1
|
Banik SP, Kumar P, Basak P, Goel A, Ohia SE, Bagchi M, Chakraborty S, Kundu A, Bagchi D. A critical insight into the physicochemical stability of macular carotenoids with respect to their industrial production, safety profile, targeted tissue delivery, and bioavailability. Toxicol Mech Methods 2025; 35:215-229. [PMID: 39252190 DOI: 10.1080/15376516.2024.2401924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Lutein, zeaxanthin, and mesozeaxanthin, collectively termed as macular pigments, are key carotenoids integral to optimized central vision of the eye. Therefore, nutraceuticals and functional foods have been developed commercially using carotenoid rich flowers, such as marigold and calendula or single celled photosynthetic algae, such as the Dunaliella. Industrial formulation of such products enriched in macular pigments have often suffered from serious bottlenecks in stability, delivery, and bioavailability. The two chief factors largely responsible for decreasing the shelf-life have been solubility and oxidation of these pigments owing to their strong lipophilic nature and presence of conjugated double bonds. In this regard, oil-based formulations have often been found to be more suitable than powder-based formulations in terms of shelf life and targeted delivery. In some cases, addition of phenolic acids in the formulations have also augmented the product value by enhancing micellization. In this regard, a novel proprietary formulation of these pigments has been developed in our laboratory utilizing marigold extracts in a colloidal solution of extra virgin olive oil and canola oil fortified with antioxidants like thyme oil, tocopherol, and ascorbyl palmitate. This review article presents an updated insight into the stability and bioavailability of industrially manufactured macular carotenoids together with their safety and solubility issues.
Collapse
Affiliation(s)
- Samudra P Banik
- Department of Microbiology, Maulana Azad College, Kolkata, India
| | - Pawan Kumar
- R&D Department, Chemical Resources (CHERESO), Panchkula, India
| | - Pijush Basak
- Jagadis Bose National Science Talent Search, Kolkata, India
| | - Apurva Goel
- Regulatory Department, Chemical Resources (CHERESO), Panchkula, India
| | - Sunny E Ohia
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | | | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, NY, USA
| | - Arijit Kundu
- Department of Chemistry, Maulana Azad College, Kolkata, India
| | - Debasis Bagchi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY, USA
- Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA
| |
Collapse
|
2
|
Chen K, Li J, Chen Z, Shen C, Li X, Li Y, Song D, Li X, Wang X, Xia Y, Yu X, Wang Y, Shen Y, Tong J. Notoginsenoside R1 alleviates blue light-induced corneal injury and wound healing delay by binding to and inhibiting TRIB1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156399. [PMID: 39884079 DOI: 10.1016/j.phymed.2025.156399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/30/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND With the escalating use of digital devices, blue light (BL) exposure has emerged as a critical concern due to its potential to cause ocular damage. This study explores the protective effects of notoginsenoside R1 (NR1), a bioactive compound from Panax notoginseng (Burkill) F.H. Chen (Sanqi), against BL-induced corneal epithelial injury. PURPOSE This research aims to investigate the protective effects of NR1 on BL-induced corneal injury and wound healing delay. METHODS Human corneal epithelial cells (hCECs) were pretreated with NR1 (0-50 μM) or N-acetylcysteine (NAC, 10 mM), then exposed to BL (570 μW/cm²) for 24 h. Cell viability, proliferation, migration, and ROS levels were assessed using various techniques. In mice, NR1 (25 μM and 50 μM) and NAC (0.3 %) eye drops were administered during BL exposure. Corneal injury, healing rates, cell proliferation, migration, ROS, and inflammation were evaluated. RNA-sequencing, bioinformatics, and molecular binding validation identified tribbles homolog 1 (TRIB1) as a key molecule mitigating BL damage with NR1. Functional studies via gene silencing, overexpression, and pharmacological modulation further explored TRIB1's role in BL exposure. RESULTS NR1 significantly reduced BL-induced inflammation, ROS production, and inhibited migration and proliferation in hCECs and murine corneas. It also alleviated BL-induced corneal injury and delayed healing in mice. NR1 inhibited TRIB1 upregulation, a marker of BL-induced injury and healing delay. Overexpression of TRIB1 negated NR1's therapeutic effects on hCECs, while TRIB1 silencing mitigated functional impairment. In mice, increased Trib1 expression caused corneal injury and delayed healing, reversed by NR1 treatment. CONCLUSION NR1 shows potential as a therapeutic agent by inhibiting TRIB1 elevation in response to BL exposure, providing a novel promising target for corneal injury and wound healing delay induced by BL, and offering a comprehensive strategy for clinical pharmacological intervention.
Collapse
Affiliation(s)
- Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, Shandong First Medical University, Jinan, Shandong, China
| | - Jiafeng Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhitong Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chang Shen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiang Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuanyuan Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dongjie Song
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiuyi Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinglin Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yutong Xia
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin Yu
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yinhao Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Zhu J, Liu L, Wu J, Bai L. Rodent models for dry eye syndrome (DES). Cont Lens Anterior Eye 2025:102383. [PMID: 39956692 DOI: 10.1016/j.clae.2025.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/18/2025]
Abstract
Dry eye syndrome (DES) is a range of ophthalmic conditions characterized by compromised tear film homeostasis, resulting from various pathological factors and primarily manifesting as ocular discomfort and impaired ocular surface integrity. With the rise in screen time due to modern lifestyles, the prevalence of DES is increasing annually, posing a significant global public health challenge. Pathophysiologically, DES involves damage to the lacrimal functional unit (LFU), including the lacrimal glands, meibomian glands, and corneoconjunctival epithelium, highlighting its multifactorial etiology. Current treatments mainly focus on artificial tears for moisture replacement and anti-inflammatory therapies, but both are limited. Consequently, animal models are crucial for understanding the complex pathological mechanisms of DES and identifying potential therapeutic agents. Rodent eyes, with their structural and physiological similarities to human eyes and cost-effectiveness, have become widely used in DES research. This manuscript reviews the current understanding of DES pathogenesis and rodent models, discussing their strengths, weaknesses, and relevant genetic models. The aim is to furnish critical insights and provide a scholarly resource to propel future investigative endeavors into the pathogenesis of and therapy for DES.
Collapse
Affiliation(s)
- Jingyun Zhu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liu Liu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Wu
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lang Bai
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Yan Y, Wu Y, Zhao Y, Yang Y, An G, Liu Z, Qi D. A review on eye diseases induced by blue light: pathology, model, active ingredients and mechanisms. Front Pharmacol 2025; 16:1513406. [PMID: 39917620 PMCID: PMC11798942 DOI: 10.3389/fphar.2025.1513406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/02/2025] [Indexed: 02/09/2025] Open
Abstract
Blue light induced eye damage (BLED) belongs to modern diseases. It is an ophthalmic disease caused by prolonged exposure to electronic devices or screens containing a large amount of high-energy short waves (blue light). Specific symptoms include dryness and discomfort in the eyes, blurred vision, headache, insomnia, and in severe cases, it may also cause various eye diseases such as cataracts and glaucoma. At present, the development of health products and drugs for eye blue light injury faces many difficulties. Therefore, further exploration and research are needed on the pathogenesis, pathophysiology, and pharmacological mechanisms of blue light injury. Natural medicine ingredients and preparations have unique advantages in targeting eye blue light injury fatigue products due to their multi-component synergistic effects, overall regulation, and mild and safe characteristics. Starting from the disease-related mechanisms and pathophysiological characteristics of eye blue light injury, this article elucidates the pharmacological mechanisms of various drugs for treating eye blue light injury. At the same time, it reviews the research on in vitro cultured cell and animal model conditions for blue light injury eyes, in order to provide reference for subsequent blue light injury modeling experiments. And explore future research directions to provide new ideas and methods for the prevention and treatment of BLED.
Collapse
Affiliation(s)
- Yuan Yan
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiyao Wu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Zhao
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaguang Yang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangtao An
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhidong Liu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- College of Chinese Medicine, Tianjin University of Chinese Medicine, Tianjin, China
| | - Dongli Qi
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Xu B, Zhou J, Zhang C, Chang Y, Deng Z. Research Progress on Quantum Dot-Embedded Polymer Films and Plates for LCD Backlight Display. Polymers (Basel) 2025; 17:233. [PMID: 39861304 PMCID: PMC11769422 DOI: 10.3390/polym17020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Quantum dot-polymer composites have the advantages of high luminescent quantum yield (PLQY), narrow emission half-peak full width (FWHM), and tunable emission spectra, and have broad application prospects in display and lighting fields. Research on quantum dots embedded in polymer films and plates has made great progress in both synthesis technology and optical properties. However, due to the shortcomings of quantum dots, such as cadmium selenide (CdSe), indium phosphide (InP), lead halide perovskite (LHP), poor water, oxygen, and light stability, and incapacity for large-scale synthesis, their practical application is still restricted. Various polymers, such as methyl methacrylate (PMMA), polyethylene terephthalate (PET), polystyrene (PS), polyvinylidene fluoride (PVDF), polypropylene (PP), etc., are widely used in packaging quantum dot materials because of their high plasticity, simple curing, high chemical stability, and good compatibility with quantum dot materials. This paper focuses on the application and development of quantum dot-polymer materials in the field of backlight displays, summarizes and expounds the synthesis strategies, advantages, and disadvantages of different quantum dot-polymer materials, provides inspiration for the optimization of quantum dot-polymer materials, and promotes their application in the field of wide-color-gamut backlight display.
Collapse
Affiliation(s)
- Bin Xu
- Department of Electronic Information Engineering, School of Computer and Information Engineering, Nanjing Tech University, Nanjing 211816, China;
| | - Jiankang Zhou
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; (J.Z.); (C.Z.)
| | - Chengran Zhang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; (J.Z.); (C.Z.)
| | - Yunfu Chang
- Department of Electronic Information Engineering, School of Computer and Information Engineering, Nanjing Tech University, Nanjing 211816, China;
| | - Zhengtao Deng
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; (J.Z.); (C.Z.)
| |
Collapse
|
6
|
Yeh WJ, Yan C, Wu CH. Photoprotective Effects of Phytochemicals on Blue Light-Induced Retinal Damage: Current Evidence and Future Perspectives. Nutrients 2025; 17:331. [PMID: 39861461 PMCID: PMC11768023 DOI: 10.3390/nu17020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The widespread use of light-emitting diodes (LEDs) has increased blue light (BL) exposure, raising concerns about its potential adverse effects on ocular health. Prolonged exposure to BL has been implicated in the pathogenesis of various retinal disorders, including age-related macular degeneration (AMD), primarily through mechanisms involving oxidative stress and inflammation mediated by the overproduction of reactive oxygen species (ROS). This review synthesizes current evidence on the photoprotective properties of dietary bioactive compounds, (e.g., anthocyanins, curcumin, quercetin, myricetin, and resveratrol), with a focus on their potential to mitigate BL-induced retinal damage. Accumulating research suggests that dietary antioxidants, particularly polyphenols, may offer photoprotective benefits. These phytochemicals act by neutralizing ROS and enhancing the retina's endogenous antioxidant capacity. Based on these findings, this review advocates for a food-first approach in future investigations, emphasizing the development of evidence-based dietary recommendations to bolster retinal health and mitigate the risk of BL-related ocular diseases. Considering the current lack of empirical clinical studies examining the impact of BL on human ocular health, future research in the field of BL hazard should prioritize two key approaches: conducting large-scale epidemiological dietary surveys and implementing clinical trials on functional ingredients that have demonstrated beneficial effects against photodamage in preclinical animal studies.
Collapse
Affiliation(s)
| | | | - Chi-Hao Wu
- Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (W.-J.Y.); (C.Y.)
| |
Collapse
|
7
|
Yang Q, Chen K, Chen S, Wang Y, Xia Y, Chen J, Shen Y. Blue light promotes conjunctival epithelial-mesenchymal transition and collagen deposition through ITGB4. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117584. [PMID: 39732060 DOI: 10.1016/j.ecoenv.2024.117584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Abstract
The increasing prevalence of LED technology heightened blue light (BL) exposure, raising concerns about its long-term effects on ocular health. This study investigated the transcriptomic response of conjunctiva to BL exposure, highlighting potential biomarkers for conjunctival injury. We exposed human conjunctival epithelial cells and C57BL/6 mice to BL to establish in vitro and in vivo models and identified the responsive genes in mice's conjunctiva to BL exposure by RNA sequencing transcriptome analysis. Western blotting, wound healing assays, transwell assay, and phalloidin staining assessed phenotypes of epithelial-mesenchymal transition (EMT). BL disrupted cell conjunction and regulated EMT-related proteins. RNA sequencing analysis revealed upregulation of ITGB4 and enrichment of cell migration and adhesion pathways. Reactive oxygen species-mediated damage caused by BL upregulated ITGB4 expression, promoting cell migration and EMT through the extracellular signal-regulated kinase /Snail pathway.
Collapse
Affiliation(s)
- Qianjie Yang
- Ningbo Eye Institute, Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, Zhejiang Province, China
| | - Kuangqi Chen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | | | - Yinhao Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yutong Xia
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jinbo Chen
- Ningbo Eye Institute, Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, Zhejiang Province, China
| | - Ye Shen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
8
|
Riddell N, Murphy MJ, Zahra S, Robertson-Dixon I, Crewther SG. Broadband Long Wavelength Light Promotes Myopic Eye Growth and Alters Retinal Responses to Light Offset in Chick. Invest Ophthalmol Vis Sci 2025; 66:30. [PMID: 39804628 PMCID: PMC11734760 DOI: 10.1167/iovs.66.1.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025] Open
Abstract
Purpose Prolonged exposure to broadband light with a short-wavelength (blue) or long-wavelength (orange/red) bias is known to impact eye growth and refraction, but the mechanisms underlying this response are unknown. Thus, the present study investigated the effects of broadband blue and orange lights with well-differentiated spectrums on refractive development and global flash electroretinography (gfERG) measures of retinal function in the chick myopia model. Methods Chicks were raised for 4 days with monocular negative lenses, or no lens, under blue, orange, or white light. Chick weight, eye dimensions, and refraction were measured at the conclusion of rearing. In a separate cohort of chicks, the effect of 4 days of colored light rearing on retinal responses to orange, blue, or white light flashes was assessed using gfERG. Results Chicks reared under orange light for 4 days exhibited a significantly larger myopic shift in response to negative lenses compared to those reared under blue light. Orange light rearing for 4 days increased the gfERG d-wave amplitude and implicit time in response to orange light flashes but did not alter responses to white or blue flashes. Blue and white light rearing did not affect the retina's response to light flashes of any color. Conclusions Orange light rearing exacerbated defocus-induced myopia relative to blue light rearing. The gfERG recordings revealed that prolonged orange light exposure increased retinal responsivity to the offset of long wavelength light flashes, suggesting a potential role for ON/OFF pathway balance in generating the refractive response that requires further electrophysiological and molecular investigation.
Collapse
Affiliation(s)
- Nina Riddell
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Melanie J. Murphy
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Sania Zahra
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | | | - Sheila G. Crewther
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| |
Collapse
|
9
|
Wang Q, Li Q, Quan T, Liang H, Li J, Li K, Ye S, Zhu S, Li B. Effects of Illumination Color on Hypothalamic Appetite-Regulating Gene Expression and Glycolipid Metabolism. Nutrients 2024; 16:4330. [PMID: 39770951 PMCID: PMC11678393 DOI: 10.3390/nu16244330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/05/2025] Open
Abstract
Irregular illumination is a newly discovered ambient factor that affects dietary and metabolic processes. However, the effect of the modulation of long-term light exposure on appetite and metabolism remains elusive. Therefore, in this current study, we systematically investigated the effects of up to 8 weeks of exposure to red (RL), green (GL), and white light (WL) environments on appetite, food preferences, and glucose homeostasis in mice on both high-fat and low-fat dietary patterns. It was found that the RL group exacerbated high-fat-induced obesity in mice compared with GL- or WL-treated mice. RL-exposed mice exhibited worsened metabolic profiles, including impaired glucose tolerance/insulin sensitivity, elevated lipid levels, and reduced serum insulin levels. Serological analyses showed that RL exposure resulted in decreased leptin levels and increased levels of orexigenic and hunger hormones in mice. Further qPCR analysis showed that the expression levels of the hypothalamic appetite-related genes NPY and AgRP mRNA were upregulated in RL-treated mice, while the expression level of the appetite suppressor gene POMC mRNA was downregulated. The results of this study will be instructive for the regulation of appetite and metabolism from the perspective of illumination colors.
Collapse
Affiliation(s)
- Qi Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianru Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Tuo Quan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuxin Ye
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Sijia Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Boaro A, Ramos LD, Bastos EL, Bechara EJH, Bartoloni FH. Comparison of the mechanisms of DNA damage following photoexcitation and chemiexcitation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 262:113070. [PMID: 39657451 DOI: 10.1016/j.jphotobiol.2024.113070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
In this review, we compare the mechanisms and consequences of electronic excitation of DNA via photon absorption or photosensitization, as well as by chemically induced generation of excited states. The absorption of UV radiation by DNA is known to produce cyclobutane pyrimidine dimers (CPDs) and thymine pyrimidone photoproducts. Photosensitizers are known to enable such transformations using UV-A and visible light by generating triplet species able to transfer energy to DNA. Conversely, chemiexcitation of DNA is a process related to the formation of high energy peroxides whose decomposition leads to triplet excited species. In practice, both photoexcitation and chemiexcitation produce reactive excited species able to promote some DNA nucleobases to their excited state. We discuss the effect of epigenetic methylation modifications of DNA and the role of endogenous and exogenous photosensitizers on the formation of DNA photoproducts via triplet-triplet energy transfer as well as oxidative DNA damages. The mechanisms of pathogenic pathway involving the generation of CPDs via chemiexcitation (namely dark CPDs, dCPDs) are discussed and compared with photoexcitation considering their spatiotemporal characteristics. Recognition of the multifaceted noxious effects of UV radiation opens new horizons for the development of effective electronically excited quenchers, thereby providing a crucial step toward mitigating DNA photodamage.
Collapse
Affiliation(s)
- Andreia Boaro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, SP 09210-580, Brazil; Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP 05403-000, Brazil.
| | - Luiz Duarte Ramos
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, SP 09210-580, Brazil
| | - Erick Leite Bastos
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, SP 09210-580, Brazil; Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | | | - Fernando Heering Bartoloni
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, SP 09210-580, Brazil
| |
Collapse
|
11
|
Pramana A, Firmanda A, Arnata IW, Sartika D, Sari EO. Reduction of biofilm and pathogenic microorganisms using curcumin-mediated photodynamic inactivation to prolong food shelf-life. Int J Food Microbiol 2024; 425:110866. [PMID: 39146626 DOI: 10.1016/j.ijfoodmicro.2024.110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Pathogenic microbial contamination (bacteria and fungi) in food products during production poses a significant global health risk, leading to food waste, greenhouse gas emissions, and aesthetic and financial losses. Bacteria and fungi, by forming solid biofilms, enhance their resistance to antimicrobial agents, thereby increasing the potential for cross-contamination of food products. Curcumin molecule-mediated photodynamic inactivation (Cur-m-PDI) technology has shown promising results in sterilizing microbial contaminants and their biofilms, significantly contributing to food preservation without compromising quality. Photosensitizers (curcumin) absorb light, leading to a chemical reaction with oxygen and producing reactive oxygen species (ROS) that effectively reduce bacteria, fungi, and biofilms. The mechanism of microorganism inhibition is caused by exposure to ROS generated via the type 1 pathway involving electron transfer (such as O2•-, H2O2, -OH•, and other radicals), the type 2 pathway involving energy transfer (such as 1O2), secondary ROS, and weakening of antioxidant enzymes. The effectiveness of the inactivation of microorganisms is influenced by the concentration of curcumin, light (source type and energy density), oxygen availability, and duration of exposure. This article reviews the mechanism of reducing microbial food contamination and inhibiting their biofilms through Cur-m-PDI. It also highlights future directions, challenges, and considerations related to the effects of ROS in oxidizing food, the toxicity of PDI to living cells and tissues, conditions/types of food products, and the stability and degradation of curcumin.
Collapse
Affiliation(s)
- Angga Pramana
- Department of Agricultural Technology, Faculty of Agriculture, Universitas Riau, Pekanbaru 28292, Indonesia.
| | - Afrinal Firmanda
- Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
| | - I Wayan Arnata
- Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Badung, Bali, Indonesia
| | - Dewi Sartika
- Faculty of Agriculture, Muhammadiyah University of Makassar, Makassar, South Sulawesi, Indonesia
| | - Esty Octiana Sari
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
12
|
Yeh WJ, Chien PT, Wen YT, Wu CH. A comprehensive review of experimental models for investigating blue light-induced ocular damage: Insights into parameters, limitations, and new opportunities. Exp Eye Res 2024; 249:110142. [PMID: 39490726 DOI: 10.1016/j.exer.2024.110142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/26/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Light-emitting diodes (LEDs) are widely used in modern lighting and electronic devices, including smartphones, computer monitors, tablets, televisions, and vehicle lights. Blue light (BL) hazards to eye health have received increasing attention because white LED bulbs emit higher levels of BL than traditional lighting sources. At wavelengths of 400-500 nm, BL is characterized by its high energy and risks associated with prolonged exposure, which may lead to photochemical damage and morphological alterations in the retina. Recent research has revealed that the harmful effects of BL are intricately linked to light intensity and exposure frequency, with mechanisms involving the overproduction of reactive oxygen species through photooxidative processes. This growing body of knowledge deepens our understanding of photodamage and opens avenues for exploring protective strategies for our eyes. Although current clinical trials assessing the safety of BL exposure remain limited, the development of experimental models that mimic physiological conditions has revealed BL toxicity. This review categorizes and evaluates BL-induced retinopathy in vivo, providing a comprehensive overview of the associated experimental parameters, including photosensitive fluorophores, light wavelength, illuminance, irradiance, exposure duration, animal strains, and their unique lesion patterns. Moreover, this study underscores the need for further research to evaluate photoprotective agents, which may offer valuable insights to the ongoing discussion on preserving ocular health in our increasingly illuminated digital environments.
Collapse
Affiliation(s)
- Wan-Ju Yeh
- Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Pin-Ting Chien
- Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Yao-Tseng Wen
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 97403, Taiwan
| | - Chi-Hao Wu
- Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan.
| |
Collapse
|
13
|
Jin L, Yang Q, Li J, Li X, Xia Y, Chen Z, Wen Y, Wang L, Wang X, Tong J, Shen Y, Chen K. The ROS/AKT/S6K axis induces corneal epithelial dysfunctions under LED blue light exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117345. [PMID: 39541698 DOI: 10.1016/j.ecoenv.2024.117345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
In recent years, concerns have escalated regarding eye health problems arising from Light-emitting diode (LED), which emits high-energy blue light (BL), potentially causing corneal epithelial dysfunctions (CEpD). Nevertheless, the mechanisms underlying this damage remain poorly comprehended. This study endeavors to explore the specific mechanisms through which BL exposure induces CEpD. The study carried out diverse assays and treatments to investigate the toxicological effects of BL exposure. 48 hours (h) of 440 nm of BL exposure decreased the migration of human corneal epithelial cells (hCEpCs) while augmenting reactive oxygen species (ROS) production and apoptosis. RNA-Sequencing and bioinformatic analysis indicated that cellular oxidation and reduction equilibrium, wound healing, the positive regulation of the apoptotic process, and the Phosphoinositide 3-kinase (PI3K)/AKT pathway were significantly influenced by BL exposure. Treatment with N-acetylcysteine (NAC), a ROS scavenger, restored cell viability and AKT/S6 kinase (S6K) activation, suggesting the involvement of ROS in BL-induced damage. NAC also reversed BL-induced apoptosis and migration. Blocking AKT/S6K replicated detrimental effects, while pre-treatment with SC79 (SC), an AKT activator, alleviated the changes caused by BL exposure in hCEpCs. Furthermore, in mice, the combination of AKT inhibition and BL exposure led to CEpD. However, treatment with SC and NAC restored CEpD caused by BL exposure. These results imply that the regulation of the ROS/PI3K/AKT/S6K axis is implicated in BL-induced CEpD. Collectively, this study offers insights into the molecular mechanisms of BL-induced CEpD and proposes targeting the ROS/PI3K/AKT/S6K cascade as a potential therapeutic approach. The findings contribute to ocular health knowledge and establish the basis for developing interventions to safeguard the cornea from the detrimental effects of excessive BL exposure.
Collapse
Affiliation(s)
- Le Jin
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Qianjie Yang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiafeng Li
- Department of Orthopedic Surgery, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiang Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yutong Xia
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhitong Chen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingying Wen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Liyin Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiawei Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianping Tong
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Ye Shen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Kuangqi Chen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China; School of Ophthalmology, Shandong First Medical University, Jinan, Shandong, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Jinan, Shandong, China, Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
14
|
Duan J, Li Q, Yin Z, Zhen S, Cao W, Yan S, Zhang Y, Wu Q, Zhang W, Liang F. Outdoor Artificial Light at Night and Insomnia-Related Social Media Posts. JAMA Netw Open 2024; 7:e2446156. [PMID: 39565624 PMCID: PMC11579793 DOI: 10.1001/jamanetworkopen.2024.46156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/27/2024] [Indexed: 11/21/2024] Open
Abstract
Importance Understanding the outcomes of artificial light at night (ALAN) on insomnia is crucial for public health, particularly in rapidly urbanizing regions. However, evidence of the association between ALAN exposure and insomnia is limited, despite the large number of people exposed to ALAN. Objective To explore the association between outdoor ALAN exposure and insomnia among the Chinese population. Design, Setting, and Participants This cross-sectional study used social media data from Weibo (Sina), a social media platform, and satellite-derived nighttime light images. The study period spans from May 2022 to April 2023. The study encompasses 336 cities across China's mainland, providing a comprehensive national perspective. Data include insomnia-related posts from the platform users, representing a large and diverse population sample exposed to varying levels of ALAN. Exposure Outdoor ALAN exposure (in nanowatts per centimeters squared per steradian [nW/cm2/sr]) was measured using satellite-derived nighttime light images at a spatial resolution of 500 m. Main Outcomes and Measures The incidence of insomnia among residents at the city level was measured by the number of insomnia-related posts on social media. Multiple linear regression models were used to estimate the association between ALAN exposure and population insomnia, adjusting for population characteristics and meteorological factors at the city level. Results The study included data from 1 147 583 insomnia-related posts. Daily mean ALAN exposure across the 336 cities ranged from 3.1 to 221.0 nW/cm2/sr. For each 5 nW/cm2/sr increase in ALAN exposure, the incidence of insomnia increased by 0.377% (95% CI, 0.372%-0.382%). The association was greater in less populated cities and under extreme temperature and poor air quality conditions. The observed exposure-response functions between ALAN exposure and insomnia demonstrated an upward trend, with steeper slopes observed at low exposures and leveling off at higher exposures. Conclusions and Relevance This study provides evidence of the association between increased ALAN exposure and higher incidence of insomnia. These findings expand the current knowledge on adverse health outcomes of ALAN exposure and emphasize the potential health benefits of well-planned artificial nighttime lighting in China and other developing countries in the early stages of city planning.
Collapse
Affiliation(s)
- Jiahao Duan
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Qian Li
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhouxin Yin
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shihan Zhen
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Wenzhe Cao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shiwei Yan
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yanhui Zhang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Qingyao Wu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Wei Zhang
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan, China
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
15
|
Lu Y, Tong M. Impact of red and blue monochromatic light on the visual system and dopamine pathways in juvenile zebrafish. BMC Ophthalmol 2024; 24:475. [PMID: 39482637 PMCID: PMC11529001 DOI: 10.1186/s12886-024-03742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND The development of the zebrafish visual system is significantly influenced by exposure to monochromatic light, yet investigations into its effects during juvenile stages are lacking. This study evaluated the impacts of varying intensities and durations of red and blue monochromatic light on the visual system and dopamine pathways in juvenile zebrafish. METHODS Juvenile zebrafish were exposed to red (650 nm) and blue (440 nm, 460 nm) monochromatic lights over four days at intensities ranging from 500 to 10,000 lx, for durations of 6, 10, and 14 h daily. A control group was maintained under standard laboratory conditions. Post-exposure assessments included the optokinetic response (OKR), retinal structural analysis, ocular dopamine levels, and the expression of genes related to dopamine pathways (Th, Dat, and Mao). RESULTS (1) OKR enhancement was observed with increased 440 nm light intensity, while 460 nm and 650 nm light exposures showed initial improvements followed by declines at higher intensities. (2) Retinal thinning in the outer nuclear layer was observed under the most intense (10,000 lx for 14 h) light conditions in the 440 nm and 650 nm groups, while the 460 nm group remained unaffected. (3) Dopamine levels increased with higher intensities in the 440 nm group, whereas the 460 nm group exhibited initial increases followed by decreases. The 650 nm group displayed similar trends but were statistically insignificant compared to the control group. (4) Th expression increased with light intensity in the 440 nm group. Dat showed a rising and then declining pattern, and Mao expression significantly decreased. The 460 nm group exhibited similar patterns for Th and Dat to the behavioral observations, but an inverse pattern for Mao. The 650 nm group presented significant fluctuations in Th and Dat expressions, with pronounced variations in Mao. CONCLUSIONS Specific red and blue monochromatic light conditions promote visual system development in juvenile zebrafish. However, exceeding these optimal conditions may impair visual function, highlighting the critical role of dopamine pathway in modulating light-induced effects on the visual system.
Collapse
Affiliation(s)
- Yan Lu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Street, Nanjing, 210004, China
- Department of Pediatrics, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing, 210019, China
| | - Meiling Tong
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Street, Nanjing, 210004, China.
| |
Collapse
|
16
|
Ahmed AF, Madi MA, Ali AH, Mokhemer SA. The ameliorating effects of adipose-derived stromal vascular fraction cells on blue light-induced rat retinal injury via modulation of TLR4 signaling, apoptosis, and glial cell activity. Cell Tissue Res 2024:10.1007/s00441-024-03925-3. [PMID: 39441358 DOI: 10.1007/s00441-024-03925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Blue light (BL)-induced retinal injury has become a very common problem due to over exposure to blue light-emitting sources. This study aimed to investigate the possible ameliorating impact of stromal vascular fraction cells (SVFCs) on BL-induced retinal injury. Forty male albino rats were randomly allocated into four groups. The control group rats were kept in 12-h light/12-h dark. Rats of SVFC-control as the control group, but rats were intravenously injected once by SVFCs. Rats of both the BL-group and BL-SVFC group were exposed to BL for 2 weeks; then rats of the BL-SVFC group were intravenously injected once by SVFCs. Following the BL exposure, rats were kept for 8 weeks. Physical and physiological studies were performed; then retinal tissues were collected for biochemical and histological studies. The BL-group showed physical and physiological changes indicating affection of the visual function. Biochemical marker assessment showed a significant increase in MDA, TLR4 and MYD88 tissue levels with a significant decrease in TAC levels. Histological and ultrastructural assessment showed disruption of the normal histological architecture with retinal pigment epithelium, photoreceptors, and ganglion cell deterioration. A significant increase in NF-κB, caspase-3, and GFAP immunoreactivity was also detected. BL-SVFC group showed a significant improvement in physical, physiological, and biochemical parameters. Retinal tissues revealed amelioration of retinal structural and ultrastructural deterioration and a significant decrease in NF-κB and caspase-3 immunoreactivity with a significant increase in GFAP immunoreaction. This study concluded that SVFCs could ameliorate the BL-induced retinal injury through TLR-4/MYD-88/NF-κB signaling inhibition, regenerative, anti-oxidative, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Amira Fathy Ahmed
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Maha Ahmed Madi
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Azza Hussein Ali
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Sahar A Mokhemer
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, El-Minia, Egypt.
| |
Collapse
|
17
|
Yoon HJ, Jiang E, Liu J, Jin H, Yoon HS, Choi JS, Moon JY, Yoon KC. A Selective Melatonin 2 Receptor Agonist, IIK7, Relieves Blue Light-Induced Corneal Damage by Modulating the Process of Autophagy and Apoptosis. Int J Mol Sci 2024; 25:11243. [PMID: 39457025 PMCID: PMC11508435 DOI: 10.3390/ijms252011243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
This study aims to investigate the effect of the selective MT2 receptor agonist, IIK7, on corneal autophagy and apoptosis, aiming to reduce corneal epithelial damage and inflammation from blue light exposure in mice. Eight-week-old C57BL/6 mice were divided into BL-exposed (BL) and BL-exposed with IIK7 treatment (BL + IIK7 group). Mice underwent blue light exposure (410 nm, 100 J) twice daily with assessments at baseline and on days 3, 7, and 14. Corneal samples were analyzed for MT2 receptor expression, autophagy markers (LC3-II and p62), and apoptosis indicators (BAX expression and TUNEL assay). Then, mice were assigned to normal control, BL, and BL + IIK7. Ocular surface parameters, including corneal fluorescein staining scores, tear volume, and tear film break-up time, were evaluated on days 7 and 14. On day 14, reactive oxygen species (ROS) levels and CD4+ IFN-γ+ T cells percentages were measured. The BL group exhibited higher LC3-II and p62 expression, while the BL + IIK7 group showed reduced expression (p < 0.05). The TUNEL assay showed reduced apoptosis in the BL + IIK7 group compared to the BL group. ROS levels were lower in the BL + IIK7 group. The BL + IIK7 group showed improved ocular surface parameters, including decreased corneal fluorescein staining and increased tear volume. The percentages of CD4+ IFN-γ+ T cells indicated reduced inflammatory responses in the BL + IIK7 group. The MT2 receptor agonist IIK7 regulates corneal autophagy and apoptosis, reducing corneal epithelial damage and inflammation from blue light exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Medical School, and Hospital, Gwangju 61469, Republic of Korea; (H.-J.Y.)
| |
Collapse
|
18
|
Wang L, Ma M, Li Y, Pei C, Wang J, Li J, Yang L, Liu Q, Tang L, Hao Y, Jiang H, Fu J, Xiao Y, Wang Y, Cui M, Su T, Bai J, Tang H, Wang Y, Shan H, Jiang H, Deng C, Kong L, Hui Z, Ma L. Effect of supplementation with lutein, zeaxanthin, and omega-3 fatty acids on macular pigment and visual function in young adults with long-term use of digital devices: study protocol for a randomized double-blind placebo-controlled study. Front Nutr 2024; 11:1422468. [PMID: 39494312 PMCID: PMC11528376 DOI: 10.3389/fnut.2024.1422468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Background Growing evidence emphasizes the importance of xanthophyll carotenoids and omega-3 fatty acids in eye health. However, the beneficial effects of such supplementation have not been thoroughly discussed among adults with high screen exposure. Current trial evidence on lutein bioavailability is contradictory, and the interactions of dietary intervention with host-related factors remain elusive. This study aims to investigate the comparative effectiveness of supplementation with macular xanthophylls and omega-3 fatty acids on macular pigment optical density (MPOD) and visual function, access the bioavailability of free lutein and lutein ester, and explore the complex interplay between genetic variations, intestinal microbiota, and the dietary intervention in Chinese adults with long-term exposure to digital devices. Methods The Lutein, Zeaxanthin, and Omega-3 (LZO) clinical trial is a 24-week multicenter, randomized, double-blind, placebo-controlled trial of 600 participants recruited from research centers, universities, and communities. Individuals are eligible to participate if they are aged over 18 years and use digital devices for over 8 h daily in the last 2 years, and will be randomized to six arms. A total of three visits will be scheduled at baseline, 12 and 24 weeks. The primary outcome is the change in MPOD over the 24-week intervention. The secondary outcomes are changes in visual function (visual acuity, best-corrected visual acuity, contrast and glare sensitivity, critical flicker fusion, reaction time, visuognosis persistence, symptoms and signs of dry eye, retinal thickness, and optical quality), and changes in serum lutein and zeaxanthin concentrations, and erythrocyte membrane omega-3 fatty acids. Genetic variations will be determined using genome-wide genotyping at baseline. 16S rRNA gene sequencing will be utilized to assess microbiome compositional changes before and after intervention. Discussion The trial is anticipated to establish early interventions to prevent photochemical ocular damage and delay the onset of vision impairment in young adults with long-term repeated exposure to screen-based electronic devices, and provide valuable insights for the development of precision nutrition strategies for maintaining eye health. Clinical trial registration www.clinicaltrials.in.th, Identifier, TCTR20220904002.
Collapse
Affiliation(s)
- Lina Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Mei Ma
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yong Li
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Cheng Pei
- The First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jianming Wang
- The Second Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Juan Li
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Linjuan Yang
- The First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Qianying Liu
- The Second Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Li Tang
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yang Hao
- The First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Huili Jiang
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jiaxuan Fu
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yuyao Xiao
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yahui Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Meng Cui
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Tong Su
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jiaqi Bai
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Hao Tang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yue Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Hongying Shan
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Hong Jiang
- The First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Chaoming Deng
- BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Liyun Kong
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an, China
| | - Zhaozhao Hui
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Le Ma
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an, China
| |
Collapse
|
19
|
Sun M, Ren Y, Du Q, Xie Y, Wang A, Jiang H, Lai Y, Liu S, Liu M. Blue light inhibits cell viability and proliferation in hair follicle stem cells and dermal papilla cells. Lasers Med Sci 2024; 39:251. [PMID: 39377836 DOI: 10.1007/s10103-024-04195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Hair loss is a prevalent issue worldwide, which, though not life-threatening, can result in psychological problems, low self-esteem, and social anxiety. Previous studies have shown that ultraviolet radiation can have negative effects on hair follicle cells, leading to hair loss, while the impact of blue light on hair and hair follicle has largely been overlooked. This study aimed to examine the effects of blue light on hair follicle stem cells (HFSCs) and primary dermal papilla cells (DPCs), which are essential components of hair follicles. Human HFSCs and primary DPCs were exposed to blue light (457 nm) at various intensities (1, 4, 8, and 16 mW/cm2) for 3 days. Subsequently, cell viability, cell proliferation, and intracellular reactive oxygen species (ROS) were assessed. The results showed that blue light (457 nm) significantly reduced the cell viability and proliferation of HFSCs and DPCs in vitro, with the inhibition being intensity-dependent. Additionally, blue light triggered the overproduction of ROS in the DPCs. While the exact mechanisms by which blue light affects hair follicle cells remain unclear, these findings suggest that blue light could impede the growth of these cells. This insight may offer a new approach to protecting hair by avoiding exposure to high-intensity blue light.
Collapse
Affiliation(s)
- Miao Sun
- Department of Light Source and Illuminating Engineering, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Yi Ren
- Department of Light Source and Illuminating Engineering, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Qian Du
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, Tongji University School of Medicine, No. 1278 Baode Road, Shanghai, 200443, China
| | - Yajia Xie
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China
| | - Aixia Wang
- Department of Light Source and Illuminating Engineering, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Yongxian Lai
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, Tongji University School of Medicine, No. 1278 Baode Road, Shanghai, 200443, China.
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China.
| | - Muqing Liu
- Department of Light Source and Illuminating Engineering, Fudan University, 220 Handan Rd., Shanghai, 200433, China.
- Academy for Engineering and Technology, Fudan University, 220 Handan Rd., Shanghai, 200433, China.
- Zhongshan Danbang Optoelectronic Technology Co., Ltd., 6 Xiangxing Rd., Zhongshan, Guangdong Province, 528403, China.
| |
Collapse
|
20
|
Barrau C, Marie M, Ehrismann C, Gondouin P, Sahel JA, Villette T, Picaud S. Prevention of Sunlight-Induced Cell Damage by Selective Blue-Violet-Light-Filtering Lenses in A2E-Loaded Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2024; 13:1195. [PMID: 39456449 PMCID: PMC11504362 DOI: 10.3390/antiox13101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Blue light accelerates retinal aging. Previous studies have indicated that wavelengths between 400 and 455 nm are most harmful to aging retinal pigment epithelia (RPE). This study explored whether filtering these wavelengths can protect cells exposed to broad sunlight. Primary porcine RPE cells loaded with 20 µM A2E were exposed to emulated sunlight filtered through eye media at 1.8 mW/cm2 for 18 h. Filters selectively filtering out light over 400-455 nm and a dark-yellow filter were interposed. Cell damage was measured by apoptosis, hydrogen peroxide (H2O2) production, and mitochondrial membrane potential (MMP). Sunlight exposure increased apoptosis by 2.7-fold and H2O2 by 4.8-fold, and halved MMP compared to darkness. Eye Protect SystemTM (EPS) technology, filtering out 25% of wavelengths over 400-455 nm, reduced apoptosis by 44% and H2O2 by 29%. The Multilayer Optical Film (MOF), at 80% of light filtered, reduced apoptosis by 91% and H2O2 by 69%, and increased MMP by 73%, overpassing the dark-yellow filter. Photoprotection increased almost linearly with blue-violet light filtering (400-455 nm) but not with total blue filtering (400-500 nm). Selective filters filtering out 25% (EPS) to 80% (MOF) of blue-violet light offer substantial protection without affecting perception or non-visual functions, making them promising for preventing light-induced retinal damage with aesthetic acceptance for permanent wear.
Collapse
Affiliation(s)
- Coralie Barrau
- R&D Essilor International, 147 Rue de Paris, 94220 Charenton-Le-Pont, France
| | - Mélanie Marie
- Institut de la Vision, French National Institute of Health and Medical Research (INSERM), National Centre for Scientific Research (CNRS), Sorbonne Université, 75012 Paris, France
| | - Camille Ehrismann
- R&D Essilor International, 147 Rue de Paris, 94220 Charenton-Le-Pont, France
| | - Pauline Gondouin
- Institut de la Vision, French National Institute of Health and Medical Research (INSERM), National Centre for Scientific Research (CNRS), Sorbonne Université, 75012 Paris, France
| | - José-Alain Sahel
- Institut de la Vision, French National Institute of Health and Medical Research (INSERM), National Centre for Scientific Research (CNRS), Sorbonne Université, 75012 Paris, France
- Quinze-Vingts National Ophthalmology Hospital, French National Institute of Health and Medical Research (INSERM)-DGOS Clinical Investigation Center 1423, 28 Rue de Charenton, 75012 Paris, France
- Department of Ophthalmology, University of Pittsburgh School of Medicine and Medical Center, Pittsburgh, PA 15213, USA
| | - Thierry Villette
- R&D Essilor International, 147 Rue de Paris, 94220 Charenton-Le-Pont, France
| | - Serge Picaud
- Institut de la Vision, French National Institute of Health and Medical Research (INSERM), National Centre for Scientific Research (CNRS), Sorbonne Université, 75012 Paris, France
| |
Collapse
|
21
|
Ouyang W, Yan D, Hu J, Liu Z. Multifaceted mitochondrial as a novel therapeutic target in dry eye: insights and interventions. Cell Death Discov 2024; 10:398. [PMID: 39242592 PMCID: PMC11379830 DOI: 10.1038/s41420-024-02159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024] Open
Abstract
Dry eye, recognized as the most prevalent ocular surface disorder, has risen to prominence as a significant public health issue, adversely impacting the quality of life for individuals across the globe. Despite decades of extensive research into the chronic inflammation that characterizes dry eye, the intricate mechanisms fueling this persistent inflammatory state remain incompletely understood. Among the various cellular components under investigation, mitochondria-essential for cellular energy production and homeostasis-have attracted increasing attention for their role in dry eye pathogenesis. This involvement points to mechanisms such as oxidative stress, apoptosis, and sustained inflammation, which are central to the progression of the disease. This review aims to provide a thorough exploration of mitochondrial dysfunction in dry eye, shedding light on the critical roles played by mitochondrial oxidative stress, apoptosis, and mitochondrial DNA damage. It delves into the mechanisms through which diverse pathogenic factors may trigger mitochondrial dysfunction, thereby contributing to the onset and exacerbation of dry eye. Furthermore, it lays the groundwork for an overview of current therapeutic strategies that specifically target mitochondrial dysfunction, underscoring their potential in managing this complex condition. By spotlighting this burgeoning area of research, our review seeks to catalyze the development of innovative drug discovery and therapeutic approaches. The ultimate goal is to unlock promising avenues for the future management of dry eye, potentially revolutionizing treatment paradigms and improving patient outcomes. Through this comprehensive examination, we endeavor to enrich the scientific community's understanding of dry eye and inspire novel interventions that address the underlying mitochondrial dysfunctions contributing to this widespread disorder.
Collapse
Affiliation(s)
- Weijie Ouyang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Xiamen, Fujian, China; Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Dan Yan
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Xiamen, Fujian, China
| | - Jiaoyue Hu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Department of Ophthalmology of Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Zuguo Liu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Department of Ophthalmology of Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Department of Ophthalmology, the First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
22
|
Denton ML, Clark CD, Noojin GD, West H, Stadick A, Khan T. Unified modeling of photothermal and photochemical damage. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1408869. [PMID: 39224466 PMCID: PMC11366703 DOI: 10.3389/fopht.2024.1408869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Correlating damage outcomes to a retinal laser exposure is critical for diagnosis and choosing appropriate treatment modalities. Therefore, it is important to understand the causal relationships between laser parameters, such as wavelength, power density, and length of exposure, and any resulting injury. Differentiating photothermal from photochemical processes in an in vitro retinal model using cultured retinal pigment epithelial cells would be a first step in achieving this goal. The first-order rate constant of Arrhenius has been used for decades to approximate cellular thermal damage. A modification of this equation, called the damage integral (Ω), has been used extensively to predict the accumulation of laser damage from photothermal inactivation of critical cellular proteins. Damage from photochemical processes is less well studied and most models have not been verified because they require quantification of one or more uncharacterized chemical species. Additionally, few reports on photochemical damage report temperature history, measured or simulated. We used simulated threshold temperatures from a previous in vitro study to distinguish between photothermal and photochemical processes. Assuming purely photochemical processes also inactivate critical cellular proteins, we report the use of a photothermal Ω and a photochemical Ω that work in tandem to indicate overall damage accumulation. The combined damage integral (ΩCDI) applies a mathematical switch designed to describe photochemical damage relative to wavelength and rate of photon delivery. Although only tested in an in vitro model, this approach may transition to predict damage at the mammalian retina.
Collapse
Affiliation(s)
- Michael L. Denton
- Bioeffects Division, Air Force Research Lab, JBSA-Fort Sam Houston, TX, United States
| | - Clifton D. Clark
- Department of Physics, Fort Hays State University, Hays, KS, United States
- Biosciences Department, Science Applications International Corporation, JBSA-Fort Sam Houston, TX, United States
| | - Gary D. Noojin
- Bioeffects Division, Air Force Research Lab, JBSA-Fort Sam Houston, TX, United States
| | - Haleigh West
- Biosciences Department, Science Applications International Corporation, JBSA-Fort Sam Houston, TX, United States
- Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Allison Stadick
- Biosciences Department, Science Applications International Corporation, JBSA-Fort Sam Houston, TX, United States
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Taufiquar Khan
- Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
23
|
Oh S, Kim C, Park YH. Decrease of alpha-crystallin A by miR-325-3p in retinal cells under blue light exposure. Mol Cells 2024; 47:100091. [PMID: 38997088 PMCID: PMC11342174 DOI: 10.1016/j.mocell.2024.100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
Exposure to blue light can lead to retinal degeneration, causing adverse effects on eye health. Although the loss of retinal cells due to blue light exposure has been observed, the precise molecular mechanisms underlying this process remain poorly understood. In this study, we investigate the role of alpha-crystallin A (CRYAA) in neuro-retinal degeneration and their regulation by blue light. We observed significant apoptotic cell death in both the retina of rats and the cultured neuro-retinal cells. The expressions of Cryaa mRNA and protein were significantly downregulated in the retina exposed to blue light. We identified that miR-325-3p reduces Cryaa mRNA and protein by binding to its 3'-untranslated region. Upregulation of miR-325-3p destabilized Cryaa mRNA and suppresses CRYAA, whereas downregulation of miR-325-3p increased both expressions. Blue light-induced neuro-retinal cell death was alleviated by CRYAA overexpression. These results highlight the critical role of Cryaa mRNA and miR-325-3p molecular axis in blue light-induced retinal degeneration. Consequently, targeting CRYAA and miR-325-3p presents a potential strategy for protecting against blue light-induced retinal degeneration.
Collapse
Affiliation(s)
- Subeen Oh
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Chongtae Kim
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Young-Hoon Park
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea.
| |
Collapse
|
24
|
Kwon YS, Munsoor J, Kaufmann M, Zheng M, Smirnov AI, Han Z. Polydopamine Nanoparticles as Mimicking RPE Melanin for the Protection of Retinal Cells Against Blue Light-Induced Phototoxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400230. [PMID: 38816934 PMCID: PMC11304300 DOI: 10.1002/advs.202400230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/15/2024] [Indexed: 06/01/2024]
Abstract
Exposure of the eyes to blue light can induce the overproduction of reactive oxygen species (ROS) in the retina and retinal pigment epithelium (RPE) cells, potentially leading to pathological damage of age-related macular degeneration (AMD). While the melanin in RPE cells absorbs blue light and prevents ROS accumulation, the loss and dysfunction of RPE melanin due to age-related changes may contribute to photooxidation toxicity. Herein, a novel approach utilizing a polydopamine-replenishing strategy via a single-dose intravitreal (IVT) injection is presented to protect retinal cells against blue light-induced phototoxicity. To investigate the effects of overexposure to blue light on retinal cells, a blue light exposure Nrf2-deficient mouse model is created, which is susceptible to light-induced retinal lesions. After blue light irradiation, retina degeneration and an overproduction of ROS are observed. The polydopamine-replenishing strategy demonstrated effectiveness in maintaining retinal structural integrity and preventing retina degeneration by reducing ROS production in retinal cells and limiting the phototoxicity of blue light exposure. These findings highlight the potential of polydopamine as a simple and effective replenishment for providing photoprotection against high-energy blue light exposure.
Collapse
Affiliation(s)
- Yong-Su Kwon
- Department of Ophthalmology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Julie Munsoor
- Department of Ophthalmology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mary Kaufmann
- Department of Ophthalmology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Min Zheng
- Department of Ophthalmology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alex I Smirnov
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Zongchao Han
- Department of Ophthalmology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
25
|
Gallego-Rentero M, López Sánchez A, Nicolás-Morala J, Alcaraz-Laso P, Zhang N, Juarranz Á, González S, Carrasco E. The effect of Fernblock® in preventing blue-light-induced oxidative stress and cellular damage in retinal pigment epithelial cells is associated with NRF2 induction. Photochem Photobiol Sci 2024; 23:1471-1484. [PMID: 38909335 DOI: 10.1007/s43630-024-00606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Blue light exposure of the ocular apparatus is currently rising. This has motivated a growing concern about potential deleterious effects on different eye structures. To address this, ARPE-19 cells were used as a model of the retinal pigment epithelium and subjected to cumulative expositions of blue light. The most relevant cellular events previously associated with blue-light-induced damage were assessed, including alterations in cell morphology, viability, cell proliferation, oxidative stress, inflammation, and the induction of DNA repair cellular mechanisms. Consistent with previous reports, our results provide evidence of cellular alterations resulting from repeated exposure to blue light irradiation. In this context, we explored the potential protective properties of the vegetal extract from Polypodium leucotomos, Fernblock® (FB), using the widely known treatment with lutein as a reference for comparison. The only changes observed as a result of the sole treatment with either FB or lutein were a slight but significant increase in γH2AX+ cells and the raise in the nuclear levels of NRF2. Overall, our findings indicate that the treatment with FB (similarly to lutein) prior to blue light irradiation can alleviate blue-light-induced deleterious effects in RPE cells, specifically preventing the drop in both cell viability and percentage of EdU+ cells, as well as the increase in ROS generation, percentage of γH2AX+ nuclei (more efficiently with FB), and TNF-α secretion (the latter restored only by FB to similar levels to those of the control). On the contrary, the induction in the P21 expression upon blue light irradiation was not prevented neither by FB nor by lutein. Notably, the nuclear translocation of NRF2 induced by blue light was similar to that observed in cells pre-treated with FB, while lutein pre-treatment resulted in nuclear NRF2 levels similar to control cells, suggesting key differences in the mechanism of cellular protection exerted by these compounds. These results may represent the foundation ground for the use of FB as a new ingredient in the development of alternative prophylactic strategies for blue-light-associated diseases, a currently rising medical interest.
Collapse
Affiliation(s)
- María Gallego-Rentero
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - Jimena Nicolás-Morala
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Paula Alcaraz-Laso
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Noelia Zhang
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ángeles Juarranz
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Salvador González
- Department of Medicine and Medical Specialties, Alcalá de Henares University, Madrid, Spain.
| | - Elisa Carrasco
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
- Centro de Biología Molecular Severo Ochoa (CBM); Instituto Universitario de Biología Molecular-IUBM (Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
26
|
Petelczyc K, Bolek J, Kakarenko K, Krix-Jachym K, Kołodziejczyk A, Rękas M. Use of the perceptual point-spread function to assess dysphotopsias. PLoS One 2024; 19:e0306331. [PMID: 39028737 PMCID: PMC11259305 DOI: 10.1371/journal.pone.0306331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/14/2024] [Indexed: 07/21/2024] Open
Abstract
Nowadays many patients are choosing EDOF or multifocal lenses for replacement of natural lens in cataract surgery. This can result in issues such as presence of dysphotopsias, namely halo and glare. In this work, we propose a new perimetry method to describe dysphotopsias in far-field region in a presence of bright, point-like light source. We constructed a custom device and designed measurement procedure for quantitative measurement of dysphotopias in the center of visual field and used it to examine patients with mild cataracts or implanted IOLs. Our approach may help in establishing an objective method to study and compare dysphotopsias.
Collapse
Affiliation(s)
| | - Jan Bolek
- Faculty of Physics, Warsaw University of Technology, Warsaw, Poland
| | - Karol Kakarenko
- Faculty of Physics, Warsaw University of Technology, Warsaw, Poland
| | | | | | - Marek Rękas
- Ophthalmology Department, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|
27
|
Zhang Y, Paik SS, Kim IB. Changes in Retinal Structure and Function in Mice Exposed to Flickering Blue Light: Electroretinographic and Optical Coherence Tomographic Analyses. Exp Neurobiol 2024; 33:152-164. [PMID: 38993082 PMCID: PMC11247282 DOI: 10.5607/en24011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 07/13/2024] Open
Abstract
The harmful effects of blue light on the retina and health issues attributed to flickering light have been researched extensively. However, reports on the effects of flickering blue light at a frequency in the visible range on the retina are limited. This study aimed to non-invasively investigate the structural and functional changes in mice retinas following exposure to flickering blue light. BALB/c mice were subjected to non-flickering and flickering blue light, and changes in the retinal function and structure were assessed using electroretinography (ERG) and spectral-domain optical coherence tomography (SD-OCT), respectively. Retinal damage progression was monitored on days 3, 7, 14, and 42 following light exposure. Significant reductions in scotopic and photopic ERG responses were observed on day 3 (p<0.05). On day 7, the non-flickering and flickering groups demonstrated different functional changes: the flickering group showed further ERG response reduction, while the non-flickering group showed no reduction or slight improvement that was statistically insignificant (p>0.05). A similar trend lasted by day 14. On day 42, however, the difference between the non-flickering and flickering groups was significant, which was corroborated by the normalized amplitudes at 0, 0.5, and 1 log cd s/m2 (p<0.05). Quantitative and qualitative SD-OCT assays revealed more severe and progressive retinal damage in the flickering group throughout the study. Flickering blue light causes more persistent and severe retinal damage than non-flickering blue light and may be a risk factor for retinal degeneration even at frequencies as low as 20 Hz.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Sun-Sook Paik
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
28
|
Yu H, Guo X, Wu J, Wu H, Zhao H. Analyzing the effect of blue-blocking lenses on color vision tests using the chromaticity coordinate method. Heliyon 2024; 10:e32938. [PMID: 38994067 PMCID: PMC11238008 DOI: 10.1016/j.heliyon.2024.e32938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Significance Blue light with wavelengths of 380-445 nm can harm the retina, leading to the development of blue-blocking lenses (BBLs). Understanding whether BBLs affect color vision test outcomes and color discrimination ability is crucial for people in color-associated jobs. Aim This study aimed to evaluate the effect of BBLs on color vision tests and analyze color discrimination using mathematical models of color spaces. Approach Six pseudoisochromatic (PIC) tests and two Farnsworth-Munsell (FM) tests were conducted to assess participants' color vision. Friedman signed rank test was used to compare the outcomes of the Farnsworth-Munsell 100-Hue Tests (FM 100-Hue Tests) between the BBLs and ordinary lenses groups. The CIE color difference formula and a spectral illuminometer were employed to evaluate the color differences with and without BBLs. Results All subjects showed normal outcomes in all PIC tests and Farnsworth-Munsell Dichotomous D-15 Tests (FM D-15 Tests). There were no significant differences between ordinary lenses group and BBLs groups in FM 100-Hue Tests. In the color space, the effect of BBLs on each color light was equivalent to a translation on the CIE 1931 chromaticity diagram with minor distortion. Since BBLs do not disrupt the continuity of the chromaticity diagram, or cause different colors to appear the same, they do not lead to color confusion. However, colors with short wavelengths exhibited more changes in color difference when wearing BBLs. Conclusions BBLs do not impair the wearer's ability to discriminate colors or perform color vision tests accurately. However, BBLs can cause color differences especially in the recognition of blue hues.
Collapse
Affiliation(s)
- Huiyao Yu
- College of science, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Xinwei Guo
- Hospital of Stomatology, Jilin University, Changchun, 130012, China
- Hospital of Stomatology, Peking University, Beijing, 100191, China
| | - Jian Wu
- Hospital of Stomatology, Jilin University, Changchun, 130012, China
| | - Huang Wu
- Department of Optometry, the Second Hospital of Jilin University, Changchun, 130041, China
| | - Hongyan Zhao
- Hospital of Stomatology, Jilin University, Changchun, 130012, China
| |
Collapse
|
29
|
Huang S, Zhang W, Xuan S, Si H, Huang D, Ba M, Qi D, Pei X, Lu D, Li Z. Chronic sleep deprivation impairs retinal circadian transcriptome and visual function. Exp Eye Res 2024; 243:109907. [PMID: 38649019 DOI: 10.1016/j.exer.2024.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Sleep loss is common in modern society and is increasingly associated with eye diseases. However, the precise effects of sleep loss on retinal structure and function, particularly on the retinal circadian system, remain largely unexplored. This study investigates these effects using a chronic sleep deprivation (CSD) model in mice. Our investigation reveals that CSD significantly alters the retinal circadian transcriptome, leading to remarkable changes in the temporal patterns of enriched pathways. This perturbation extends to metabolic and immune-related transcriptomes, coupled with an accumulation of reactive oxygen species in the retina. Notably, CSD rhythmically affects the thickness of the ganglion cell complex, along with diurnal shifts in microglial migration and morphology within the retina. Most critically, we observe a marked decrease in both scotopic and photopic retinal function under CSD conditions. These findings underscore the broad impact of sleep deprivation on retinal health, highlighting its role in altering circadian gene expression, metabolism, immune response, and structural integrity. Our study provides new insights into the broader impact of sleep loss on retinal health.
Collapse
Affiliation(s)
- Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China; Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Wenxiao Zhang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shuting Xuan
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongli Si
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Duliurui Huang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Mengru Ba
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China; Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China.
| |
Collapse
|
30
|
Hiramoto K, Kubo S, Tsuji K, Sugiyama D, Hamano H. Decreased Memory and Learning Ability Mediated by Bmal1/M1 Macrophages/Angptl2/Inflammatory Cytokine Pathway in Mice Exposed to Long-Term Blue Light Irradiation. Curr Issues Mol Biol 2024; 46:4924-4934. [PMID: 38785563 PMCID: PMC11120424 DOI: 10.3390/cimb46050295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Humans are persistently exposed to massive amounts of blue light via sunlight, computers, smartphones, and similar devices. Although the positive and negative effects of blue light on living organisms have been reported, its impact on learning and memory remains unknown. Herein, we examined the effects of widespread blue light exposure on the learning and memory abilities of blue light-exposed mice. Ten-week-old male ICR mice were divided into five groups (five mice/group) and irradiated with blue light from a light-emitting diode daily for 6 months. After 6 months of blue light irradiation, mice exhibited a decline in memory and learning abilities, assessed using the Morris water maze and step-through passive avoidance paradigms. Blue light-irradiated mice exhibited a decreased expression of the clock gene brain and muscle arnt-like 1 (Bmal1). The number of microglia and levels of M1 macrophage CC-chemokine receptor 7 and inducible nitric oxide synthase were increased, accompanied by a decrease in M2 macrophage arginase-1 levels. Levels of angiopoietin-like protein 2 and inflammatory cytokines interleukin-6, tumor necrosis factor-α, and interleukin-1β were elevated. Our findings suggest that long-term blue light exposure could reduce Bmal1 expression, activate the M1 macrophage/Angptl2/inflammatory cytokine pathway, induce neurodegeneration, and lead to a decline in memory.
Collapse
Affiliation(s)
- Keiichi Hiramoto
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Mie, Japan
| | - Sayaka Kubo
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Chuo-ku 140-8170, Tokyo, Japan; (S.K.); (K.T.); (D.S.); (H.H.)
| | - Keiko Tsuji
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Chuo-ku 140-8170, Tokyo, Japan; (S.K.); (K.T.); (D.S.); (H.H.)
| | - Daijiro Sugiyama
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Chuo-ku 140-8170, Tokyo, Japan; (S.K.); (K.T.); (D.S.); (H.H.)
| | - Hideo Hamano
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Chuo-ku 140-8170, Tokyo, Japan; (S.K.); (K.T.); (D.S.); (H.H.)
| |
Collapse
|
31
|
Hsu WH, Sangkhathat C, Lu MK, Lin WY, Liu HP, Lin YL. Dendrobium nobile Polysaccharide Attenuates Blue Light-Induced Injury in Retinal Cells and In Vivo in Drosophila. Antioxidants (Basel) 2024; 13:603. [PMID: 38790708 PMCID: PMC11118839 DOI: 10.3390/antiox13050603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Blue light is the higher-energy region of the visible spectrum. Excessive exposure to blue light is known to induce oxidative stress and is harmful to the eyes. The stems of Dendrobium nobile Lindl. (Orchidaceae), named Jinchaishihu, have long been used in traditional Chinese medicine (TCM) for nourishing yin, clearing heat, and brightening the eyes. The polysaccharide is one of the major components in D. nobile. However, the effect on ocular cells remains unclear. This study aimed to investigate whether the polysaccharide from D. nobile can protect the eyes from blue light-induced injury. A crude (DN-P) and a partially purified polysaccharide (DN-PP) from D. nobile were evaluated for their protective effects on blue light-induced damage in ARPE-19 and 661W cells. The in vivo study investigated the electroretinographic response and the expression of phototransduction-related genes in the retinas of a Drosophila model. The results showed that DN-P and DN-PP could improve blue light-induced damage in ARPE-19 and 661W cells, including cell viability, antioxidant activity, reactive oxygen species (ROS)/superoxide production, and reverse opsin 3 protein expression in a concentration-dependent manner. The in vivo study indicated that DN-P could alleviate eye damage and reverse the expression of phototransduction-related genes, including ninaE, norpA, Gαq, Gβ76C, Gγ30A, TRP, and TRPL, in a dose-dependent manner in blue light-exposed Drosophila. In conclusion, this is the first report demonstrating that D. nobile polysaccharide pretreatment can protect retinal cells and retinal photoreceptors from blue light-induced damage. These results provide supporting evidence for the beneficial potential of D. nobile in preventing blue light-induced eye damage and improving eyesight.
Collapse
Affiliation(s)
- Wei-Hsiang Hsu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan; (W.-H.H.); (C.S.)
| | - Chanikan Sangkhathat
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan; (W.-H.H.); (C.S.)
| | - Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan;
| | - Wei-Yong Lin
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan;
| | - Hsin-Ping Liu
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Yun-Lian Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan; (W.-H.H.); (C.S.)
- Department of Pharmacy, National Taiwan University, Taipei 10050, Taiwan
| |
Collapse
|
32
|
Zoric A, Bagheri M, von Kohout M, Fardoust T, Fuchs PC, Schiefer JL, Opländer C. High-Intensity Blue Light (450-460 nm) Phototherapy for Pseudomonas aeruginosa-Infected Wounds. Photobiomodul Photomed Laser Surg 2024; 42:356-365. [PMID: 38776546 DOI: 10.1089/photob.2023.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Background: Nosocomial wound infection with Pseudomonas aeruginosa (PA) is a serious complication often responsible for the septic mortality of burn patients. Objective: High-intensity antimicrobial blue light (aBL) treatment may represent an alternative therapy for PA infections and will be investigated in this study. Methods: Antibacterial effects of a light-emitting diode array (450-460 nm; 300 mW/cm2; 15/30 min; 270/540 J/cm2) against PA were determined by suspension assay, biofilm assay, and a human skin wound model and compared with 15-min topically applied 3% citric acid (CA) and wound irrigation solution (Prontosan®; PRT). Results: aBL reduced the bacterial number [2.51-3.56 log10 colony-forming unit (CFU)/mL], whereas PRT or CA treatment achieved a 4.64 or 6.60 log10 CFU/mL reduction in suspension assays. aBL reduced biofilm formation by 60-66%. PRT or CA treatment showed reductions by 25% or 13%. Here, aBL reduced bacterial number in biofilms (1.30-1.64 log10 CFU), but to a lower extend than PRT (2.41 log10 CFU) or CA (2.48 log10 CFU). In the wound skin model, aBL (2.21-2.33 log10 CFU) showed a bacterial reduction of the same magnitude as PRT (2.26 log10 CFU) and CA (2.30 log10 CFU). Conclusions: aBL showed a significant antibacterial efficacy against PA and biofilm formation in a short time. However, a clinical application of aBL in wound therapy requires effective active skin cooling and eye protection, which in turn may limit clinical implementation.
Collapse
Affiliation(s)
- Andreas Zoric
- Department of Plastic, Reconstructive and Aesthetic Surgery, RKH Hospital Bietigheim-Vaihingen, Bietigheim-Bissingen, Germany
| | - Mahsa Bagheri
- Department of Plastic and Aesthetic Surgery, Hand Surgery, HELIOS Hospital Emil von Behring, Berlin, Berlin, Germany
| | - Maria von Kohout
- Department of Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Witten/Herdecke University, Cologne, Germany
| | - Tara Fardoust
- Institute for Research in Operative Medicine (IFOM), Cologne-Merheim Medical Center, Witten/Herdecke University, Cologne, Germany
| | - Paul C Fuchs
- Department of Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Witten/Herdecke University, Cologne, Germany
| | - Jennifer L Schiefer
- Department of Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Witten/Herdecke University, Cologne, Germany
| | - Christian Opländer
- Institute for Research in Operative Medicine (IFOM), Cologne-Merheim Medical Center, Witten/Herdecke University, Cologne, Germany
| |
Collapse
|
33
|
Lu P, Peng J, Liu J, Chen L. The role of photobiomodulation in accelerating bone repair. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:55-67. [PMID: 38493961 DOI: 10.1016/j.pbiomolbio.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Bone repair is faced with obstacles such as slow repair rates and limited bone regeneration capacity. Delayed healing even nonunion could occur in bone defects, influencing the life quality of patients severely. Photobiomodulation (PBM) utilizes different light sources to derive beneficial therapeutic effects with the advantage of being non-invasive and painless, providing a promising strategy for accelerating bone repair. In this review, we summarize the parameters, mechanisms, and effects of PBM regulating bone repair, and further conclude the current clinical application of PBM devices in bone repair. The wavelength of 635-980 nm, the output power of 40-100 mW, and the energy density of less than 100 J/cm2 are the most commonly used parameters. New technologies, including needle systems and biocompatible and implantable optical fibers, offer references to realize an efficient and safe strategy for bone repair. Further research is required to establish the reliability of outcomes from in vivo and in vitro studies and to standardize clinical trial protocols.
Collapse
Affiliation(s)
- Ping Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jie Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| |
Collapse
|
34
|
Carozza G, Zerti D, Tisi A, Ciancaglini M, Maccarrone M, Maccarone R. An overview of retinal light damage models for preclinical studies on age-related macular degeneration: identifying molecular hallmarks and therapeutic targets. Rev Neurosci 2024; 35:303-330. [PMID: 38153807 DOI: 10.1515/revneuro-2023-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/19/2023] [Indexed: 12/30/2023]
Abstract
Age-related macular degeneration (AMD) is a complex, multifactorial disease leading to progressive and irreversible retinal degeneration, whose pathogenesis has not been fully elucidated yet. Due to the complexity and to the multiple features of the disease, many efforts have been made to develop animal models which faithfully reproduce the overall AMD hallmarks or that are able to mimic the different AMD stages. In this context, light damage (LD) rodent models of AMD represent a suitable and reliable approach to mimic the different AMD forms (dry, wet and geographic atrophy) while maintaining the time-dependent progression of the disease. In this review, we comprehensively reported how the LD paradigms reproduce the main features of human AMD. We discuss the capability of these models to broaden the knowledge in AMD research, with a focus on the mechanisms and the molecular hallmarks underlying the pathogenesis of the disease. We also critically revise the remaining challenges and future directions for the use of LD models.
Collapse
Affiliation(s)
- Giulia Carozza
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Darin Zerti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Marco Ciancaglini
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Rita Maccarone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
35
|
Rabiei M, Masoumi SJ, Haghani M, Nematolahi S, Rabiei R, Mortazavi SMJ. Do blue light filter applications improve sleep outcomes? A study of smartphone users' sleep quality in an observational setting. Electromagn Biol Med 2024; 43:107-116. [PMID: 38461462 DOI: 10.1080/15368378.2024.2327432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Exposure to blue light at bedtime, suppresses melatonin secretion, postponing the sleep onset and interrupting the sleep process. Some smartphone manufacturers have introduced night-mode functions, which have been claimed to aid in improving sleep quality. In this study, we evaluate the impact of blue light filter application on decreasing blue light emissions and improving sleep quality. Participants in this study recorded the pattern of using their mobile phones through a questionnaire. In order to evaluate sleep quality, we used a PSQI questionnaire. Blue light filters were used by 9.7% of respondents, 9.7% occasionally, and 80% never. The mean score of PSQI was more than 5 in 54.10% of the participants and less than 5 in 45.90%. ANOVA test was performed to assess the relationship between using blue light filter applications and sleep quality (p-value = 0.925). The findings of this study indicate a connection between the use of blue light filter apps and habitual sleep efficiency in the 31-40 age group. However, our results align only to some extent with prior research, as we did not observe sustained positive effects on all parameters of sleep quality from the long-term use of blue light filtering apps. Several studies have found that blue light exposure can suppress melatonin secretion, exacerbating sleep problems. Some studies have reported that physical blue light filters, such as lenses, can affect melatonin secretion and improve sleep quality. However, the impact of blue light filtering applications remains unclear and debatable.
Collapse
Affiliation(s)
- Marziye Rabiei
- Student Research Committee, Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Seyed Jalil Masoumi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Shiraz, Iran
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Center for Cohort Study of SUMS Employees' Health, Shiraz University of Medical Science, Shiraz, Iran
| | - Masoud Haghani
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Nematolahi
- Non-Communicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Reza Rabiei
- Educational science expert, Department of Education, Bushehr, Iran
| | - Seyed Mohammad Javad Mortazavi
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
36
|
Zhang R, Pu W, Zhang X, Di Y, Xu J, Zhu M, Tan Y, Liu W, Krutmann J, Wang J, Ma Y. Blue light protection factor: a method to assess the protective efficacy of cosmetics against blue light-induced skin damage in the Chinese population. Photochem Photobiol Sci 2024; 23:711-718. [PMID: 38430370 DOI: 10.1007/s43630-024-00546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Previous studies have shown that visible light (VL), especially blue light (BL), could cause significant skin damage. With the emergence of VL protection products, a harmonization of light protection methods has been proposed, but it has not been widely applied in the Chinese population. OBJECTIVE Based on this framework, we propose an accurate and simplified method to evaluate the efficacy of BL photoprotection for the Chinese population. METHODS All subjects (n = 30) were irradiated daily using a blue LED light for four consecutive days. Each irradiation dose was 3/4 MPPD (minimum persistent pigmentation darkening). The skin pigmentation parameters, including L*, M, and ITA°, were recorded. We proposed the blue light protection factor (BPF) metric based on the skin pigmentation parameters to evaluate the anti-blue light efficacies of different products. RESULTS We found that the level of pigmentation rose progressively and linearly as blue light exposure increased. We proposed a metric, BPF, to reflect the anti-blue light efficacy of products based on the linear changes in skin pigment characteristics following daily BL exposure. Moreover, we discovered that the BPF metric could clearly distinguish the anti-blue light efficacies between two products and the control group, suggesting that BPF is an efficient and simple-to-use metric for anti-blue light evaluation. CONCLUSION Our study proposed an accurate and simplified method with an easy-to-use metric, BPF, to accurately characterize the anti-blue light efficacies of cosmetic products, providing support for further development of anti-blue light cosmetics.
Collapse
Affiliation(s)
- Rui Zhang
- Human Phenome Institute, Fudan University, Shanghai, China
- Department of Skin and Cosmetic Research, Shanghai Skin Disease Hospital, Shanghai, China
| | - Weilin Pu
- Human Phenome Institute, Fudan University, Shanghai, China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458, China
| | - Xinyuan Zhang
- Shanghai Skinshield Clinical Testing and Technological Research Ltd., Shanghai, China
| | - Ye Di
- SHISEIDO China Co., Ltd, Shanghai, China
| | - Jing Xu
- SHISEIDO China Co., Ltd, Shanghai, China
| | - Meiyan Zhu
- SHISEIDO China Co., Ltd, Shanghai, China
| | - Yimei Tan
- Human Phenome Institute, Fudan University, Shanghai, China
- Department of Skin and Cosmetic Research, Shanghai Skin Disease Hospital, Shanghai, China
| | - Wei Liu
- Department of Dermatology, Air Force General Hospital, Beijing, China
| | - Jean Krutmann
- Human Phenome Institute, Fudan University, Shanghai, China
- IUF Leibniz Research Institute for Environmental Medicine, Dusseldorf, Germany
| | - Jiucun Wang
- Human Phenome Institute, Fudan University, Shanghai, China.
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China.
- Institute for Six-Sector Economy, Fudan University, Shanghai, 200433, China.
| | - Yanyun Ma
- Human Phenome Institute, Fudan University, Shanghai, China.
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China.
- Institute for Six-Sector Economy, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
37
|
Ballae Ganeshrao S, Theruveethi N, Srinivasan K. Knowledge, perception and practice towards blue-blocking lenses among optometrists. Clin Exp Optom 2024; 107:332-340. [PMID: 37257458 DOI: 10.1080/08164622.2023.2215380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 12/22/2022] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
CLINICAL RELEVANCE There is a lack of clinical guidelines in India for the prescription of blue-blocking lenses. Therefore, the practice trends will depend on practitioners' knowledge, attitude, and perception. BACKGROUND Exposure to blue light with increased use of light-emitting diode (LED) lights and digital devices along with the commercial availability of blue blocking lenses has warranted the need to understand the factors that influence the prescription of blue blocking lenses among eye care practitioners. Hence, we aim to assess knowledge, perception, and practice pattern of blue blocking lenses among Indian optometrists. METHODS This cross-sectional online survey was conducted among Indian Optometrists. The survey was distributed through various social groups of optometrists and state associations. The questionnaire had four main domains with 29 items in total. The four major domains were knowledge, practice, perception and demographic details on education. Descriptive analysis and logistic regression were performed to study the impact of these domains on the prescription of blue block lenses. RESULTS Out of 341 responses, 247 were included for analysis as per study criteria. About 50% (n = 123) of the participants had appropriate knowledge about blue light. Blue-blocking lenses were prescribed always or most of the time by 52% (n = 130) of the participants. The odds of prescribing blue blocking lenses were higher among practitioners who considered blue light as an important factor in causing computer vision syndrome (OR 3.77, 95% CI: 1.33-10.69, P = 0.01) or if they considered there is adequate published evidence (OR 3.95, 95% CI: 1.58-9.87, P = 0.003). CONCLUSIONS The source of evidence for prescribing blue-blocking lenses for our participants was mainly from advertisements rather than from scientific studies. Factors such as awareness, knowledge, education, and nature of practice did not play a significant role in prescribing blue-blocking lenses. This raises the need for evidence-based practice and the development of practice guidelines for prescribing blue-blocking lenses.
Collapse
Affiliation(s)
- Shonraj Ballae Ganeshrao
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Nagarajan Theruveethi
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Krithica Srinivasan
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
38
|
Chu L, Bi C, Wang C, Zhou H. The Relationship between Complements and Age-Related Macular Degeneration and Its Pathogenesis. J Ophthalmol 2024; 2024:6416773. [PMID: 38205100 PMCID: PMC10776198 DOI: 10.1155/2024/6416773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/08/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Age-related macular degeneration is a retinal disease that causes permanent loss of central vision in people over the age of 65. Its pathogenesis may be related to mitochondrial dysfunction, inflammation, apoptosis, autophagy, complement, intestinal flora, and lipid disorders. In addition, the patient's genes, age, gender, cardiovascular disease, unhealthy diet, and living habits may also be risk factors for this disease. Complement proteins are widely distributed in serum and tissue fluid. In the early 21st century, a connection was found between the complement cascade and age-related macular degeneration. However, little is known about the effect of complement factors on the pathogenesis of age-related macular degeneration. This article reviews the factors associated with age-related macular degeneration, the relationship between each factor and complement, the related functions, and variants and provides new ideas for the treatment of this disease.
Collapse
Affiliation(s)
- Liyuan Chu
- Department of Ophthalmology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Chaoran Bi
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Caiming Wang
- Department of Ophthalmology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyan Zhou
- Department of Ophthalmology, China–Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
39
|
Zhang H, Song T, Kang R, Ren F, Liu J, Wang J. Plant bioactive compounds alleviate photoinduced retinal damage and asthenopia: Mechanisms, synergies, and bioavailability. Nutr Res 2023; 120:115-134. [PMID: 37980835 DOI: 10.1016/j.nutres.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
The retina, an important tissue of the eye, is essential in visual transmission and sustaining adequate eyesight. However, oxidative stress and inflammatory reactions can harm retinal structure and function. Recent studies have demonstrated that exposure to light can induce oxidative stress and inflammatory reactions in retinal cells, thereby facilitating the progression of retinal damage-related diseases and asthenopia. Plant bioactive compounds such as anthocyanin, curcumin, resveratrol, lutein, zeaxanthin, epigallocatechin gallate, and quercetin are effective in alleviating retinal damage and asthenopia. Their strong oxidation resistance and unique chemical structure can prevent the retina from producing reactive oxygen species and regulating eye muscle relaxation, thus alleviating retinal damage and asthenopia. Additionally, the combination of these active ingredients produces a stronger antioxidant effect. Consequently, understanding the mechanism of retinal damage caused by light and the regulation mechanism of bioactive compounds can better protect the retina and reduce asthenopia.
Collapse
Affiliation(s)
- Huijuan Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| | - Tiancong Song
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Rui Kang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Feiyue Ren
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| |
Collapse
|
40
|
Pang Y, Cao T, Hu H, Peng Z, Xu K, Jiang Y, Wang F, Jin M, Zeng L, Zhang X. Therapeutic effects of low-color-temperature light-emitting diodes on dry eye. JOURNAL OF BIOPHOTONICS 2023; 16:e202300188. [PMID: 37654080 DOI: 10.1002/jbio.202300188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND As a new technology for treating dry eye diseases, phototherapy has attracted great attention, but the research on its safety and effectiveness is limited. In this study, the therapeutic effects of low-color-temperature light-emitting diodes on dry eye in humans, rabbits, and rats were investigated. METHODS In clinical experiments, subjects in both groups read the same paper for 3 h under light sources of two color temperatures: 1900 K (low-color-temperature light-emitting diodes) or 4000 K (artificial fluorescent white light-emitting diodes). The differences in the non-invasive tear film breakup time, tear meniscus height, and conjunctival congestion scores before and after the experiment were compared between the two groups. In animal experiments, corneal epithelial barrier function and tear production of Sprague-Dawley rats and New Zealand white rabbits with dry eye were compared before and after low-color-temperature light-emitting diodes treatment. TUNEL staining and Western blotting were used to detect the apoptosis of corneal and conjunctival cells and the expression of inflammatory factor IL-1β. RESULTS Low-color-temperature light-emitting diodes prolonged tear film breakup time in patients with dry eye. Moreover, it increased tear secretion, decreased fluorescein sodium staining scores, corneal and conjunctival cell apoptosis, and inflammatory factor expression in rabbits and rats with dry eye. CONCLUSIONS Low-color-temperature light-emitting diodes phototherapy can be used as an effective treatment for dry eye, reducing its symptoms and related ocular surface damage in humans, rabbits, and rats.
Collapse
Affiliation(s)
- Yulian Pang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
- Nanchang University School of Ophthalmology & Optometry, Nanchang, Jiangxi, China
| | - Ting Cao
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
- Department of Orthopaedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Haijian Hu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
- Nanchang University School of Ophthalmology & Optometry, Nanchang, Jiangxi, China
| | - Zhida Peng
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Ke Xu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
- Nanchang University School of Ophthalmology & Optometry, Nanchang, Jiangxi, China
| | - Yi Jiang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
- Nanchang University School of Ophthalmology & Optometry, Nanchang, Jiangxi, China
| | - Feifei Wang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
- Nanchang University School of Ophthalmology & Optometry, Nanchang, Jiangxi, China
| | - Ming Jin
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
- Nanchang University School of Ophthalmology & Optometry, Nanchang, Jiangxi, China
| | - Ling Zeng
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
- Nanchang University School of Ophthalmology & Optometry, Nanchang, Jiangxi, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
- Nanchang University School of Ophthalmology & Optometry, Nanchang, Jiangxi, China
| |
Collapse
|
41
|
Lazzarini R, Tartaglione MF, Ciarapica V, Piva F, Giulietti M, Fulgenzi G, Martelli M, Ledda C, Vitale E, Malavolta M, Santarelli L, Bracci M. Keratinocytes Exposed to Blue or Red Light: Proteomic Characterization Showed Cytoplasmic Thioredoxin Reductase 1 and Aldo-Keto Reductase Family 1 Member C3 Triggered Expression. Int J Mol Sci 2023; 24:16189. [PMID: 38003379 PMCID: PMC10671521 DOI: 10.3390/ijms242216189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Several cell-signaling mechanisms are activated by visible light radiation in human keratinocytes, but the key regulatory proteins involved in this specific cellular response have not yet been identified. Human keratinocytes (HaCaT cells) were exposed to blue or red light at low or high irradiance for 3 days in cycles of 12 h of light and 12 h of dark. The cell viability, apoptotic rate and cell cycle progression were analyzed in all experimental conditions. The proteomic profile, oxidative stress and mitochondrial morphology were additionally evaluated in the HaCaT cells following exposure to high-irradiance blue or red light. Low-irradiance blue or red light exposure did not show an alteration in the cell viability, cell death or cell cycle progression. High-irradiance blue or red light reduced the cell viability, induced cell death and cell cycle G2/M arrest, increased the reactive oxygen species (ROS) and altered the mitochondrial density and morphology. The proteomic profile revealed a pivotal role of Cytoplasmic thioredoxin reductase 1 (TXNRD1) and Aldo-keto reductase family 1 member C3 (AKR1C3) in the response of the HaCaT cells to high-irradiance blue or red light exposure. Blue or red light exposure affected the viability of keratinocytes, activating a specific oxidative stress response and inducing mitochondrial dysfunction. Our results can help to address the targets for the therapeutic use of light and to develop adequate preventive strategies for skin damage. This in vitro study supports further in vivo investigations of the biological effects of light on human keratinocytes.
Collapse
Affiliation(s)
- Raffaella Lazzarini
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (M.F.T.); (V.C.); (M.M.); (M.B.)
| | - Maria Fiorella Tartaglione
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (M.F.T.); (V.C.); (M.M.); (M.B.)
| | - Veronica Ciarapica
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (M.F.T.); (V.C.); (M.M.); (M.B.)
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.P.)
| | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.P.)
| | - Gianluca Fulgenzi
- Department of Clinical and Molecular Sciences Experimental Pathology, Polytechnic University of Marche, 60126 Ancona, Italy;
| | - Margherita Martelli
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (M.F.T.); (V.C.); (M.M.); (M.B.)
| | - Caterina Ledda
- Section of Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy;
| | - Ermanno Vitale
- Faculty of Medicine and Surgery, Kore University, 94100 Enna, Italy;
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, Scientific Technological Area, IRCCS INRCA, 60121 Ancona, Italy;
| | - Lory Santarelli
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (M.F.T.); (V.C.); (M.M.); (M.B.)
| | - Massimo Bracci
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (M.F.T.); (V.C.); (M.M.); (M.B.)
| |
Collapse
|
42
|
Guan M, Wu Y, Kuang Z, Xu S, Zhang J. Efficient and tunable emission CsPbCl xBr 3-x quantum dot glass for overcoming the lack of cyan gap in WLED. OPTICS LETTERS 2023; 48:5173-5176. [PMID: 37773413 DOI: 10.1364/ol.503970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 10/01/2023]
Abstract
Recently, the photoluminescence (PL) performance and stability of cyan emission perovskite quantum dot (PQD) were found to be inferior to other color emitting PQDs, which greatly limits their practical applications. In this Letter, CsPbClxBr3-x PQD glass with excellent hydrothermal stability is successfully synthesized by a high-temperature melting method. Results review that the vacancy defects in [PbBr6]4- octahedra can be effectively compensated by excessive halogen doping, resulting in an improvement in the photoluminescence quantum yield (PLQY) of PQDs from 24.73% to 65.62%. In addition, compared to white light emitting diode (WLED) synthesized with commercial fluorescent powders, the introduction of CsPbCl2Br1 PQD glass effectively fills the cyan gap. Moreover, the WLED displays the color-rendering index (CRI) of 87 at correlated color temperature (CCT) of 5257 K, and the color gamut area reaches 126% of the National Television System Committee (NTSC). This work provides an effective way for improving the PL performance of PQDs and brings CsPbClxBr3-x PQD glass significant prospect in the optoelectronic applications.
Collapse
|
43
|
Hiramoto K, Kubo S, Tsuji K, Sugiyama D, Hamano H. Induction of Skin Cancer by Long-Term Blue Light Irradiation. Biomedicines 2023; 11:2321. [PMID: 37626816 PMCID: PMC10452187 DOI: 10.3390/biomedicines11082321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Presently, people are not only exposed to sunlight but also to a large amount of blue light from personal computers and smartphones. This blue light has various effects on the living body. However, its effect on the induction of skin cancer is unknown. In this study, we investigated the induction of skin cancer by long-term blue light irradiation. Hairless mice were irradiated with blue light (LED; peak emission 479 nm) every day for one year, and a control was irradiated with white light (LED), green light (LED; peak emission 538 nm), and red light (LED; peak emission 629 nm) for one year, respectively. Skin cancer was induced only in the mice exposed to blue light. Long-term blue light irradiation also increased the migration of neutrophils and macrophages involved in carcinogenesis in the skin. In neutrophils, an increased expression of citH3 and PAD4 was observed, suggesting the possibility of NETosis. Conversely, in macrophages, inflammatory macrophages (type 1 macrophages) increased and anti-inflammatory macrophages (type 2 macrophages) decreased due to continuous blue light irradiation. These findings suggest that long-term continuous irradiation with blue light induces neutrophil NETosis and an increase in type 1 macrophages, resulting in skin cancer.
Collapse
Affiliation(s)
- Keiichi Hiramoto
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan
| | - Sayaka Kubo
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Chuo-ku, Tokyo 140-8170, Japan; (S.K.); (K.T.); (D.S.); (H.H.)
| | - Keiko Tsuji
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Chuo-ku, Tokyo 140-8170, Japan; (S.K.); (K.T.); (D.S.); (H.H.)
| | - Daijiro Sugiyama
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Chuo-ku, Tokyo 140-8170, Japan; (S.K.); (K.T.); (D.S.); (H.H.)
| | - Hideo Hamano
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Chuo-ku, Tokyo 140-8170, Japan; (S.K.); (K.T.); (D.S.); (H.H.)
| |
Collapse
|
44
|
Zhang L, Lei CY, Zhang ZC, Gu JY, Zhang MX. Accidental macular injury from short-term exposure to a handheld high-intensity LED light. Heliyon 2023; 9:e18705. [PMID: 37554811 PMCID: PMC10404656 DOI: 10.1016/j.heliyon.2023.e18705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/27/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
OBJECTIVE To report a case of macular injury caused by short-term exposure to a handheld high-intensity light emitting diode (LED) light. DESIGN Interventional case report. PARTICIPANT A patient with macular injury caused by short-term exposure to the light of a handheld high-intensity LED device. INTERVENTION The patient was examined and followed for 3 months after exposure with ophthalmologic examinations (including funduscopy, optical coherence tomography [OCT], fluorescein angiography [FA], and multifocal electroretinography [mfERG]). The injured eye was treated with one retrobulbar injection of 20 mg triamcinolone acetonide at 5 days after exposure. MAIN OUTCOME MEASURES Visual acuity, ophthalmoscopic, and OCT findings. RESULTS 3 days after exposure, the best corrected visual acuity (BCVA) of the right eye was 6/20. OCT revealed the acute stage of the injury with eminence of the retinal pigment epithelium (RPE). BCVA was improved to 16/20 and 20/20 at 19 and 33 days after exposure, respectively. OCT results of follow-ups at five days, 19 days, 33 days and 3 months after exposure have demonstrated the restoration process of the injury. CONCLUSIONS Short-term exposure to high-intensity LED light may cause damage to the retina. As the expansion of LED use in modern life, education and supervision are of urgent need for public health.
Collapse
Affiliation(s)
- Li Zhang
- Sichuan University West China Hospital, Chengdu, Sichuan Province, China
| | - Chun-Yan Lei
- Sichuan University West China Hospital, Chengdu, Sichuan Province, China
| | | | - Jin-Yue Gu
- Sichuan University West China Hospital, Chengdu, Sichuan Province, China
| | - Mei-Xia Zhang
- Sichuan University West China Hospital, Chengdu, Sichuan Province, China
| |
Collapse
|
45
|
Casciano F, Zauli E, Busin M, Caruso L, AlMesfer S, Al-Swailem S, Zauli G, Yu AC. State of the Art of Pharmacological Activators of p53 in Ocular Malignancies. Cancers (Basel) 2023; 15:3593. [PMID: 37509256 PMCID: PMC10377487 DOI: 10.3390/cancers15143593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The pivotal role of p53 in the regulation of a vast array of cellular functions has been the subject of extensive research. The biological activity of p53 is not strictly limited to cell cycle arrest but also includes the regulation of homeostasis, DNA repair, apoptosis, and senescence. Thus, mutations in the p53 gene with loss of function represent one of the major mechanisms for cancer development. As expected, due to its key role, p53 is expressed throughout the human body including the eye. Specifically, altered p53 signaling pathways have been implicated in the development of conjunctival and corneal tumors, retinoblastoma, uveal melanoma, and intraocular melanoma. As non-selective cancer chemotherapies as well as ionizing radiation can be associated with either poor efficacy or dose-limiting toxicities in the eye, reconstitution of the p53 signaling pathway currently represents an attractive target for cancer therapy. The present review discusses the role of p53 in the pathogenesis of these ocular tumors and outlines the various pharmacological activators of p53 that are currently under investigation for the treatment of ocular malignancies.
Collapse
Affiliation(s)
- Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Busin
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Ophthalmology, Ospedali Privati Forlì "Villa Igea", 47122 Forlì, Italy
- Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), 47122 Forlì, Italy
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Saleh AlMesfer
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Samar Al-Swailem
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Angeli Christy Yu
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Ophthalmology, Ospedali Privati Forlì "Villa Igea", 47122 Forlì, Italy
- Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), 47122 Forlì, Italy
| |
Collapse
|
46
|
Bocheva G, Slominski RM, Slominski AT. Environmental Air Pollutants Affecting Skin Functions with Systemic Implications. Int J Mol Sci 2023; 24:10502. [PMID: 37445680 PMCID: PMC10341863 DOI: 10.3390/ijms241310502] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The increase in air pollution worldwide represents an environmental risk factor that has global implications for the health of humans worldwide. The skin of billions of people is exposed to a mixture of harmful air pollutants, which can affect its physiology and are responsible for cutaneous damage. Some polycyclic aromatic hydrocarbons are photoreactive and could be activated by ultraviolet radiation (UVR). Therefore, such UVR exposure would enhance their deleterious effects on the skin. Air pollution also affects vitamin D synthesis by reducing UVB radiation, which is essential for the production of vitamin D3, tachysterol, and lumisterol derivatives. Ambient air pollutants, photopollution, blue-light pollution, and cigarette smoke compromise cutaneous structural integrity, can interact with human skin microbiota, and trigger or exacerbate a range of skin diseases through various mechanisms. Generally, air pollution elicits an oxidative stress response on the skin that can activate the inflammatory responses. The aryl hydrocarbon receptor (AhR) can act as a sensor for small molecules such as air pollutants and plays a crucial role in responses to (photo)pollution. On the other hand, targeting AhR/Nrf2 is emerging as a novel treatment option for air pollutants that induce or exacerbate inflammatory skin diseases. Therefore, AhR with downstream regulatory pathways would represent a crucial signaling system regulating the skin phenotype in a Yin and Yang fashion defined by the chemical nature of the activating factor and the cellular and tissue context.
Collapse
Affiliation(s)
- Georgeta Bocheva
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Radomir M. Slominski
- Department of Genetics, Informatics Institute in the School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, Cancer Chemoprevention Program, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Veteran Administration Medical Center, Birmingham, AL 35294, USA
| |
Collapse
|
47
|
Tsai PC, Cheng MH, Peng BH, Jou JH, Cheng YH, Ku YC, Chiu HY, Chou ML, Yeh PT. Permissible viewing times of educational projector and TV. Heliyon 2023; 9:e15522. [PMID: 37180913 PMCID: PMC10173401 DOI: 10.1016/j.heliyon.2023.e15522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Projectors have become one major medium in modern teaching, with large area-size displays emerging as an alternative. What concerns the general public is whether such eLearning would impose threat on eyes, by noting blue enriched white light to be hazardous to retina and else. Especially, little was known about their permissible viewing time under a certain viewing clarity. We had hence carried out a quantitative study with the use of a blue-hazard quantification spectrometer to determine the permissible viewing time when using a projector and a large size TV screen for displaying. Surprisingly, the large TV screen could permit a much longer viewing time, meaning which is more eye-friendly. It is plausibly because its resolution is much higher than that of the projector. Two dilemmas were observed in such eLearning; those sitting in the front would suffer a much higher illuminance, leading to a much shorter viewing time, while those sitting in the back would need a far much larger font size to see clearly. To ensure both viewing clarity and a sufficiently long permissible viewing time, orange text on black background is suggested to replace the defaulted black text on white background. The permissible viewing time could hence drastically increase from 1.3 to 83 h at 2 m by viewing a 30 pt font for the TV and from 0.4 to 54 h for the projection. At 6 m, the permissible viewing time was increased from 12 to 236 h for the TV and from 3 to 160 h for the projection, based on a viewable 94 pt font. These results may help educators and other e-display users to wisely apply the display tools with safety.
Collapse
Affiliation(s)
- Pei-Chung Tsai
- Department of Materials Science and Engineering, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Ming-Hui Cheng
- Department of Materials Science and Engineering, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Bo-Hsun Peng
- Department of Materials Science and Engineering, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Jwo-Huei Jou
- Department of Materials Science and Engineering, National Tsing Hua University, Hsin-Chu, Taiwan
- Corresponding author.
| | | | - Yi-Chen Ku
- Shu-Guang Girls' Senior High School, Hsin-Chu, Taiwan
| | - Hsin-Ya Chiu
- Shu-Guang Girls' Senior High School, Hsin-Chu, Taiwan
| | - Ming-Li Chou
- Shu-Guang Girls' Senior High School, Hsin-Chu, Taiwan
| | - Po-Ting Yeh
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
48
|
Blue Light Exposure: Ocular Hazards and Prevention-A Narrative Review. Ophthalmol Ther 2023; 12:755-788. [PMID: 36808601 PMCID: PMC9938358 DOI: 10.1007/s40123-023-00675-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/01/2023] [Indexed: 02/21/2023] Open
Abstract
INTRODUCTION Exposure to blue light has seriously increased in our environment since the arrival of light emitting diodes (LEDs) and, in recent years, the proliferation of digital devices rich in blue light. This raises some questions about its potential deleterious effects on eye health. The aim of this narrative review is to provide an update on the ocular effects of blue light and to discuss the efficiency of methods of protection and prevention against potential blue light-induced ocular injury. METHODS The search of relevant English articles was conducted in PubMed, Medline, and Google Scholar databases until December 2022. RESULTS Blue light exposure provokes photochemical reactions in most eye tissues, in particular the cornea, the lens, and the retina. In vitro and in vivo studies have shown that certain exposures to blue light (depending on the wavelength or intensity) can cause temporary or permanent damage to some structures of the eye, especially the retina. However, currently, there is no evidence that screen use and LEDs in normal use are deleterious to the human retina. Regarding protection, there is currently no evidence of a beneficial effect of blue blocking lenses for the prevention of eye diseases, in particular age-related macular degeneration (AMD). In humans, macular pigments (composed of lutein and zeaxanthin) represent a natural protection by filtering blue light, and can be increased through increased intake from foods or food supplements. These nutrients are associated with lower risk for AMD and cataract. Antioxidants such as vitamins C, E, or zinc might also contribute to the prevention of photochemical ocular damage by preventing oxidative stress. CONCLUSION Currently, there is no evidence that LEDs in normal use at domestic intensity levels or in screen devices are retinotoxic to the human eye. However, the potential toxicity of long-term cumulative exposure and the dose-response effect are currently unknown.
Collapse
|
49
|
Campbell I, Sharifpour R, Vandewalle G. Light as a Modulator of Non-Image-Forming Brain Functions—Positive and Negative Impacts of Increasing Light Availability. Clocks Sleep 2023; 5:116-140. [PMID: 36975552 PMCID: PMC10047820 DOI: 10.3390/clockssleep5010012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Light use is rising steeply, mainly because of the advent of light-emitting diode (LED) devices. LEDs are frequently blue-enriched light sources and may have different impacts on the non-image forming (NIF) system, which is maximally sensitive to blue-wavelength light. Most importantly, the timing of LED device use is widespread, leading to novel light exposure patterns on the NIF system. The goal of this narrative review is to discuss the multiple aspects that we think should be accounted for when attempting to predict how this situation will affect the NIF impact of light on brain functions. We first cover both the image-forming and NIF pathways of the brain. We then detail our current understanding of the impact of light on human cognition, sleep, alertness, and mood. Finally, we discuss questions concerning the adoption of LED lighting and screens, which offer new opportunities to improve well-being, but also raise concerns about increasing light exposure, which may be detrimental to health, particularly in the evening.
Collapse
|
50
|
Polyunsaturated Lipids in the Light-Exposed and Prooxidant Retinal Environment. Antioxidants (Basel) 2023; 12:antiox12030617. [PMID: 36978865 PMCID: PMC10044808 DOI: 10.3390/antiox12030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The retina is an oxidative stress-prone tissue due to high content of polyunsaturated lipids, exposure to visible light stimuli in the 400–480 nm range, and high oxygen availability provided by choroidal capillaries to support oxidative metabolism. Indeed, lipids’ peroxidation and their conversion into reactive species promoting inflammation have been reported and connected to retinal degenerations. Here, we review recent evidence showing how retinal polyunsaturated lipids, in addition to oxidative stress and damage, may counteract the inflammatory response triggered by blue light-activated carotenoid derivatives, enabling long-term retina operation despite its prooxidant environment. These two aspects of retinal polyunsaturated lipids require tight control over their synthesis to avoid overcoming their protective actions by an increase in lipid peroxidation due to oxidative stress. We review emerging evidence on different transcriptional control mechanisms operating in retinal cells to modulate polyunsaturated lipid synthesis over the life span, from the immature to the ageing retina. Finally, we discuss the antioxidant role of food nutrients such as xanthophylls and carotenoids that have been shown to empower retinal cells’ antioxidant responses and counteract the adverse impact of prooxidant stimuli on sight.
Collapse
|