1
|
Pramana A, Firmanda A, Arnata IW, Sartika D, Sari EO. Reduction of biofilm and pathogenic microorganisms using curcumin-mediated photodynamic inactivation to prolong food shelf-life. Int J Food Microbiol 2024; 425:110866. [PMID: 39146626 DOI: 10.1016/j.ijfoodmicro.2024.110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Pathogenic microbial contamination (bacteria and fungi) in food products during production poses a significant global health risk, leading to food waste, greenhouse gas emissions, and aesthetic and financial losses. Bacteria and fungi, by forming solid biofilms, enhance their resistance to antimicrobial agents, thereby increasing the potential for cross-contamination of food products. Curcumin molecule-mediated photodynamic inactivation (Cur-m-PDI) technology has shown promising results in sterilizing microbial contaminants and their biofilms, significantly contributing to food preservation without compromising quality. Photosensitizers (curcumin) absorb light, leading to a chemical reaction with oxygen and producing reactive oxygen species (ROS) that effectively reduce bacteria, fungi, and biofilms. The mechanism of microorganism inhibition is caused by exposure to ROS generated via the type 1 pathway involving electron transfer (such as O2•-, H2O2, -OH•, and other radicals), the type 2 pathway involving energy transfer (such as 1O2), secondary ROS, and weakening of antioxidant enzymes. The effectiveness of the inactivation of microorganisms is influenced by the concentration of curcumin, light (source type and energy density), oxygen availability, and duration of exposure. This article reviews the mechanism of reducing microbial food contamination and inhibiting their biofilms through Cur-m-PDI. It also highlights future directions, challenges, and considerations related to the effects of ROS in oxidizing food, the toxicity of PDI to living cells and tissues, conditions/types of food products, and the stability and degradation of curcumin.
Collapse
Affiliation(s)
- Angga Pramana
- Department of Agricultural Technology, Faculty of Agriculture, Universitas Riau, Pekanbaru 28292, Indonesia.
| | - Afrinal Firmanda
- Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
| | - I Wayan Arnata
- Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Badung, Bali, Indonesia
| | - Dewi Sartika
- Faculty of Agriculture, Muhammadiyah University of Makassar, Makassar, South Sulawesi, Indonesia
| | - Esty Octiana Sari
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
2
|
Lu Y, Tong M. Impact of red and blue monochromatic light on the visual system and dopamine pathways in juvenile zebrafish. BMC Ophthalmol 2024; 24:475. [PMID: 39482637 DOI: 10.1186/s12886-024-03742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND The development of the zebrafish visual system is significantly influenced by exposure to monochromatic light, yet investigations into its effects during juvenile stages are lacking. This study evaluated the impacts of varying intensities and durations of red and blue monochromatic light on the visual system and dopamine pathways in juvenile zebrafish. METHODS Juvenile zebrafish were exposed to red (650 nm) and blue (440 nm, 460 nm) monochromatic lights over four days at intensities ranging from 500 to 10,000 lx, for durations of 6, 10, and 14 h daily. A control group was maintained under standard laboratory conditions. Post-exposure assessments included the optokinetic response (OKR), retinal structural analysis, ocular dopamine levels, and the expression of genes related to dopamine pathways (Th, Dat, and Mao). RESULTS (1) OKR enhancement was observed with increased 440 nm light intensity, while 460 nm and 650 nm light exposures showed initial improvements followed by declines at higher intensities. (2) Retinal thinning in the outer nuclear layer was observed under the most intense (10,000 lx for 14 h) light conditions in the 440 nm and 650 nm groups, while the 460 nm group remained unaffected. (3) Dopamine levels increased with higher intensities in the 440 nm group, whereas the 460 nm group exhibited initial increases followed by decreases. The 650 nm group displayed similar trends but were statistically insignificant compared to the control group. (4) Th expression increased with light intensity in the 440 nm group. Dat showed a rising and then declining pattern, and Mao expression significantly decreased. The 460 nm group exhibited similar patterns for Th and Dat to the behavioral observations, but an inverse pattern for Mao. The 650 nm group presented significant fluctuations in Th and Dat expressions, with pronounced variations in Mao. CONCLUSIONS Specific red and blue monochromatic light conditions promote visual system development in juvenile zebrafish. However, exceeding these optimal conditions may impair visual function, highlighting the critical role of dopamine pathway in modulating light-induced effects on the visual system.
Collapse
Affiliation(s)
- Yan Lu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Street, Nanjing, 210004, China
- Department of Pediatrics, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing, 210019, China
| | - Meiling Tong
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Street, Nanjing, 210004, China.
| |
Collapse
|
3
|
Ahmed AF, Madi MA, Ali AH, Mokhemer SA. The ameliorating effects of adipose-derived stromal vascular fraction cells on blue light-induced rat retinal injury via modulation of TLR4 signaling, apoptosis, and glial cell activity. Cell Tissue Res 2024:10.1007/s00441-024-03925-3. [PMID: 39441358 DOI: 10.1007/s00441-024-03925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Blue light (BL)-induced retinal injury has become a very common problem due to over exposure to blue light-emitting sources. This study aimed to investigate the possible ameliorating impact of stromal vascular fraction cells (SVFCs) on BL-induced retinal injury. Forty male albino rats were randomly allocated into four groups. The control group rats were kept in 12-h light/12-h dark. Rats of SVFC-control as the control group, but rats were intravenously injected once by SVFCs. Rats of both the BL-group and BL-SVFC group were exposed to BL for 2 weeks; then rats of the BL-SVFC group were intravenously injected once by SVFCs. Following the BL exposure, rats were kept for 8 weeks. Physical and physiological studies were performed; then retinal tissues were collected for biochemical and histological studies. The BL-group showed physical and physiological changes indicating affection of the visual function. Biochemical marker assessment showed a significant increase in MDA, TLR4 and MYD88 tissue levels with a significant decrease in TAC levels. Histological and ultrastructural assessment showed disruption of the normal histological architecture with retinal pigment epithelium, photoreceptors, and ganglion cell deterioration. A significant increase in NF-κB, caspase-3, and GFAP immunoreactivity was also detected. BL-SVFC group showed a significant improvement in physical, physiological, and biochemical parameters. Retinal tissues revealed amelioration of retinal structural and ultrastructural deterioration and a significant decrease in NF-κB and caspase-3 immunoreactivity with a significant increase in GFAP immunoreaction. This study concluded that SVFCs could ameliorate the BL-induced retinal injury through TLR-4/MYD-88/NF-κB signaling inhibition, regenerative, anti-oxidative, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Amira Fathy Ahmed
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Maha Ahmed Madi
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Azza Hussein Ali
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Sahar A Mokhemer
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, El-Minia, Egypt.
| |
Collapse
|
4
|
Yoon HJ, Jiang E, Liu J, Jin H, Yoon HS, Choi JS, Moon JY, Yoon KC. A Selective Melatonin 2 Receptor Agonist, IIK7, Relieves Blue Light-Induced Corneal Damage by Modulating the Process of Autophagy and Apoptosis. Int J Mol Sci 2024; 25:11243. [PMID: 39457025 PMCID: PMC11508435 DOI: 10.3390/ijms252011243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
This study aims to investigate the effect of the selective MT2 receptor agonist, IIK7, on corneal autophagy and apoptosis, aiming to reduce corneal epithelial damage and inflammation from blue light exposure in mice. Eight-week-old C57BL/6 mice were divided into BL-exposed (BL) and BL-exposed with IIK7 treatment (BL + IIK7 group). Mice underwent blue light exposure (410 nm, 100 J) twice daily with assessments at baseline and on days 3, 7, and 14. Corneal samples were analyzed for MT2 receptor expression, autophagy markers (LC3-II and p62), and apoptosis indicators (BAX expression and TUNEL assay). Then, mice were assigned to normal control, BL, and BL + IIK7. Ocular surface parameters, including corneal fluorescein staining scores, tear volume, and tear film break-up time, were evaluated on days 7 and 14. On day 14, reactive oxygen species (ROS) levels and CD4+ IFN-γ+ T cells percentages were measured. The BL group exhibited higher LC3-II and p62 expression, while the BL + IIK7 group showed reduced expression (p < 0.05). The TUNEL assay showed reduced apoptosis in the BL + IIK7 group compared to the BL group. ROS levels were lower in the BL + IIK7 group. The BL + IIK7 group showed improved ocular surface parameters, including decreased corneal fluorescein staining and increased tear volume. The percentages of CD4+ IFN-γ+ T cells indicated reduced inflammatory responses in the BL + IIK7 group. The MT2 receptor agonist IIK7 regulates corneal autophagy and apoptosis, reducing corneal epithelial damage and inflammation from blue light exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Medical School, and Hospital, Gwangju 61469, Republic of Korea; (H.-J.Y.)
| |
Collapse
|
5
|
Sun M, Ren Y, Du Q, Xie Y, Wang A, Jiang H, Lai Y, Liu S, Liu M. Blue light inhibits cell viability and proliferation in hair follicle stem cells and dermal papilla cells. Lasers Med Sci 2024; 39:251. [PMID: 39377836 DOI: 10.1007/s10103-024-04195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Hair loss is a prevalent issue worldwide, which, though not life-threatening, can result in psychological problems, low self-esteem, and social anxiety. Previous studies have shown that ultraviolet radiation can have negative effects on hair follicle cells, leading to hair loss, while the impact of blue light on hair and hair follicle has largely been overlooked. This study aimed to examine the effects of blue light on hair follicle stem cells (HFSCs) and primary dermal papilla cells (DPCs), which are essential components of hair follicles. Human HFSCs and primary DPCs were exposed to blue light (457 nm) at various intensities (1, 4, 8, and 16 mW/cm2) for 3 days. Subsequently, cell viability, cell proliferation, and intracellular reactive oxygen species (ROS) were assessed. The results showed that blue light (457 nm) significantly reduced the cell viability and proliferation of HFSCs and DPCs in vitro, with the inhibition being intensity-dependent. Additionally, blue light triggered the overproduction of ROS in the DPCs. While the exact mechanisms by which blue light affects hair follicle cells remain unclear, these findings suggest that blue light could impede the growth of these cells. This insight may offer a new approach to protecting hair by avoiding exposure to high-intensity blue light.
Collapse
Affiliation(s)
- Miao Sun
- Department of Light Source and Illuminating Engineering, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Yi Ren
- Department of Light Source and Illuminating Engineering, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Qian Du
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, Tongji University School of Medicine, No. 1278 Baode Road, Shanghai, 200443, China
| | - Yajia Xie
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China
| | - Aixia Wang
- Department of Light Source and Illuminating Engineering, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Yongxian Lai
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, Tongji University School of Medicine, No. 1278 Baode Road, Shanghai, 200443, China.
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China.
| | - Muqing Liu
- Department of Light Source and Illuminating Engineering, Fudan University, 220 Handan Rd., Shanghai, 200433, China.
- Academy for Engineering and Technology, Fudan University, 220 Handan Rd., Shanghai, 200433, China.
- Zhongshan Danbang Optoelectronic Technology Co., Ltd., 6 Xiangxing Rd., Zhongshan, Guangdong Province, 528403, China.
| |
Collapse
|
6
|
Barrau C, Marie M, Ehrismann C, Gondouin P, Sahel JA, Villette T, Picaud S. Prevention of Sunlight-Induced Cell Damage by Selective Blue-Violet-Light-Filtering Lenses in A2E-Loaded Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2024; 13:1195. [PMID: 39456449 PMCID: PMC11504362 DOI: 10.3390/antiox13101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Blue light accelerates retinal aging. Previous studies have indicated that wavelengths between 400 and 455 nm are most harmful to aging retinal pigment epithelia (RPE). This study explored whether filtering these wavelengths can protect cells exposed to broad sunlight. Primary porcine RPE cells loaded with 20 µM A2E were exposed to emulated sunlight filtered through eye media at 1.8 mW/cm2 for 18 h. Filters selectively filtering out light over 400-455 nm and a dark-yellow filter were interposed. Cell damage was measured by apoptosis, hydrogen peroxide (H2O2) production, and mitochondrial membrane potential (MMP). Sunlight exposure increased apoptosis by 2.7-fold and H2O2 by 4.8-fold, and halved MMP compared to darkness. Eye Protect SystemTM (EPS) technology, filtering out 25% of wavelengths over 400-455 nm, reduced apoptosis by 44% and H2O2 by 29%. The Multilayer Optical Film (MOF), at 80% of light filtered, reduced apoptosis by 91% and H2O2 by 69%, and increased MMP by 73%, overpassing the dark-yellow filter. Photoprotection increased almost linearly with blue-violet light filtering (400-455 nm) but not with total blue filtering (400-500 nm). Selective filters filtering out 25% (EPS) to 80% (MOF) of blue-violet light offer substantial protection without affecting perception or non-visual functions, making them promising for preventing light-induced retinal damage with aesthetic acceptance for permanent wear.
Collapse
Affiliation(s)
- Coralie Barrau
- R&D Essilor International, 147 Rue de Paris, 94220 Charenton-Le-Pont, France
| | - Mélanie Marie
- Institut de la Vision, French National Institute of Health and Medical Research (INSERM), National Centre for Scientific Research (CNRS), Sorbonne Université, 75012 Paris, France
| | - Camille Ehrismann
- R&D Essilor International, 147 Rue de Paris, 94220 Charenton-Le-Pont, France
| | - Pauline Gondouin
- Institut de la Vision, French National Institute of Health and Medical Research (INSERM), National Centre for Scientific Research (CNRS), Sorbonne Université, 75012 Paris, France
| | - José-Alain Sahel
- Institut de la Vision, French National Institute of Health and Medical Research (INSERM), National Centre for Scientific Research (CNRS), Sorbonne Université, 75012 Paris, France
- Quinze-Vingts National Ophthalmology Hospital, French National Institute of Health and Medical Research (INSERM)-DGOS Clinical Investigation Center 1423, 28 Rue de Charenton, 75012 Paris, France
- Department of Ophthalmology, University of Pittsburgh School of Medicine and Medical Center, Pittsburgh, PA 15213, USA
| | - Thierry Villette
- R&D Essilor International, 147 Rue de Paris, 94220 Charenton-Le-Pont, France
| | - Serge Picaud
- Institut de la Vision, French National Institute of Health and Medical Research (INSERM), National Centre for Scientific Research (CNRS), Sorbonne Université, 75012 Paris, France
| |
Collapse
|
7
|
Banik SP, Kumar P, Basak P, Goel A, Ohia SE, Bagchi M, Chakraborty S, Kundu A, Bagchi D. A critical insight into the physicochemical stability of macular carotenoids with respect to their industrial production, safety profile, targeted tissue delivery, and bioavailability. Toxicol Mech Methods 2024:1-15. [PMID: 39252190 DOI: 10.1080/15376516.2024.2401924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Lutein, zeaxanthin, and mesozeaxanthin, collectively termed as macular pigments, are key carotenoids integral to optimized central vision of the eye. Therefore, nutraceuticals and functional foods have been developed commercially using carotenoid rich flowers, such as marigold and calendula or single celled photosynthetic algae, such as the Dunaliella. Industrial formulation of such products enriched in macular pigments have often suffered from serious bottlenecks in stability, delivery, and bioavailability. The two chief factors largely responsible for decreasing the shelf-life have been solubility and oxidation of these pigments owing to their strong lipophilic nature and presence of conjugated double bonds. In this regard, oil-based formulations have often been found to be more suitable than powder-based formulations in terms of shelf life and targeted delivery. In some cases, addition of phenolic acids in the formulations have also augmented the product value by enhancing micellization. In this regard, a novel proprietary formulation of these pigments has been developed in our laboratory utilizing marigold extracts in a colloidal solution of extra virgin olive oil and canola oil fortified with antioxidants like thyme oil, tocopherol, and ascorbyl palmitate. This review article presents an updated insight into the stability and bioavailability of industrially manufactured macular carotenoids together with their safety and solubility issues.
Collapse
Affiliation(s)
- Samudra P Banik
- Department of Microbiology, Maulana Azad College, Kolkata, India
| | - Pawan Kumar
- R&D Department, Chemical Resources (CHERESO), Panchkula, India
| | - Pijush Basak
- Jagadis Bose National Science Talent Search, Kolkata, India
| | - Apurva Goel
- Regulatory Department, Chemical Resources (CHERESO), Panchkula, India
| | - Sunny E Ohia
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | | | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, NY, USA
| | - Arijit Kundu
- Department of Chemistry, Maulana Azad College, Kolkata, India
| | - Debasis Bagchi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY, USA
- Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA
| |
Collapse
|
8
|
Ouyang W, Yan D, Hu J, Liu Z. Multifaceted mitochondrial as a novel therapeutic target in dry eye: insights and interventions. Cell Death Discov 2024; 10:398. [PMID: 39242592 PMCID: PMC11379830 DOI: 10.1038/s41420-024-02159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024] Open
Abstract
Dry eye, recognized as the most prevalent ocular surface disorder, has risen to prominence as a significant public health issue, adversely impacting the quality of life for individuals across the globe. Despite decades of extensive research into the chronic inflammation that characterizes dry eye, the intricate mechanisms fueling this persistent inflammatory state remain incompletely understood. Among the various cellular components under investigation, mitochondria-essential for cellular energy production and homeostasis-have attracted increasing attention for their role in dry eye pathogenesis. This involvement points to mechanisms such as oxidative stress, apoptosis, and sustained inflammation, which are central to the progression of the disease. This review aims to provide a thorough exploration of mitochondrial dysfunction in dry eye, shedding light on the critical roles played by mitochondrial oxidative stress, apoptosis, and mitochondrial DNA damage. It delves into the mechanisms through which diverse pathogenic factors may trigger mitochondrial dysfunction, thereby contributing to the onset and exacerbation of dry eye. Furthermore, it lays the groundwork for an overview of current therapeutic strategies that specifically target mitochondrial dysfunction, underscoring their potential in managing this complex condition. By spotlighting this burgeoning area of research, our review seeks to catalyze the development of innovative drug discovery and therapeutic approaches. The ultimate goal is to unlock promising avenues for the future management of dry eye, potentially revolutionizing treatment paradigms and improving patient outcomes. Through this comprehensive examination, we endeavor to enrich the scientific community's understanding of dry eye and inspire novel interventions that address the underlying mitochondrial dysfunctions contributing to this widespread disorder.
Collapse
Affiliation(s)
- Weijie Ouyang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Xiamen, Fujian, China; Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Dan Yan
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Xiamen, Fujian, China
| | - Jiaoyue Hu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Department of Ophthalmology of Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Zuguo Liu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Department of Ophthalmology of Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Department of Ophthalmology, the First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
9
|
Denton ML, Clark CD, Noojin GD, West H, Stadick A, Khan T. Unified modeling of photothermal and photochemical damage. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1408869. [PMID: 39224466 PMCID: PMC11366703 DOI: 10.3389/fopht.2024.1408869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Correlating damage outcomes to a retinal laser exposure is critical for diagnosis and choosing appropriate treatment modalities. Therefore, it is important to understand the causal relationships between laser parameters, such as wavelength, power density, and length of exposure, and any resulting injury. Differentiating photothermal from photochemical processes in an in vitro retinal model using cultured retinal pigment epithelial cells would be a first step in achieving this goal. The first-order rate constant of Arrhenius has been used for decades to approximate cellular thermal damage. A modification of this equation, called the damage integral (Ω), has been used extensively to predict the accumulation of laser damage from photothermal inactivation of critical cellular proteins. Damage from photochemical processes is less well studied and most models have not been verified because they require quantification of one or more uncharacterized chemical species. Additionally, few reports on photochemical damage report temperature history, measured or simulated. We used simulated threshold temperatures from a previous in vitro study to distinguish between photothermal and photochemical processes. Assuming purely photochemical processes also inactivate critical cellular proteins, we report the use of a photothermal Ω and a photochemical Ω that work in tandem to indicate overall damage accumulation. The combined damage integral (ΩCDI) applies a mathematical switch designed to describe photochemical damage relative to wavelength and rate of photon delivery. Although only tested in an in vitro model, this approach may transition to predict damage at the mammalian retina.
Collapse
Affiliation(s)
- Michael L. Denton
- Bioeffects Division, Air Force Research Lab, JBSA-Fort Sam Houston, TX, United States
| | - Clifton D. Clark
- Department of Physics, Fort Hays State University, Hays, KS, United States
- Biosciences Department, Science Applications International Corporation, JBSA-Fort Sam Houston, TX, United States
| | - Gary D. Noojin
- Bioeffects Division, Air Force Research Lab, JBSA-Fort Sam Houston, TX, United States
| | - Haleigh West
- Biosciences Department, Science Applications International Corporation, JBSA-Fort Sam Houston, TX, United States
- Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Allison Stadick
- Biosciences Department, Science Applications International Corporation, JBSA-Fort Sam Houston, TX, United States
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Taufiquar Khan
- Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
10
|
Oh S, Kim C, Park YH. Decrease of alpha-crystallin A by miR-325-3p in retinal cells under blue light exposure. Mol Cells 2024; 47:100091. [PMID: 38997088 PMCID: PMC11342174 DOI: 10.1016/j.mocell.2024.100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
Exposure to blue light can lead to retinal degeneration, causing adverse effects on eye health. Although the loss of retinal cells due to blue light exposure has been observed, the precise molecular mechanisms underlying this process remain poorly understood. In this study, we investigate the role of alpha-crystallin A (CRYAA) in neuro-retinal degeneration and their regulation by blue light. We observed significant apoptotic cell death in both the retina of rats and the cultured neuro-retinal cells. The expressions of Cryaa mRNA and protein were significantly downregulated in the retina exposed to blue light. We identified that miR-325-3p reduces Cryaa mRNA and protein by binding to its 3'-untranslated region. Upregulation of miR-325-3p destabilized Cryaa mRNA and suppresses CRYAA, whereas downregulation of miR-325-3p increased both expressions. Blue light-induced neuro-retinal cell death was alleviated by CRYAA overexpression. These results highlight the critical role of Cryaa mRNA and miR-325-3p molecular axis in blue light-induced retinal degeneration. Consequently, targeting CRYAA and miR-325-3p presents a potential strategy for protecting against blue light-induced retinal degeneration.
Collapse
Affiliation(s)
- Subeen Oh
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Chongtae Kim
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Young-Hoon Park
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea.
| |
Collapse
|
11
|
Kwon Y, Munsoor J, Kaufmann M, Zheng M, Smirnov AI, Han Z. Polydopamine Nanoparticles as Mimicking RPE Melanin for the Protection of Retinal Cells Against Blue Light-Induced Phototoxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400230. [PMID: 38816934 PMCID: PMC11304300 DOI: 10.1002/advs.202400230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/15/2024] [Indexed: 06/01/2024]
Abstract
Exposure of the eyes to blue light can induce the overproduction of reactive oxygen species (ROS) in the retina and retinal pigment epithelium (RPE) cells, potentially leading to pathological damage of age-related macular degeneration (AMD). While the melanin in RPE cells absorbs blue light and prevents ROS accumulation, the loss and dysfunction of RPE melanin due to age-related changes may contribute to photooxidation toxicity. Herein, a novel approach utilizing a polydopamine-replenishing strategy via a single-dose intravitreal (IVT) injection is presented to protect retinal cells against blue light-induced phototoxicity. To investigate the effects of overexposure to blue light on retinal cells, a blue light exposure Nrf2-deficient mouse model is created, which is susceptible to light-induced retinal lesions. After blue light irradiation, retina degeneration and an overproduction of ROS are observed. The polydopamine-replenishing strategy demonstrated effectiveness in maintaining retinal structural integrity and preventing retina degeneration by reducing ROS production in retinal cells and limiting the phototoxicity of blue light exposure. These findings highlight the potential of polydopamine as a simple and effective replenishment for providing photoprotection against high-energy blue light exposure.
Collapse
Affiliation(s)
- Yong‐Su Kwon
- Department of OphthalmologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Julie Munsoor
- Department of OphthalmologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Mary Kaufmann
- Department of OphthalmologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Min Zheng
- Department of OphthalmologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Alex I. Smirnov
- Department of ChemistryNorth Carolina State UniversityRaleighNC27695USA
| | - Zongchao Han
- Department of OphthalmologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Division of Pharmacoengineering & Molecular PharmaceuticsEshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| |
Collapse
|
12
|
Gallego-Rentero M, López Sánchez A, Nicolás-Morala J, Alcaraz-Laso P, Zhang N, Juarranz Á, González S, Carrasco E. The effect of Fernblock® in preventing blue-light-induced oxidative stress and cellular damage in retinal pigment epithelial cells is associated with NRF2 induction. Photochem Photobiol Sci 2024; 23:1471-1484. [PMID: 38909335 DOI: 10.1007/s43630-024-00606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Blue light exposure of the ocular apparatus is currently rising. This has motivated a growing concern about potential deleterious effects on different eye structures. To address this, ARPE-19 cells were used as a model of the retinal pigment epithelium and subjected to cumulative expositions of blue light. The most relevant cellular events previously associated with blue-light-induced damage were assessed, including alterations in cell morphology, viability, cell proliferation, oxidative stress, inflammation, and the induction of DNA repair cellular mechanisms. Consistent with previous reports, our results provide evidence of cellular alterations resulting from repeated exposure to blue light irradiation. In this context, we explored the potential protective properties of the vegetal extract from Polypodium leucotomos, Fernblock® (FB), using the widely known treatment with lutein as a reference for comparison. The only changes observed as a result of the sole treatment with either FB or lutein were a slight but significant increase in γH2AX+ cells and the raise in the nuclear levels of NRF2. Overall, our findings indicate that the treatment with FB (similarly to lutein) prior to blue light irradiation can alleviate blue-light-induced deleterious effects in RPE cells, specifically preventing the drop in both cell viability and percentage of EdU+ cells, as well as the increase in ROS generation, percentage of γH2AX+ nuclei (more efficiently with FB), and TNF-α secretion (the latter restored only by FB to similar levels to those of the control). On the contrary, the induction in the P21 expression upon blue light irradiation was not prevented neither by FB nor by lutein. Notably, the nuclear translocation of NRF2 induced by blue light was similar to that observed in cells pre-treated with FB, while lutein pre-treatment resulted in nuclear NRF2 levels similar to control cells, suggesting key differences in the mechanism of cellular protection exerted by these compounds. These results may represent the foundation ground for the use of FB as a new ingredient in the development of alternative prophylactic strategies for blue-light-associated diseases, a currently rising medical interest.
Collapse
Affiliation(s)
- María Gallego-Rentero
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - Jimena Nicolás-Morala
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Paula Alcaraz-Laso
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Noelia Zhang
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ángeles Juarranz
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Salvador González
- Department of Medicine and Medical Specialties, Alcalá de Henares University, Madrid, Spain.
| | - Elisa Carrasco
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
- Centro de Biología Molecular Severo Ochoa (CBM); Instituto Universitario de Biología Molecular-IUBM (Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
13
|
Petelczyc K, Bolek J, Kakarenko K, Krix-Jachym K, Kołodziejczyk A, Rękas M. Use of the perceptual point-spread function to assess dysphotopsias. PLoS One 2024; 19:e0306331. [PMID: 39028737 PMCID: PMC11259305 DOI: 10.1371/journal.pone.0306331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/14/2024] [Indexed: 07/21/2024] Open
Abstract
Nowadays many patients are choosing EDOF or multifocal lenses for replacement of natural lens in cataract surgery. This can result in issues such as presence of dysphotopsias, namely halo and glare. In this work, we propose a new perimetry method to describe dysphotopsias in far-field region in a presence of bright, point-like light source. We constructed a custom device and designed measurement procedure for quantitative measurement of dysphotopias in the center of visual field and used it to examine patients with mild cataracts or implanted IOLs. Our approach may help in establishing an objective method to study and compare dysphotopsias.
Collapse
Affiliation(s)
| | - Jan Bolek
- Faculty of Physics, Warsaw University of Technology, Warsaw, Poland
| | - Karol Kakarenko
- Faculty of Physics, Warsaw University of Technology, Warsaw, Poland
| | | | | | - Marek Rękas
- Ophthalmology Department, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|
14
|
Zhang Y, Paik SS, Kim IB. Changes in Retinal Structure and Function in Mice Exposed to Flickering Blue Light: Electroretinographic and Optical Coherence Tomographic Analyses. Exp Neurobiol 2024; 33:152-164. [PMID: 38993082 PMCID: PMC11247282 DOI: 10.5607/en24011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 07/13/2024] Open
Abstract
The harmful effects of blue light on the retina and health issues attributed to flickering light have been researched extensively. However, reports on the effects of flickering blue light at a frequency in the visible range on the retina are limited. This study aimed to non-invasively investigate the structural and functional changes in mice retinas following exposure to flickering blue light. BALB/c mice were subjected to non-flickering and flickering blue light, and changes in the retinal function and structure were assessed using electroretinography (ERG) and spectral-domain optical coherence tomography (SD-OCT), respectively. Retinal damage progression was monitored on days 3, 7, 14, and 42 following light exposure. Significant reductions in scotopic and photopic ERG responses were observed on day 3 (p<0.05). On day 7, the non-flickering and flickering groups demonstrated different functional changes: the flickering group showed further ERG response reduction, while the non-flickering group showed no reduction or slight improvement that was statistically insignificant (p>0.05). A similar trend lasted by day 14. On day 42, however, the difference between the non-flickering and flickering groups was significant, which was corroborated by the normalized amplitudes at 0, 0.5, and 1 log cd s/m2 (p<0.05). Quantitative and qualitative SD-OCT assays revealed more severe and progressive retinal damage in the flickering group throughout the study. Flickering blue light causes more persistent and severe retinal damage than non-flickering blue light and may be a risk factor for retinal degeneration even at frequencies as low as 20 Hz.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Sun-Sook Paik
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
15
|
Yu H, Guo X, Wu J, Wu H, Zhao H. Analyzing the effect of blue-blocking lenses on color vision tests using the chromaticity coordinate method. Heliyon 2024; 10:e32938. [PMID: 38994067 PMCID: PMC11238008 DOI: 10.1016/j.heliyon.2024.e32938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Significance Blue light with wavelengths of 380-445 nm can harm the retina, leading to the development of blue-blocking lenses (BBLs). Understanding whether BBLs affect color vision test outcomes and color discrimination ability is crucial for people in color-associated jobs. Aim This study aimed to evaluate the effect of BBLs on color vision tests and analyze color discrimination using mathematical models of color spaces. Approach Six pseudoisochromatic (PIC) tests and two Farnsworth-Munsell (FM) tests were conducted to assess participants' color vision. Friedman signed rank test was used to compare the outcomes of the Farnsworth-Munsell 100-Hue Tests (FM 100-Hue Tests) between the BBLs and ordinary lenses groups. The CIE color difference formula and a spectral illuminometer were employed to evaluate the color differences with and without BBLs. Results All subjects showed normal outcomes in all PIC tests and Farnsworth-Munsell Dichotomous D-15 Tests (FM D-15 Tests). There were no significant differences between ordinary lenses group and BBLs groups in FM 100-Hue Tests. In the color space, the effect of BBLs on each color light was equivalent to a translation on the CIE 1931 chromaticity diagram with minor distortion. Since BBLs do not disrupt the continuity of the chromaticity diagram, or cause different colors to appear the same, they do not lead to color confusion. However, colors with short wavelengths exhibited more changes in color difference when wearing BBLs. Conclusions BBLs do not impair the wearer's ability to discriminate colors or perform color vision tests accurately. However, BBLs can cause color differences especially in the recognition of blue hues.
Collapse
Affiliation(s)
- Huiyao Yu
- College of science, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Xinwei Guo
- Hospital of Stomatology, Jilin University, Changchun, 130012, China
- Hospital of Stomatology, Peking University, Beijing, 100191, China
| | - Jian Wu
- Hospital of Stomatology, Jilin University, Changchun, 130012, China
| | - Huang Wu
- Department of Optometry, the Second Hospital of Jilin University, Changchun, 130041, China
| | - Hongyan Zhao
- Hospital of Stomatology, Jilin University, Changchun, 130012, China
| |
Collapse
|
16
|
Huang S, Zhang W, Xuan S, Si H, Huang D, Ba M, Qi D, Pei X, Lu D, Li Z. Chronic sleep deprivation impairs retinal circadian transcriptome and visual function. Exp Eye Res 2024; 243:109907. [PMID: 38649019 DOI: 10.1016/j.exer.2024.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Sleep loss is common in modern society and is increasingly associated with eye diseases. However, the precise effects of sleep loss on retinal structure and function, particularly on the retinal circadian system, remain largely unexplored. This study investigates these effects using a chronic sleep deprivation (CSD) model in mice. Our investigation reveals that CSD significantly alters the retinal circadian transcriptome, leading to remarkable changes in the temporal patterns of enriched pathways. This perturbation extends to metabolic and immune-related transcriptomes, coupled with an accumulation of reactive oxygen species in the retina. Notably, CSD rhythmically affects the thickness of the ganglion cell complex, along with diurnal shifts in microglial migration and morphology within the retina. Most critically, we observe a marked decrease in both scotopic and photopic retinal function under CSD conditions. These findings underscore the broad impact of sleep deprivation on retinal health, highlighting its role in altering circadian gene expression, metabolism, immune response, and structural integrity. Our study provides new insights into the broader impact of sleep loss on retinal health.
Collapse
Affiliation(s)
- Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China; Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Wenxiao Zhang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shuting Xuan
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongli Si
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Duliurui Huang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Mengru Ba
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China; Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China.
| |
Collapse
|
17
|
Hiramoto K, Kubo S, Tsuji K, Sugiyama D, Hamano H. Decreased Memory and Learning Ability Mediated by Bmal1/M1 Macrophages/Angptl2/Inflammatory Cytokine Pathway in Mice Exposed to Long-Term Blue Light Irradiation. Curr Issues Mol Biol 2024; 46:4924-4934. [PMID: 38785563 PMCID: PMC11120424 DOI: 10.3390/cimb46050295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Humans are persistently exposed to massive amounts of blue light via sunlight, computers, smartphones, and similar devices. Although the positive and negative effects of blue light on living organisms have been reported, its impact on learning and memory remains unknown. Herein, we examined the effects of widespread blue light exposure on the learning and memory abilities of blue light-exposed mice. Ten-week-old male ICR mice were divided into five groups (five mice/group) and irradiated with blue light from a light-emitting diode daily for 6 months. After 6 months of blue light irradiation, mice exhibited a decline in memory and learning abilities, assessed using the Morris water maze and step-through passive avoidance paradigms. Blue light-irradiated mice exhibited a decreased expression of the clock gene brain and muscle arnt-like 1 (Bmal1). The number of microglia and levels of M1 macrophage CC-chemokine receptor 7 and inducible nitric oxide synthase were increased, accompanied by a decrease in M2 macrophage arginase-1 levels. Levels of angiopoietin-like protein 2 and inflammatory cytokines interleukin-6, tumor necrosis factor-α, and interleukin-1β were elevated. Our findings suggest that long-term blue light exposure could reduce Bmal1 expression, activate the M1 macrophage/Angptl2/inflammatory cytokine pathway, induce neurodegeneration, and lead to a decline in memory.
Collapse
Affiliation(s)
- Keiichi Hiramoto
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Mie, Japan
| | - Sayaka Kubo
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Chuo-ku 140-8170, Tokyo, Japan; (S.K.); (K.T.); (D.S.); (H.H.)
| | - Keiko Tsuji
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Chuo-ku 140-8170, Tokyo, Japan; (S.K.); (K.T.); (D.S.); (H.H.)
| | - Daijiro Sugiyama
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Chuo-ku 140-8170, Tokyo, Japan; (S.K.); (K.T.); (D.S.); (H.H.)
| | - Hideo Hamano
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Chuo-ku 140-8170, Tokyo, Japan; (S.K.); (K.T.); (D.S.); (H.H.)
| |
Collapse
|
18
|
Hsu WH, Sangkhathat C, Lu MK, Lin WY, Liu HP, Lin YL. Dendrobium nobile Polysaccharide Attenuates Blue Light-Induced Injury in Retinal Cells and In Vivo in Drosophila. Antioxidants (Basel) 2024; 13:603. [PMID: 38790708 PMCID: PMC11118839 DOI: 10.3390/antiox13050603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Blue light is the higher-energy region of the visible spectrum. Excessive exposure to blue light is known to induce oxidative stress and is harmful to the eyes. The stems of Dendrobium nobile Lindl. (Orchidaceae), named Jinchaishihu, have long been used in traditional Chinese medicine (TCM) for nourishing yin, clearing heat, and brightening the eyes. The polysaccharide is one of the major components in D. nobile. However, the effect on ocular cells remains unclear. This study aimed to investigate whether the polysaccharide from D. nobile can protect the eyes from blue light-induced injury. A crude (DN-P) and a partially purified polysaccharide (DN-PP) from D. nobile were evaluated for their protective effects on blue light-induced damage in ARPE-19 and 661W cells. The in vivo study investigated the electroretinographic response and the expression of phototransduction-related genes in the retinas of a Drosophila model. The results showed that DN-P and DN-PP could improve blue light-induced damage in ARPE-19 and 661W cells, including cell viability, antioxidant activity, reactive oxygen species (ROS)/superoxide production, and reverse opsin 3 protein expression in a concentration-dependent manner. The in vivo study indicated that DN-P could alleviate eye damage and reverse the expression of phototransduction-related genes, including ninaE, norpA, Gαq, Gβ76C, Gγ30A, TRP, and TRPL, in a dose-dependent manner in blue light-exposed Drosophila. In conclusion, this is the first report demonstrating that D. nobile polysaccharide pretreatment can protect retinal cells and retinal photoreceptors from blue light-induced damage. These results provide supporting evidence for the beneficial potential of D. nobile in preventing blue light-induced eye damage and improving eyesight.
Collapse
Affiliation(s)
- Wei-Hsiang Hsu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan; (W.-H.H.); (C.S.)
| | - Chanikan Sangkhathat
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan; (W.-H.H.); (C.S.)
| | - Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan;
| | - Wei-Yong Lin
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan;
| | - Hsin-Ping Liu
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Yun-Lian Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan; (W.-H.H.); (C.S.)
- Department of Pharmacy, National Taiwan University, Taipei 10050, Taiwan
| |
Collapse
|
19
|
Zoric A, Bagheri M, von Kohout M, Fardoust T, Fuchs PC, Schiefer JL, Opländer C. High-Intensity Blue Light (450-460 nm) Phototherapy for Pseudomonas aeruginosa-Infected Wounds. Photobiomodul Photomed Laser Surg 2024; 42:356-365. [PMID: 38776546 DOI: 10.1089/photob.2023.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Background: Nosocomial wound infection with Pseudomonas aeruginosa (PA) is a serious complication often responsible for the septic mortality of burn patients. Objective: High-intensity antimicrobial blue light (aBL) treatment may represent an alternative therapy for PA infections and will be investigated in this study. Methods: Antibacterial effects of a light-emitting diode array (450-460 nm; 300 mW/cm2; 15/30 min; 270/540 J/cm2) against PA were determined by suspension assay, biofilm assay, and a human skin wound model and compared with 15-min topically applied 3% citric acid (CA) and wound irrigation solution (Prontosan®; PRT). Results: aBL reduced the bacterial number [2.51-3.56 log10 colony-forming unit (CFU)/mL], whereas PRT or CA treatment achieved a 4.64 or 6.60 log10 CFU/mL reduction in suspension assays. aBL reduced biofilm formation by 60-66%. PRT or CA treatment showed reductions by 25% or 13%. Here, aBL reduced bacterial number in biofilms (1.30-1.64 log10 CFU), but to a lower extend than PRT (2.41 log10 CFU) or CA (2.48 log10 CFU). In the wound skin model, aBL (2.21-2.33 log10 CFU) showed a bacterial reduction of the same magnitude as PRT (2.26 log10 CFU) and CA (2.30 log10 CFU). Conclusions: aBL showed a significant antibacterial efficacy against PA and biofilm formation in a short time. However, a clinical application of aBL in wound therapy requires effective active skin cooling and eye protection, which in turn may limit clinical implementation.
Collapse
Affiliation(s)
- Andreas Zoric
- Department of Plastic, Reconstructive and Aesthetic Surgery, RKH Hospital Bietigheim-Vaihingen, Bietigheim-Bissingen, Germany
| | - Mahsa Bagheri
- Department of Plastic and Aesthetic Surgery, Hand Surgery, HELIOS Hospital Emil von Behring, Berlin, Berlin, Germany
| | - Maria von Kohout
- Department of Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Witten/Herdecke University, Cologne, Germany
| | - Tara Fardoust
- Institute for Research in Operative Medicine (IFOM), Cologne-Merheim Medical Center, Witten/Herdecke University, Cologne, Germany
| | - Paul C Fuchs
- Department of Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Witten/Herdecke University, Cologne, Germany
| | - Jennifer L Schiefer
- Department of Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Witten/Herdecke University, Cologne, Germany
| | - Christian Opländer
- Institute for Research in Operative Medicine (IFOM), Cologne-Merheim Medical Center, Witten/Herdecke University, Cologne, Germany
| |
Collapse
|
20
|
Lu P, Peng J, Liu J, Chen L. The role of photobiomodulation in accelerating bone repair. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:55-67. [PMID: 38493961 DOI: 10.1016/j.pbiomolbio.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Bone repair is faced with obstacles such as slow repair rates and limited bone regeneration capacity. Delayed healing even nonunion could occur in bone defects, influencing the life quality of patients severely. Photobiomodulation (PBM) utilizes different light sources to derive beneficial therapeutic effects with the advantage of being non-invasive and painless, providing a promising strategy for accelerating bone repair. In this review, we summarize the parameters, mechanisms, and effects of PBM regulating bone repair, and further conclude the current clinical application of PBM devices in bone repair. The wavelength of 635-980 nm, the output power of 40-100 mW, and the energy density of less than 100 J/cm2 are the most commonly used parameters. New technologies, including needle systems and biocompatible and implantable optical fibers, offer references to realize an efficient and safe strategy for bone repair. Further research is required to establish the reliability of outcomes from in vivo and in vitro studies and to standardize clinical trial protocols.
Collapse
Affiliation(s)
- Ping Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jie Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| |
Collapse
|
21
|
Carozza G, Zerti D, Tisi A, Ciancaglini M, Maccarrone M, Maccarone R. An overview of retinal light damage models for preclinical studies on age-related macular degeneration: identifying molecular hallmarks and therapeutic targets. Rev Neurosci 2024; 35:303-330. [PMID: 38153807 DOI: 10.1515/revneuro-2023-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/19/2023] [Indexed: 12/30/2023]
Abstract
Age-related macular degeneration (AMD) is a complex, multifactorial disease leading to progressive and irreversible retinal degeneration, whose pathogenesis has not been fully elucidated yet. Due to the complexity and to the multiple features of the disease, many efforts have been made to develop animal models which faithfully reproduce the overall AMD hallmarks or that are able to mimic the different AMD stages. In this context, light damage (LD) rodent models of AMD represent a suitable and reliable approach to mimic the different AMD forms (dry, wet and geographic atrophy) while maintaining the time-dependent progression of the disease. In this review, we comprehensively reported how the LD paradigms reproduce the main features of human AMD. We discuss the capability of these models to broaden the knowledge in AMD research, with a focus on the mechanisms and the molecular hallmarks underlying the pathogenesis of the disease. We also critically revise the remaining challenges and future directions for the use of LD models.
Collapse
Affiliation(s)
- Giulia Carozza
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Darin Zerti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Marco Ciancaglini
- Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Rita Maccarone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
22
|
Rabiei M, Masoumi SJ, Haghani M, Nematolahi S, Rabiei R, Mortazavi SMJ. Do blue light filter applications improve sleep outcomes? A study of smartphone users' sleep quality in an observational setting. Electromagn Biol Med 2024; 43:107-116. [PMID: 38461462 DOI: 10.1080/15368378.2024.2327432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Exposure to blue light at bedtime, suppresses melatonin secretion, postponing the sleep onset and interrupting the sleep process. Some smartphone manufacturers have introduced night-mode functions, which have been claimed to aid in improving sleep quality. In this study, we evaluate the impact of blue light filter application on decreasing blue light emissions and improving sleep quality. Participants in this study recorded the pattern of using their mobile phones through a questionnaire. In order to evaluate sleep quality, we used a PSQI questionnaire. Blue light filters were used by 9.7% of respondents, 9.7% occasionally, and 80% never. The mean score of PSQI was more than 5 in 54.10% of the participants and less than 5 in 45.90%. ANOVA test was performed to assess the relationship between using blue light filter applications and sleep quality (p-value = 0.925). The findings of this study indicate a connection between the use of blue light filter apps and habitual sleep efficiency in the 31-40 age group. However, our results align only to some extent with prior research, as we did not observe sustained positive effects on all parameters of sleep quality from the long-term use of blue light filtering apps. Several studies have found that blue light exposure can suppress melatonin secretion, exacerbating sleep problems. Some studies have reported that physical blue light filters, such as lenses, can affect melatonin secretion and improve sleep quality. However, the impact of blue light filtering applications remains unclear and debatable.
Collapse
Affiliation(s)
- Marziye Rabiei
- Student Research Committee, Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Seyed Jalil Masoumi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Shiraz, Iran
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Center for Cohort Study of SUMS Employees' Health, Shiraz University of Medical Science, Shiraz, Iran
| | - Masoud Haghani
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Nematolahi
- Non-Communicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Reza Rabiei
- Educational science expert, Department of Education, Bushehr, Iran
| | - Seyed Mohammad Javad Mortazavi
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
23
|
Zhang R, Pu W, Zhang X, Di Y, Xu J, Zhu M, Tan Y, Liu W, Krutmann J, Wang J, Ma Y. Blue light protection factor: a method to assess the protective efficacy of cosmetics against blue light-induced skin damage in the Chinese population. Photochem Photobiol Sci 2024; 23:711-718. [PMID: 38430370 DOI: 10.1007/s43630-024-00546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Previous studies have shown that visible light (VL), especially blue light (BL), could cause significant skin damage. With the emergence of VL protection products, a harmonization of light protection methods has been proposed, but it has not been widely applied in the Chinese population. OBJECTIVE Based on this framework, we propose an accurate and simplified method to evaluate the efficacy of BL photoprotection for the Chinese population. METHODS All subjects (n = 30) were irradiated daily using a blue LED light for four consecutive days. Each irradiation dose was 3/4 MPPD (minimum persistent pigmentation darkening). The skin pigmentation parameters, including L*, M, and ITA°, were recorded. We proposed the blue light protection factor (BPF) metric based on the skin pigmentation parameters to evaluate the anti-blue light efficacies of different products. RESULTS We found that the level of pigmentation rose progressively and linearly as blue light exposure increased. We proposed a metric, BPF, to reflect the anti-blue light efficacy of products based on the linear changes in skin pigment characteristics following daily BL exposure. Moreover, we discovered that the BPF metric could clearly distinguish the anti-blue light efficacies between two products and the control group, suggesting that BPF is an efficient and simple-to-use metric for anti-blue light evaluation. CONCLUSION Our study proposed an accurate and simplified method with an easy-to-use metric, BPF, to accurately characterize the anti-blue light efficacies of cosmetic products, providing support for further development of anti-blue light cosmetics.
Collapse
Affiliation(s)
- Rui Zhang
- Human Phenome Institute, Fudan University, Shanghai, China
- Department of Skin and Cosmetic Research, Shanghai Skin Disease Hospital, Shanghai, China
| | - Weilin Pu
- Human Phenome Institute, Fudan University, Shanghai, China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458, China
| | - Xinyuan Zhang
- Shanghai Skinshield Clinical Testing and Technological Research Ltd., Shanghai, China
| | - Ye Di
- SHISEIDO China Co., Ltd, Shanghai, China
| | - Jing Xu
- SHISEIDO China Co., Ltd, Shanghai, China
| | - Meiyan Zhu
- SHISEIDO China Co., Ltd, Shanghai, China
| | - Yimei Tan
- Human Phenome Institute, Fudan University, Shanghai, China
- Department of Skin and Cosmetic Research, Shanghai Skin Disease Hospital, Shanghai, China
| | - Wei Liu
- Department of Dermatology, Air Force General Hospital, Beijing, China
| | - Jean Krutmann
- Human Phenome Institute, Fudan University, Shanghai, China
- IUF Leibniz Research Institute for Environmental Medicine, Dusseldorf, Germany
| | - Jiucun Wang
- Human Phenome Institute, Fudan University, Shanghai, China.
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China.
- Institute for Six-Sector Economy, Fudan University, Shanghai, 200433, China.
| | - Yanyun Ma
- Human Phenome Institute, Fudan University, Shanghai, China.
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China.
- Institute for Six-Sector Economy, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
24
|
Ballae Ganeshrao S, Theruveethi N, Srinivasan K. Knowledge, perception and practice towards blue-blocking lenses among optometrists. Clin Exp Optom 2024; 107:332-340. [PMID: 37257458 DOI: 10.1080/08164622.2023.2215380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 12/22/2022] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
CLINICAL RELEVANCE There is a lack of clinical guidelines in India for the prescription of blue-blocking lenses. Therefore, the practice trends will depend on practitioners' knowledge, attitude, and perception. BACKGROUND Exposure to blue light with increased use of light-emitting diode (LED) lights and digital devices along with the commercial availability of blue blocking lenses has warranted the need to understand the factors that influence the prescription of blue blocking lenses among eye care practitioners. Hence, we aim to assess knowledge, perception, and practice pattern of blue blocking lenses among Indian optometrists. METHODS This cross-sectional online survey was conducted among Indian Optometrists. The survey was distributed through various social groups of optometrists and state associations. The questionnaire had four main domains with 29 items in total. The four major domains were knowledge, practice, perception and demographic details on education. Descriptive analysis and logistic regression were performed to study the impact of these domains on the prescription of blue block lenses. RESULTS Out of 341 responses, 247 were included for analysis as per study criteria. About 50% (n = 123) of the participants had appropriate knowledge about blue light. Blue-blocking lenses were prescribed always or most of the time by 52% (n = 130) of the participants. The odds of prescribing blue blocking lenses were higher among practitioners who considered blue light as an important factor in causing computer vision syndrome (OR 3.77, 95% CI: 1.33-10.69, P = 0.01) or if they considered there is adequate published evidence (OR 3.95, 95% CI: 1.58-9.87, P = 0.003). CONCLUSIONS The source of evidence for prescribing blue-blocking lenses for our participants was mainly from advertisements rather than from scientific studies. Factors such as awareness, knowledge, education, and nature of practice did not play a significant role in prescribing blue-blocking lenses. This raises the need for evidence-based practice and the development of practice guidelines for prescribing blue-blocking lenses.
Collapse
Affiliation(s)
- Shonraj Ballae Ganeshrao
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Nagarajan Theruveethi
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Krithica Srinivasan
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
25
|
Chu L, Bi C, Wang C, Zhou H. The Relationship between Complements and Age-Related Macular Degeneration and Its Pathogenesis. J Ophthalmol 2024; 2024:6416773. [PMID: 38205100 PMCID: PMC10776198 DOI: 10.1155/2024/6416773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/08/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Age-related macular degeneration is a retinal disease that causes permanent loss of central vision in people over the age of 65. Its pathogenesis may be related to mitochondrial dysfunction, inflammation, apoptosis, autophagy, complement, intestinal flora, and lipid disorders. In addition, the patient's genes, age, gender, cardiovascular disease, unhealthy diet, and living habits may also be risk factors for this disease. Complement proteins are widely distributed in serum and tissue fluid. In the early 21st century, a connection was found between the complement cascade and age-related macular degeneration. However, little is known about the effect of complement factors on the pathogenesis of age-related macular degeneration. This article reviews the factors associated with age-related macular degeneration, the relationship between each factor and complement, the related functions, and variants and provides new ideas for the treatment of this disease.
Collapse
Affiliation(s)
- Liyuan Chu
- Department of Ophthalmology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Chaoran Bi
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Caiming Wang
- Department of Ophthalmology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyan Zhou
- Department of Ophthalmology, China–Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Zhang H, Song T, Kang R, Ren F, Liu J, Wang J. Plant bioactive compounds alleviate photoinduced retinal damage and asthenopia: Mechanisms, synergies, and bioavailability. Nutr Res 2023; 120:115-134. [PMID: 37980835 DOI: 10.1016/j.nutres.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
The retina, an important tissue of the eye, is essential in visual transmission and sustaining adequate eyesight. However, oxidative stress and inflammatory reactions can harm retinal structure and function. Recent studies have demonstrated that exposure to light can induce oxidative stress and inflammatory reactions in retinal cells, thereby facilitating the progression of retinal damage-related diseases and asthenopia. Plant bioactive compounds such as anthocyanin, curcumin, resveratrol, lutein, zeaxanthin, epigallocatechin gallate, and quercetin are effective in alleviating retinal damage and asthenopia. Their strong oxidation resistance and unique chemical structure can prevent the retina from producing reactive oxygen species and regulating eye muscle relaxation, thus alleviating retinal damage and asthenopia. Additionally, the combination of these active ingredients produces a stronger antioxidant effect. Consequently, understanding the mechanism of retinal damage caused by light and the regulation mechanism of bioactive compounds can better protect the retina and reduce asthenopia.
Collapse
Affiliation(s)
- Huijuan Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| | - Tiancong Song
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Rui Kang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Feiyue Ren
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| |
Collapse
|
27
|
Pang Y, Cao T, Hu H, Peng Z, Xu K, Jiang Y, Wang F, Jin M, Zeng L, Zhang X. Therapeutic effects of low-color-temperature light-emitting diodes on dry eye. JOURNAL OF BIOPHOTONICS 2023; 16:e202300188. [PMID: 37654080 DOI: 10.1002/jbio.202300188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND As a new technology for treating dry eye diseases, phototherapy has attracted great attention, but the research on its safety and effectiveness is limited. In this study, the therapeutic effects of low-color-temperature light-emitting diodes on dry eye in humans, rabbits, and rats were investigated. METHODS In clinical experiments, subjects in both groups read the same paper for 3 h under light sources of two color temperatures: 1900 K (low-color-temperature light-emitting diodes) or 4000 K (artificial fluorescent white light-emitting diodes). The differences in the non-invasive tear film breakup time, tear meniscus height, and conjunctival congestion scores before and after the experiment were compared between the two groups. In animal experiments, corneal epithelial barrier function and tear production of Sprague-Dawley rats and New Zealand white rabbits with dry eye were compared before and after low-color-temperature light-emitting diodes treatment. TUNEL staining and Western blotting were used to detect the apoptosis of corneal and conjunctival cells and the expression of inflammatory factor IL-1β. RESULTS Low-color-temperature light-emitting diodes prolonged tear film breakup time in patients with dry eye. Moreover, it increased tear secretion, decreased fluorescein sodium staining scores, corneal and conjunctival cell apoptosis, and inflammatory factor expression in rabbits and rats with dry eye. CONCLUSIONS Low-color-temperature light-emitting diodes phototherapy can be used as an effective treatment for dry eye, reducing its symptoms and related ocular surface damage in humans, rabbits, and rats.
Collapse
Affiliation(s)
- Yulian Pang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
- Nanchang University School of Ophthalmology & Optometry, Nanchang, Jiangxi, China
| | - Ting Cao
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
- Department of Orthopaedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Haijian Hu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
- Nanchang University School of Ophthalmology & Optometry, Nanchang, Jiangxi, China
| | - Zhida Peng
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Ke Xu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
- Nanchang University School of Ophthalmology & Optometry, Nanchang, Jiangxi, China
| | - Yi Jiang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
- Nanchang University School of Ophthalmology & Optometry, Nanchang, Jiangxi, China
| | - Feifei Wang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
- Nanchang University School of Ophthalmology & Optometry, Nanchang, Jiangxi, China
| | - Ming Jin
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
- Nanchang University School of Ophthalmology & Optometry, Nanchang, Jiangxi, China
| | - Ling Zeng
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
- Nanchang University School of Ophthalmology & Optometry, Nanchang, Jiangxi, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
- Nanchang University School of Ophthalmology & Optometry, Nanchang, Jiangxi, China
| |
Collapse
|
28
|
Lazzarini R, Tartaglione MF, Ciarapica V, Piva F, Giulietti M, Fulgenzi G, Martelli M, Ledda C, Vitale E, Malavolta M, Santarelli L, Bracci M. Keratinocytes Exposed to Blue or Red Light: Proteomic Characterization Showed Cytoplasmic Thioredoxin Reductase 1 and Aldo-Keto Reductase Family 1 Member C3 Triggered Expression. Int J Mol Sci 2023; 24:16189. [PMID: 38003379 PMCID: PMC10671521 DOI: 10.3390/ijms242216189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Several cell-signaling mechanisms are activated by visible light radiation in human keratinocytes, but the key regulatory proteins involved in this specific cellular response have not yet been identified. Human keratinocytes (HaCaT cells) were exposed to blue or red light at low or high irradiance for 3 days in cycles of 12 h of light and 12 h of dark. The cell viability, apoptotic rate and cell cycle progression were analyzed in all experimental conditions. The proteomic profile, oxidative stress and mitochondrial morphology were additionally evaluated in the HaCaT cells following exposure to high-irradiance blue or red light. Low-irradiance blue or red light exposure did not show an alteration in the cell viability, cell death or cell cycle progression. High-irradiance blue or red light reduced the cell viability, induced cell death and cell cycle G2/M arrest, increased the reactive oxygen species (ROS) and altered the mitochondrial density and morphology. The proteomic profile revealed a pivotal role of Cytoplasmic thioredoxin reductase 1 (TXNRD1) and Aldo-keto reductase family 1 member C3 (AKR1C3) in the response of the HaCaT cells to high-irradiance blue or red light exposure. Blue or red light exposure affected the viability of keratinocytes, activating a specific oxidative stress response and inducing mitochondrial dysfunction. Our results can help to address the targets for the therapeutic use of light and to develop adequate preventive strategies for skin damage. This in vitro study supports further in vivo investigations of the biological effects of light on human keratinocytes.
Collapse
Affiliation(s)
- Raffaella Lazzarini
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (M.F.T.); (V.C.); (M.M.); (M.B.)
| | - Maria Fiorella Tartaglione
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (M.F.T.); (V.C.); (M.M.); (M.B.)
| | - Veronica Ciarapica
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (M.F.T.); (V.C.); (M.M.); (M.B.)
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.P.)
| | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (F.P.)
| | - Gianluca Fulgenzi
- Department of Clinical and Molecular Sciences Experimental Pathology, Polytechnic University of Marche, 60126 Ancona, Italy;
| | - Margherita Martelli
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (M.F.T.); (V.C.); (M.M.); (M.B.)
| | - Caterina Ledda
- Section of Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy;
| | - Ermanno Vitale
- Faculty of Medicine and Surgery, Kore University, 94100 Enna, Italy;
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, Scientific Technological Area, IRCCS INRCA, 60121 Ancona, Italy;
| | - Lory Santarelli
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (M.F.T.); (V.C.); (M.M.); (M.B.)
| | - Massimo Bracci
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (M.F.T.); (V.C.); (M.M.); (M.B.)
| |
Collapse
|
29
|
Guan M, Wu Y, Kuang Z, Xu S, Zhang J. Efficient and tunable emission CsPbCl xBr 3-x quantum dot glass for overcoming the lack of cyan gap in WLED. OPTICS LETTERS 2023; 48:5173-5176. [PMID: 37773413 DOI: 10.1364/ol.503970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 10/01/2023]
Abstract
Recently, the photoluminescence (PL) performance and stability of cyan emission perovskite quantum dot (PQD) were found to be inferior to other color emitting PQDs, which greatly limits their practical applications. In this Letter, CsPbClxBr3-x PQD glass with excellent hydrothermal stability is successfully synthesized by a high-temperature melting method. Results review that the vacancy defects in [PbBr6]4- octahedra can be effectively compensated by excessive halogen doping, resulting in an improvement in the photoluminescence quantum yield (PLQY) of PQDs from 24.73% to 65.62%. In addition, compared to white light emitting diode (WLED) synthesized with commercial fluorescent powders, the introduction of CsPbCl2Br1 PQD glass effectively fills the cyan gap. Moreover, the WLED displays the color-rendering index (CRI) of 87 at correlated color temperature (CCT) of 5257 K, and the color gamut area reaches 126% of the National Television System Committee (NTSC). This work provides an effective way for improving the PL performance of PQDs and brings CsPbClxBr3-x PQD glass significant prospect in the optoelectronic applications.
Collapse
|
30
|
Hiramoto K, Kubo S, Tsuji K, Sugiyama D, Hamano H. Induction of Skin Cancer by Long-Term Blue Light Irradiation. Biomedicines 2023; 11:2321. [PMID: 37626816 PMCID: PMC10452187 DOI: 10.3390/biomedicines11082321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Presently, people are not only exposed to sunlight but also to a large amount of blue light from personal computers and smartphones. This blue light has various effects on the living body. However, its effect on the induction of skin cancer is unknown. In this study, we investigated the induction of skin cancer by long-term blue light irradiation. Hairless mice were irradiated with blue light (LED; peak emission 479 nm) every day for one year, and a control was irradiated with white light (LED), green light (LED; peak emission 538 nm), and red light (LED; peak emission 629 nm) for one year, respectively. Skin cancer was induced only in the mice exposed to blue light. Long-term blue light irradiation also increased the migration of neutrophils and macrophages involved in carcinogenesis in the skin. In neutrophils, an increased expression of citH3 and PAD4 was observed, suggesting the possibility of NETosis. Conversely, in macrophages, inflammatory macrophages (type 1 macrophages) increased and anti-inflammatory macrophages (type 2 macrophages) decreased due to continuous blue light irradiation. These findings suggest that long-term continuous irradiation with blue light induces neutrophil NETosis and an increase in type 1 macrophages, resulting in skin cancer.
Collapse
Affiliation(s)
- Keiichi Hiramoto
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan
| | - Sayaka Kubo
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Chuo-ku, Tokyo 140-8170, Japan; (S.K.); (K.T.); (D.S.); (H.H.)
| | - Keiko Tsuji
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Chuo-ku, Tokyo 140-8170, Japan; (S.K.); (K.T.); (D.S.); (H.H.)
| | - Daijiro Sugiyama
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Chuo-ku, Tokyo 140-8170, Japan; (S.K.); (K.T.); (D.S.); (H.H.)
| | - Hideo Hamano
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Chuo-ku, Tokyo 140-8170, Japan; (S.K.); (K.T.); (D.S.); (H.H.)
| |
Collapse
|
31
|
Zhang L, Lei CY, Zhang ZC, Gu JY, Zhang MX. Accidental macular injury from short-term exposure to a handheld high-intensity LED light. Heliyon 2023; 9:e18705. [PMID: 37554811 PMCID: PMC10404656 DOI: 10.1016/j.heliyon.2023.e18705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/27/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
OBJECTIVE To report a case of macular injury caused by short-term exposure to a handheld high-intensity light emitting diode (LED) light. DESIGN Interventional case report. PARTICIPANT A patient with macular injury caused by short-term exposure to the light of a handheld high-intensity LED device. INTERVENTION The patient was examined and followed for 3 months after exposure with ophthalmologic examinations (including funduscopy, optical coherence tomography [OCT], fluorescein angiography [FA], and multifocal electroretinography [mfERG]). The injured eye was treated with one retrobulbar injection of 20 mg triamcinolone acetonide at 5 days after exposure. MAIN OUTCOME MEASURES Visual acuity, ophthalmoscopic, and OCT findings. RESULTS 3 days after exposure, the best corrected visual acuity (BCVA) of the right eye was 6/20. OCT revealed the acute stage of the injury with eminence of the retinal pigment epithelium (RPE). BCVA was improved to 16/20 and 20/20 at 19 and 33 days after exposure, respectively. OCT results of follow-ups at five days, 19 days, 33 days and 3 months after exposure have demonstrated the restoration process of the injury. CONCLUSIONS Short-term exposure to high-intensity LED light may cause damage to the retina. As the expansion of LED use in modern life, education and supervision are of urgent need for public health.
Collapse
Affiliation(s)
- Li Zhang
- Sichuan University West China Hospital, Chengdu, Sichuan Province, China
| | - Chun-Yan Lei
- Sichuan University West China Hospital, Chengdu, Sichuan Province, China
| | | | - Jin-Yue Gu
- Sichuan University West China Hospital, Chengdu, Sichuan Province, China
| | - Mei-Xia Zhang
- Sichuan University West China Hospital, Chengdu, Sichuan Province, China
| |
Collapse
|
32
|
Casciano F, Zauli E, Busin M, Caruso L, AlMesfer S, Al-Swailem S, Zauli G, Yu AC. State of the Art of Pharmacological Activators of p53 in Ocular Malignancies. Cancers (Basel) 2023; 15:3593. [PMID: 37509256 PMCID: PMC10377487 DOI: 10.3390/cancers15143593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The pivotal role of p53 in the regulation of a vast array of cellular functions has been the subject of extensive research. The biological activity of p53 is not strictly limited to cell cycle arrest but also includes the regulation of homeostasis, DNA repair, apoptosis, and senescence. Thus, mutations in the p53 gene with loss of function represent one of the major mechanisms for cancer development. As expected, due to its key role, p53 is expressed throughout the human body including the eye. Specifically, altered p53 signaling pathways have been implicated in the development of conjunctival and corneal tumors, retinoblastoma, uveal melanoma, and intraocular melanoma. As non-selective cancer chemotherapies as well as ionizing radiation can be associated with either poor efficacy or dose-limiting toxicities in the eye, reconstitution of the p53 signaling pathway currently represents an attractive target for cancer therapy. The present review discusses the role of p53 in the pathogenesis of these ocular tumors and outlines the various pharmacological activators of p53 that are currently under investigation for the treatment of ocular malignancies.
Collapse
Affiliation(s)
- Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Busin
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Ophthalmology, Ospedali Privati Forlì "Villa Igea", 47122 Forlì, Italy
- Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), 47122 Forlì, Italy
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Saleh AlMesfer
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Samar Al-Swailem
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Angeli Christy Yu
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Ophthalmology, Ospedali Privati Forlì "Villa Igea", 47122 Forlì, Italy
- Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), 47122 Forlì, Italy
| |
Collapse
|
33
|
Bocheva G, Slominski RM, Slominski AT. Environmental Air Pollutants Affecting Skin Functions with Systemic Implications. Int J Mol Sci 2023; 24:10502. [PMID: 37445680 PMCID: PMC10341863 DOI: 10.3390/ijms241310502] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The increase in air pollution worldwide represents an environmental risk factor that has global implications for the health of humans worldwide. The skin of billions of people is exposed to a mixture of harmful air pollutants, which can affect its physiology and are responsible for cutaneous damage. Some polycyclic aromatic hydrocarbons are photoreactive and could be activated by ultraviolet radiation (UVR). Therefore, such UVR exposure would enhance their deleterious effects on the skin. Air pollution also affects vitamin D synthesis by reducing UVB radiation, which is essential for the production of vitamin D3, tachysterol, and lumisterol derivatives. Ambient air pollutants, photopollution, blue-light pollution, and cigarette smoke compromise cutaneous structural integrity, can interact with human skin microbiota, and trigger or exacerbate a range of skin diseases through various mechanisms. Generally, air pollution elicits an oxidative stress response on the skin that can activate the inflammatory responses. The aryl hydrocarbon receptor (AhR) can act as a sensor for small molecules such as air pollutants and plays a crucial role in responses to (photo)pollution. On the other hand, targeting AhR/Nrf2 is emerging as a novel treatment option for air pollutants that induce or exacerbate inflammatory skin diseases. Therefore, AhR with downstream regulatory pathways would represent a crucial signaling system regulating the skin phenotype in a Yin and Yang fashion defined by the chemical nature of the activating factor and the cellular and tissue context.
Collapse
Affiliation(s)
- Georgeta Bocheva
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Radomir M. Slominski
- Department of Genetics, Informatics Institute in the School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, Cancer Chemoprevention Program, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Veteran Administration Medical Center, Birmingham, AL 35294, USA
| |
Collapse
|
34
|
Tsai PC, Cheng MH, Peng BH, Jou JH, Cheng YH, Ku YC, Chiu HY, Chou ML, Yeh PT. Permissible viewing times of educational projector and TV. Heliyon 2023; 9:e15522. [PMID: 37180913 PMCID: PMC10173401 DOI: 10.1016/j.heliyon.2023.e15522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Projectors have become one major medium in modern teaching, with large area-size displays emerging as an alternative. What concerns the general public is whether such eLearning would impose threat on eyes, by noting blue enriched white light to be hazardous to retina and else. Especially, little was known about their permissible viewing time under a certain viewing clarity. We had hence carried out a quantitative study with the use of a blue-hazard quantification spectrometer to determine the permissible viewing time when using a projector and a large size TV screen for displaying. Surprisingly, the large TV screen could permit a much longer viewing time, meaning which is more eye-friendly. It is plausibly because its resolution is much higher than that of the projector. Two dilemmas were observed in such eLearning; those sitting in the front would suffer a much higher illuminance, leading to a much shorter viewing time, while those sitting in the back would need a far much larger font size to see clearly. To ensure both viewing clarity and a sufficiently long permissible viewing time, orange text on black background is suggested to replace the defaulted black text on white background. The permissible viewing time could hence drastically increase from 1.3 to 83 h at 2 m by viewing a 30 pt font for the TV and from 0.4 to 54 h for the projection. At 6 m, the permissible viewing time was increased from 12 to 236 h for the TV and from 3 to 160 h for the projection, based on a viewable 94 pt font. These results may help educators and other e-display users to wisely apply the display tools with safety.
Collapse
Affiliation(s)
- Pei-Chung Tsai
- Department of Materials Science and Engineering, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Ming-Hui Cheng
- Department of Materials Science and Engineering, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Bo-Hsun Peng
- Department of Materials Science and Engineering, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Jwo-Huei Jou
- Department of Materials Science and Engineering, National Tsing Hua University, Hsin-Chu, Taiwan
- Corresponding author.
| | | | - Yi-Chen Ku
- Shu-Guang Girls' Senior High School, Hsin-Chu, Taiwan
| | - Hsin-Ya Chiu
- Shu-Guang Girls' Senior High School, Hsin-Chu, Taiwan
| | - Ming-Li Chou
- Shu-Guang Girls' Senior High School, Hsin-Chu, Taiwan
| | - Po-Ting Yeh
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
35
|
Blue Light Exposure: Ocular Hazards and Prevention-A Narrative Review. Ophthalmol Ther 2023; 12:755-788. [PMID: 36808601 PMCID: PMC9938358 DOI: 10.1007/s40123-023-00675-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/01/2023] [Indexed: 02/21/2023] Open
Abstract
INTRODUCTION Exposure to blue light has seriously increased in our environment since the arrival of light emitting diodes (LEDs) and, in recent years, the proliferation of digital devices rich in blue light. This raises some questions about its potential deleterious effects on eye health. The aim of this narrative review is to provide an update on the ocular effects of blue light and to discuss the efficiency of methods of protection and prevention against potential blue light-induced ocular injury. METHODS The search of relevant English articles was conducted in PubMed, Medline, and Google Scholar databases until December 2022. RESULTS Blue light exposure provokes photochemical reactions in most eye tissues, in particular the cornea, the lens, and the retina. In vitro and in vivo studies have shown that certain exposures to blue light (depending on the wavelength or intensity) can cause temporary or permanent damage to some structures of the eye, especially the retina. However, currently, there is no evidence that screen use and LEDs in normal use are deleterious to the human retina. Regarding protection, there is currently no evidence of a beneficial effect of blue blocking lenses for the prevention of eye diseases, in particular age-related macular degeneration (AMD). In humans, macular pigments (composed of lutein and zeaxanthin) represent a natural protection by filtering blue light, and can be increased through increased intake from foods or food supplements. These nutrients are associated with lower risk for AMD and cataract. Antioxidants such as vitamins C, E, or zinc might also contribute to the prevention of photochemical ocular damage by preventing oxidative stress. CONCLUSION Currently, there is no evidence that LEDs in normal use at domestic intensity levels or in screen devices are retinotoxic to the human eye. However, the potential toxicity of long-term cumulative exposure and the dose-response effect are currently unknown.
Collapse
|
36
|
Campbell I, Sharifpour R, Vandewalle G. Light as a Modulator of Non-Image-Forming Brain Functions—Positive and Negative Impacts of Increasing Light Availability. Clocks Sleep 2023; 5:116-140. [PMID: 36975552 PMCID: PMC10047820 DOI: 10.3390/clockssleep5010012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Light use is rising steeply, mainly because of the advent of light-emitting diode (LED) devices. LEDs are frequently blue-enriched light sources and may have different impacts on the non-image forming (NIF) system, which is maximally sensitive to blue-wavelength light. Most importantly, the timing of LED device use is widespread, leading to novel light exposure patterns on the NIF system. The goal of this narrative review is to discuss the multiple aspects that we think should be accounted for when attempting to predict how this situation will affect the NIF impact of light on brain functions. We first cover both the image-forming and NIF pathways of the brain. We then detail our current understanding of the impact of light on human cognition, sleep, alertness, and mood. Finally, we discuss questions concerning the adoption of LED lighting and screens, which offer new opportunities to improve well-being, but also raise concerns about increasing light exposure, which may be detrimental to health, particularly in the evening.
Collapse
|
37
|
Polyunsaturated Lipids in the Light-Exposed and Prooxidant Retinal Environment. Antioxidants (Basel) 2023; 12:antiox12030617. [PMID: 36978865 PMCID: PMC10044808 DOI: 10.3390/antiox12030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The retina is an oxidative stress-prone tissue due to high content of polyunsaturated lipids, exposure to visible light stimuli in the 400–480 nm range, and high oxygen availability provided by choroidal capillaries to support oxidative metabolism. Indeed, lipids’ peroxidation and their conversion into reactive species promoting inflammation have been reported and connected to retinal degenerations. Here, we review recent evidence showing how retinal polyunsaturated lipids, in addition to oxidative stress and damage, may counteract the inflammatory response triggered by blue light-activated carotenoid derivatives, enabling long-term retina operation despite its prooxidant environment. These two aspects of retinal polyunsaturated lipids require tight control over their synthesis to avoid overcoming their protective actions by an increase in lipid peroxidation due to oxidative stress. We review emerging evidence on different transcriptional control mechanisms operating in retinal cells to modulate polyunsaturated lipid synthesis over the life span, from the immature to the ageing retina. Finally, we discuss the antioxidant role of food nutrients such as xanthophylls and carotenoids that have been shown to empower retinal cells’ antioxidant responses and counteract the adverse impact of prooxidant stimuli on sight.
Collapse
|
38
|
Tonolli PN, Vera Palomino CM, Junqueira HC, Baptista MS. The phototoxicity action spectra of visible light in HaCaT keratinocytes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 2023; 243:112703. [PMID: 37023538 DOI: 10.1016/j.jphotobiol.2023.112703] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Visible light (VL) surely affects human skin in several ways, exerting positive (tissue regeneration, pain relief) and negative (oxidation, inflammation) effects, depending on the radiation dose and wavelength. Nevertheless, VL continues to be largely disregarded in photoprotection strategies, perhaps because the molecular mechanisms occurring during the interaction of VL with endogenous photosensitizers (ePS) and the subsequent biological responses are still poorly understood. Besides, VL encompass photons with different properties and interaction capacities with the ePS, but there are no quantitative comparisons of their effects on humans. Here, we studied the effects of physiologically relevant doses of four wavelengths ranges of VL, i.e. (in nm), 408-violet, 466/478-blue, 522-green, 650-red, in immortalized human skin keratinocytes (HaCaT). The level of cytotoxicity/damage follows the order: violet>blue >green>red. Violet and blue light induced the highest levels of Fpg-sensitive lesions in nuclear DNA, oxidative stress, lysosomal and mitochondrial damage, disruption of the lysosomal-mitochondrial axis of cell homeostasis, blockade of the autophagic flux, as well as lipofuscin accumulation, greatly increasing the toxicity of wideband VL to human skin. We hope this work will stimulate in development of optimized sun protection strategies.
Collapse
|
39
|
Zhang C, Zhu Z, Zhao J, Li Y, Zhang Z, Zheng Y. Ubiquitous light-emitting diodes: Potential threats to retinal circadian rhythms and refractive development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160809. [PMID: 36502986 DOI: 10.1016/j.scitotenv.2022.160809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The use of light-emitting diodes (LEDs) has increased considerably in the 21st century with humans living in a modern photoperiod with brighter nights and dimmer days. Prolonged exposure to LEDs, especially at night, is considered a new source of pollution because it may affect the synthesis and secretion of retinal melatonin and dopamine, resulting in negative impacts on retinal circadian clocks and potentially disrupting retinal circadian rhythms. The control of ocular refraction is believed to be related to retinal circadian rhythms. Moreover, the global prevalence of myopia has increased at an alarming rate in recent decades. The widespread use of LEDs and the rapid increase in the prevalence of myopia overlap, which is unlikely to be a coincidence. The connection among LEDs, retinal circadian rhythms, and refractive development is both fascinating and confusing. In this review, we aim to develop a systematic framework that includes LEDs, retinal circadian rhythms and refractive development. This paper summarizes the possible mechanisms by which LEDs may disrupt retinal circadian rhythms. We propose that prolonged exposure to LEDs may induce myopia by disrupting retinal circadian rhythms. Finally, we suggest several possible countermeasures to prevent LED interference on retinal circadian rhythms, with the hope of reducing the onset and progression of myopia.
Collapse
Affiliation(s)
- Chenchen Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Zhe Zhu
- Department of Ophthalmology, Eye Hospital of Shandong First Medical University, Shandong Eye Institute, Jinan 250000, China
| | - Jing Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Yanxia Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Zhaoying Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
40
|
Pacwa A, Machowicz J, Akhtar S, Rodak P, Liu X, Pietrucha-Dutczak M, Lewin-Kowalik J, Amadio M, Smedowski A. Deficiency of the RNA-binding protein ELAVL1/HuR leads to the failure of endogenous and exogenous neuroprotection of retinal ganglion cells. Front Cell Neurosci 2023; 17:1131356. [PMID: 36874215 PMCID: PMC9982123 DOI: 10.3389/fncel.2023.1131356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction ELAVL1/HuR is a keystone regulator of gene expression at the posttranscriptional level, including stress response and homeostasis maintenance. The aim of this study was to evaluate the impact of hur silencing on the age-related degeneration of retinal ganglion cells (RGC), which potentially describes the efficiency of endogenous neuroprotection mechanisms, as well as to assess the exogenous neuroprotection capacity of hur-silenced RGC in the rat glaucoma model. Methods The study consisted of in vitro and in vivo approaches. In vitro, we used rat B-35 cells to investigate, whether AAV-shRNA-HuR delivery affects survival and oxidative stress markers under temperature and excitotoxic insults. In vivo approach consisted of two different settings. In first one, 35 eight-week-old rats received intravitreal injection of AAV-shRNA-HuR or AAV-shRNA scramble control. Animals underwent electroretinography tests and were sacrificed 2, 4 or 6 months after injection. Retinas and optic nerves were collected and processed for immunostainings, electron microscopy and stereology. For the second approach, animals received similar gene constructs. To induce chronic glaucoma, 8 weeks after AAV injection, unilateral episcleral vein cauterization was performed. Animals from each group received intravitreal injection of metallothionein II. Animals underwent electroretinography tests and were sacrificed 8 weeks later. Retinas and optic nerves were collected and processed for immunostainings, electron microscopy and stereology. Results Silencing of hur induced apoptosis and increased oxidative stress markers in B-35 cells. Additionally, shRNA treatment impaired the cellular stress response to temperature and excitotoxic insults. In vivo, RGC count was decreased by 39% in shRNA-HuR group 6 months after injection, when compared to shRNA scramble control group. In neuroprotection study, the average loss of RGCs was 35% in animals with glaucoma treated with metallothionein and shRNA-HuR and 11.4% in animals with glaucoma treated with metallothionein and the scramble control shRNA. An alteration in HuR cellular content resulted in diminished photopic negative responses in the electroretinogram. Conclusions Based on our findings, we conclude that HuR is essential for the survival and efficient neuroprotection of RGC and that the induced alteration in HuR content accelerates both the age-related and glaucoma-induced decline in RGC number and function, further confirming HuR's key role in maintaining cell homeostasis and its possible involvement in the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Anna Pacwa
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- GlaucoTech Co., Katowice, Poland
| | - Joanna Machowicz
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Saeed Akhtar
- College of Applied Medical Sciences, Inaya Medical Colleges, Riyadh, Saudi Arabia
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Piotr Rodak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Xiaonan Liu
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Marita Pietrucha-Dutczak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Joanna Lewin-Kowalik
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- GlaucoTech Co., Katowice, Poland
| | - Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, The University of Pavia, Pavia, Italy
| | - Adrian Smedowski
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- GlaucoTech Co., Katowice, Poland
| |
Collapse
|
41
|
Sohn J, Lee SE, Shim EY. DNA Damage and Repair in Eye Diseases. Int J Mol Sci 2023; 24:3916. [PMID: 36835325 PMCID: PMC9964121 DOI: 10.3390/ijms24043916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Vision is vital for daily activities, and yet the most common eye diseases-cataracts, DR, ARMD, and glaucoma-lead to blindness in aging eyes. Cataract surgery is one of the most frequently performed surgeries, and the outcome is typically excellent if there is no concomitant pathology present in the visual pathway. In contrast, patients with DR, ARMD and glaucoma often develop significant visual impairment. These often-multifactorial eye problems can have genetic and hereditary components, with recent data supporting the role of DNA damage and repair as significant pathogenic factors. In this article, we discuss the role of DNA damage and the repair deficit in the development of DR, ARMD and glaucoma.
Collapse
Affiliation(s)
- Joanna Sohn
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
- Keystone School, 119 E. Craig Pl., San Antonio, TX 78212, USA
| | - Sang-Eun Lee
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Eun-Yong Shim
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
42
|
Bola S, Subramanian P, Calzia D, Dahl A, Panfoli I, Funk RHW, Roehlecke C. Analysis of Electric Field Stimulation in Blue Light Stressed 661W Cells. Int J Mol Sci 2023; 24:ijms24043433. [PMID: 36834840 PMCID: PMC9965974 DOI: 10.3390/ijms24043433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/11/2023] Open
Abstract
Though electrical stimulation is used as a therapeutic approach to treat retinal and spinal injuries, many protective mechanisms at cellular level have not been elucidated. We performed a detailed analysis of cellular events in blue light (Li) stressed 661W cells, which were subjected to direct current electric field (EF) stimulation. Our findings revealed that EF stimulation induced protective effects in 661W cells from Li-induced stress by multiple defense mechanisms, such as increase in mitochondrial activity, gain in mitochondrial potential, increase in superoxide levels, and the activation of unfolded protein response (UPR) pathways, all leading to an enhanced cell viability and decreased DNA damage. Here, our genetic screen results revealed the UPR pathway to be a promising target to ameliorate Li-induced stress by EF stimulation. Thus, our study is important for a knowledgeable transfer of EF stimulation into clinical application.
Collapse
Affiliation(s)
- Sharanya Bola
- Institute of Anatomy, TU Dresden, D-01304 Dresden, Germany
| | - Pallavi Subramanian
- Institute of Clinical Chemistry and Laboratory Medicine, TU Dresden, D-01069 Dresden, Germany
| | - Daniela Calzia
- Department of Pharmacy—DIFAR, Biochemistry and Physiology Lab., University of Genoa, 16126 Genova, Italy
| | - Andreas Dahl
- Deep Sequencing Group SFB 655, Biotechnology Center, TU Dresden, D-01069 Dresden, Germany
| | - Isabella Panfoli
- Department of Pharmacy—DIFAR, Biochemistry and Physiology Lab., University of Genoa, 16126 Genova, Italy
| | - Richard H. W. Funk
- Institute of Anatomy, TU Dresden, D-01304 Dresden, Germany
- Correspondence:
| | - Cora Roehlecke
- Institute of Anatomy, TU Dresden, D-01304 Dresden, Germany
| |
Collapse
|
43
|
Lin YH, Sheu SJ, Liu W, Hsu YT, He CX, Wu CY, Chen KJ, Lee PY, Chiu CC, Cheng KC. Retinal protective effect of curcumin metabolite hexahydrocurcumin against blue light-induced RPE damage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154606. [PMID: 36584606 DOI: 10.1016/j.phymed.2022.154606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a disease of retinal pigment epithelium (RPE) cells. We have previously demonstrated that blue light can damage RPE cells and their underlying mechanisms. We found that hexahydrocurcumin (HHC), a metabolite of curcumin, had better retinal protection than curcumin. However, the involved mechanisms remain unclear. METHODS By exposing ARPE-19 human RPE cells and mouse primary RPE cells to blue light, the intracellular mechanisms of HHC in cells were investigated, including the proliferation of RPE cells and the effects of HHC on activating intracellular protective mechanisms and related factors. Next-generation sequencing (NGS) RNA sequencing revealed the underlying mechanisms involved in the induction and regulation of HHC treatment following blue light exposure. RESULTS HHC promoted autophagy by enhancing autophagic flux, reduced oxidative stress and endoplasmic reticulum (ER) stress, and effectively reversed blue light-induced cell death. RNA sequencing-based bioinformatics approaches comprehensively analyze HHC-mediated cellular processes. CONCLUSION Our findings elucidate the mechanisms of HHC against blue light damage in RPE cells and are beneficial for the development of natural metabolite-based preventive drugs or functional foods.
Collapse
Affiliation(s)
- Yi-Hsiung Lin
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan,; Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shwu-Jiuan Sheu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yun-Tzu Hsu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chen-Xi He
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chang-Yi Wu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan,; Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Kuo-Jen Chen
- Department of Ophthalmology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 807, Taiwan
| | - Po-Yen Lee
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan,; Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; The Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Kai-Chun Cheng
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Ophthalmology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 807, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 812, Taiwan.
| |
Collapse
|
44
|
Murotomi K, Umeno A, Shichiri M, Tanito M, Yoshida Y. Significance of Singlet Oxygen Molecule in Pathologies. Int J Mol Sci 2023; 24:ijms24032739. [PMID: 36769060 PMCID: PMC9917472 DOI: 10.3390/ijms24032739] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Reactive oxygen species, including singlet oxygen, play an important role in the onset and progression of disease, as well as in aging. Singlet oxygen can be formed non-enzymatically by chemical, photochemical, and electron transfer reactions, or as a byproduct of endogenous enzymatic reactions in phagocytosis during inflammation. The imbalance of antioxidant enzymes and antioxidant networks with the generation of singlet oxygen increases oxidative stress, resulting in the undesirable oxidation and modification of biomolecules, such as proteins, DNA, and lipids. This review describes the molecular mechanisms of singlet oxygen production in vivo and methods for the evaluation of damage induced by singlet oxygen. The involvement of singlet oxygen in the pathogenesis of skin and eye diseases is also discussed from the biomolecular perspective. We also present our findings on lipid oxidation products derived from singlet oxygen-mediated oxidation in glaucoma, early diabetes patients, and a mouse model of bronchial asthma. Even in these diseases, oxidation products due to singlet oxygen have not been measured clinically. This review discusses their potential as biomarkers for diagnosis. Recent developments in singlet oxygen scavengers such as carotenoids, which can be utilized to prevent the onset and progression of disease, are also described.
Collapse
Affiliation(s)
- Kazutoshi Murotomi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Aya Umeno
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda 563-8577, Japan
- Correspondence: ; Tel.: +81-72-751-8234
| | - Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | | |
Collapse
|
45
|
Wentzel M, Janse van Rensburg J, Terblans JJ. Radiology blues: Comparing occupational blue-light exposure to recommended safety standards. SA J Radiol 2023; 27:2522. [PMID: 36756358 PMCID: PMC9900293 DOI: 10.4102/sajr.v27i1.2522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/28/2022] [Indexed: 02/04/2023] Open
Abstract
Background The blue-light hazard is a well-documented entity addressing the detrimental health effects of high-energy visible light photons in the range of 305 nm - 450 nm. Radiologists spend long hours in front of multiple light-emitting diode (LED)-based diagnostic monitors emitting blue light, predisposing them to potentially higher blue-light dosages than other health professionals. Objectives The authors aimed to quantify the blue light that radiology registrars are exposed to in daily viewing of diagnostic monitors and compared this with international occupational safety standards. Method A limited cross-sectional observational study was conducted. Four radiology registrars at two academic hospitals in Bloemfontein from 01 October 2021 to 30 November 2021 participated. Diagnostic monitor viewing times on a standard workday were determined. Different image modalities obtained from 01 June 2019 to 30 November 2019 were assessed, and blue-light radiance was determined using a spectroscope and image analysis software. Blue-light radiance values were compared with international safety standards. Results Radiology registrars spent on average 380 min in front of a diagnostic display unit daily. Blue-light radiance from diagnostic monitors was elevated in higher-intensity images such as chest radiographs and lower for darker images like MRI brain studies. The total blue-light radiance from diagnostic display units was more than 10 000 times below the recommended threshold value for blue-light exposure. Conclusion Blue-light radiance from diagnostic displays measured well below the recommended values for occupational safety. Hence, blue-light exposure from diagnostic monitors does not significantly add to the occupational health burden of radiologists. Contribution Despite spending long hours in front of diagnostic monitors, radiologists' exposure to effective blue-light radiance from monitors was far below hazardous values. This suggests that blue-light exposure from diagnostic monitors does not increase the occupational health burden of radiologists.
Collapse
Affiliation(s)
- Mari Wentzel
- Department of Clinical Imaging Science, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Jacques Janse van Rensburg
- Department of Clinical Imaging Science, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Jacobus J. Terblans
- Department of Physics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
46
|
Influence of Light-EmittingDiode-Derived Blue Light Overexposure on Rat Ocular Surface. J Ophthalmol 2023; 2023:1097704. [PMID: 36660316 PMCID: PMC9845051 DOI: 10.1155/2023/1097704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 09/23/2022] [Accepted: 11/26/2022] [Indexed: 01/12/2023] Open
Abstract
We aim to investigate the effect of overexposure to blue light on the rat ocular surface and explore the potential mechanisms. 450 nm light-emitting diode (LED) derived light at 1000 lux was used to irradiate SD rats, 12 hours a day, for consecutive 28 days. Rats in the control group were exposed to 400 lux white light at the same time (in an indoor environment). Tear film breakup time (TBUT), tear volume, and corneal fluorescein staining scores were used to measure the changes to the ocular surface. Expressions of nuclear factor-κB (NF-κB), inhibitor-κB (I-κB), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were measured by real-time PCR, and the activation of the NF-κB pathway was detected by Western blotting, respectively. Cornea ultrastructure was examined by TEM and optical microscope on day 28. Pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-κB signaling pathway, was used to measure the inhibition of blue light injury. The above indexes were detected again when compared with the solvent-treated group. On day 28, compared with day 0, the TBUT of the blue light group was significantly shorter, and the score was significantly higher. The amount of tear secretion changed slightly with time. HE and PAS staining revealed significantly decreased corneal epithelial cell layers and increased goblet cells after 28-day irradiation of blue light. Disarranged stromal cells, vacuoles in the basal nuclei, and decreased desmosomes were also found in the blue light group. Significantly increased levels of NF-κB, IL-6, TNF-α, and the ratio of phosphorylated NF-κB p65 (pNF-κB p65) to total NF-κB p65 implied blue light-induced damage and pathway activation. In addition, PDTC significantly reduced the phosphorylation of NF-κB activated in blue light-treated corneas and alleviated the ocular surface changes caused by blue light. Finally, our results demonstrated that long-term blue light exposure in rats could cause ocular surface changes and manifest as dry eye. Inflammation and activation of the NF-κB pathway may play a role in the pathogenesis.
Collapse
|
47
|
Zhang R, Zhang Z, Han J, Yang L, Li J, Song Z, Wang T, Zhu J. Advanced liquid crystal-based switchable optical devices for light protection applications: principles and strategies. LIGHT, SCIENCE & APPLICATIONS 2023; 12:11. [PMID: 36593244 PMCID: PMC9807646 DOI: 10.1038/s41377-022-01032-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/18/2022] [Accepted: 11/01/2022] [Indexed: 05/14/2023]
Abstract
With the development of optical technologies, transparent materials that provide protection from light have received considerable attention from scholars. As important channels for external light, windows play a vital role in the regulation of light in buildings, vehicles, and aircrafts. There is a need for windows with switchable optical properties to prevent or attenuate damage or interference to the human eye and light-sensitive instruments by inappropriate optical radiation. In this context, liquid crystals (LCs), owing to their rich responsiveness and unique optical properties, have been considered among the best candidates for advanced light protection materials. In this review, we provide an overview of advances in research on LC-based methods for protection against light. First, we introduce the characteristics of different light sources and their protection requirements. Second, we introduce several classes of light modulation principles based on liquid crystal materials and demonstrate the feasibility of using them for light protection. In addition, we discuss current light protection strategies based on liquid crystal materials for different applications. Finally, we discuss the problems and shortcomings of current strategies. We propose several suggestions for the development of liquid crystal materials in the field of light protection.
Collapse
Affiliation(s)
- Ruicong Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
| | - Zhibo Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
| | - Lei Yang
- Research Center of Analysis and Measurement, Harbin Institute of Technology, Harbin, 150080, China
| | - Jiajun Li
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
| | - Zicheng Song
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
| | - Tianyu Wang
- School of Energy Science & Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Jiaqi Zhu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China.
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin, 150080, China.
| |
Collapse
|
48
|
Nie J, Xu N, Chen Z, Huang L, Jiao F, Chen Y, Pan Z, Deng C, Zhang H, Dong B, Li J, Tao T, Kang X, Chen W, Wang Q, Tong Y, Zhao M, Zhang G, Shen B. More light components and less light damage on rats’ eyes: evidence for the photobiomodulation and spectral opponency. Photochem Photobiol Sci 2022; 22:809-824. [PMID: 36527588 DOI: 10.1007/s43630-022-00354-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
The blue-light hazard (BLH) has raised concerns with the increasing applications of white light-emitting diodes (LEDs). Many researchers believed that the shorter wavelength or more light components generally resulted in more severe retinal damage. In this study, based on the conventional phosphor-coated white LED, we added azure (484 nm), cyan (511 nm), and red (664 nm) light to fabricate the low-hazard light source. The low-hazard light sources and conventional white LED illuminated 68 Sprague-Dawley (SD) rats for 7 days. Before and after light exposure, we measured the retinal function, thickness of retinal layers, and fundus photographs. The expression levels of autophagy-related proteins and the activities of oxidation-related biochemical indicators were also measured to investigate the mechanisms of damaging or protecting the retina. With the same correlated color temperature (CCT), the low-hazard light source results in significantly less damage on the retinal function and photoreceptors, even if it has two times illuminance and blue-light hazard-weighted irradiance ([Formula: see text]) than conventional white LED. The results illustrated that [Formula: see text] proposed by IEC 62471 could not exactly evaluate the light damage on rats' retinas. We also figured out that more light components could result in less light damage, which provided evidence for the photobiomodulation (PBM) and spectral opponency on light damage.
Collapse
Affiliation(s)
- Jingxin Nie
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Ningda Xu
- Department of Ophthalmology, Peking University People's Hospital Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, No. 11, Xizhimennan Street, Xicheng District, Beijing, 100044, China
| | - Zhizhong Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China.
- Dongguan Institute of Optoelectronics, Peking University, Dongguan, 523808, Guangdong, China.
- Semiconductor of PKU, Gao'an, 330800, Jiangxi, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226000, Jiangsu, China.
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People's Hospital Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, No. 11, Xizhimennan Street, Xicheng District, Beijing, 100044, China.
| | - Fei Jiao
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Yiyong Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Zuojian Pan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Chuhan Deng
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Haodong Zhang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Boyan Dong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Jiarui Li
- Department of Ophthalmology, Peking University People's Hospital Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, No. 11, Xizhimennan Street, Xicheng District, Beijing, 100044, China
| | - Tianchang Tao
- Department of Ophthalmology, Peking University People's Hospital Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, No. 11, Xizhimennan Street, Xicheng District, Beijing, 100044, China
| | - Xiangning Kang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Weihua Chen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
| | - Qi Wang
- Dongguan Institute of Optoelectronics, Peking University, Dongguan, 523808, Guangdong, China
| | - Yuzhen Tong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
- Semiconductor of PKU, Gao'an, 330800, Jiangxi, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People's Hospital Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, No. 11, Xizhimennan Street, Xicheng District, Beijing, 100044, China
| | - Guoyi Zhang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
- Dongguan Institute of Optoelectronics, Peking University, Dongguan, 523808, Guangdong, China
| | - Bo Shen
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, No. 209, Chengfu Road, Haidian District, Beijing, 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226000, Jiangsu, China
| |
Collapse
|
49
|
Kellner U, Kellner S, Weinitz S, Farmand G. [Exogenously induced retinopathies]. Klin Monbl Augenheilkd 2022; 239:1493-1511. [PMID: 36395811 DOI: 10.1055/a-1961-8166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exogenously induced retinopathies can be caused by consumation of stimulating substances, systemic or ocular medications, vaccinations, light or irradiation. Some of the effects are transient, whereas other effects induce irreversible toxic reactions. Retinal damage may develop either acutely with obvious relation to the damaging cause, but often may take a long duration of repeated use of a substance or medication. External stimulants (e.g. nicotine, alcohol, poppers, methanol) are the most frequent cause of exogenously induced retinal damage. Side effects from systemic drugs (e.g. hydroxychloroquine, ethambutol, MEK-, ERK-, FLT3-, checkpoint inhibitors, didanosin, pentosanpolysulfat sodium) or intravitreally applied drugs (e.g. antibiotics, VEGF-inhibitors) are less frequent. Ocular side effects associated with vaccinations are rare. Ambient light sources induce no damaging effects on the retina. Incorrect use of technical or medical light sources (e.g. laser pointers) without adherence to safety recommendations or unshielded observation of the sun might induce permanent retinal damage. Local or external irradiation might induce retinal vascular damage resulting in radiation retinopathy.
Collapse
|
50
|
Weinberg J, Gaur M, Swaroop A, Taylor A. Proteostasis in aging-associated ocular disease. Mol Aspects Med 2022; 88:101157. [PMID: 36459837 PMCID: PMC9742340 DOI: 10.1016/j.mam.2022.101157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
Abstract
Vision impairment has devastating consequences for the quality of human life. The cells and tissues associated with the visual process must function throughout one's life span and maintain homeostasis despite exposure to a variety of insults. Maintenance of the proteome is termed proteostasis, and is vital for normal cellular functions, especially at an advanced age. Here we describe basic aspects of proteostasis, from protein synthesis and folding to degradation, and discuss the current status of the field with a particular focus on major age-related eye diseases: age-related macular degeneration, cataract, and glaucoma. Our intent is to allow vision scientists to determine where and how to harness the proteostatic machinery for extending functional homeostasis in the aging retina, lens, and trabecular meshwork. Several common themes have emerged despite these tissues having vastly different metabolisms. Continued exposure to insults, including chronic stress with advancing age, increases proteostatic burden and reduces the fidelity of the degradation machineries including the ubiquitin-proteasome and the autophagy-lysosome systems that recognize and remove damaged proteins. This "double jeopardy" results in an exponential accumulation of cytotoxic proteins with advancing age. We conclude with a discussion of the challenges in maintaining an appropriate balance of protein synthesis and degradation pathways, and suggest that harnessing proteostatic capacities should provide new opportunities to design interventions for attenuating age-related eye diseases before they limit sight.
Collapse
Affiliation(s)
- Jasper Weinberg
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Mohita Gaur
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|