaged mitochondria in NaAsO 2-exposed auditory cells. Cell Death Discov 2024; 10:382. [PMID: 39191766 DOI: 10.1038/s41420-024-02139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 07/13/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Age-related hearing loss (ARHL) is one of the most prevalent types of sensory decline in a superaging society. Although various studies have focused on the effect of oxidative stress on the inner ear as an inducer of ARHL, there are no effective preventive approaches for ARHL. Recent studies have suggested that oxidative stress-induced DNA damage responses (oxidative DDRs) drive cochlear cell senescence and contribute to accelerated ARHL, and autophagy could function as a defense mechanism against cellular senescence in auditory cells. However, the underlying mechanism remains unclear. Sodium arsenite (NaAsO2) is a unique oxidative stress inducer associated with reactive oxygen species (ROS) that causes high-tone hearing loss similar to ARHL. Transcription factor EB (TFEB) functions as a master regulator of the autophagy‒lysosome pathway (ALP), which is a potential target during aging and the pathogenesis of various age-related diseases. Here, we focused on the function of TFEB and the impact of intracellular ROS as a potential target for ARHL treatment in a NaAsO2-induced auditory premature senescence model. Our results suggested that short exposure to NaAsO2 leads to DNA damage, lysosomal damage and mitochondrial damage in auditory cells, triggering temporary signals for TFEB transport into the nucleus and, as a result, causing insufficient autophagic flux and declines in lysosomal function and biogenesis and mitochondrial quality. Then, intracellular ROS derived from damaged mitochondria play a role as a second messenger to induce premature senescence in auditory cells. These findings suggest that TFEB activation via transport into the nucleus contributes to anti-senescence activity in auditory cells and represents a new therapeutic target for ARHL. We have revealed the potential function of TFEB as a master regulator of the induction of oxidative stress-induced premature senescence and the senescence-associated secretion phenotype (SASP) in auditory cells, which regulates ALP and controls mitochondrial quality through ROS production.
Collapse
Affiliation(s)
- Yuna Suzuki
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Ken Hayashi
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan.
- Department of Otolaryngology, Sakura Koedo Clinic, Saitama, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Keio University, Tokyo, Japan.
| | - Fumiyuki Goto
- Department of Otolaryngology-Head and Neck Surgery, Tokai University, Kanagawa, Japan
| | - Yasuyuki Nomura
- Department of Otolaryngology-Head and Neck Surgery, Nihon University, Tokyo, Japan
| | - Chisato Fujimoto
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Zhu X, Wu Y, Li Y, Zhou X, Watzlawik JO, Chen YM, Raybuck AL, Billadeau D, Shapiro V, Springer W, Sun J, Boothby MR, Zeng H. The nutrient-sensing Rag-GTPase complex in B cells controls humoral immunity via TFEB/TFE3-dependent mitochondrial fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582122. [PMID: 38463988 PMCID: PMC10925109 DOI: 10.1101/2024.02.26.582122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
During the humoral immune response, B cells undergo rapid metabolic reprogramming with a high demand for nutrients, which are vital to sustain the formation of the germinal centers (GCs). Rag-GTPases sense amino acid availability to modulate the mechanistic target of rapamycin complex 1 (mTORC1) pathway and suppress transcription factor EB (TFEB) and transcription factor enhancer 3 (TFE3), members of the microphthalmia (MiT/TFE) family of HLH-leucine zipper transcription factors. However, how Rag-GTPases coordinate amino acid sensing, mTORC1 activation, and TFEB/TFE3 activity in humoral immunity remains undefined. Here, we show that B cell-intrinsic Rag-GTPases are critical for the development and activation of B cells. RagA/RagB deficient B cells fail to form GCs, produce antibodies, and generate plasmablasts in both T-dependent (TD) and T-independent (TI) humoral immune responses. Deletion of RagA/RagB in GC B cells leads to abnormal dark zone (DZ) to light zone (LZ) ratio and reduced affinity maturation. Mechanistically, the Rag-GTPase complex constrains TFEB/TFE3 activity to prevent mitophagy dysregulation and maintain mitochondrial fitness in B cells, which are independent of canonical mTORC1 activation. TFEB/TFE3 deletion restores B cell development, GC formation in Peyer's patches and TI humoral immunity, but not TD humoral immunity in the absence of Rag-GTPases. Collectively, our data establish Rag-GTPase-TFEB/TFE3 pathway as an mTORC1 independent mechanism to coordinating nutrient sensing and mitochondrial metabolism in B cells.
Collapse
Affiliation(s)
- Xingxing Zhu
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Yue Wu
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Yanfeng Li
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Xian Zhou
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Jens O Watzlawik
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yin Maggie Chen
- Department of Immunology, Mayo Clinic Rochester, MN 55905, USA
| | - Ariel L Raybuck
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center and School of Medicine, Nashville, TN 37232, USA
| | | | | | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Mark R Boothby
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center and School of Medicine, Nashville, TN 37232, USA
| | - Hu Zeng
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic Rochester, MN 55905, USA
| |
Collapse
|
8
|
Gagliardi S, Mitruccio M, Di Corato R, Romano R, Aloisi A, Rinaldi R, Alifano P, Guerra F, Bucci C. Defects of mitochondria-lysosomes communication induce secretion of mitochondria-derived vesicles and drive chemoresistance in ovarian cancer cells. Cell Commun Signal 2024; 22:165. [PMID: 38448982 PMCID: PMC10916030 DOI: 10.1186/s12964-024-01507-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Among the mechanisms of mitochondrial quality control (MQC), generation of mitochondria-derived vesicles (MDVs) is a process to avoid complete failure of mitochondria determining lysosomal degradation of mitochondrial damaged proteins. In this context, RAB7, a late endocytic small GTPase, controls delivery of MDVs to late endosomes for subsequent lysosomal degradation. We previously demonstrated that RAB7 has a pivotal role in response to cisplatin (CDDP) regulating resistance to the drug by extracellular vesicle (EVs) secretion. METHODS Western blot and immunofluorescence analysis were used to analyze structure and function of endosomes and lysosomes in CDDP chemosensitive and chemoresistant ovarian cancer cell lines. EVs were purified from chemosensitive and chemoresistant cells by ultracentrifugation or immunoisolation to analyze their mitochondrial DNA and protein content. Treatment with cyanide m-chlorophenylhydrazone (CCCP) and RAB7 modulation were used, respectively, to understand the role of mitochondrial and late endosomal/lysosomal alterations on MDV secretion. Using conditioned media from chemoresistant cells the effect of MDVs on the viability after CDDP treatment was determined. Seahorse assays and immunofluorescence analysis were used to study the biochemical role of MDVs and the uptake and intracellular localization of MDVs, respectively. RESULTS We observed that CDDP-chemoresistant cells are characterized by increased MDV secretion, impairment of late endocytic traffic, RAB7 downregulation, an increase of RAB7 in EVs, compared to chemosensitive cells, and downregulation of the TFEB-mTOR pathway overseeing lysosomal and mitochondrial biogenesis and turnover. We established that MDVs can be secreted rather than delivered to lysosomes and are able to deliver CDDP outside the cells. We showed increased secretion of MDVs by chemoresistant cells ultimately caused by the extrusion of RAB7 in EVs, resulting in a dramatic drop in its intracellular content, as a novel mechanism to regulate RAB7 levels. We demonstrated that MDVs purified from chemoresistant cells induce chemoresistance in RAB7-modulated process, and, after uptake from recipient cells, MDVs localize to mitochondria and slow down mitochondrial activity. CONCLUSIONS Dysfunctional MQC in chemoresistant cells determines a block in lysosomal degradation of MDVs and their consequent secretion, suggesting that MQC is not able to eliminate damaged mitochondria whose components are secreted becoming effectors and potential markers of chemoresistance.
Collapse
Affiliation(s)
- Sinforosa Gagliardi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
| | - Marco Mitruccio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
| | - Riccardo Di Corato
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, Lecce, 73100, Italy
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, 73010, Italy
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
- Department of Experimental Medicine, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
| | - Alessandra Aloisi
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, Lecce, 73100, Italy
| | - Rosaria Rinaldi
- Department of Mathematics and Physics "E. De Giorgi", University of Salento, Via Monteroni, Lecce, 73100, Italy
- Scuola Superiore ISUFI, University of Salento, Via Monteroni, University Campus, Lecce, 73100, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
- Department of Experimental Medicine, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy.
- Department of Experimental Medicine, University of Salento, Via Provinciale Lecce-Monteroni n. 165, Lecce, 73100, Italy.
| |
Collapse
|
9
|
Dörmann N, Hammer E, Struckmann K, Rüdebusch J, Bartels K, Wenzel K, Schulz J, Gross S, Schwanz S, Martin E, Fielitz B, Pablo Tortola C, Hahn A, Benkner A, Völker U, Felix SB, Fielitz J. Metabolic remodeling in cardiac hypertrophy and heart failure with reduced ejection fraction occurs independent of transcription factor EB in mice. Front Cardiovasc Med 2024; 10:1323760. [PMID: 38259303 PMCID: PMC10800928 DOI: 10.3389/fcvm.2023.1323760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Background A metabolic shift from fatty acid (FAO) to glucose oxidation (GO) occurs during cardiac hypertrophy (LVH) and heart failure with reduced ejection fraction (HFrEF), which is mediated by PGC-1α and PPARα. While the transcription factor EB (TFEB) regulates the expression of both PPARGC1A/PGC-1α and PPARA/PPARα, its contribution to metabolic remodeling is uncertain. Methods Luciferase assays were performed to verify that TFEB regulates PPARGC1A expression. Cardiomyocyte-specific Tfeb knockout (cKO) and wildtype (WT) male mice were subjected to 27G transverse aortic constriction or sham surgery for 21 and 56 days, respectively, to induce LVH and HFrEF. Echocardiographic, morphological, and histological analyses were performed. Changes in markers of cardiac stress and remodeling, metabolic shift and oxidative phosphorylation were investigated by Western blot analyses, mass spectrometry, qRT-PCR, and citrate synthase and complex II activity measurements. Results Luciferase assays revealed that TFEB increases PPARGC1A/PGC-1α expression, which was inhibited by class IIa histone deacetylases and derepressed by protein kinase D. At baseline, cKO mice exhibited a reduced cardiac function, elevated stress markers and a decrease in FAO and GO gene expression compared to WT mice. LVH resulted in increased cardiac remodeling and a decreased expression of FAO and GO genes, but a comparable decline in cardiac function in cKO compared to WT mice. In HFrEF, cKO mice showed an improved cardiac function, lower heart weights, smaller myocytes and a reduction in cardiac remodeling compared to WT mice. Proteomic analysis revealed a comparable decrease in FAO- and increase in GO-related proteins in both genotypes. A significant reduction in mitochondrial quality control genes and a decreased citrate synthase and complex II activities was observed in hearts of WT but not cKO HFrEF mice. Conclusions TFEB affects the baseline expression of metabolic and mitochondrial quality control genes in the heart, but has only minor effects on the metabolic shift in LVH and HFrEF in mice. Deletion of TFEB plays a protective role in HFrEF but does not affect the course of LVH. Further studies are needed to elucidate if TFEB affects the metabolic flux in stressed cardiomyocytes.
Collapse
Affiliation(s)
- Niklas Dörmann
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Elke Hammer
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Karlotta Struckmann
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Julia Rüdebusch
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Kirsten Bartels
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Kristin Wenzel
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Julia Schulz
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Stefan Gross
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Stefan Schwanz
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Elisa Martin
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Britta Fielitz
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| | - Cristina Pablo Tortola
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Hahn
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Benkner
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Uwe Völker
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan B. Felix
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| | - Jens Fielitz
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
10
|
Dwivedi R, Baindara P. Differential Regulation of TFEB-Induced Autophagy during Mtb Infection and Starvation. Microorganisms 2023; 11:2944. [PMID: 38138088 PMCID: PMC10746089 DOI: 10.3390/microorganisms11122944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Through the promotion of phagolysosome formation, autophagy has emerged as a crucial mechanism to eradicate intracellular Mycobacterium tuberculosis (Mtb). A cell-autonomous host defense mechanism called lysosome biogenesis and autophagy transports cytoplasmic cargos and bacterial phagosomes to lysosomes for destruction during infection. Similar occurrences occurred in stressful or starvation circumstances and led to autophagy, which is harmful to the cell. It is interesting to note that under both hunger and infection states, the transcription factor EB (TFEB) acts as a master regulator of lysosomal activities and autophagy. This review highlighted recent research on the multitier regulation of TFEB-induced autophagy by a variety of host effectors and Mtb sulfolipid during Mtb infection and starvation. In general, the research presented here sheds light on how lysosome biogenesis and autophagy are differentially regulated by the TFEB during Mtb infection and starvation.
Collapse
Affiliation(s)
- Richa Dwivedi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Piyush Baindara
- Radiation Oncology, NextGen Precision Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
11
|
Wu Y, Zhou K, Liu B, Xu J, Lei L, Hu J, Cheng X, Zhong F, Wang S. Glial Activation, Mitochondrial Imbalance, and Akt/mTOR Signaling May Be Potential Mechanisms of Cognitive Impairment in Heart Failure Mice. Neurotox Res 2023; 41:589-603. [PMID: 37668877 DOI: 10.1007/s12640-023-00655-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 09/06/2023]
Abstract
Heart failure (HF) is a major health burden worldwide, with approximately half of HF patients having a comorbid cognitive impairment (CI). However, it is still unclear how CI develops in patients with HF. In the present study, a mice model of heart failure was established by ligating the left anterior descending coronary artery. Echocardiography 1 month later confirmed the decline in ejection fraction and ventricular remodeling. Cognitive function was examined by the Pavlovian fear conditioning and the Morris water maze. HF group cued fear memory, spatial memory, and learning impairment, accompanied by activation of glial cells (astrocytes, microglia, and oligodendrocytes) in the hippocampus. In addition, the mitochondrial biogenesis genes TFAM and SIRT1 decreased, and the fission gene DRP1 increased in the hippocampus. Damaged mitochondria release excessive ROS, and the ability to produce ATP decreases. Damaged swollen mitochondria with altered morphology and aberrant inner-membrane crista were observed under a transmission electron microscope. Finally, Akt/mTOR signaling was upregulated in the hippocampus of heart failure mice. These findings suggest that activation of Akt/mTOR signaling, glial activation, and mitochondrial dynamics imbalance could trigger cognitive impairment in the pathological process of heart failure mice.
Collapse
Affiliation(s)
- Yanan Wu
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Kaiyi Zhou
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Baiyang Liu
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jindong Xu
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liming Lei
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiaqi Hu
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao Cheng
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Research On Emergency in TCM, Guangzhou, China.
| | - Feng Zhong
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Sheng Wang
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Abokyi S, Ghartey-Kwansah G, Tse DYY. TFEB is a central regulator of the aging process and age-related diseases. Ageing Res Rev 2023; 89:101985. [PMID: 37321382 DOI: 10.1016/j.arr.2023.101985] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Old age is associated with a greater burden of disease, including neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, as well as other chronic diseases. Coincidentally, popular lifestyle interventions, such as caloric restriction, intermittent fasting, and regular exercise, in addition to pharmacological interventions intended to protect against age-related diseases, induce transcription factor EB (TFEB) and autophagy. In this review, we summarize emerging discoveries that point to TFEB activity affecting the hallmarks of aging, including inhibiting DNA damage and epigenetic modifications, inducing autophagy and cell clearance to promote proteostasis, regulating mitochondrial quality control, linking nutrient-sensing to energy metabolism, regulating pro- and anti-inflammatory pathways, inhibiting senescence and promoting cell regenerative capacity. Furthermore, the therapeutic impact of TFEB activation on normal aging and tissue-specific disease development is assessed in the contexts of neurodegeneration and neuroplasticity, stem cell differentiation, immune responses, muscle energy adaptation, adipose tissue browning, hepatic functions, bone remodeling, and cancer. Safe and effective strategies of activating TFEB hold promise as a therapeutic strategy for multiple age-associated diseases and for extending lifespan.
Collapse
Affiliation(s)
- Samuel Abokyi
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China.
| | - George Ghartey-Kwansah
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Dennis Yan-Yin Tse
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong SAR of China.
| |
Collapse
|
13
|
Bellese G, Tagliatti E, Gagliani MC, Santamaria S, Arnaldi P, Falletta P, Rusmini P, Matteoli M, Castagnola P, Cortese K. Neratinib is a TFEB and TFE3 activator that potentiates autophagy and unbalances energy metabolism in ERBB2+ breast cancer cells. Biochem Pharmacol 2023; 213:115633. [PMID: 37269887 DOI: 10.1016/j.bcp.2023.115633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
Neratinib (NE) is an irreversible pan-ERBB tyrosine kinase inhibitor used to treat breast cancers (BCa) with amplification of the ERBB2/HER2/Neu gene or overexpression of the ERBB2 receptor. However, the mechanisms behind this process are not fully understood. Here we investigated the effects of NE on critical cell survival processes in ERBB2+ cancer cells. By kinome array analysis, we showed that NE time-dependently inhibited the phosphorylation of two distinct sets of kinases. The first set, including ERBB2 downstream signaling kinases such as ERK1/2, ATK, and AKT substrates, showed inhibition after 2 h of NE treatment. The second set, which comprised kinases involved in DNA damage response, displayed inhibition after 72 h. Flow cytometry analyses showed that NE induced G0/G1 cell cycle arrest and early apoptosis. By immunoblot, light and electron microscopy, we revealed that NE also transiently induced autophagy, mediated by increased expression levels and nuclear localization of TFEB and TFE3. Altered TFEB/TFE3 expression was accompanied by dysregulation of mitochondrial energy metabolism and dynamics, leading to a decrease in ATP production, glycolytic activity, and a transient downregulation of fission proteins. Increased TFEB and TFE3 expression was also observed in ERBB2-/ERBB1 + BCa cells, supporting that NE may act through other ERBB family members and/or other kinases. Overall, this study highlights NE as a potent activator of TFEB and TFE3, leading to the suppression of cancer cell survival through autophagy induction, cell cycle arrest, apoptosis, mitochondrial dysfunction and inhibition of DNA damage response.
Collapse
Affiliation(s)
- Grazia Bellese
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Lab, Università di Genova, Genova, Italy
| | - Erica Tagliatti
- IRCCS Humanitas Research Hospital, Laboratory of Pharmacology and Brain Pathology, via Manzoni 56, 20089 Rozzano, Milano, Italy; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Maria Cristina Gagliani
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Lab, Università di Genova, Genova, Italy
| | - Sara Santamaria
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Lab, Università di Genova, Genova, Italy
| | - Pietro Arnaldi
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Lab, Università di Genova, Genova, Italy
| | - Paola Falletta
- Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Dipartimento di Eccellenza 2018-2027, Università degli Studi di Milano, Milan, Italy
| | - Michela Matteoli
- IRCCS Humanitas Research Hospital, Laboratory of Pharmacology and Brain Pathology, via Manzoni 56, 20089 Rozzano, Milano, Italy; CNR Institute of Neuroscience, Milano, Italy
| | | | - Katia Cortese
- DIMES, Department of Experimental Medicine, Cellular Electron Microscopy Lab, Università di Genova, Genova, Italy.
| |
Collapse
|
14
|
Wang Y, Li J, Zhang Z, Wang R, Bo H, Zhang Y. Exercise Improves the Coordination of the Mitochondrial Unfolded Protein Response and Mitophagy in Aging Skeletal Muscle. Life (Basel) 2023; 13:life13041006. [PMID: 37109535 PMCID: PMC10142204 DOI: 10.3390/life13041006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) and mitophagy are two mitochondrial quality control (MQC) systems that work at the molecular and organelle levels, respectively, to maintain mitochondrial homeostasis. Under stress conditions, these two processes are simultaneously activated and compensate for each other when one process is insufficient, indicating mechanistic coordination between the UPRmt and mitophagy that is likely controlled by common upstream signals. This review focuses on the molecular signals regulating this coordination and presents evidence showing that this coordination mechanism is impaired during aging and promoted by exercise. Furthermore, the bidirectional regulation of reactive oxygen species (ROS) and AMPK in modulating this mechanism is discussed. The hierarchical surveillance network of MQC can be targeted by exercise-derived ROS to attenuate aging, which offers a molecular basis for potential therapeutic interventions for sarcopenia.
Collapse
Affiliation(s)
- Yan Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
- School of Physical Education, Guangdong Institute of Petrochemical Technology, Maoming 525000, China
| | - Jialin Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
| | - Ziyi Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
| | - Runzi Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
| | - Hai Bo
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
- Department of Military Training Medicines, Logistics University of Chinese People's Armed Police Force, Tianjin 300162, China
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, School of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China
| |
Collapse
|
15
|
Li X, Chen Y, Gong S, Chen H, Liu H, Li X, Hao J. Emerging roles of TFE3 in metabolic regulation. Cell Death Discov 2023; 9:93. [PMID: 36906611 PMCID: PMC10008649 DOI: 10.1038/s41420-023-01395-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023] Open
Abstract
TFE3 is a member of the MiT family of the bHLH-leucine zipper transcription factor. We previously focused on the role of TFE3 in autophagy and cancer. Recently, an increasing number of studies have revealed that TFE3 plays an important role in metabolic regulation. TFE3 participates in the metabolism of energy in the body by regulating pathways such as glucose and lipid metabolism, mitochondrial metabolism, and autophagy. This review summarizes and discusses the specific regulatory mechanisms of TFE3 in metabolism. We determined both the direct regulation of TFE3 on metabolically active cells, such as hepatocytes and skeletal muscle cells, and the indirect regulation of TFE3 through mitochondrial quality control and the autophagy-lysosome pathway. The role of TFE3 in tumor cell metabolism is also summarized in this review. Understanding the diverse roles of TFE3 in metabolic processes can provide new avenues for the treatment of some metabolism-related disorders.
Collapse
Affiliation(s)
- Xingyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yongming Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Siqiao Gong
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Huixia Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Huafeng Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Xiaoyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Junfeng Hao
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
16
|
Wang S, Chen Y, Wu H, Li X, Xiao H, Pan Q, Liu HF. Role of Transcription Factor EB in Mitochondrial Dysfunction of Cisplatin-Induced Acute Kidney Injury. Int J Mol Sci 2023; 24:ijms24033028. [PMID: 36769347 PMCID: PMC9917568 DOI: 10.3390/ijms24033028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Cisplatin, a widely used anticancer agent, can cause nephrotoxicity, including both acute kidney injury (AKI) and chronic kidney diseases, by accumulating in renal tubular epithelial cells (TECs). Mitochondrial pathology plays an important role in the pathogenesis of AKI. Based on the regulatory role of transcription factor EB (TFEB) in mitochondria, we investigated whether TFEB is involved in cisplatin-induced TEC damage. The results show that the expression of TFEB decreased in a concentration-dependent manner in both mouse kidney tissue and HK-2 cells when treated with cisplatin. A knockdown of TFEB aggravated cisplatin-induced renal TEC injury, which was partially reversed by TFEB overexpression in HK-2 cells. It was further observed that the TFEB knockdown also exacerbated cisplatin-induced mitochondrial damage in vitro, and included the depolarization of membrane potential, mitochondrial fragmentation and swelling, and the production of reactive oxygen species. In contrast, TFEB overexpression alleviated cisplatin-induced mitochondrial damage in TECs. These findings suggest that decreased TFEB expression may be a key mechanism of mitochondrial dysfunction in cisplatin-induced AKI, and that upregulation of TFEB has the potential to act as a therapeutic target to alleviate mitochondrial dysfunction and cisplatin-induced TEC injury. This study is important for developing therapeutic strategies to manipulate mitochondria through TFEB to delay AKI progression.
Collapse
Affiliation(s)
- Shujun Wang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Yanse Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Hongluan Wu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Xiaoyu Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Haiyan Xiao
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Qingjun Pan
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
- Correspondence: (Q.P.); (H.-F.L.); Tel.: +86-759-2387164 (H.-F.L.)
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
- Correspondence: (Q.P.); (H.-F.L.); Tel.: +86-759-2387164 (H.-F.L.)
| |
Collapse
|
17
|
Effect of the Ketone Body, D-β-Hydroxybutyrate, on Sirtuin2-Mediated Regulation of Mitochondrial Quality Control and the Autophagy-Lysosomal Pathway. Cells 2023; 12:cells12030486. [PMID: 36766827 PMCID: PMC9914182 DOI: 10.3390/cells12030486] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial activity and quality control are essential for neuronal homeostasis as neurons rely on glucose oxidative metabolism. The ketone body, D-β-hydroxybutyrate (D-BHB), is metabolized to acetyl-CoA in brain mitochondria and used as an energy fuel alternative to glucose. We have previously reported that D-BHB sustains ATP production and stimulates the autophagic flux under glucose deprivation in neurons; however, the effects of D-BHB on mitochondrial turnover under physiological conditions are still unknown. Sirtuins (SIRTs) are NAD+-activated protein deacetylases involved in the regulation of mitochondrial biogenesis and mitophagy through the activation of transcription factors FOXO1, FOXO3a, TFEB and PGC1α coactivator. Here, we aimed to investigate the effect of D-BHB on mitochondrial turnover in cultured neurons and the mechanisms involved. Results show that D-BHB increased mitochondrial membrane potential and regulated the NAD+/NADH ratio. D-BHB enhanced FOXO1, FOXO3a and PGC1α nuclear levels in an SIRT2-dependent manner and stimulated autophagy, mitophagy and mitochondrial biogenesis. These effects increased neuronal resistance to energy stress. D-BHB also stimulated the autophagic-lysosomal pathway through AMPK activation and TFEB-mediated lysosomal biogenesis. Upregulation of SIRT2, FOXOs, PGC1α and TFEB was confirmed in the brain of ketogenic diet (KD)-treated mice. Altogether, the results identify SIRT2, for the first time, as a target of D-BHB in neurons, which is involved in the regulation of autophagy/mitophagy and mitochondrial quality control.
Collapse
|
18
|
Srivastava V, Zelmanovich V, Shukla V, Abergel R, Cohen I, Ben-Sasson SA, Gross E. Distinct designer diamines promote mitophagy, and thereby enhance healthspan in C. elegans and protect human cells against oxidative damage. Autophagy 2023; 19:474-504. [PMID: 35579620 PMCID: PMC9851263 DOI: 10.1080/15548627.2022.2078069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Impaired mitophagy is a primary pathogenic event underlying diverse aging-associated diseases such as Alzheimer and Parkinson diseases and sarcopenia. Therefore, augmentation of mitophagy, the process by which defective mitochondria are removed, then replaced by new ones, is an emerging strategy for preventing the evolvement of multiple morbidities in the elderly population. Based on the scaffold of spermidine (Spd), a known mitophagy-promoting agent, we designed and tested a family of structurally related compounds. A prototypic member, 1,8-diaminooctane (VL-004), exceeds Spd in its ability to induce mitophagy and protect against oxidative stress. VL-004 activity is mediated by canonical aging genes and promotes lifespan and healthspan in C. elegans. Moreover, it enhances mitophagy and protects against oxidative injury in rodent and human cells. Initial structural characterization suggests simple rules for the design of compounds with improved bioactivity, opening the way for a new generation of agents with a potential to promote healthy aging.
Collapse
Affiliation(s)
- Vijigisha Srivastava
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Veronica Zelmanovich
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Virendra Shukla
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachel Abergel
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Irit Cohen
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shmuel A. Ben-Sasson
- Department Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Einav Gross
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel,CONTACT Einav Gross Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, the Hebrew University of Jerusalem, Ein Kerem. PO Box 12271, Jerusalem9112102, Israel
| |
Collapse
|
19
|
Donate-Correa J, Martín-Carro B, Cannata-Andía JB, Mora-Fernández C, Navarro-González JF. Klotho, Oxidative Stress, and Mitochondrial Damage in Kidney Disease. Antioxidants (Basel) 2023; 12:239. [PMID: 36829798 PMCID: PMC9952437 DOI: 10.3390/antiox12020239] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Reducing oxidative stress stands at the center of a prevention and control strategy for mitigating cellular senescence and aging. Kidney disease is characterized by a premature aging syndrome, and to find a modulator targeting against oxidative stress, mitochondrial dysfunction, and cellular senescence in kidney cells could be of great significance to prevent and control the progression of this disease. This review focuses on the pathogenic mechanisms related to the appearance of oxidative stress damage and mitochondrial dysfunction in kidney disease. In this scenario, the anti-aging Klotho protein plays a crucial role by modulating signaling pathways involving the manganese-containing superoxide dismutase (Mn-SOD) and the transcription factors FoxO and Nrf2, known antioxidant systems, and other known mitochondrial function regulators, such as mitochondrial uncoupling protein 1 (UCP1), B-cell lymphoma-2 (BCL-2), Wnt/β-catenin, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1 alpha), transcription factor EB, (TFEB), and peroxisome proliferator-activated receptor gamma (PPAR-gamma). Therefore, Klotho is postulated as a very promising new target for future therapeutic strategies against oxidative stress, mitochondria abnormalities, and cellular senescence in kidney disease patients.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38010 San Cristóbal de La Laguna, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Beatriz Martín-Carro
- RICORS2040 (RD21/0005/0019), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jorge B. Cannata-Andía
- RICORS2040 (RD21/0005/0019), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan F. Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38010 San Cristóbal de La Laguna, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| |
Collapse
|
20
|
Gebrie A. Transcription factor EB as a key molecular factor in human health and its implication in diseases. SAGE Open Med 2023; 11:20503121231157209. [PMID: 36891126 PMCID: PMC9986912 DOI: 10.1177/20503121231157209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 03/07/2023] Open
Abstract
Transcription factor EB, as a component of the microphthalmia family of transcription factors, has been demonstrated to be a key controller of autophagy-lysosomal biogenesis. Transcription factor EB is activated by stressors such as nutrition and deprivation of growth factors, hypoxia, lysosomal stress, and mitochondrial injury. To achieve the ultimate functional state, it is controlled in a variety of modes, such as in its rate of transcription, post-transcriptional control, and post-translational alterations. Due to its versatile role in numerous signaling pathways, including the Wnt, calcium, AKT, and mammalian target of rapamycin complex 1 signaling pathways, transcription factor EB-originally identified to be an oncogene-is now well acknowledged as a regulator of a wide range of physiological systems, including autophagy-lysosomal biogenesis, response to stress, metabolism, and energy homeostasis. The well-known and recently identified roles of transcription factor EB suggest that this protein might play a central role in signaling networks in a number of non-communicable illnesses, such as cancer, cardiovascular disorders, drug resistance mechanisms, immunological disease, and tissue growth. The important developments in transcription factor EB research since its first description are described in this review. This review helps to advance transcription factor EB from fundamental research into therapeutic and regenerative applications by shedding light on how important a role it plays in human health and disease at the molecular level.
Collapse
Affiliation(s)
- Alemu Gebrie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
21
|
Dhasmana S, Dhasmana A, Kotnala S, Mangtani V, Narula AS, Haque S, Jaggi M, Yallapu MM, Chauhan SC. Boosting Mitochondrial Potential: An Imperative Therapeutic Intervention in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2023; 21:1117-1138. [PMID: 36111770 PMCID: PMC10286590 DOI: 10.2174/1570159x20666220915092703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Amyotrophic Lateral Sclerosis (ALS) is a progressive and terminal neurodegenerative disorder. Mitochondrial dysfunction, imbalance of cellular bioenergetics, electron chain transportation and calcium homeostasis are deeply associated with the progression of this disease. Impaired mitochondrial functions are crucial in rapid neurodegeneration. The mitochondria of ALS patients are associated with deregulated Ca2+ homeostasis and elevated levels of reactive oxygen species (ROS), leading to oxidative stress. Overload of mitochondrial calcium and ROS production leads to glutamatereceptor mediated neurotoxicity. This implies mitochondria are an attractive therapeutic target. OBJECTIVE The aim of this review is to brief the latest developments in the understanding of mitochondrial pathogenesis in ALS and emphasize the restorative capacity of therapeutic candidates. RESULTS In ALS, mitochondrial dysfunction is a well-known phenomenon. Various therapies targeted towards mitochondrial dysfunction aim at decreasing ROS generation, increasing mitochondrial biogenesis, and inhibiting apoptotic pathways. Some of the therapies briefed in this review may be categorized as synthetic, natural compounds, genetic materials, and cellular therapies. CONCLUSION The overarching goals of mitochondrial therapies in ALS are to benefit ALS patients by slowing down the disease progression and prolonging overall survival. Despite various therapeutic approaches, there are many hurdles in the development of a successful therapy due to the multifaceted nature of mitochondrial dysfunction and ALS progression. Intensive research is required to precisely elucidate the molecular pathways involved in the progression of mitochondrial dysfunctions that ultimately lead to ALS. Because of the multifactorial nature of ALS, a combination therapy approach may hold the key to cure and treat ALS in the future.
Collapse
Affiliation(s)
- Swati Dhasmana
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sudhir Kotnala
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Varsha Mangtani
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
| | - Acharan S. Narula
- Narula Research LLC, 107 Boulder Bluff, Chapel Hill, North Carolina, NC 27516, USA
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Meena Jaggi
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M. Yallapu
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
22
|
Metformin Alleviates Epirubicin-Induced Endothelial Impairment by Restoring Mitochondrial Homeostasis. Int J Mol Sci 2022; 24:ijms24010343. [PMID: 36613786 PMCID: PMC9820471 DOI: 10.3390/ijms24010343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Vascular endothelial injury is important in anthracycline-induced cardiotoxicity. Anthracyclines seriously damage the mitochondrial function and mitochondrial homeostasis. In this study, we investigated the damage of epirubicin to vascular endothelial cells and the protective role of metformin from the perspective of mitochondrial homeostasis. We found that epirubicin treatment resulted in DNA double-strand breaks (DSB), elevated reactive oxygen species (ROS) production, and excessive Angiotensin II release in HUVEC cells. Pretreatment with metformin significantly mitigated the injuries caused by epirubicin. In addition, inhibited expression of Mitochondrial transcription factor A (TFAM) and increased mitochondria fragmentation were observed in epirubicin-treated cells, which were partially resumed by metformin pretreatment. In epirubicin-treated cells, knockdown of TFAM counteracted the attenuated DSB formation due to metformin pretreatment, and inhibition of mitochondrial fragmentation with Mdivi-1 decreased DSB formation but increased TFAM expression. Furthermore, epirubicin treatment promoted mitochondrial fragmentation by stimulating the expression of Dynamin-1-like protein (DRP1) and inhibiting the expression of Optic atrophy-1(OPA1) and Mitofusin 1(MFN1), which could be partially prevented by metformin. Finally, we found metformin could increase TFAM expression and decrease DRP1 expression in epirubicin-treated HUVEC cells by upregulating the expression of calcineurin/Transcription factor EB (TFEB). Taken together, this study provided evidence that metformin treatment was an effective way to mitigate epirubicin-induced endothelial impairment by maintaining mitochondrial homeostasis.
Collapse
|
23
|
Hofer SJ, Simon AK, Bergmann M, Eisenberg T, Kroemer G, Madeo F. Mechanisms of spermidine-induced autophagy and geroprotection. NATURE AGING 2022; 2:1112-1129. [PMID: 37118547 DOI: 10.1038/s43587-022-00322-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/28/2022] [Indexed: 04/30/2023]
Abstract
Aging involves the systemic deterioration of all known cell types in most eukaryotes. Several recently discovered compounds that extend the healthspan and lifespan of model organisms decelerate pathways that govern the aging process. Among these geroprotectors, spermidine, a natural polyamine ubiquitously found in organisms from all kingdoms, prolongs the lifespan of fungi, nematodes, insects and rodents. In mice, it also postpones the manifestation of various age-associated disorders such as cardiovascular disease and neurodegeneration. The specific features of spermidine, including its presence in common food items, make it an interesting candidate for translational aging research. Here, we review novel insights into the geroprotective mode of action of spermidine at the molecular level, as we discuss strategies for elucidating its clinical potential.
Collapse
Affiliation(s)
- Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Max Delbrück Center, Berlin, Germany
| | - Martina Bergmann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|
24
|
Sui GY, Wang F, Lee J, Roh YS. Mitochondrial Control in Inflammatory Gastrointestinal Diseases. Int J Mol Sci 2022; 23:14890. [PMID: 36499214 PMCID: PMC9736936 DOI: 10.3390/ijms232314890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Mitochondria play a central role in the pathophysiology of inflammatory bowel disease (IBD) and colorectal cancer (CRC). The maintenance of mitochondrial function is necessary for a stable immune system. Mitochondrial dysfunction in the gastrointestinal system leads to the excessive activation of multiple inflammatory signaling pathways, leading to IBD and increased severity of CRC. In this review, we focus on the mitochondria and inflammatory signaling pathways and its related gastrointestinal diseases.
Collapse
Affiliation(s)
- Guo-Yan Sui
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Feng Wang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jin Lee
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yoon Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| |
Collapse
|
25
|
Inhibited transcription factor EB function induces reactive oxygen species overproduction to promote pyroptosis in cadmium-exposed renal tubular epithelial cells. Chem Biol Interact 2022; 368:110249. [DOI: 10.1016/j.cbi.2022.110249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/12/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
26
|
Protective Effect of Natural Medicinal Plants on Cardiomyocyte Injury in Heart Failure: Targeting the Dysregulation of Mitochondrial Homeostasis and Mitophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3617086. [PMID: 36132224 PMCID: PMC9484955 DOI: 10.1155/2022/3617086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/16/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Heart failure occurs because of various cardiovascular pathologies, such as coronary artery disease or cardiorenal syndrome, eventually reaching end-stage disease. Various factors contribute to cardiac structural or functional changes that result in systolic or diastolic dysfunction. Several studies have confirmed that the key factor in heart failure progression is myocardial cell death, and mitophagy is the major mechanism regulating myocardial cell death in heart failure. The clinical mechanisms of heart failure are well understood in practice. However, the essential role of mitophagic regulation in heart failure has only recently received widespread attention. Receptor-mediated mitophagy is involved in various mitochondrial processes like oxidative stress injury, energy metabolism disorders, and calcium homeostasis, which are also the main causes of heart failure. Understanding of the diverse regulatory mechanisms in mitophagy and the complexity of its pathophysiology in heart failure remains incomplete. Related studies have found that various natural medicinal plants and active ingredients, such as flavonoids and saponins, can regulate mitophagy to a certain extent, improve myocardial function, and protect myocardial cells. This review comprehensively covers the relevant mechanisms of different types of mitophagy in regulating heart failure pathology and controlling mitochondrial adaptability to stress injury. Further, it explores the relationship between mitophagy and cardiac ejection dysfunction. Natural medicinal plant-targeted regulation strategies and scientific evidence on mitophagy were provided to elucidate current and potential strategies to apply mitophagy-targeted therapy for heart failure.
Collapse
|
27
|
Capristo M, Del Dotto V, Tropeano CV, Fiorini C, Caporali L, La Morgia C, Valentino ML, Montopoli M, Carelli V, Maresca A. Rapamycin rescues mitochondrial dysfunction in cells carrying the m.8344A > G mutation in the mitochondrial tRNA Lys. Mol Med 2022; 28:90. [PMID: 35922766 PMCID: PMC9347137 DOI: 10.1186/s10020-022-00519-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Background Myoclonus, Epilepsy and Ragged-Red-Fibers (MERRF) is a mitochondrial encephalomyopathy due to heteroplasmic mutations in mitochondrial DNA (mtDNA) most frequently affecting the tRNALys gene at position m.8344A > G. Defective tRNALys severely impairs mitochondrial protein synthesis and respiratory chain when a high percentage of mutant heteroplasmy crosses the threshold for full-blown clinical phenotype. Therapy is currently limited to symptomatic management of myoclonic epilepsy, and supportive measures to counteract muscle weakness with co-factors/supplements. Methods We tested two therapeutic strategies to rescue mitochondrial function in cybrids and fibroblasts carrying different loads of the m.8344A > G mutation. The first strategy was aimed at inducing mitochondrial biogenesis directly, over-expressing the master regulator PGC-1α, or indirectly, through the treatment with nicotinic acid, a NAD+ precursor. The second was aimed at stimulating the removal of damaged mitochondria through prolonged rapamycin treatment. Results The first approach slightly increased mitochondrial protein expression and respiration in the wild type and intermediate-mutation load cells, but was ineffective in high-mutation load cell lines. This suggests that induction of mitochondrial biogenesis may not be sufficient to rescue mitochondrial dysfunction in MERRF cells with high-mutation load. The second approach, when administered chronically (4 weeks), induced a slight increase of mitochondrial respiration in fibroblasts with high-mutation load, and a significant improvement in fibroblasts with intermediate-mutation load, rescuing completely the bioenergetics defect. This effect was mediated by increased mitochondrial biogenesis, possibly related to the rapamycin-induced inhibition of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and the consequent activation of the Transcription Factor EB (TFEB). Conclusions Overall, our results point to rapamycin-based therapy as a promising therapeutic option for MERRF. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00519-z.
Collapse
Affiliation(s)
- Mariantonietta Capristo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy
| | - Valentina Del Dotto
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy
| | - Concetta Valentina Tropeano
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy
| | - Claudio Fiorini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy
| | - Maria Lucia Valentino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy.,Department of Biomedical and NeuroMotor Sciences, University of Bologna, via Altura 3, 40139, Bologna, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Largo Meneghetti 2, 3513, Padova, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy. .,Department of Biomedical and NeuroMotor Sciences, University of Bologna, via Altura 3, 40139, Bologna, Italy.
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy.
| |
Collapse
|
28
|
Lang M, Pramstaller PP, Pichler I. Crosstalk of organelles in Parkinson's disease - MiT family transcription factors as central players in signaling pathways connecting mitochondria and lysosomes. Mol Neurodegener 2022; 17:50. [PMID: 35842725 PMCID: PMC9288732 DOI: 10.1186/s13024-022-00555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Living organisms constantly need to adapt to their surrounding environment and have evolved sophisticated mechanisms to deal with stress. Mitochondria and lysosomes are central organelles in the response to energy and nutrient availability within a cell and act through interconnected mechanisms. However, when such processes become overwhelmed, it can lead to pathologies. Parkinson's disease (PD) is a common neurodegenerative disorder (NDD) characterized by proteinaceous intracellular inclusions and progressive loss of dopaminergic neurons, which causes motor and non-motor symptoms. Genetic and environmental factors may contribute to the disease etiology. Mitochondrial dysfunction has long been recognized as a hallmark of PD pathogenesis, and several aspects of mitochondrial biology are impaired in PD patients and models. In addition, defects of the autophagy-lysosomal pathway have extensively been observed in cell and animal models as well as PD patients' brains, where constitutive autophagy is indispensable for adaptation to stress and energy deficiency. Genetic and molecular studies have shown that the functions of mitochondria and lysosomal compartments are tightly linked and influence each other. Connections between these organelles are constituted among others by mitophagy, organellar dynamics and cellular signaling cascades, such as calcium (Ca2+) and mTOR (mammalian target of rapamycin) signaling and the activation of transcription factors. Members of the Microphthalmia-associated transcription factor family (MiT), including MITF, TFE3 and TFEB, play a central role in regulating cellular homeostasis in response to metabolic pressure and are considered master regulators of lysosomal biogenesis. As such, they are part of the interconnection between mitochondria and lysosome functions and therefore represent attractive targets for therapeutic approaches against NDD, including PD. The activation of MiT transcription factors through genetic and pharmacological approaches have shown encouraging results at ameliorating PD-related phenotypes in in vitro and in vivo models. In this review, we summarize the relationship between mitochondrial and autophagy-lysosomal functions in the context of PD etiology and focus on the role of the MiT pathway and its potential as pharmacological target against PD.
Collapse
Affiliation(s)
- Martin Lang
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.,Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| |
Collapse
|
29
|
Tubular Mitochondrial Dysfunction, Oxidative Stress, and Progression of Chronic Kidney Disease. Antioxidants (Basel) 2022; 11:antiox11071356. [PMID: 35883847 PMCID: PMC9311633 DOI: 10.3390/antiox11071356] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/23/2022] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are interconnected conditions, and CKD is projected to become the fifth leading global cause of death by 2040. New therapeutic approaches are needed. Mitochondrial dysfunction and oxidative stress have emerged as drivers of kidney injury in acute and chronic settings, promoting the AKI-to-CKD transition. In this work, we review the role of mitochondrial dysfunction and oxidative stress in AKI and CKD progression and discuss novel therapeutic approaches. Specifically, evidence for mitochondrial dysfunction in diverse models of AKI (nephrotoxicity, cytokine storm, and ischemia-reperfusion injury) and CKD (diabetic kidney disease, glomerulopathies) is discussed; the clinical implications of novel information on the key role of mitochondria-related transcriptional regulators peroxisome proliferator-activated receptor gamma coactivator 1-alpha, transcription factor EB (PGC-1α, TFEB), and carnitine palmitoyl-transferase 1A (CPT1A) in kidney disease are addressed; the current status of the clinical development of therapeutic approaches targeting mitochondria are updated; and barriers to the clinical development of mitochondria-targeted interventions are discussed, including the lack of clinical diagnostic tests that allow us to categorize the baseline renal mitochondrial dysfunction/mitochondrial oxidative stress and to monitor its response to therapeutic intervention. Finally, key milestones for further research are proposed.
Collapse
|
30
|
Chen L, Qin Y, Liu B, Gao M, Li A, Li X, Gong G. PGC-1 α-Mediated Mitochondrial Quality Control: Molecular Mechanisms and Implications for Heart Failure. Front Cell Dev Biol 2022; 10:871357. [PMID: 35721484 PMCID: PMC9199988 DOI: 10.3389/fcell.2022.871357] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/27/2022] [Indexed: 12/26/2022] Open
Abstract
Mitochondria with structural and functional integrity are essential for maintaining mitochondrial function and cardiac homeostasis. It is involved in the pathogenesis of many diseases. Peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α), acted as a transcriptional cofactor, is abundant in the heart, which modulates mitochondrial biogenesis and mitochondrial dynamics and mitophagy to sustain a steady-state of mitochondria. Cumulative evidence suggests that dysregulation of PGC-1α is closely related to the onset and progression of heart failure. PGC-1α deficient-mice can lead to worse cardiac function under pressure overload compared to sham. Here, this review mainly focuses on what is known about its regulation in mitochondrial functions, as well as its crucial role in heart failure.
Collapse
Affiliation(s)
- Lei Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuan Qin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Bilin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xue Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
31
|
Zhao L, Zhang CL, He L, Chen Q, Liu L, Kang L, Liu J, Luo JY, Gou L, Qu D, Song W, Lau CW, Ko H, Mok VCT, Tian XY, Wang L, Huang Y. Restoration of Autophagic Flux Improves Endothelial Function in Diabetes Through Lowering Mitochondrial ROS-Mediated eNOS Monomerization. Diabetes 2022; 71:1099-1114. [PMID: 35179568 DOI: 10.2337/db21-0660] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) monomerization and uncoupling play crucial roles in mediating vascular dysfunction in diabetes, although the underlying mechanisms are still incompletely understood. Increasing evidence indicates that autophagic dysregulation is involved in the pathogenesis of diabetic endothelial dysfunction; however, whether autophagy regulates eNOS activity through controlling eNOS monomerization or dimerization remains elusive. In this study, autophagic flux was impaired in the endothelium of diabetic db/db mice and in human endothelial cells exposed to advanced glycation end products or oxidized low-density lipoprotein. Inhibition of autophagic flux by chloroquine or bafilomycin A1 were sufficient to induce eNOS monomerization and lower nitric oxide bioavailability by increasing mitochondrial reactive oxygen species (mtROS). Restoration of autophagic flux by overexpressing transcription factor EB (TFEB), a master regulator of autophagy and lysosomal biogenesis, decreased endothelial cell oxidative stress, increased eNOS dimerization, and improved endothelium-dependent relaxations (EDRs) in db/db mouse aortas. Inhibition of mammalian target of rapamycin kinase (mTOR) increased TFEB nuclear localization, reduced mtROS accumulation, facilitated eNOS dimerization, and enhanced EDR in db/db mice. Moreover, calorie restriction also increased TFEB expression, improved autophagic flux, and restored EDR in the aortas of db/db mice. Taken together, the findings of this study reveal that mtROS-induced eNOS monomerization is closely associated with the impaired TFEB-autophagic flux axis leading to endothelial dysfunction in diabetic mice.
Collapse
Affiliation(s)
- Lei Zhao
- Shenzhen Research Institute and School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Lei He
- Shenzhen Research Institute and School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Qinghua Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Limei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lijing Kang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jian Liu
- Shenzhen Research Institute and School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiang-Yun Luo
- Shenzhen Research Institute and School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lingshan Gou
- Shenzhen Research Institute and School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Dan Qu
- Shenzhen Research Institute and School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wencong Song
- Shenzhen Research Institute and School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Wai Lau
- Shenzhen Research Institute and School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Vincent C T Mok
- Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao Yu Tian
- Shenzhen Research Institute and School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Shenzhen Research Institute and School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
32
|
Liu N, Chen Y, Yang L, Shi Q, Lu Y, Ma W, Han X, Guo H, Li D, Gan W. Both SUMOylation and ubiquitination of TFE3 fusion protein regulated by androgen receptor are the potential target in the therapy of Xp11.2 translocation renal cell carcinoma. Clin Transl Med 2022; 12:e797. [PMID: 35452181 PMCID: PMC9029019 DOI: 10.1002/ctm2.797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 01/06/2023] Open
Abstract
Background The aggressiveness of renal cell carcinoma (RCC) associated with Xp11.2 translocation/TFE3 gene fusion (Xp11.2 translocation RCC [Xp11.2 tRCC]) is age‐dependent, which is similar to the overall trend of reproductive endocrine hormones. Therefore, this study focused on the effect and potential mechanism of androgen and androgen receptor (AR) on the progression of Xp11.2 tRCC. Methods The effects of androgen and AR on the proliferation and migration of Xp11.2 tRCC cells were first evaluated utilising Xp11.2 tRCC cell lines and tissues. Because Transcription factor enhancer 3 (TFE3) fusion proteins play a key role in Xp11.2 tRCC, we focused on the regulatory role of AR and TFE3 expression and transcriptional activity. Results When Xp11.2 tRCC cells were treated with dihydrotestosterone, increased cell proliferation, invasion and migration were observed. Compared with clear cell RCC, the positive rate of AR in Xp11.2 tRCC tissues was higher, and its expression was negatively associated with the progression‐free survival of Xp11.2 tRCC. Further studies revealed that AR could positively regulate the transcriptional activity of TFE3 fusion proteins by small ubiquitin‐related modifier (SUMO)‐specific protease 1, inducing the deSUMOylation of TFE3 fusion. On the other hand, UCHL1 negatively regulated by AR plays a role in the deubiquitination degradation of the PRCC‐TFE3 fusion protein. Therefore, the combination of the AR inhibitor MDV3100 and the UCHL1 inhibitor 6RK73 was effective in delaying the progression of Xp11.2 tRCC, especially PRCC‐TFE3 tRCC. Conclusions Androgen and AR function as facilitators in Xp11.2 tRCC progression and may be a novel therapeutic target for Xp11.2 tRCC. The combined use of AR antagonist MDV3100 and UCHL1 inhibitor 6RK73 increased both the SUMOylation and ubiquitination of the PRCC‐TFE3 fusion protein
Collapse
Affiliation(s)
- Ning Liu
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yi Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Lei Yang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Qiancheng Shi
- Department of Urology, Affiliated Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanwen Lu
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Wenliang Ma
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Weidong Gan
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
33
|
Hernandez GA, Perera RM. Autophagy in cancer cell remodeling and quality control. Mol Cell 2022; 82:1514-1527. [PMID: 35452618 PMCID: PMC9119670 DOI: 10.1016/j.molcel.2022.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
Abstract
As one of the two highly conserved cellular degradation systems, autophagy plays a critical role in regulation of protein, lipid, and organelle quality control and cellular homeostasis. This evolutionarily conserved pathway singles out intracellular substrates for elimination via encapsulation within a double-membrane vesicle and delivery to the lysosome for degradation. Multiple cancers disrupt normal regulation of autophagy and hijack its degradative ability to remodel their proteome, reprogram their metabolism, and adapt to environmental challenges, making the autophagy-lysosome system a prime target for anti-cancer interventions. Here, we discuss the roles of autophagy in tumor progression, including cancer-specific mechanisms of autophagy regulation and the contribution of tumor and host autophagy in metabolic regulation, immune evasion, and malignancy. We further discuss emerging proteomics-based approaches for systematic profiling of autophagosome-lysosome composition and contents. Together, these approaches are uncovering new features and functions of autophagy, leading to more effective strategies for targeting this pathway in cancer.
Collapse
Affiliation(s)
- Grace A Hernandez
- Department of Anatomy, Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rushika M Perera
- Department of Anatomy, Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
34
|
Liu S, Yuan Y, Xue Y, Xing C, Zhang B. Podocyte Injury in Diabetic Kidney Disease: A Focus on Mitochondrial Dysfunction. Front Cell Dev Biol 2022; 10:832887. [PMID: 35321238 PMCID: PMC8935076 DOI: 10.3389/fcell.2022.832887] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
Podocytes are a crucial cellular component in maintaining the glomerular filtration barrier, and their injury is the major determinant in the development of albuminuria and diabetic kidney disease (DKD). Podocytes are rich in mitochondria and heavily dependent on them for energy to maintain normal functions. Emerging evidence suggests that mitochondrial dysfunction is a key driver in the pathogenesis of podocyte injury in DKD. Impairment of mitochondrial function results in an energy crisis, oxidative stress, inflammation, and cell death. In this review, we summarize the recent advances in the molecular mechanisms that cause mitochondrial damage and illustrate the impact of mitochondrial injury on podocytes. The related mitochondrial pathways involved in podocyte injury in DKD include mitochondrial dynamics and mitophagy, mitochondrial biogenesis, mitochondrial oxidative phosphorylation and oxidative stress, and mitochondrial protein quality control. Furthermore, we discuss the role of mitochondria-associated membranes (MAMs) formation, which is intimately linked with mitochondrial function in podocytes. Finally, we examine the experimental evidence exploring the targeting of podocyte mitochondrial function for treating DKD and conclude with a discussion of potential directions for future research in the field of mitochondrial dysfunction in podocytes in DKD.
Collapse
Affiliation(s)
- Simeng Liu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yanggang Yuan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yi Xue
- Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Changying Xing
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- *Correspondence: Changying Xing, ; Bo Zhang,
| | - Bo Zhang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Pukou Branch of JiangSu Province Hospital (Nanjing Pukou Central Hospital), Nanjing, China
- *Correspondence: Changying Xing, ; Bo Zhang,
| |
Collapse
|
35
|
A Mitochondrial Dysfunction and Oxidative Stress Pathway-Based Prognostic Signature for Clear Cell Renal Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9939331. [PMID: 34868460 PMCID: PMC8635875 DOI: 10.1155/2021/9939331] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/07/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022]
Abstract
Mitochondria not only are the main source of ATP synthesis but also regulate cellular redox balance and calcium homeostasis. Its dysfunction can lead to a variety of diseases and promote cancer and metastasis. In this study, we aimed to explore the molecular characteristics and prognostic significance of mitochondrial genes (MTGs) related to oxidative stress in clear cell renal cell carcinoma (ccRCC). A total of 75 differentially expressed MTGs were analyzed from The Cancer Genome Atlas (TCGA) database, including 46 upregulated and 29 downregulated MTGs. Further analysis screened 6 prognostic-related MTGs (ACAD11, ACADSB, BID, PYCR1, SLC25A27, and STAR) and was used to develop a signature. Kaplan-Meier survival and receiver operating characteristic (ROC) curve analyses showed that the signature could accurately distinguish patients with poor prognosis and had good individual risk stratification and prognostic potential. Stratified analysis based on different clinical variables indicated that the signature could be used to evaluate tumor progression in ccRCC. Moreover, we found that there were significant differences in immune cell infiltration between the low- and high-risk groups based on the signature and that ccRCC patients in the low-risk group responded better to immunotherapy than those in the high-risk group (46.59% vs 35.34%, P = 0.008). We also found that the expression levels of these prognostic MTGs were significantly associated with drug sensitivity in multiple ccRCC cell lines. Our study for the first time elucidates the biological function and prognostic significance of mitochondrial molecules associated with oxidative stress and provides a new protocol for evaluating treatment strategies targeting mitochondria in ccRCC patients.
Collapse
|
36
|
Zhu SY, Yao RQ, Li YX, Zhao PY, Ren C, Du XH, Yao YM. The Role and Regulatory Mechanism of Transcription Factor EB in Health and Diseases. Front Cell Dev Biol 2021; 9:667750. [PMID: 34490237 PMCID: PMC8418145 DOI: 10.3389/fcell.2021.667750] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
Transcription factor EB (TFEB) is a member of the microphthalmia-associated transcription factor/transcription factor E (MiTF/TFE) family and critically involved in the maintenance of structural integrity and functional balance of multiple cells. In this review, we described the effects of post-transcriptional modifications, including phosphorylation, acetylation, SUMOylation, and ubiquitination, on the subcellular localization and activation of TFEB. The activated TFEB enters into the nucleus and induces the expressions of targeted genes. We then presented the role of TFEB in the biosynthesis of multiple organelles, completion of lysosome-autophagy pathway, metabolism regulation, immune, and inflammatory responses. This review compiles existing knowledge in the understanding of TFEB regulation and function, covering its essential role in response to cellular stress. We further elaborated the involvement of TFEB dysregulation in the pathophysiological process of various diseases, such as the catabolic hyperactivity in tumors, the accumulation of abnormal aggregates in neurodegenerative diseases, and the aberrant host responses in inflammatory diseases. In this review, multiple drugs have also been introduced, which enable regulating the translocation and activation of TFEB, showing beneficial effects in mitigating various disease models. Therefore, TFEB might serve as a potential therapeutic target for human diseases. The limitation of this review is that the mechanism of TFEB-related human diseases mainly focuses on its association with lysosome and autophagy, which needs deep description of other mechanism in diseases progression after getting more advanced information.
Collapse
Affiliation(s)
- Sheng-Yu Zhu
- Medical Innovation Research Division, Translational Medicine Research Center and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Ren-Qi Yao
- Medical Innovation Research Division, Translational Medicine Research Center and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yu-Xuan Li
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng-Yue Zhao
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chao Ren
- Medical Innovation Research Division, Translational Medicine Research Center and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Xiao-Hui Du
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yong-Ming Yao
- Medical Innovation Research Division, Translational Medicine Research Center and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
37
|
Sun H, Wei X, Zeng C. Autophagy in Xp11 translocation renal cell carcinoma: from bench to bedside. Mol Cell Biochem 2021; 476:4231-4244. [PMID: 34345999 DOI: 10.1007/s11010-021-04235-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022]
Abstract
Xp11 translocation renal cell carcinoma (tRCC) characterized by the rearrangement of the TFE3 is recently identified as a unique subtype of RCC that urgently requires effective prevention and treatment strategies. Therefore, determining suitable therapeutic targets and fully understanding the biological significance of tRCC is essential. The importance of autophagy is increasingly acknowledged because it shows carcinogenic activity or suppressor effect. Autophagy is a physiological cellular process critical to maintaining cell homeostasis, which is involved in the lysosomal degradation of cytoplasmic organelles and macromolecules via the lysosomal pathway, suggesting that targeting autophagy is a potential therapeutic approach for cancer therapies. However, the underlying mechanism of autophagy in tRCC is still ambiguous. In this review, we summarize the autophagy-related signaling pathways associated with tRCC. Moreover, we examine the roles of autophagy and the immune response in tumorigenesis and investigate how these factors interact to facilitate or prevent tumorigenesis. Besides, we review the findings regarding the treatment of tRCC via induction or inhibition of autophagy. Hopefully, this study will shed some light on the functions and implications of autophagy and emphasize its role as a potential molecular target for therapeutic intervention in tRCC.
Collapse
Affiliation(s)
- Huimin Sun
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, 518110, China
| | - Xing Wei
- Department of Nephrology and Rheumatology, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, 518110, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, 518110, China.
| |
Collapse
|
38
|
Host-commensal interaction promotes health and lifespan in Caenorhabditis elegans through the activation of HLH-30/TFEB-mediated autophagy. Aging (Albany NY) 2021; 13:8040-8054. [PMID: 33770762 PMCID: PMC8034897 DOI: 10.18632/aging.202885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/13/2021] [Indexed: 11/25/2022]
Abstract
Gut homeostasis is maintained by the close interaction between commensal intestinal microbiota and the host, affecting the most complex physiological processes, such as aging. Some commensal bacteria with the potential to promote healthy aging arise as attractive candidates for the development of pro-longevity probiotics. Here, we showed that heat-inactivated human commensal Lactobacillus fermentum BGHV110 (BGHV110) extends the lifespan of Caenorhabditis elegans and improves age-related physiological features, including locomotor function and lipid metabolism. Mechanistically, we found that BGHV110 promotes HLH-30/TFEB-dependent autophagy to delay aging, as longevity assurance was completely abolished in the mutant lacking HLH-30, a major autophagy regulator in C. elegans. Moreover, we observed that BGHV110 partially decreased the content of lipid droplets in an HLH-30-dependent manner and, at the same time, slightly increased mitochondrial activity. In summary, this study demonstrates that specific factors from commensal bacteria can be used to exploit HLH-30/TFEB-mediated autophagy in order to promote longevity and fitness of the host.
Collapse
|
39
|
La Spina M, Contreras PS, Rissone A, Meena NK, Jeong E, Martina JA. MiT/TFE Family of Transcription Factors: An Evolutionary Perspective. Front Cell Dev Biol 2021; 8:609683. [PMID: 33490073 PMCID: PMC7815692 DOI: 10.3389/fcell.2020.609683] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Response and adaptation to stress are critical for the survival of all living organisms. The regulation of the transcriptional machinery is an important aspect of these complex processes. The members of the microphthalmia (MiT/TFE) family of transcription factors, apart from their involvement in melanocyte biology, are emerging as key players in a wide range of cellular functions in response to a plethora of internal and external stresses. The MiT/TFE proteins are structurally related and conserved through evolution. Their tissue expression and activities are highly regulated by alternative splicing, promoter usage, and posttranslational modifications. Here, we summarize the functions of MiT/TFE proteins as master transcriptional regulators across evolution and discuss the contribution of animal models to our understanding of the various roles of these transcription factors. We also highlight the importance of deciphering transcriptional regulatory mechanisms in the quest for potential therapeutic targets for human diseases, such as lysosomal storage disorders, neurodegeneration, and cancer.
Collapse
Affiliation(s)
- Martina La Spina
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Pablo S Contreras
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Alberto Rissone
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Naresh K Meena
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Eutteum Jeong
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - José A Martina
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
40
|
Paik S, Jo EK. An Interplay Between Autophagy and Immunometabolism for Host Defense Against Mycobacterial Infection. Front Immunol 2020; 11:603951. [PMID: 33262773 PMCID: PMC7688515 DOI: 10.3389/fimmu.2020.603951] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
Autophagy, an intracellular catabolic pathway featuring lysosomal degradation, is a central component of the host immune defense against various infections including Mycobacterium tuberculosis (Mtb), the pathogen that causes tuberculosis. Mtb can evade the autophagic defense and drive immunometabolic remodeling of host phagocytes. Co-regulation of the autophagic and metabolic pathways may play a pivotal role in shaping the innate immune defense and inflammation during Mtb infection. Two principal metabolic sensors, AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) kinase, function together to control the autophagy and immunometabolism that coordinate the anti-mycobacterial immune defense. Here, we discuss our current understanding of the interplay between autophagy and immunometabolism in terms of combating intracellular Mtb, and how AMPK-mTOR signaling regulates antibacterial autophagy in terms of Mtb infection. We describe several autophagy-targeting agents that promote host antimicrobial defenses by regulating the AMPK-mTOR axis. A better understanding of the crosstalk between immunometabolism and autophagy, both of which are involved in host defense, is crucial for the development of innovative targeted therapies for tuberculosis.
Collapse
Affiliation(s)
- Seungwha Paik
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
41
|
Johnson IRD, Nguyen CT, Wise P, Grimm D. Implications of Altered Endosome and Lysosome Biology in Space Environments. Int J Mol Sci 2020; 21:ijms21218205. [PMID: 33147843 PMCID: PMC7663135 DOI: 10.3390/ijms21218205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/17/2022] Open
Abstract
Space exploration poses multiple challenges for mankind, not only on a technical level but also to the entire physiology of the space traveller. The human system must adapt to several environmental stressors, microgravity being one of them. Lysosomes are ubiquitous to every cell and essential for their homeostasis, playing significant roles in the regulation of autophagy, immunity, and adaptation of the organism to changes in their environment, to name a few. Dysfunction of the lysosomal system leads to age-related diseases, for example bone loss, reduced immune response or cancer. As these conditions have been shown to be accelerated following exposure to microgravity, this review elucidates the lysosomal response to real and simulated microgravity. Microgravity activates the endo-lysosomal system, with resulting impacts on bone loss, muscle atrophy and stem cell differentiation. The investigation of lysosomal adaptation to microgravity can be beneficial in the search for new biomarkers or therapeutic approaches to several disease pathologies on earth as well as the potential to mitigate pathophysiology during spaceflight.
Collapse
Affiliation(s)
- Ian R. D. Johnson
- Research in Space Environments Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
- Correspondence:
| | - Catherine T. Nguyen
- Research in Space Environments Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Petra Wise
- Department of Hematology and Oncology, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA;
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany;
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
42
|
Rossetti ML, Tomko RJ, Gordon BS. Androgen depletion alters the diurnal patterns to signals that regulate autophagy in the limb skeletal muscle. Mol Cell Biochem 2020; 476:959-969. [PMID: 33128669 DOI: 10.1007/s11010-020-03963-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Hypogonadism contributes to limb skeletal muscle atrophy by increasing rates of muscle protein breakdown. Androgen depletion increases markers of the autophagy protein breakdown pathway in the limb muscle that persist throughout the diurnal cycle. However, the regulatory signals underpinning the increase in autophagy markers remain ill-defined. The purpose of this study was to characterize changes to autophagy regulatory signals in the limb skeletal muscle following androgen depletion. Male mice were subjected to a castration surgery or a sham surgery as a control. Seven weeks post-surgery, a subset of mice from each group was sacrificed every 4 hr over a 24 hr period. Protein and mRNA from the Tibialis Anterior (TA) were subjected to Western blot and RT-PCR. Consistent with an overall increase in autophagy, the phosphorylation pattern of Uncoordinated Like Kinase 1 (ULK1) (Ser555) was elevated throughout the diurnal cycle in the TA of castrated mice. Factors that induce the progression of autophagy were also increased in the TA following androgen depletion including an increase in the phosphorylation of c-Jun N-terminal Kinase (JNK) (Thr183/Tyr185) and an increase in the ratio of BCL-2 Associated X (BAX) to B-cell lymphoma 2 (BCL-2). Moreover, we observed an increase in the protein expression pattern of p53 and the mRNA of the p53 target genes Cyclin-Dependent Kinase Inhibitor 1A (p21) and Growth Arrest and DNA Damage Alpha (Gadd45a), which are known to increase autophagy and induce muscle atrophy. These data characterize novel changes to autophagy regulatory signals in the limb skeletal muscle following androgen deprivation.
Collapse
Affiliation(s)
- Michael L Rossetti
- Department of Nutrition, Food and Exercise Science, Florida State University, 600 W. Cottage Avenue, Tallahassee, FL, 32306, USA
| | - Robert J Tomko
- Department of Biomedical Sciences, Florida State University College of Medicine, 115 W Call Street, Tallahassee, FL, 32304, USA
| | - Bradley S Gordon
- Department of Nutrition, Food and Exercise Science, Florida State University, 600 W. Cottage Avenue, Tallahassee, FL, 32306, USA.
- Institute of Sports Sciences and Medicine, Florida State University, 600 W. Cottage Ave, Tallahassee, FL, 32306, USA.
| |
Collapse
|