1
|
Kiefer MF, Meng Y, Yang N, Vahrenbrink M, Wulff S, Li C, Wowro SJ, Petricek KM, Sommerfeld M, Flores RE, Obermayer B, Piepelow K, Klaus S, Hartl K, Guillot A, Tacke F, Sigal M, Schupp M. Intestinal retinol saturase is implicated in the development of obesity and epithelial homeostasis upon injury. Am J Physiol Endocrinol Metab 2024; 327:E203-E216. [PMID: 38895981 DOI: 10.1152/ajpendo.00035.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Retinol saturase (RetSat) is an oxidoreductase involved in lipid metabolism and the cellular sensitivity to peroxides. RetSat is highly expressed in metabolic organs like the liver and adipose tissue and its global loss in mice increases body weight and adiposity. The regulation of RetSat expression and its function in the intestine are unexplored. Here, we show that RetSat is present in different segments of the digestive system, localizes to intestinal epithelial cells, and is upregulated by feeding mice high-fat diet (HFD). Intestine-specific RetSat deletion in adult mice did not affect nutrient absorption and energy homeostasis basally, but lowered body weight gain and fat mass of HFD-fed mice, potentially via increasing locomotor activity. Moreover, jejunal expression of genes related to β-oxidation and cholesterol efflux was decreased, and colonic cholesterol content was reduced upon RetSat deletion. In colitis, which we show to downregulate intestinal RetSat expression in humans and mice, RetSat ablation improved epithelial architecture of the murine colon. Thus, intestinal RetSat expression is regulated by dietary interventions and inflammation, and its loss reduces weight gain upon HFD feeding and alleviates epithelial damage upon injury.NEW & NOTEWORTHY Retinol saturase (RetSat) is an oxidoreductase with unknown function in the intestine. We found that RetSat localizes in intestinal epithelial cells and that its deletion reduced weight gain and fat mass in obese mice. In colitis, which decreased intestinal RetSat expression in humans and mice, RetSat ablation improved the epithelial architecture of the murine colon, presumably by decreasing ROS production, thus rendering RetSat a novel target for metabolic and inflammatory bowel disease.
Collapse
Affiliation(s)
- Marie F Kiefer
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Yueming Meng
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Na Yang
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Madita Vahrenbrink
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sascha Wulff
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chen Li
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sylvia J Wowro
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Konstantin M Petricek
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Manuela Sommerfeld
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Roberto E Flores
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karolin Piepelow
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, Nuthetal, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Kimberly Hartl
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Sigal
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Michael Schupp
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Youn HY, Kim HJ, Kim H, Seo KH. A comparative evaluation of the kefir yeast Kluyveromyces marxianus A4 and sulfasalazine in ulcerative colitis: anti-inflammatory impact and gut microbiota modulation. Food Funct 2024; 15:6717-6730. [PMID: 38833212 DOI: 10.1039/d4fo00427b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Although only Saccharomyces boulardii has been studied for ulcerative colitis (UC), probiotic yeasts have immense therapeutic potential. Herein, we evaluated the kefir yeast Kluyveromyces marxianus A4 (Km A4) and its anti-inflammatory effect with sulfasalazine in BALB/c mice with dextran sulfate sodium (DSS)-induced colitis. Oral administration continued for 7 days after the mice were randomly divided into seven groups: control (CON, normal mice administered with saline), DSS-induced colitis mice administered saline (DSS), and DSS-induced colitis mice administered sulfasalazine only (S), Km A4 only (A4), Km A4 plus sulfasalazine (A4 + S), S. boulardii ATCC MYA-796 (Sb MYA-796) only (Sb), and Sb MYA-796 plus sulfasalazine (Sb + S). The β-glucan content of Km A4 was significantly higher than that of Sb MYA-796 (P < 0.05). Body weight gain (BWG) significantly correlated with colon length, cyclooxygenase-2 (Cox-2) levels, and Bacteroides abundance (P < 0.05). In colitis-induced mice, the A4 + S group had the lowest histological score (6.00) compared to the DSS group (12.67), indicating the anti-inflammatory effects of this combination. The A4 + S group showed significantly downregulated expression of interleukin (Il)-6, tumor necrosis factor-α (Tnf-α), and Cox-2 and upregulated expression of Il-10 and occludin (Ocln) compared to the DSS group. Mice treated with A4 + S had enhanced Bacteroides abundance in their gut microbiota compared with the DSS group (P < 0.05). Bacteroides were significantly correlated with all colitis biomarkers (BWG, colon length, Il-6, Tnf-α, Il-10, Cox-2, and Ocln; P < 0.05). The anti-inflammatory effects of Km A4 could be attributed to high β-glucan content and gut microbiota modulation. Thus, treatment with Km A4 and sulfasalazine could alleviate UC.
Collapse
Affiliation(s)
- Hye-Young Youn
- Center for One Health, Department of Veterinary Public Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Hyeon-Jin Kim
- Center for One Health, Department of Veterinary Public Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Hyunsook Kim
- Department of Food & Nutrition, College of Human Ecology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Kun-Ho Seo
- Center for One Health, Department of Veterinary Public Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| |
Collapse
|
3
|
Ellermann M. Emerging mechanisms by which endocannabinoids and their derivatives modulate bacterial populations within the gut microbiome. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11359. [PMID: 38389811 PMCID: PMC10880783 DOI: 10.3389/adar.2023.11359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/28/2023] [Indexed: 02/24/2024]
Abstract
Bioactive lipids such as endocannabinoids serve as important modulators of host health and disease through their effects on various host functions including central metabolism, gut physiology, and immunity. Furthermore, changes to the gut microbiome caused by external factors such as diet or by disease development have been associated with altered endocannabinoid tone and disease outcomes. These observations suggest the existence of reciprocal relationships between host lipid signaling networks and bacterial populations that reside within the gut. Indeed, endocannabinoids and their congeners such as N-acylethanolamides have been recently shown to alter bacterial growth, functions, physiology, and behaviors, therefore introducing putative mechanisms by which these bioactive lipids directly modulate the gut microbiome. Moreover, these potential interactions add another layer of complexity to the regulation of host health and disease pathogenesis that may be mediated by endocannabinoids and their derivatives. This mini review will summarize recent literature that exemplifies how N-acylethanolamides and monoacylglycerols including endocannabinoids can impact bacterial populations in vitro and within the gut microbiome. We also highlight exciting preclinical studies that have engineered gut bacteria to synthesize host N-acylethanolamides or their precursors as potential strategies to treat diseases that are in part driven by aberrant lipid signaling, including obesity and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Melissa Ellermann
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
4
|
Li H, Yu H, Su W, Wang H, Tan M. Tuning the Microstructures of Electrospray Multicore Alginate Microspheres for the Enhanced Delivery of Astaxanthin. ACS OMEGA 2023; 8:41537-41547. [PMID: 37970045 PMCID: PMC10634221 DOI: 10.1021/acsomega.3c05542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/20/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023]
Abstract
Multicore alginate microspheres (MCPs) have been demonstrated as promising carriers for bioactive substances. Herein, the influence of the size of the inner core on the bioaccessibility of astaxanthin (AST) was investigated using both in vitro and in vivo methods. MCPs with different inner core sizes were fabricated in which the oil-in-water emulsion with different oil droplet sizes was embedded in alginate microspheres (AST@MCPs) via the electrospray technology. The AST@MCPs appeared as a uniform sphere with an average size of 300 μm. The AST encapsulation efficiency in the AST@MCPs was determined to be more than 68%, which was independent of the inner core size. The bioaccessibility of AST increased from 38.3 to 83.2% as the size of the inner core decreased. Furthermore, the anti-inflammatory activity of AST@MCPs after in vitro simulated digestion was evaluated by LPS-induced RAW264.7 cells. The results suggested that AST@MCPs with a smaller inner core size exhibited a stronger anti-inflammatory activity, which further proved the results obtained from in vitro simulated digestion. As expected, the oral administration of AST@MCPs significantly mitigated colitis symptoms in DSS-induced ulcerative colitis mice. Compared with AST@MCPs with larger inner cores, AST@MCPs with smaller inner cores reflect stronger anti-inflammatory activity in vivo. These results suggested that the bioaccessibility of AST in MCPs increased significantly with the decrease in the inner core size, which may be attributed to the rapid formation of micelles in the intestine. This work provides a simple and efficient strategy to prepare microspheres for the enhanced delivery of AST, which has important implications for the design of health-promoting foods.
Collapse
Affiliation(s)
- Hongliang Li
- State
Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Qinggongyuan1,
Ganjingzi District, Dalian 116034, Liaoning, China
- National
Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative
Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Nutrition
and Health Food Pilot Base of Liaoning Dalian, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy
of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- College of
Food Science and Engineering, Jilin Agricultural
University, Changchun 130118, P. R. China
| | - Hongjin Yu
- State
Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Qinggongyuan1,
Ganjingzi District, Dalian 116034, Liaoning, China
- National
Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative
Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Nutrition
and Health Food Pilot Base of Liaoning Dalian, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy
of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- State
Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Qinggongyuan1,
Ganjingzi District, Dalian 116034, Liaoning, China
- National
Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative
Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Nutrition
and Health Food Pilot Base of Liaoning Dalian, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy
of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Haitao Wang
- State
Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Qinggongyuan1,
Ganjingzi District, Dalian 116034, Liaoning, China
- National
Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative
Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Nutrition
and Health Food Pilot Base of Liaoning Dalian, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy
of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- State
Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Qinggongyuan1,
Ganjingzi District, Dalian 116034, Liaoning, China
- National
Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative
Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Nutrition
and Health Food Pilot Base of Liaoning Dalian, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy
of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
5
|
Degro CE, Jiménez-Vargas NN, Tsang Q, Yu Y, Guzman-Rodriguez M, Alizadeh E, Hurlbut D, Reed DE, Lomax AE, Stein C, Bunnett NW, Vanner SJ. Evolving acidic microenvironments during colitis provide selective analgesic targets for a pH-sensitive opioid. Pain 2023; 164:2501-2515. [PMID: 37326658 PMCID: PMC10731875 DOI: 10.1097/j.pain.0000000000002956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/25/2023] [Indexed: 06/17/2023]
Abstract
ABSTRACT Targeting the acidified inflammatory microenvironment with pH-sensitive opioids is a novel approach for managing visceral pain while mitigating side effects. The analgesic efficacy of pH-dependent opioids has not been studied during the evolution of inflammation, where fluctuating tissue pH and repeated therapeutic dosing could influence analgesia and side effects. Whether pH-dependent opioids can inhibit human nociceptors during extracellular acidification is unexplored. We studied the analgesic efficacy and side-effect profile of a pH-sensitive fentanyl analog, (±)- N -(3-fluoro-1-phenethylpiperidine-4-yl)- N -phenyl propionamide (NFEPP), during the evolution of colitis induced in mice with dextran sulphate sodium. Colitis was characterized by granulocyte infiltration, histological damage, and acidification of the mucosa and submucosa at sites of immune cell infiltration. Changes in nociception were determined by measuring visceromotor responses to noxious colorectal distension in conscious mice. Repeated doses of NFEPP inhibited nociception throughout the course of disease, with maximal efficacy at the peak of inflammation. Fentanyl was antinociceptive regardless of the stage of inflammation. Fentanyl inhibited gastrointestinal transit, blocked defaecation, and induced hypoxemia, whereas NFEPP had no such side effects. In proof-of-principle experiments, NFEPP inhibited mechanically provoked activation of human colonic nociceptors under acidic conditions mimicking the inflamed state. Thus, NFEPP provides analgesia throughout the evolution of colitis with maximal activity at peak inflammation. The actions of NFEPP are restricted to acidified layers of the colon, without common side effects in normal tissues. N -(3-fluoro-1-phenethylpiperidine-4-yl)- N -phenyl propionamide could provide safe and effective analgesia during acute colitis, such as flares of ulcerative colitis.
Collapse
Affiliation(s)
- Claudius E. Degro
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queeńs University, Kingston, Ontario, Canada
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | | | - Quentin Tsang
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queeńs University, Kingston, Ontario, Canada
| | - Yang Yu
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queeńs University, Kingston, Ontario, Canada
| | - Mabel Guzman-Rodriguez
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queeńs University, Kingston, Ontario, Canada
| | - Elahe Alizadeh
- Queen’s Cardiopulmonary Unit (QCPU), Translational Institute of Medicine (TIME), Department of Medicine, Queen’s University, Kingston, Ontario, Canada
| | - David Hurlbut
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queeńs University, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Queeńs University, Kingston, Ontario, Canada
| | - David E. Reed
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queeńs University, Kingston, Ontario, Canada
| | - Alan E. Lomax
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queeńs University, Kingston, Ontario, Canada
| | - Christoph Stein
- Department of Experimental Anaesthesiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Nigel W. Bunnett
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
- Department of Neuroscience and Physiology, Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York, USA
| | - Stephen J. Vanner
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queeńs University, Kingston, Ontario, Canada
| |
Collapse
|
6
|
Prakash AN, Prasad N, Puppala ER, Panda SR, Jain S, Ravichandiran V, Singh M, Naidu VGM. Loganic acid protects against ulcerative colitis by inhibiting TLR4/NF-κB mediated inflammation and activating the SIRT1/Nrf2 anti-oxidant responses in-vitro and in-vivo. Int Immunopharmacol 2023; 122:110585. [PMID: 37421777 DOI: 10.1016/j.intimp.2023.110585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/27/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Ulcerative colitis (UC) is an idiopathic, chronic disorder of the intestines characterized by excessive inflammation and oxidative stress. Loganic acid (LA) is an iridoid glycoside reported to have antioxidant and anti-inflammatory properties. However, the beneficial effects of LA on UC are unexplored yet. Thus, this study aims to explore the potential protective effects of LA and its possible mechanisms. In-vitro models were employed using LPS-stimulated RAW 264.7 macrophage cells, and Caco-2 cells, whereas an in-vivo model of ulcerative colitis was employed using 2.5% DSS in BALB/c mice. Results indicated that LA significantly suppressed the intracellular ROS levels and inhibited the phosphorylation of NF-κB in both RAW 264.7 and Caco-2 cells, contrarily LA activated the Nrf2 pathway in RAW 264.7 cells. In DSS-induced colitis mice, LA significantly alleviated the inflammation and colonic damage by decreasing the pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and IFN-γ), oxidative stress markers (MDA, and NO), and also expression levels of various inflammatory proteins (TLR4 and NF-кB) which was evidenced by immunoblotting. On the contrary, the release of GSH, SOD, HO-1, and Nrf2 were profoundly increased upon LA treatment.Subsequently, molecular docking studies showed that LA interacts with active site regions of target proteins (TLR4, NF-κB, SIRT1, and Nrf2) through hydrogen bonding and salt bridge interaction. The current findings demonstrated that LA could exhibit a protective effect in DSS-induced ulcerative colitis through its anti-inflammatory and anti-oxidant effects via inactivating the TLR4/NF-κB signaling pathway and activating the SIRT1/Nrf2 pathways.
Collapse
Affiliation(s)
- Arun N Prakash
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - Neethu Prasad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - Eswara Rao Puppala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - Samir Ranjan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - Siddhi Jain
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - V Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, West Bengal 700054, India
| | - Meenakshi Singh
- Centre for GMP Extraction Facility, Sponsored by Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India.
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India; Centre for GMP Extraction Facility, Sponsored by Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India.
| |
Collapse
|
7
|
Pirozzi C, Coretti L, Opallo N, Bove M, Annunziata C, Comella F, Turco L, Lama A, Trabace L, Meli R, Lembo F, Mattace Raso G. Palmitoylethanolamide counteracts high-fat diet-induced gut dysfunction by reprogramming microbiota composition and affecting tryptophan metabolism. Front Nutr 2023; 10:1143004. [PMID: 37599675 PMCID: PMC10434518 DOI: 10.3389/fnut.2023.1143004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
Obesity is associated with gastrointestinal (GI) tract and central nervous system (CNS) disorders. High-fat diet (HFD) feeding-induced obesity in mice induces dysbiosis, causing a shift toward bacteria-derived metabolites with detrimental effects on metabolism and inflammation: events often contributing to the onset and progression of both GI and CNS disorders. Palmitoylethanolamide (PEA) is an endogenous lipid mediator with beneficial effects in mouse models of GI and CNS disorders. However, the mechanisms underlining its enteroprotective and neuroprotective effects still need to be fully understood. Here, we aimed to study the effects of PEA on intestinal inflammation and microbiota alterations resulting from lipid overnutrition. Ultramicronized PEA (30 mg/kg/die per os) was administered to HFD-fed mice for 7 weeks starting at the 12th week of HFD regimen. At the termination of the study, the effects of PEA on inflammatory factors and cells, gut microbial features and tryptophan (TRP)-kynurenine metabolism were evaluated. PEA regulates the crosstalk between the host immune system and gut microbiota via rebalancing colonic TRP metabolites. PEA treatment reduced intestinal immune cell recruitment, inflammatory response triggered by HFD feeding, and corticotropin-releasing hormone levels. In particular, PEA modulated HFD-altered TRP metabolism in the colon, rebalancing serotonin (5-HT) turnover and reducing kynurenine levels. These effects were associated with a reshaping of gut microbiota composition through increased butyrate-promoting/producing bacteria, such as Bifidobacterium, Oscillospiraceae and Turicibacter sanguinis, with the latter also described as 5-HT sensor. These data indicate that the rebuilding of gut microbiota following PEA supplementation promotes host 5-HT biosynthesis, which is crucial in regulating intestinal function.
Collapse
Affiliation(s)
- Claudio Pirozzi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Lorena Coretti
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Nicola Opallo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maria Bove
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Chiara Annunziata
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Federica Comella
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Luigia Turco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Adriano Lama
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Rosaria Meli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Francesca Lembo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Giuseppina Mattace Raso
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
Maia J, Iannotti FA, Piscitelli F, Fonseca BM, Braga A, Braga J, Teixeira N, Di Marzo V, Correia-da-Silva G. The endocannabinoidome in human placenta: Possible contribution to the pathogenesis of preeclampsia. Biofactors 2023; 49:887-899. [PMID: 37092955 DOI: 10.1002/biof.1952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023]
Abstract
Preeclampsia (PE) was first reported thousands of years ago, yet there is still a shortage of biomarkers to determine the severity and type of PE. The importance of the expanded endocannabinoid system, or endocannabinoidome (eCBome), has emerged recently in placental physiology and pathology, though the potential alterations of the eCBome in PE have not been fully explored. Analysis by qRT-PCR using placental samples of normotensive and PE women demonstrate for the first time the presence of ABHD4, GDE1, and DAGLβ in both normotensive and PE placental tissues. Interestingly, NAPE-PLD, FAAH-1, DAGLα, MAGL, and ABHD6 mRNA levels were increased in the placental tissues of PE patients. Quantification in plasma and placental tissues showed a decrease for anandamide (AEA), N-oleoylethanolamine (OEA), and N-docosahexaenoylethanolamine (DHEA) in the placenta, accompanied only by a decrease in plasma levels of AEA. In addition, a strong negative correlation was obtained between OEA and the biomarker of PE, soluble fms-like tyrosine kinase-1. Given the inflammatory nature of PE and the anti-inflammatory role of OEA and DHEA, the decrease in the local levels of these mediators may underlie the inflammatory component of this pathology. Additionally, lower AEA levels in both placenta and plasma may contribute to the atypical alterations of the spiral arteries in PE due to the vasorelaxation effects of AEA. These results add new information to the role of the eCBome members in placental development, while also pointing to a potential role as biomarkers of PE.
Collapse
Affiliation(s)
- João Maia
- UCIBIO.REQUIMTE-Applied Molecular Biosciences Unit, Faculty of Pharmacy, Department of Biological Sciences, Laboratory of Biochemistry, University of Porto, Porto, Portugal
- Faculty of Pharmacy, Department of Biological Sciences, Laboratory of Biochemistry, Associate Laboratory i4HB-Institute for Health and Bioeconomy, University of Porto, Porto, Portugal
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Bruno Miguel Fonseca
- UCIBIO.REQUIMTE-Applied Molecular Biosciences Unit, Faculty of Pharmacy, Department of Biological Sciences, Laboratory of Biochemistry, University of Porto, Porto, Portugal
- Faculty of Pharmacy, Department of Biological Sciences, Laboratory of Biochemistry, Associate Laboratory i4HB-Institute for Health and Bioeconomy, University of Porto, Porto, Portugal
| | - António Braga
- Serviço de Obstetrícia, Departamento da Mulher e da Medicina Reprodutiva, Centro Materno-Infantil do Norte-Centro Hospitalar do Porto, Porto, Portugal
| | - Jorge Braga
- Serviço de Obstetrícia, Departamento da Mulher e da Medicina Reprodutiva, Centro Materno-Infantil do Norte-Centro Hospitalar do Porto, Porto, Portugal
| | - Natércia Teixeira
- UCIBIO.REQUIMTE-Applied Molecular Biosciences Unit, Faculty of Pharmacy, Department of Biological Sciences, Laboratory of Biochemistry, University of Porto, Porto, Portugal
- Faculty of Pharmacy, Department of Biological Sciences, Laboratory of Biochemistry, Associate Laboratory i4HB-Institute for Health and Bioeconomy, University of Porto, Porto, Portugal
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Faculty of Medicine and Faculty of Agricultural and Food Sciences, Centre de Recherche de l'Institut de Cardiologie et Pneumologie de l'Université et Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Quebec City, Canada
| | - Georgina Correia-da-Silva
- UCIBIO.REQUIMTE-Applied Molecular Biosciences Unit, Faculty of Pharmacy, Department of Biological Sciences, Laboratory of Biochemistry, University of Porto, Porto, Portugal
- Faculty of Pharmacy, Department of Biological Sciences, Laboratory of Biochemistry, Associate Laboratory i4HB-Institute for Health and Bioeconomy, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Venneri T, Giorgini G, Leblanc N, Flamand N, Borrelli F, Silvestri C, Di Marzo V. Altered endocannabinoidome bioactive lipid levels accompany reduced DNBS-induced colonic inflammation in germ-free mice. Lipids Health Dis 2023; 22:63. [PMID: 37189092 DOI: 10.1186/s12944-023-01823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Gut microbiota are involved in the onset and development of chronic intestinal inflammation. The recently described endocannabinoidome (eCBome), a diverse and complex system of bioactive lipid mediators, has been reported to play a role in various physio-pathological processes such as inflammation, immune responses and energy metabolism. The eCBome and the gut microbiome (miBIome) are closely linked and form the eCBome - miBIome axis, which may be of special relevance to colitis. METHODS Colitis was induced in conventionally raised (CR), antibiotic-treated (ABX) and germ-free (GF) mice with dinitrobenzene sulfonic acid (DNBS). Inflammation was assessed by Disease Activity Index (DAI) score, body weight change, colon weight-length ratio, myeloperoxidase (MPO) activity and cytokine gene expression. Colonic eCBome lipid mediator concentrations were measured by HPLC-MS /MS. RESULTS GF mice showed increased levels of anti-inflammatory eCBome lipids (LEA, OEA, DHEA and 13- HODE-EA) in the healthy state and higher MPO activity. DNBS elicited reduced inflammation in GF mice, having lower colon weight/length ratios and lower expression levels of Il1b, Il6, Tnfa and neutrophil markers compared to one or both of the other DNBS-treated groups. Il10 expression was also lower and the levels of several N-acyl ethanolamines and 13-HODE-EA levels were higher in DNBS-treated GF mice than in CR and ABX mice. The levels of these eCBome lipids negatively correlated with measures of colitis and inflammation. CONCLUSIONS These results suggest that the depletion of the gut microbiota and subsequent differential development of the gut immune system in GF mice is followed by a compensatory effect on eCBome lipid mediators, which may explain, in part, the observed lower susceptibility of GF mice to develop DNBS-induced colitis.
Collapse
Affiliation(s)
- Tommaso Venneri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giada Giorgini
- Joint International Research Unit (JIRU) for Chemical and Biomolecular Research on the Microbiome and its impact on Metabolic Health and Nutrition (MicroMeNu) between Université Laval and the Consiglio Nazionale delle Ricerche (CNR), Institute of Biomolecular Chemistry, Pozzuoli, NA, Italy
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada
| | - Nadine Leblanc
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Cristoforo Silvestri
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada.
- Centre NUTRISS, École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, Canada.
| | - Vincenzo Di Marzo
- Joint International Research Unit (JIRU) for Chemical and Biomolecular Research on the Microbiome and its impact on Metabolic Health and Nutrition (MicroMeNu) between Université Laval and the Consiglio Nazionale delle Ricerche (CNR), Institute of Biomolecular Chemistry, Pozzuoli, NA, Italy.
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada.
- Centre NUTRISS, École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada.
| |
Collapse
|
10
|
De Filippo C, Costa A, Becagli MV, Monroy MM, Provensi G, Passani MB. Gut microbiota and oleoylethanolamide in the regulation of intestinal homeostasis. Front Endocrinol (Lausanne) 2023; 14:1135157. [PMID: 37091842 PMCID: PMC10113643 DOI: 10.3389/fendo.2023.1135157] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
A vast literature strongly suggests that the endocannabinoid (eCB) system and related bioactive lipids (the paracannabinoid system) contribute to numerous physiological processes and are involved in pathological conditions such as obesity, type 2 diabetes, and intestinal inflammation. The gut paracannabinoid system exerts a prominent role in gut physiology as it affects motility, permeability, and inflammatory responses. Another important player in the regulation of host metabolism is the intestinal microbiota, as microorganisms are indispensable to protect the intestine against exogenous pathogens and potentially harmful resident microorganisms. In turn, the composition of the microbiota is regulated by intestinal immune responses. The intestinal microbial community plays a fundamental role in the development of the innate immune system and is essential in shaping adaptive immunity. The active interplay between microbiota and paracannabinoids is beginning to appear as potent regulatory system of the gastrointestinal homeostasis. In this context, oleoylethanolamide (OEA), a key component of the physiological systems involved in the regulation of dietary fat consumption, energy homeostasis, intestinal motility, and a key factor in modulating eating behavior, is a less studied lipid mediator. In the small intestine namely duodenum and jejunum, levels of OEA change according to the nutrient status as they decrease during food deprivation and increase upon refeeding. Recently, we and others showed that OEA treatment in rodents protects against inflammatory events and changes the intestinal microbiota composition. In this review, we briefly define the role of OEA and of the gut microbiota in intestinal homeostasis and recapitulate recent findings suggesting an interplay between OEA and the intestinal microorganisms.
Collapse
Affiliation(s)
- Carlotta De Filippo
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Alessia Costa
- Dipartimento di Scienze della Salute, Università di Firenze, Firenze, Italy
| | | | - Mariela Mejia Monroy
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Gustavo Provensi
- Dipartimento di Neurofarba, Università di Firenze, Firenze, Italy
- *Correspondence: Maria Beatrice Passani, ; Gustavo Provensi,
| | - Maria Beatrice Passani
- Dipartimento di Scienze della Salute, Università di Firenze, Firenze, Italy
- *Correspondence: Maria Beatrice Passani, ; Gustavo Provensi,
| |
Collapse
|
11
|
Svobodova A, Vrkoslav V, Smeringaiova I, Jirsova K. Distribution of an analgesic palmitoylethanolamide and other N-acylethanolamines in human placental membranes. PLoS One 2023; 18:e0279863. [PMID: 36638082 PMCID: PMC9838831 DOI: 10.1371/journal.pone.0279863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 12/09/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Human amniotic and amniochorionic membranes (AM, ACM) represent the most often used grafts accelerating wound healing. Palmitoylethanolamide, oleoylethanolamide and anandamide are endogenous bioactive lipid molecules, generally referred as N-acylethanolamines. They express analgesic, nociceptive, neuroprotective and anti-inflammatory properties. We assessed the distribution of these lipid mediators in placental tissues, as they could participate on analgesic and wound healing effect of AM/ACM grafts. METHODS Seven placentas were collected after caesarean delivery and fresh samples of AM, ACM, placental disc, umbilical cord, umbilical serum and vernix caseosa, and decontaminated samples (antibiotic solution BASE 128) of AM and ACM have been prepared. Ultra-high-performance liquid chromatography-tandem mass spectrometry was used for N-acylethanolamines analysis. RESULTS N-acylethanolamines were present in all studied tissues, palmitoylethanolamide being the most abundant and the anandamide the least. For palmitoylethanolamide the maximum average concentration was detected in AM (350.33 ± 239.26 ng/g), while oleoylethanolamide and anandamide were most abundant in placenta (219.08 ± 79.42 ng/g and 30.06 ± 7.77 ng/g, respectively). Low levels of N-acylethanolamines were found in serum and vernix. A significant increase in the levels of N-acylethanolamines (3.1-3.6-fold, P < 0.001) was observed in AM when the tissues were decontaminated using antibiotic solution. The increase in decontaminated ACM was not statistically significant. CONCLUSIONS The presence of N-acylethanolamines, particularly palmitoylethanolamide in AM and ACM allows us to propose these lipid mediators as the likely factors responsible for the anti-hyperalgesic, but also anti-inflammatory and neuroprotective, effects of AM/ACM grafts in wound healing treatment. The increase of N-acylethanolamines levels in AM and ACM after tissue decontamination indicates that tissue processing is an important factor in maintaining the analgesic effect.
Collapse
Affiliation(s)
- Alzbeta Svobodova
- First Faculty of Medicine, 2 Department of Surgery–Department of Cardiovascular Surgery, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Vladimir Vrkoslav
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ingrida Smeringaiova
- First Faculty of Medicine, Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Katerina Jirsova
- First Faculty of Medicine, Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, Charles University and General University Hospital in Prague, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
12
|
Grabacka M, Płonka PM, Pierzchalska M. The PPARα Regulation of the Gut Physiology in Regard to Interaction with Microbiota, Intestinal Immunity, Metabolism, and Permeability. Int J Mol Sci 2022; 23:ijms232214156. [PMID: 36430628 PMCID: PMC9696208 DOI: 10.3390/ijms232214156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPARα) is expressed throughout the mammalian gut: in epithelial cells, in the villi of enterocytes and in Paneth cells of intestinal crypts, as well as in some immune cells (e.g., lamina propria macrophages, dendritic cells) of the mucosa. This review examines the reciprocal interaction between PPARα activation and intestinal microbiota. We refer to the published data confirming that microbiota products can influence PPARα signaling and, on the other hand, PPARα activation is able to affect microbiota profile, viability, and diversity. PPARα impact on the broad spectrum of events connected to metabolism, signaling (e.g., NO production), immunological tolerance to dietary antigens, immunity and permeability of the gut are also discussed. We believe that the phenomena described here play a prominent role in gut homeostasis. Therefore, in conclusion we propose future directions for research, including the application of synthetic activators and natural endogenous ligands of PPARα (i.e., endocannabinoids) as therapeutics for intestinal pathologies and systemic diseases assumed to be related to gut dysbiosis.
Collapse
Affiliation(s)
- Maja Grabacka
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Cracow, Poland
- Correspondence: ; Tel.: +48-12-662-4701
| | - Przemysław M. Płonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Cracow, Poland
| | - Małgorzata Pierzchalska
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Cracow, Poland
| |
Collapse
|
13
|
Xu S, Chen S, Zhang M, An W, Li J, Sun Z, Xu Y. Reconstruction and Differential Expression Profiling Core Target Analyses of the circRNA-miRNA-mRNA Network Based on Competitive Endogenous RNAs in Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4572181. [PMID: 36310619 PMCID: PMC9616663 DOI: 10.1155/2022/4572181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/08/2022] [Indexed: 11/24/2022]
Abstract
Ulcerative colitis (UC) is a common autoimmune disease worldwide. Circular RNA (circRNA) is a type of noncoding ribonucleic acids (ncRNAs). In addition to their roles in numerous biological processes, circRNAs are also linked to a vast range of diseases including UC. Although previous studies have examined many circRNAs, the physiological and pathological roles of the circRNA-associated competing endogenous RNA (ceRNA) network in UC remain unclear. Thus, we constructed a circRNA-miRNA-mRNA network based on the ceRNA hypothesis by analyzing data from the National Center for Biotechnology Information Gene Expression Omnibus (NCBI-GEO) database. Genes with higher degree values than others in the ceRNA network were selected as central nodes when constructing the corresponding core subnetworks. To fully understand the biological function of the ceRNA network, we entered all differentially expressed mRNAs (DEmRNAs) from the ceRNA network into the Database for Annotation and Integrated Discovery (DAVID), which was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. We further entered DEmRNAs into the STRING database for protein-protein interaction (PPI) network analysis. The results elucidated that the ceRNA network comprised 403 circRNA nodes, 5 miRNA nodes, 138 mRNA nodes, and 559 edges. Three core ceRNA subnetworks centered on hsa-miR-342-3p, hsa-miR-199a-5p, and hsa-miR-142-3p were reconstructed in this study. GO and KEGG enrichment analyses identified 167 enriched GO categories and 14 enriched KEGG pathway terms. The core PPI network was composed of 15 core targets, of which CD44, HIF1A, and MMP2 were the most significant. In summary, 3 hub miRNAs (hsa-miR-342-3p, hsa-miR-199a-5p, hsa-miR-142-3p) and 3 hub genes (CD44, HIF1A, and MMP2) might play an important role in the development of UC. These hub nodes, first proposed here, might also be used as potential diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Sai Xu
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Second Affiliated Hospital of Shandong University of TCM, Jinan, China
| | - Shouqiang Chen
- Second Affiliated Hospital of Shandong University of TCM, Jinan, China
| | - Menghe Zhang
- Second Affiliated Hospital of Shandong University of TCM, Jinan, China
| | - Wenrong An
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Second Affiliated Hospital of Shandong University of TCM, Jinan, China
| | - Jie Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Second Affiliated Hospital of Shandong University of TCM, Jinan, China
| | - Zhenhai Sun
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Second Affiliated Hospital of Shandong University of TCM, Jinan, China
| | - Yunsheng Xu
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Second Affiliated Hospital of Shandong University of TCM, Jinan, China
| |
Collapse
|
14
|
Fatty Acid-Derived N-acylethanolamines Dietary Supplementation Attenuates Neuroinflammation and Cognitive Impairment in LPS Murine Model. Nutrients 2022; 14:nu14183879. [PMID: 36145255 PMCID: PMC9504857 DOI: 10.3390/nu14183879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Neuroinflammation plays a critical role in the pathogenesis of most neurological and neurodegenerative diseases and therefore represents a potential therapeutic target. In this regard, accelerating the resolution process in chronic neuroinflammation may be an effective strategy to deal with the cognitive consequences of neuropathology and generalized inflammatory processes. N-acylethanolamine (NAE) derivatives of fatty acids, being highly active lipid mediators, possess pro-resolving activity in inflammatory processes and are promising agents for the suppression of neuroinflammation and its consequences. This paper is devoted to a study of the effects played by dietary supplement (DS), containing a composition of fatty acid-derived NAEs, obtained from squid Berryteuthis magister, on the hippocampal neuroinflammatory and memory processes. By detecting the production of pro-inflammatory cytokines and glial markers, a pronounced anti-inflammatory activity of DS was demonstrated both in vitro and in vivo. DS administration reversed the LPS-induced reduction in hippocampal neurogenesis and memory deterioration. LC-MS analysis revealed an increase in the production of a range of NAEs with well-documented anti-inflammatory activity in response to the administered lipid composition. To conclude, we found that tested DS suppresses the neuroinflammatory response by reducing glial activation, positively regulates neural progenitor proliferation, and attenuates hippocampal-dependent memory impairment.
Collapse
|
15
|
Anti-Colitic Effect of an Exopolysaccharide Fraction from Pediococcus pentosaceus KFT-18 on Dextran Sulfate Sodium-Induced Colitis through Suppression of Inflammatory Mediators. Polymers (Basel) 2022; 14:polym14173594. [PMID: 36080669 PMCID: PMC9460603 DOI: 10.3390/polym14173594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
We previously reported the immunostimulatory effect of an exopolysaccharide fraction from Pediococcus pentosaceus KFT18 (PE-EPS), a lactic acid bacterium, in macrophages and primary splenocytes, as well as in cyclophosphamide-induced immunosuppressed mice. In this study, the anti-colitic activity of PE-EPS was investigated in a dextran sulfate sodium (DSS)-induced colitis animal model. PE-EPS relieved DSS-induced colitis symptoms, such as stool blood, decreased colon length, crypt disruption, and mucus layer edema. Regarding the molecular mechanism, PE-EPS reduced the enhanced expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines (TNF-α, IL-6, and IL-1) in the colon tissue of colitis-induced mice. Additionally, PE-EPS protected against DSS-induced phosphorylation of p65 and signal transducer and activator of transcription 1 (STAT1). These findings suggested that the exopolysaccharide fraction from Ped. pentosaceus KFT18 can be used to treat inflammatory bowel disease by alleviating colonic inflammation.
Collapse
|
16
|
Huang J, Zhang Z, Hao C, Qiu Y, Tan R, Liu J, Wang X, Yang W, Qu H. Identifying Drug-Induced Liver Injury Associated With Inflammation-Drug and Drug-Drug Interactions in Pharmacologic Treatments for COVID-19 by Bioinformatics and System Biology Analyses: The Role of Pregnane X Receptor. Front Pharmacol 2022; 13:804189. [PMID: 35979235 PMCID: PMC9377275 DOI: 10.3389/fphar.2022.804189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Of the patients infected with coronavirus disease 2019 (COVID-19), approximately 14–53% developed liver injury resulting in poor outcomes. Drug-induced liver injury (DILI) is the primary cause of liver injury in COVID-19 patients. In this study, we elucidated liver injury mechanism induced by drugs of pharmacologic treatments against SARS-CoV-2 (DPTS) using bioinformatics and systems biology. Totally, 1209 genes directly related to 216 DPTS (DPTSGs) were genes encoding pharmacokinetics and therapeutic targets of DPTS and enriched in the pathways related to drug metabolism of CYP450s, pregnane X receptor (PXR), and COVID-19 adverse outcome. A network, constructed by 110 candidate targets which were the shared part of DPTSGs and 445 DILI targets, identified 49 key targets and four Molecular Complex Detection clusters. Enrichment results revealed that the 4 clusters were related to inflammatory responses, CYP450s regulated by PXR, NRF2-regualted oxidative stress, and HLA-related adaptive immunity respectively. In cluster 1, IL6, IL1B, TNF, and CCL2 of the top ten key targets were enriched in COVID-19 adverse outcomes pathway, indicating the exacerbation of COVID-19 inflammation on DILI. PXR-CYP3A4 expression of cluster 2 caused DILI through inflammation-drug interaction and drug-drug interactions among pharmaco-immunomodulatory agents, including tocilizumab, glucocorticoids (dexamethasone, methylprednisolone, and hydrocortisone), and ritonavir. NRF2 of cluster 3 and HLA targets of cluster four promoted DILI, being related to ritonavir/glucocorticoids and clavulanate/vancomycin. This study showed the pivotal role of PXR associated with inflammation-drug and drug-drug interactions on DILI and highlighted the cautious clinical decision-making for pharmacotherapy to avoid DILI in the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Jingjing Huang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaokang Zhang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenxia Hao
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Pharmacy, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuzhen Qiu
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruoming Tan
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jialin Liu
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoli Wang
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoli Wang, ; Wanhua Yang, ; Hongping Qu,
| | - Wanhua Yang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoli Wang, ; Wanhua Yang, ; Hongping Qu,
| | - Hongping Qu
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoli Wang, ; Wanhua Yang, ; Hongping Qu,
| |
Collapse
|
17
|
The Use of Palmitoylethanolamide in the Treatment of Long COVID: A Real-Life Retrospective Cohort Study. Med Sci (Basel) 2022; 10:medsci10030037. [PMID: 35893119 PMCID: PMC9326613 DOI: 10.3390/medsci10030037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/26/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
COVID-19 can cause symptoms that last weeks or months after the infection has gone, with a significant impairment of quality of life. Palmitoylethanolamide (PEA) is a naturally occurring lipid mediator that has an entourage effect on the endocannabinoid system mitigating the cytokine storm. The aim of this retrospective study is to evaluate the potential efficacy of PEA in the treatment of long COVID. Patients attending the Neurological Out Clinic of the IRCCS Centro Neurolesi Bonino-Pulejo (Messina, Italy) from August 2020 to September 2021 were screened for potential inclusion in the study. We included only long COVID patients who were treated with PEA 600 mg two times daily for about 3 months. All patients performed the post-COVID-19 Functional Status (PCFS) scale. Thirty-three patients (10 males, 43.5%, mean age 47.8 ± 12.4) were enrolled in the study. Patients were divided into two groups based on hospitalization or home care observation. A substantial difference in the PCFS score between the two groups at baseline and after treatment with PEA were found. We found that smoking was a risk factor with an odds ratio of 8.13 CI 95% [0.233, 1.167]. Our findings encourage the use of PEA as a potentially effective therapy in patients with long COVID.
Collapse
|
18
|
Cuddihey H, MacNaughton WK, Sharkey KA. Role of the Endocannabinoid System in the Regulation of Intestinal Homeostasis. Cell Mol Gastroenterol Hepatol 2022; 14:947-963. [PMID: 35750314 PMCID: PMC9500439 DOI: 10.1016/j.jcmgh.2022.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
The maintenance of intestinal homeostasis is fundamentally important to health. Intestinal barrier function and immune regulation are key determinants of intestinal homeostasis and are therefore tightly regulated by a variety of signaling mechanisms. The endocannabinoid system is a lipid mediator signaling system widely expressed in the gastrointestinal tract. Accumulating evidence suggests the endocannabinoid system is a critical nexus involved in the physiological processes that underlie the control of intestinal homeostasis. In this review we will illustrate how the endocannabinoid system is involved in regulation of intestinal permeability, fluid secretion, and immune regulation. We will also demonstrate a reciprocal regulation between the endocannabinoid system and the gut microbiome. The role of the endocannabinoid system is complex and multifaceted, responding to both internal and external factors while also serving as an effector system for the maintenance of intestinal homeostasis.
Collapse
Affiliation(s)
- Hailey Cuddihey
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K. MacNaughton
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A. Sharkey
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Correspondence Address correspondence to: Keith Sharkey, PhD, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
19
|
Mitigation of DSS-Induced Colitis Potentially via Th1/Th2 Cytokine and Immunological Function Balance Induced by Phenolic-Enriched Buckwheat (Fagopyrum esculentum Moench) Bee Pollen Extract. Foods 2022; 11:foods11091293. [PMID: 35564016 PMCID: PMC9105923 DOI: 10.3390/foods11091293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Colitis is an inflammatory disease that results from the overactivation of effector immune cells, producing a high quantity of pro-inflammatory cytokines. Our study aimed to explore whether buckwheat (F. esculentum) bee pollen extract (FBPE) could inhibit the progression of dextran sulfate sodium (DSS)-induced colitis via regulating immune function. We isolated and identified six main phenolic compounds of FBPE such as luteolin (9.46 mg/g) by column chromatography, HPLC-DAD, ESI-MS and NMR spectroscopy, then assessed their effects on colonic mucosal injury by clinical symptoms, histomorphology and immunohistochemistry examinations. The results showed that FBPE at 25.2 g/kg body weight (g/kg BW) changed the clinical symptoms of colitis, the ICAM-1 expression in colon, the activity of related inflammatory mediators in colon tissue and helped restore the immune system. Compared with the model group (40.28%), the CD4 positivity was significantly reduced in the HD (High-dose group: 25.2 g FBPE/kg BW/day) group (20.45%). Administration of 25.2 g/kg BW of FBPE decreased the IFN-γ, TNF-α and IL-4 levels, while enhancing the IL-10 level, and significantly inhibited the abnormally decreased IgG (Model: 13.25 mg/mL, HD: 14.06 mg/mL), showing a reversal effect on the Th1/Th2 levels in colitis. These findings suggested that FBPE at 25.2 g/kg BW had the effects of alleviating colitis and immunomodulation, which can help in the development of safe and effective immune therapy.
Collapse
|
20
|
Kazemi M, Lalooha F, Nooshabadi MR, Haghighian HK. Decreased dysmenorrhea pain in girls by reducing oxidative stress and inflammatory biomarkers following supplementation with oleoylethanolamide: A randomized controlled trial. J Obstet Gynaecol Res 2022; 48:1212-1221. [PMID: 35293068 DOI: 10.1111/jog.15196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 01/08/2022] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
Abstract
AIM This study aimed to evaluate the oleoylethanolamide (OEA) effects on oxidative stress and inflammatory factors in girls with primary dysmenorrhea. METHODS This double-blind, placebo-controlled clinical trial was done on population consisted of female students who had dysmenorrhea pain based on the visual analogue scale (VAS) questionnaire. Patients were randomly allocated to groups consuming a capsule containing 125 mg of OEA per day (n = 22) or placebo (n = 22) for 2 months. The severity of the pain, total antioxidant capacity (TAC), malondialdehyde (MDA), C-reactive protein (CRP), and tumor necrosis factor alpha (TNF-α) were measured at the beginning and the end of the study. In this study, SPSS software was used to analyze the data. RESULTS According to the results, oral supplementation with OEA for 60 days significantly increased TAC (p = 0.022) and decreased the menstrual pain (p = 0.040), MDA (p = 0.011), CRP (p = 0.01), and TNF-α (p = 0.038) compared to the placebo group. Also, intragroup changes were statistically significant on the mean of pain (p = 0.042), TAC (p = 0.032), MDA (p = 0.023), CRP (p = 0.027), and TNF-α (p = 0.029) at the end of the study in the intervention group. Changes in the studied factors at the end of the study compared to the beginning of the study in the placebo group were not statistically significant. CONCLUSION Considering the reducing effects of OEA on menstrual pain, using of this supplement can be introduced as an alternative medicine to reduce the use of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Mahnaz Kazemi
- Department of Nutrition, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fatemeh Lalooha
- Department of Obstetrics and Gynecology, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Hossein Khadem Haghighian
- Department of Nutrition, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran.,Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
21
|
p-Hydroxybenzoic acid alleviates inflammatory responses and intestinal mucosal damage in DSS-induced colitis by activating ERβ signaling. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
22
|
On the Biomedical Properties of Endocannabinoid Degradation and Reuptake Inhibitors: Pre-clinical and Clinical Evidence. Neurotox Res 2021; 39:2072-2097. [PMID: 34741755 DOI: 10.1007/s12640-021-00424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 10/19/2022]
Abstract
The endocannabinoid system (ECS) is composed of endogenous cannabinoids; components involved in their synthesis, transport, and degradation; and an expansive variety of cannabinoid receptors. Hypofunction or deregulation of the ECS is related to pathological conditions. Consequently, endogenous enhancement of endocannabinoid levels and/or regulation of their metabolism represent promising therapeutic approaches. Several major strategies have been suggested for the modulation of the ECS: (1) blocking endocannabinoids degradation, (2) inhibition of endocannabinoid cellular uptake, and (3) pharmacological modulation of cannabinoid receptors as potential therapeutic targets. Here, we focused in this review on degradation/reuptake inhibitors over cannabinoid receptor modulators in order to provide an updated synopsis of contemporary evidence advancing mechanisms of endocannabinoids as pharmacological tools with therapeutic properties for the treatment of several disorders. For this purpose, we revisited the available literature and reported the latest advances regarding the biomedical properties of fatty acid amide hydrolase and monoacylglycerol lipase inhibitors in pre-clinical and clinical studies. We also highlighted anandamide and 2-arachidonoylglycerol reuptake inhibitors with promising results in pre-clinical studies using in vitro and animal models as an outlook for future research in clinical trials.
Collapse
|
23
|
Grabacka M, Pierzchalska M, Płonka PM, Pierzchalski P. The Role of PPAR Alpha in the Modulation of Innate Immunity. Int J Mol Sci 2021; 22:10545. [PMID: 34638886 PMCID: PMC8508635 DOI: 10.3390/ijms221910545] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022] Open
Abstract
Peroxisome proliferator-activated receptor α is a potent regulator of systemic and cellular metabolism and energy homeostasis, but it also suppresses various inflammatory reactions. In this review, we focus on its role in the regulation of innate immunity; in particular, we discuss the PPARα interplay with inflammatory transcription factor signaling, pattern-recognition receptor signaling, and the endocannabinoid system. We also present examples of the PPARα-specific immunomodulatory functions during parasitic, bacterial, and viral infections, as well as approach several issues associated with innate immunity processes, such as the production of reactive nitrogen and oxygen species, phagocytosis, and the effector functions of macrophages, innate lymphoid cells, and mast cells. The described phenomena encourage the application of endogenous and pharmacological PPARα agonists to alleviate the disorders of immunological background and the development of new solutions that engage PPARα activation or suppression.
Collapse
Affiliation(s)
- Maja Grabacka
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Cracow, Poland;
| | - Małgorzata Pierzchalska
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Cracow, Poland;
| | - Przemysław M. Płonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Cracow, Poland;
| | - Piotr Pierzchalski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Michałowskiego 12, 31-126 Cracow, Poland;
| |
Collapse
|
24
|
Montenegro-Burke JR, Kok BP, Guijas C, Domingo-Almenara X, Moon C, Galmozzi A, Kitamura S, Eckmann L, Saez E, Siuzdak GE, Wolan DW. Metabolomics activity screening of T cell-induced colitis reveals anti-inflammatory metabolites. Sci Signal 2021; 14:eabf6584. [PMID: 34582249 DOI: 10.1126/scisignal.abf6584] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- J Rafael Montenegro-Burke
- Scripps Center for Metabolomics and Mass Spectrometry, Scripps Research Institute; La Jolla, California 92037, USA
| | - Bernard P Kok
- Scripps Center for Metabolomics and Mass Spectrometry, Scripps Research Institute; La Jolla, California 92037, USA
| | - Carlos Guijas
- Scripps Center for Metabolomics and Mass Spectrometry, Scripps Research Institute; La Jolla, California 92037, USA
| | - Xavier Domingo-Almenara
- Scripps Center for Metabolomics and Mass Spectrometry, Scripps Research Institute; La Jolla, California 92037, USA
| | - Clara Moon
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrea Galmozzi
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Seiya Kitamura
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lars Eckmann
- Department of Medicine, University of California, La Jolla CA 92093, USA
| | - Enrique Saez
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gary E Siuzdak
- Scripps Center for Metabolomics and Mass Spectrometry, Scripps Research Institute; La Jolla, California 92037, USA.,Department of Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis W Wolan
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
25
|
Flannery LE, Kerr DM, Hughes EM, Kelly C, Costello J, Thornton AM, Humphrey RM, Finn DP, Roche M. N-acylethanolamine regulation of TLR3-induced hyperthermia and neuroinflammatory gene expression: A role for PPARα. J Neuroimmunol 2021; 358:577654. [PMID: 34265624 PMCID: PMC8243641 DOI: 10.1016/j.jneuroim.2021.577654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
Increasing evidence suggests that SARS-CoV-2, the virus responsible for the COVID-19 pandemic, is associated with increased risk of developing neurological or psychiatric conditions such as depression, anxiety or dementia. While the precise mechanism underlying this association is unknown, aberrant activation of toll-like receptor (TLR)3, a viral recognizing pattern recognition receptor, may play a key role. Synthetic cannabinoids and enhancing cannabinoid tone via inhibition of fatty acid amide hydrolase (FAAH) has been demonstrated to modulate TLR3-induced neuroimmune responses and associated sickness behaviour. However, the role of individual FAAH substrates, and the receptor mechanisms mediating these effects, are unknown. The present study examined the effects of intracerebral or systemic administration of the FAAH substrates N-oleoylethanolamide (OEA), N-palmitoylethanolamide (PEA) or the anandamide (AEA) analogue meth-AEA on hyperthermia and hypothalamic inflammatory gene expression following administration of the TLR3 agonist, and viral mimetic, poly I:C. The data demonstrate that meth-AEA does not alter TLR3-induced hyperthermia or hypothalamic inflammatory gene expression. In comparison, OEA and PEA attenuated the TLR3-induced hyperthermia, although only OEA attenuated the expression of hyperthermia-related genes (IL-1β, iNOS, COX2 and m-PGES) in the hypothalamus. OEA, but not PEA, attenuated TLR3-induced increases in the expression of all IRF- and NFκB-related genes examined in the hypothalamus, but not in the spleen. Antagonism of PPARα prevented the OEA-induced attenuation of IRF- and NFκB-related genes in the hypothalamus following TLR3 activation but did not significantly alter temperature. PPARα agonism did not alter TLR3-induced hyperthermia or hypothalamic inflammatory gene expression. These data indicate that OEA may be the primary FAAH substrate that modulates TLR3-induced neuroinflammation and hyperthermia, effects partially mediated by PPARα.
Collapse
Affiliation(s)
- Lisa E Flannery
- Physiology, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Daniel M Kerr
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Edel M Hughes
- Physiology, National University of Ireland, Galway, Ireland
| | - Colm Kelly
- Physiology, National University of Ireland, Galway, Ireland
| | | | | | - Rachel M Humphrey
- Physiology, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
26
|
A Duet Between Histamine and Oleoylethanolamide in the Control of Homeostatic and Cognitive Processes. Curr Top Behav Neurosci 2021; 59:389-410. [PMID: 34410679 DOI: 10.1007/7854_2021_236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In ballet, a pas de deux (in French it means "step of two") is a duet in which the two dancers perform ballet steps together. The suite of dances shares a common theme of partnership. How could we better describe the fine interplay between oleoylethanolamide (OEA) and histamine, two phylogenetically ancient molecules controlling metabolic, homeostatic and cognitive processes? Contrary to the pas de deux though, the two dancers presumably never embrace each other as a dancing pair but execute their "virtuoso solo" constantly exchanging interoceptive messages presumably via vagal afferents, the blood stream, the neuroenteric system. With one exception, which is in the control of liver ketogenesis, as in hepatocytes, OEA biosynthesis strictly depends on the activation of histaminergic H1 receptors. In this review, we recapitulate our main findings that evidence the interplay of histamine and OEA in the control of food consumption and eating behaviour, in the consolidation of emotional memory and mood, and finally, in the synthesis of ketone bodies. We will also summarise some of the putative underlying mechanisms for each scenario.
Collapse
|
27
|
Pesce M, Seguella L, Cassarano S, Aurino L, Sanseverino W, Lu J, Corpetti C, Del Re A, Vincenzi M, Sarnelli G, Esposito G. Phytotherapics in COVID19: Why palmitoylethanolamide? Phytother Res 2021; 35:2514-2522. [PMID: 33296131 DOI: 10.1002/ptr.6978] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
At present, googling the search terms "COVID-19" and "Functional foods" yields nearly 500,000,000 hits, witnessing the growing interest of the scientific community and the general public in the role of nutrition and nutraceuticals during the COVID-19 pandemic. Many compounds have been proposed as phytotherapics in the prevention and/or treatment of COVID-19. The extensive interest of the general public and the enormous social media coverage on this topic urges the scientific community to address the question of whether which nutraceuticals can actually be employed in preventing and treating this newly described coronavirus-related disease. Recently, the Canadian biotech pharma company "FSD Pharma" received the green light from the Food and Drug Administration to design a proof-of-concept study evaluating the effects of ultramicronized palmitoylethanolamide (PEA) in COVID-19 patients. The story of PEA as a nutraceutical to prevent and treat infectious diseases dates back to the 1970s where the molecule was branded under the name Impulsin and was used for its immunomodulatory properties in influenza virus infection. The present paper aims at analyzing the potential of PEA as a nutraceutical and the previous evidence suggesting its anti-inflammatory and immunomodulatory properties in infectious and respiratory diseases and how these could translate to COVID-19 care.
Collapse
Affiliation(s)
- Marcella Pesce
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Luisa Seguella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Sara Cassarano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Laura Aurino
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | | | - Jie Lu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang City, China
| | - Chiara Corpetti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Alessandro Del Re
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Martina Vincenzi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
28
|
Hu J, Zhu Z, Ying H, Yao J, Ma H, Li L, Zhao Y. Oleoylethanolamide Protects Against Acute Liver Injury by Regulating Nrf-2/HO-1 and NLRP3 Pathways in Mice. Front Pharmacol 2021; 11:605065. [PMID: 33536915 PMCID: PMC7848133 DOI: 10.3389/fphar.2020.605065] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Acute liver injury is a rapidly deteriorating clinical condition with markedly high morbidity and mortality. Oleoylethanolamide (OEA) is an endogenous lipid messenger with multiple bioactivities, and has therapeutic effects on various liver diseases. However, effects of OEA on acute liver injury remains unknown. In this study, effects and mechanisms of OEA in lipopolysaccharide (LPS)/d-galactosamine (D-Gal)-induced acute liver injury in mice were investigated. We found that OEA treatment significantly attenuated LPS/D-Gal-induced hepatocytes damage, reduced liver index (liver weight/body weight), decreased plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) levels. Moreover, mechanism study suggested that OEA pretreatment significantly reduced hepatic MDA levels, increased Superoxide dismutase (SOD) and Glutathione peroxidase (GSH-PX) activities via up-regulate Nrf-2 and HO-1 expression to exert anti-oxidation activity. Additionally, OEA markedly reduced the expression levels of Bax, Bcl-2 and cleaved caspase-3 to suppress hepatocyte apoptosis. Meanwhile, OEA remarkedly reduced the number of activated intrahepatic macrophages, and alleviated the mRNA expression of pro-inflammatory factors, including TNF-α, IL-6, MCP1 and RANTES. Furthermore, OEA obviously reduced the expression of IL-1β in liver and plasma through inhibit protein levels of NLRP3 and caspase-1, which indicated that OEA could suppress NLRP3 inflammasome pathway. We further determined the protein expression of PPAR-α in liver and found that OEA significantly increase hepatic PPAR-α expression. In addition, HO-1 inhibitor ZnPP blocked the therapeutic effects of OEA on LPS/D-Gal-induced liver damage and oxidative stress, suggesting crucial role of Nrf-2/HO-1 pathway in the protective effects of OEA in acute liver injury. Together, these findings demonstrated that OEA protect against the LPS/D-Gal-induced acute liver injury in mice through the inhibition of apoptosis, oxidative stress and inflammation, and its mechanisms might be associated with the Nrf-2/HO-1 and NLRP3 inflammasome signaling pathways.
Collapse
Affiliation(s)
- Jiaji Hu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Zhoujie Zhu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Hanglu Ying
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Jie Yao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Huabin Ma
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Long Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| |
Collapse
|