1
|
Moideen FM, Rahamathulla MP, Charavu R, Alghofaili F, Sha M, Bhandary YP. PAI-1 influences and curcumin destabilizes MMP-2, MMP-9 and basement membrane proteins during lung injury and fibrosis. Int Immunopharmacol 2024; 143:113587. [PMID: 39549545 DOI: 10.1016/j.intimp.2024.113587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
One of the characteristic feature of idiopathic pulmonary fibrosis is an imbalanced fibrinolytic system. Plasminogen activator inhibitor-1 (PAI-1), an essential serine protease in the fibrinolytic system, has an anti-fibrotic tendency in some organs and a pro-fibrotic nature in others. Curcumin is reported to regulate the fibrinolytic system. In this study, we sought to determine how curcumin affected alterations in tissue remodelling mediated by PAI-1 in lung fibrosis. For in vitro studies, NIH3T3 fibroblasts were either exposed to TGF-β or overexpressed with PAI-1, and/or treated with curcumin. For in vivo studies, C57BL/6 mice were either instilled with bleomycin, overexpressed with PAI-1, and/or intervened with curcumin. Protein and gene expression studies were performed by western blotting and RT-PCR techniques, respectively. Curcumin intervention, in vitro and in vivo, could inhibit the the expression of collagen, fibronectin, MMP-2, and MMP-9, which was otherwise elevated by TGF-β or bleomycin. In conclusion, curcumin reduces pulmonary fibrosis by suppressing excessive basement membrane protein deposition and, likely, preventing the thickening of the alveolar septum.
Collapse
Affiliation(s)
- Fathimath Muneesa Moideen
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, Karnataka, India
| | - Mohamudha Parveen Rahamathulla
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia.
| | - Rakshitha Charavu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, Karnataka, India
| | - Fayez Alghofaili
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Mohemmed Sha
- Department of Software Engineering, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Yashodhar P Bhandary
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, Karnataka, India.
| |
Collapse
|
2
|
Chib S, Dutta BJ, Chalotra R, Abubakar M, Kumar P, Singh TG, Singh R. Role of Flavonoids in Mitigating the Pathological Complexities and Treatment Hurdles in Alzheimer's Disease. Phytother Res 2024. [PMID: 39660432 DOI: 10.1002/ptr.8406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
With the passage of time, people step toward old age and become more prone to several diseases associated with the age. One such is Alzheimer's disease (AD) which results into neuronal damage and dementia with the progression of age. The existing therapeutics has been hindered by various enkindles like less eminent between remote populations, affordability issues and toxicity profiles. Moreover, lack of suitable therapeutic option further worsens the quality of life in older population. Developing an efficient therapeutic intervention to cure AD is still a challenge for medical fraternity. Recently, alternative approaches attain the attention of researchers to focus on plant-based therapy in mitigating AD. In this context, flavonoids gained centrality as a feasible treatment in modifying various neurological deficits. This review mainly focuses on the pathological facets and economic burden of AD. Furthermore, we have explored the possible mechanism of flavonoids with the preclinical and clinical aspects for curing AD. Flavonoids being potential therapeutic, target the pathogenic factors of AD such as oxidative stress, inflammation, metal toxicity, Aβ accumulation, modulate neurotransmission and insulin signaling. In this review, we emphasized on potential neuroprotective effects of flavonoids in AD pathology, with focus on both experimental and clinical findings. While preclinical studies suggest promising therapeutic benefits, clinical data remains limited and inconclusive. Thus, further high-quality clinical trials are necessary to validate the efficacy of flavonoids in AD. The study aim is to promote the plant-based therapies and encourage people to add flavonoids to regular diet to avail the beneficial effects in preventive therapy for AD.
Collapse
Affiliation(s)
- Shivani Chib
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Bhaskar Jyoti Dutta
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - Rishabh Chalotra
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Md Abubakar
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | | | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
3
|
Zhao J, Zhang X, Huang Y, Tan Y, Ren S, Yuan F. Effects of High Pressure on In Vitro Bioavailability of Curcumin Loaded in Whey Protein Isolate/Carrageenan Composite Emulsion Gel: In Vitro Digestion Coupled with Cell Culture Model. Foods 2024; 13:3782. [PMID: 39682854 DOI: 10.3390/foods13233782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
The oral bioavailability of curcumin is inherently low, which significantly limits its application in food systems. The objective of this study was to evaluate the impact of high-pressure processing on the stability and bioaccessibility of curcumin within an emulsion gel during simulated gastrointestinal transit and to assess its cellular uptake. Our findings suggest that increasing pressure levels and high κ-carrageenan concentrations can enhance the stability of the curcumin delivery system. Elevated κ-CG concentrations were found to retard the action of proteases on dissociating protein molecules from the gel network. The emulsion gel effectively slowed the release of free fatty acids and reduced the curcumin release rate during the gastric phase. Scanning electron microscopy images revealed that higher pressures induced the formation of a more uniform and dense network structure in the gel. While the gel network structures were well-preserved after gastric digestion, they were disrupted into smaller particles following intestinal digestion, with particle size increasing with higher applied pressures. Cytotoxicity assays indicated that the digesta from the intestinal phase was highly toxic to Caco-2 cells. Among the tested samples, the emulsion gel prepared with 1.0% κ-CG at 600 MPa demonstrated the highest curcumin bioavailability, reaching 63.82 ± 7.10%. These findings underscore the potential of HPP-induced emulsion gels as a viable delivery system for enhancing curcumin bioaccessibility and cellular uptake.
Collapse
Affiliation(s)
- Jiayue Zhao
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xinmeng Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanan Huang
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan Tan
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shuang Ren
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Fang Yuan
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
4
|
Hou C, Huo J, Yan S, Sun F, Yang X. Identification of fibrosis-associated biomarkers in heart failure and human cancers. J Transl Med 2024; 22:1042. [PMID: 39563337 PMCID: PMC11575019 DOI: 10.1186/s12967-024-05759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 10/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Heart failure (HF) and cancer share common risk factors and pathophysiological mechanisms, including fibrosis. Identifying biomarkers and therapeutic targets for both conditions is crucial. MATERIALS AND METHODS RNA sequencing data from HF patients were analyzed to identify 12 genes associated with myocardial fibrosis. Validation was performed using public datasets, and functional enrichment analyses were conducted. Gene expression patterns and prognostic value in various cancers were assessed. RESULTS Fibromodulin (FMOD), Periostin (POSTN), Latent Transforming Growth Factor Beta Binding Protein 2 (LTBP2), Collagen Type I Alpha 1 Chain (COL1A1), Collagen Type VIII Alpha 1 Chain (COL8A1), Asporin (ASPN), and Hemoglobin Subunit Beta (HBB) showed significant dysregulation in heart failure tissues and were implicated in multiple cancer types. Pan-cancer analysis revealed associations between these genes and prognosis. Correlations with cancer-associated fibroblasts were also observed. CONCLUSION FMOD, POSTN, LTBP2, COL1A1, COL8A1, ASPN, and HBB are potential biomarkers for HF and cancer with fibrotic microenvironments. Targeting fibrosis may offer novel therapeutic approaches. Further validation and mechanistic studies are needed. This study contributes to understanding HF and cancer at the molecular level and suggests personalized treatment strategies.
Collapse
Affiliation(s)
- Can Hou
- Department of Cardiovascular Medicine, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, 213000, China
| | - Junyu Huo
- Department of Cardiovascular Medicine, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, 213000, China
| | - Si Yan
- Department of Cardiovascular Medicine, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, 213000, China
| | - Fei Sun
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, 213000, China.
| | - Xiaoyu Yang
- Department of Cardiovascular Medicine, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, 213000, China.
| |
Collapse
|
5
|
Latinović S, Vasilišin L, Pezo L, Lakić-Karalić N, Cvetković D, Ranitović A, Brunet S, Cvanić T, Vulić J. Impact of Drying Methods on Phenolic Composition and Bioactivity of Celery, Parsley, and Turmeric-Chemometric Approach. Foods 2024; 13:3355. [PMID: 39517139 PMCID: PMC11545558 DOI: 10.3390/foods13213355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Drying is one of the most commonly used methods for food preservation, and in spice processing, it has a significant impact on quality. In this paper, the influences of drying at room temperature, 60 °C, and 90 °C and freeze-drying on celery and parsley roots and turmeric rhizomes were examined. The highest content of total phenolics was found in celery dried at 60 °C (C60), parsley at room temperature (PRT), and freeze-dried turmeric (TFD) (1.44, 1.58, and 44.92 mg GAE/gdm, respectively). Celery dried at room temperature (CRT), PRT, and TFD showed the highest antioxidant activity regarding the DPPH and ABTS radicals and FRAP. The analysis of color parameters revealed that celery dried at 90 °C (C90); PFD and TFD showed the most similar values to control samples. The drying process was optimized using a combination of standard score (SS) and artificial neural network (ANN) methods. The ANN model effectively evaluated the significance of drying parameters, demonstrating high predictive accuracy for total phenolics, total flavonoids, total flavonols, total flavan-3-ols, IC50ABTS, and FRAP. TFD showed the strongest α-glucosidase inhibitory potential. Also, TFD extract showed good antibacterial activity against Staphylococcus aureus but not against Escherichia coli. C90 and PFD extracts did not show antibacterial activity against the tested microorganisms.
Collapse
Affiliation(s)
- Staniša Latinović
- Faculty of Technology, University of Banja Luka, Bulevar Vojvode Stepe Stepanovića 73, 78000 Banja Luka, Bosnia and Herzegovina; (S.L.); (L.V.); (N.L.-K.)
| | - Ladislav Vasilišin
- Faculty of Technology, University of Banja Luka, Bulevar Vojvode Stepe Stepanovića 73, 78000 Banja Luka, Bosnia and Herzegovina; (S.L.); (L.V.); (N.L.-K.)
| | - Lato Pezo
- Institute of General and Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia;
| | - Nataša Lakić-Karalić
- Faculty of Technology, University of Banja Luka, Bulevar Vojvode Stepe Stepanovića 73, 78000 Banja Luka, Bosnia and Herzegovina; (S.L.); (L.V.); (N.L.-K.)
| | - Dragoljub Cvetković
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (D.C.); (A.R.); (T.C.)
| | - Aleksandra Ranitović
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (D.C.); (A.R.); (T.C.)
| | - Sara Brunet
- BioSense Institute, University of Novi Sad, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia;
| | - Teodora Cvanić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (D.C.); (A.R.); (T.C.)
| | - Jelena Vulić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (D.C.); (A.R.); (T.C.)
| |
Collapse
|
6
|
Quesada-Vázquez S, Codina Moreno R, Della Badia A, Castro O, Riahi I. Promising Phytogenic Feed Additives Used as Anti-Mycotoxin Solutions in Animal Nutrition. Toxins (Basel) 2024; 16:434. [PMID: 39453210 PMCID: PMC11511298 DOI: 10.3390/toxins16100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Mycotoxins are a major threat to animal and human health, as well as to the global feed supply chain. Among them, aflatoxins, fumonisins, zearalenone, T-2 toxins, deoxynivalenol, and Alternaria toxins are the most common mycotoxins found in animal feed, with genotoxic, cytotoxic, carcinogenic, and mutagenic effects that concern the animal industry. The chronic negative effects of mycotoxins on animal health and production and the negative economic impact on the livestock industry make it crucial to develop and implement solutions to mitigate mycotoxins. In this review, we summarize the current knowledge of the mycotoxicosis effect in livestock animals as a result of their contaminated diet. In addition, we discuss the potential of five promising phytogenics (curcumin, silymarin, grape pomace, olive pomace, and orange peel extracts) with demonstrated positive effects on animal performance and health, to present them as potential anti-mycotoxin solutions. We describe the composition and the main promising characteristics of these bioactive compounds that can exert beneficial effects on animal health and performance, and how these phytogenic feed additives can help to alleviate mycotoxins' deleterious effects.
Collapse
Affiliation(s)
| | | | | | | | - Insaf Riahi
- Bionte Nutrition, 43204 Reus, Spain; (S.Q.-V.); (R.C.M.); (A.D.B.)
| |
Collapse
|
7
|
Ashayeri Ahmadabad H, Mohammadi Panah S, Ghasemnejad-Berenji H, Ghojavand S, Ghasemnejad-Berenji M, Khezri MR. Metformin and the PI3K/AKT signaling pathway: implications for cancer, cardiovascular, and central nervous system diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03358-3. [PMID: 39225830 DOI: 10.1007/s00210-024-03358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Recent findings have brought our understanding of diseases at the molecular level, highlighting upstream intracellular pathways as potential therapeutic targets. The PI3K/AKT pathway, a key regulator of cellular responses to environmental changes, is frequently altered in various diseases, making it a promising target for intervention. Metformin is the most known anti-diabetic agent that is known due to its effects on cancer, inflammatory-related diseases, oxidative stress, and other human diseases. It is clearly understood that metformin modulates the activity of the PI3K/AKT pathway leading to a wide variety of outcomes. This interaction has been well-studied in various diseases. Therefore, this review aims to examine PI3K/AKT-modulating properties of metformin in cancer, cardiovascular, and central nervous system diseases. Our findings indicate that metformin is effective in treating cancer and CNS diseases, and plays a role in both the prevention and treatment of cardiovascular diseases. These insights support the potential of metformin in comprehensive strategies for disease management.
Collapse
Affiliation(s)
| | | | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Shabnam Ghojavand
- Faculty of Pharmacy, Islamic Azad University of Tehran, Tehran, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
- Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran.
| | - Mohammad Rafi Khezri
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
8
|
Tohidi M, Allahyari A, Ataei Azimi S, Alimi H, Elyasi S, Qoorchi Moheb Seraj F, Mehrad-Majd H. "The protective effect of nano curcumin supplementation on doxorubicin induced cardiotoxicity in breast cancer patients; a randomized, double-blind clinical trial". J Oncol Pharm Pract 2024:10781552241277958. [PMID: 39223927 DOI: 10.1177/10781552241277958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Anthracycline drugs play a fundamental role in breast cancer treatment; however, the cardiotoxicity side effects obscure the advantages of treatment. Curcumin has antioxidant and anti-inflammatory effects. MATERIALS AND METHODS In this study, we investigated the effect of nanocurcumin supplementation on Doxorubicin induced Cardiotoxicity. In this randomized clinical trial, a week before starting the doxorubicin regimen for breast cancer patients, the control group received placebo and curcumin group received 80 mg daily dosage of nano curcumin capsules for six months. Echocardiography parameter changes before chemotherapy and after six months were evaluated. RESULTS 46 patients were included. Left ventricle (LV) ejection fraction significantly decreased and LV end diastolic volume significantly increased in control group but no significant changes were observed in the curcumin group (LVEF: 2.62 ± 59.35 to 4.23 ± 56.85, p-value: 0.014 vs 59.55 ± 1.91 to 58.46 ± 3.41, p-value:0.135; LVEDV: 77.09 ± 15.33 to 80.65 ± 14.54, p-value:0.023 vs 72.41 ± 15.34 74.00 ± 14.25, p-value: 0.294). Additionally, LVEF, LV end systolic diameter (LVESD), and end diastolic diameter (LVEDD) insignificantly more decreased in control group versus curcumin group (LVEF: 4.13 ± 2.50- vs 3.36 ± 1.08-, p-value: 0.223; LVESD: 0.27 ± 0.06-vs 0.120.45 ±, p-value:0.110; LVEDD: -0.44 ± 0.33 vs 0.070.33 ±, p-value:0.269). Furthermore, symptomatic cardiomyopathy and ejection fraction ratio less than 53% were not observed. The LVEF reduction >15% was observed was also high in the control group, (p-value = 0.020). CONCLUSION This study shows the possible effect of nanocurcumin capsules to reduce the cardiotoxicity of anthracycline chemotherapy medications.
Collapse
Affiliation(s)
- Mehdi Tohidi
- Department of Hematology and Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolghasem Allahyari
- Department of Hematology and Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajjad Ataei Azimi
- Department of Hematology and Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hedieh Alimi
- Vascular and Endovascular Surgery Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farid Qoorchi Moheb Seraj
- Neurovascular Section, Neurosurgical Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hasan Mehrad-Majd
- Clinical Research Development Unit, Ghaem hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Zhang P, Liu H, Yu Y, Peng S, Zhu S. Role of Curcuma longae Rhizoma in medical applications: research challenges and opportunities. Front Pharmacol 2024; 15:1430284. [PMID: 39170702 PMCID: PMC11336575 DOI: 10.3389/fphar.2024.1430284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Curcuma longae Rhizoma, commonly known as turmeric, is extensively utilized not only in Traditional Chinese Medicine (TCM) but also across various traditional medicine systems worldwide. It is renowned for its effectiveness in removing blood stasis, promoting blood circulation, and relieving pain. The primary bioactive metabolites of Curcuma longae Rhizoma-curcumin, β-elemene, curcumol, and curdione-have been extensively studied for their pharmacological benefits. These include anti-tumor properties, cardiovascular and cerebrovascular protection, immune regulation, liver protection, and their roles as analgesics, anti-inflammatories, antivirals, antibacterials, hypoglycemics, and antioxidants. This review critically examines the extensive body of research regarding the mechanisms of action of Curcuma longae Rhizoma, which engages multiple molecular targets and signaling pathways such as NF-κB, MAPKs, and PI3K/AKT. The core objective of this review is to assess how the main active metabolites of turmeric interact with these molecular systems to achieve therapeutic outcomes in various clinical settings. Furthermore, we discuss the challenges related to the bioavailability of these metabolites and explore potential methods to enhance their therapeutic effects. By doing so, this review aims to provide fresh insights into the optimization of Curcuma longae Rhizoma for broader clinical applications.
Collapse
Affiliation(s)
| | | | | | | | - Shaomi Zhu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Genchi G, Lauria G, Catalano A, Carocci A, Sinicropi MS. Neuroprotective Effects of Curcumin in Neurodegenerative Diseases. Foods 2024; 13:1774. [PMID: 38891002 PMCID: PMC11172163 DOI: 10.3390/foods13111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Curcumin, a hydrophobic polyphenol extracted from the rhizome of Curcuma longa, is now considered a candidate drug for the treatment of neurological diseases, including Parkinson's Disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), Multiple Sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), and prion disease, due to its potent anti-inflammatory, antioxidant potential, anticancerous, immunomodulatory, neuroprotective, antiproliferative, and antibacterial activities. Traditionally, curcumin has been used for medicinal and dietary purposes in Asia, India, and China. However, low water solubility, poor stability in the blood, high rate of metabolism, limited bioavailability, and little capability to cross the blood-brain barrier (BBB) have limited the clinical application of curcumin, despite the important pharmacological activities of this drug. A variety of nanocarriers, including liposomes, micelles, dendrimers, cubosome nanoparticles, polymer nanoparticles, and solid lipid nanoparticles have been developed with great success to effectively deliver the active drug to brain cells. Functionalization on the surface of nanoparticles with brain-specific ligands makes them target-specific, which should significantly improve bioavailability and reduce harmful effects. The aim of this review is to summarize the studies on curcumin and/or nanoparticles containing curcumin in the most common neurodegenerative diseases, highlighting the high neuroprotective potential of this nutraceutical.
Collapse
Affiliation(s)
- Giuseppe Genchi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| | - Graziantonio Lauria
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| | - Alessia Catalano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Alessia Carocci
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Maria Stefania Sinicropi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| |
Collapse
|
11
|
Golubnitschaja O, Kapinova A, Sargheini N, Bojkova B, Kapalla M, Heinrich L, Gkika E, Kubatka P. Mini-encyclopedia of mitochondria-relevant nutraceuticals protecting health in primary and secondary care-clinically relevant 3PM innovation. EPMA J 2024; 15:163-205. [PMID: 38841620 PMCID: PMC11148002 DOI: 10.1007/s13167-024-00358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 06/07/2024]
Abstract
Despite their subordination in humans, to a great extent, mitochondria maintain their independent status but tightly cooperate with the "host" on protecting the joint life quality and minimizing health risks. Under oxidative stress conditions, healthy mitochondria promptly increase mitophagy level to remove damaged "fellows" rejuvenating the mitochondrial population and sending fragments of mtDNA as SOS signals to all systems in the human body. As long as metabolic pathways are under systemic control and well-concerted together, adaptive mechanisms become triggered increasing systemic protection, activating antioxidant defense and repair machinery. Contextually, all attributes of mitochondrial patho-/physiology are instrumental for predictive medical approach and cost-effective treatments tailored to individualized patient profiles in primary (to protect vulnerable individuals again the health-to-disease transition) and secondary (to protect affected individuals again disease progression) care. Nutraceuticals are naturally occurring bioactive compounds demonstrating health-promoting, illness-preventing, and other health-related benefits. Keeping in mind health-promoting properties of nutraceuticals along with their great therapeutic potential and safety profile, there is a permanently growing demand on the application of mitochondria-relevant nutraceuticals. Application of nutraceuticals is beneficial only if meeting needs at individual level. Therefore, health risk assessment and creation of individualized patient profiles are of pivotal importance followed by adapted nutraceutical sets meeting individual needs. Based on the scientific evidence available for mitochondria-relevant nutraceuticals, this article presents examples of frequent medical conditions, which require protective measures targeted on mitochondria as a holistic approach following advanced concepts of predictive, preventive, and personalized medicine (PPPM/3PM) in primary and secondary care.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Andrea Kapinova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Bianka Bojkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Marko Kapalla
- Negentropic Systems, Ružomberok, Slovakia
- PPPM Centre, s.r.o., Ruzomberok, Slovakia
| | - Luisa Heinrich
- Institute of General Medicine, University of Leipzig, Leipzig, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
12
|
Fontana F, Molinaro G, Moroni S, Pallozzi G, Ferreira MPA, Tello RP, Elbadri K, Torrieri G, Correia A, Kemell M, Casettari L, Celia C, Santos HA. Biomimetic Platelet-Cloaked Nanoparticles for the Delivery of Anti-Inflammatory Curcumin in the Treatment of Atherosclerosis. Adv Healthc Mater 2024; 13:e2302074. [PMID: 38499190 PMCID: PMC11468963 DOI: 10.1002/adhm.202302074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Atherosclerosis still represents a major driver of cardiovascular diseases worldwide. Together with accumulation of lipids in the plaque, inflammation is recognized as one of the key players in the formation and development of atherosclerotic plaque. Systemic anti-inflammatory treatments are successful in reducing the disease burden, but are correlated with severe side effects, underlining the need for targeted formulations. In this work, curcumin is chosen as the anti-inflammatory payload model and further loaded in lignin-based nanoparticles (NPs). The NPs are then coated with a tannic acid (TA)- Fe (III) complex and further cloaked with fragments derived from platelet cell membrane, yielding NPs with homogenous size. The two coatings increase the interaction between the NPs and cells, both endothelial and macrophages, in steady state or inflamed status. Furthermore, NPs are cytocompatible toward endothelial, smooth muscle and immune cells, while not inducing immune activation. The anti-inflammatory efficacy is demonstrated in endothelial cells by real-time quantitative polymerase chain reaction and ELISA assay where curcumin-loaded NPs decrease the expression of Nf-κb, TGF-β1, IL-6, and IL-1β in lipopolysaccharide-inflamed cells. Overall, due to the increase in the cell-NP interactions and the anti-inflammatory efficacy, these NPs represent potential candidates for the targeted anti-inflammatory treatment of atherosclerosis.
Collapse
Affiliation(s)
- Flavia Fontana
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Giuseppina Molinaro
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Sofia Moroni
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Department of Biomolecular SciencesSchool of PharmacyUniversity of Urbino Carlo BoUrbinoI‐61029Italy
| | - Giulia Pallozzi
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Department of PharmacyUniversity of Chieti‐Pescara “G. D'Annunzio”Via dei Vestini 13ChietiI‐66100Italy
| | - Mónica P. A. Ferreira
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Present address:
MedEngine OyEteläranta 14Helsinki00130Finland
| | - Rubén Pareja Tello
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Khalil Elbadri
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Giulia Torrieri
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Alexandra Correia
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Marianna Kemell
- Department of ChemistryUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Luca Casettari
- Department of Biomolecular SciencesSchool of PharmacyUniversity of Urbino Carlo BoUrbinoI‐61029Italy
| | - Christian Celia
- Department of PharmacyUniversity of Chieti‐Pescara “G. D'Annunzio”Via dei Vestini 13ChietiI‐66100Italy
- Institute of Nanochemistry and NanobiologySchool of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
- Laboratory of Drug Targets HistopathologyInstitute of CardiologyLithuanian University of Health SciencesKaunasLT‐44307Lithuania
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center Groningen, University of GroningenGroningen9713 AVThe Netherlands
| |
Collapse
|
13
|
Tao H, Shen L. RESEARCH PROGRESS OF CURCUMIN IN THE TREATMENT OF SEPSIS. Shock 2024; 61:805-816. [PMID: 38664750 DOI: 10.1097/shk.0000000000002342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT Sepsis is a life-threatening organ dysfunction caused by an unregulated host response to infection. It is an important clinical problem in acute and critical care. In recent years, with the increasing research on the epidemiology, and pathogenesis, diagnostic and therapeutic strategies of sepsis, great progress has been made in clinical practice, but there is still a lack of specific and effective treatment plans. Curcuma longa , a leafy plant of the ginger family, which is a common and safe compound, has multiple pharmacological actions, including, but not limited to, scavenging of oxygen free radicals, attenuation of inflammatory response, and antifibrotic effects. Great progress has been made in the study of sepsis-associated rodent models and in vitro cellular models. However, the evidence of curcumin in the clinical management practice of sepsis is still insufficient; hence, it is very important to systematically summarize the study of curcumin and sepsis pathogenesis.
Collapse
|
14
|
Zhang N, Lin R, Xu H, Jing X, Zhou H, Wen X, Xie Q. Identification of Curcumin Targets in the Brain of Epileptic Mice Using DARTS. ACS OMEGA 2024; 9:22754-22763. [PMID: 38826549 PMCID: PMC11137688 DOI: 10.1021/acsomega.4c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 06/04/2024]
Abstract
Curcumin, a compound derived from turmeric, is traditionally utilized in East Asian medicine for treating various health conditions, including epilepsy. Despite its involvement in numerous cellular signaling pathways, the specific mechanisms and targets of curcumin in epilepsy treatment have remained unclear. Our study focused on identifying the primary targets and functional pathways of curcumin in the brains of epileptic mice. Using drug affinity responsive target stabilization (DARTS) and affinity chromatography, we identified key targets in the mouse brain, revealing 232 and 70 potential curcumin targets, respectively. Bioinformatics analysis revealed a strong association of these proteins with focal adhesions and cytoskeletal components. Further experiments using DARTS, along with immunofluorescence staining and cell migration assays, confirmed curcumin's ability to regulate the dynamics of focal adhesions and influence cell migration. This study not only advances our understanding of curcumin's role in epilepsy treatment but also serves as a model for identifying therapeutic targets in neurological disorders.
Collapse
Affiliation(s)
- Ninan Zhang
- Institute
of Acupuncture and Moxibustion, China Academy
of Chinese Medical Sciences, Beijing 100700, China
- Institute
of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- State
Key Laboratory of Molecular Developmental Biology, Institute of Genetics
and Developmental Biology, Chinese Academy
of Sciences, Beijing 10019, China
| | - Ruifan Lin
- Institute
of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- State
Key Laboratory of Molecular Developmental Biology, Institute of Genetics
and Developmental Biology, Chinese Academy
of Sciences, Beijing 10019, China
| | - Honglin Xu
- State
Key Laboratory of Molecular Developmental Biology, Institute of Genetics
and Developmental Biology, Chinese Academy
of Sciences, Beijing 10019, China
| | - Xianghong Jing
- Institute
of Acupuncture and Moxibustion, China Academy
of Chinese Medical Sciences, Beijing 100700, China
| | - Hongwei Zhou
- National
Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoxiao Wen
- National
Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qi Xie
- Wangjing
Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China
| |
Collapse
|
15
|
Huang BH, Guo ZW, Lv BH, Zhao X, Li YB, Lv WL. A role for curcumin in preventing liver fibrosis in animals: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1396834. [PMID: 38855740 PMCID: PMC11157132 DOI: 10.3389/fphar.2024.1396834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/30/2024] [Indexed: 06/11/2024] Open
Abstract
Objective This meta-analysis aimed to determine the efficacy of curcumin in preventing liver fibrosis in animal models. Methods A systematic search was conducted on studies published from establishment to November 2023 in PubMed, Web of Science, Embase, Cochrane Library, and other databases. The methodological quality was assessed using Sycle's RoB tool. An analysis of sensitivity and subgroups were performed when high heterogeneity was observed. A funnel plot was used to assess publication bias. Results This meta-analysis included 24 studies involving 440 animals with methodological quality scores ranging from 4 to 6. The results demonstrated that curcumin treatment significantly improved Aspartate aminotransferase (AST) [standard mean difference (SMD) = -3.90, 95% confidence interval (CI) (-4.96, -2.83), p < 0.01, I2 = 85.9%], Alanine aminotransferase (ALT)[SMD = - 4.40, 95% CI (-5.40, -3.40), p < 0.01, I2 = 81.2%]. Sensitivity analysis of AST and ALT confirmed the stability and reliability of the results obtained. However, the funnel plot exhibited asymmetry. Subgroup analysis based on species and animal models revealed statistically significant differences among subgroups. Furthermore, curcumin therapy improved fibrosis degree, oxidative stress level, inflammation level, and liver synthesis function in animal models of liver fibrosis. Conclusion Curcumin intervention not only mitigates liver fibrosis but also enhances liver function, while concurrently modulating inflammatory responses and antioxidant capacity in animal models. This result provided a strong basis for further large-scale animal studies as well as clinical trials in humans in the future. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42024502671.
Collapse
Affiliation(s)
- Bo-Hao Huang
- Department of Infection, Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate school, Beijing University of Chinese Medicine, Beijing, China
| | - Zi-Wei Guo
- Department of Infection, Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo-Han Lv
- Department of Infection, Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Zhao
- Department of Infection, Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan-Bo Li
- Department of Infection, Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-Liang Lv
- Department of Infection, Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Dai C, Sharma G, Liu G, Shen J, Shao B, Hao Z. Therapeutic detoxification of quercetin for aflatoxin B1-related toxicity: Roles of oxidative stress, inflammation, and metabolic enzymes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123474. [PMID: 38309422 DOI: 10.1016/j.envpol.2024.123474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Aflatoxins (AFTs), a type of mycotoxin mainly produced by Aspergillus parasiticus and Aspergillus flavus, could be detected in food, feed, Chinese herbal medicine, grain crops and poses a great threat to public health security. Among them, aflatoxin B1 (AFB1) is the most toxic one. Exposure to AFB1 poses various health risks to both humans and animals, including the development of chronic inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, and cancer. The molecular mechanisms underlying these risks are intricate and dependent on specific contexts. This review primarily focuses on summarizing the protective effects of quercetin, a natural phenolic compound, in mitigating the toxic effects induced by AFB1 in both in vitro experiments and animal models. Additionally, the review explores the molecular mechanisms that underlie these protective effects. Quercetin has been demonstrated to not only have the direct inhibitory action on the production of AFTs from Aspergillus, both also possess potent ameliorative effects against AFB1-induced cytotoxicity, hepatotoxicity, and neurotoxicity. These effects are attributed to the inhibition of oxidative stress, mitochondrial dysfunction, mitochondrial apoptotic pathway, and inflammatory response. It could also directly target several metabolic enzymes (i.e., CYP3As and GSTA1) to reduce the production of toxic metabolites of AFB1 within cells, then reduce AFB1-induced cytotoxicity. In conclusion, this review highlights quercetin is a promising detoxification agent for AFB1. By advancing our understanding of the protective mechanisms offered by quercetin, we aim to contribute to the development of effective detoxification agents against AFB1, ultimately promoting better health outcomes.
Collapse
Affiliation(s)
- Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery, Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Gaoyi Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centre for Disease Control and Prevention, Beijing, 100013, PR China
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China.
| |
Collapse
|
17
|
Siahi-Shadbad M, Tayebi Khosroshahi H, Farajzadeh MA, Fathi AA, Afshar Mogaddam MR, Jouyban A. Dispersive solid phase extraction of tacrolimus from biological samples using curcumin and iron-based metal organic frameworks nanocomposite followed by LC-MS/MS determination. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1233:123977. [PMID: 38211390 DOI: 10.1016/j.jchromb.2023.123977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 01/13/2024]
Abstract
Tacrolimus is a potent immunosuppressive drug used in the prevention of tissue rejection. It has a narrow therapeutic index. Therefore, the determination of its concentration in biological fluids like plasma and urine is a very crucial issue. In this research, tacrolimus concentrations in plasma and urine samples were determined with a dispersive solid phase extraction procedure coupled to high-performance liquid chromatography-tandem mass spectrometry. For this purpose, a curcumin modified metal-organic framework was synthesized and used in extraction procedure. Tacrolimus was adsorbed onto the sorbent surface with aid of vortexing. Then, the adsorbed tacrolimus was eluted by a suitable solvent. Important parameters in extraction procedure were optimized by "one-variable-at-a-time" approach and reported as below: sorbent amount, 10 mg; sample solution pH, 2; agitation mode, vortexing; adsorption and desorption times, 1 min, and eluent (volume), methanol (200 µL). Under the optimized conditions and according to the International Council for Harmonization guidelines, the validation of the method was performed, and the results showed acceptable accuracy and precision (relative standard deviations ≤14 %), good linearity in a wide range (4-200 ng mL-1), and low limits of detection (1.2 ng mL-1 in plasma and 0.34 ng mL-1 in urine) and quantification (4.7 ng mL-1 in plasma and 1.12 ng mL-1 in urine). Finally, the validated method was successfully applied for the determination of tacrolimus in the plasma samples of the patients.
Collapse
Affiliation(s)
- Mohammadreza Siahi-Shadbad
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical and Food Control Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey
| | - Ali Akbar Fathi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Near East University, PO BOX: 99138 Nicosia, North Cyprus, Mersin 10, Turkey
| |
Collapse
|
18
|
Yang C, Zhu Q, Chen Y, Ji K, Li S, Wu Q, Pan Q, Li J. Review of the Protective Mechanism of Curcumin on Cardiovascular Disease. Drug Des Devel Ther 2024; 18:165-192. [PMID: 38312990 PMCID: PMC10838105 DOI: 10.2147/dddt.s445555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the most common cause of death worldwide and has been the focus of research in the medical community. Curcumin is a polyphenolic compound extracted from the root of turmeric. Curcumin has been shown to have a variety of pharmacological properties over the past decades. Curcumin can significantly protect cardiomyocyte injury after ischemia and hypoxia, inhibit myocardial hypertrophy and fibrosis, improve ventricular remodeling, reduce drug-induced myocardial injury, improve diabetic cardiomyopathy(DCM), alleviate vascular endothelial dysfunction, inhibit foam cell formation, and reduce vascular smooth muscle cells(VSMCs) proliferation. Clinical studies have shown that curcumin has a protective effect on blood vessels. Toxicological studies have shown that curcumin is safe. But high doses of curcumin also have some side effects, such as liver damage and defects in embryonic heart development. This article reviews the mechanism of curcumin intervention on CVDs in recent years, in order to provide reference for the development of new drugs in the future.
Collapse
Affiliation(s)
- Chunkun Yang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qinwei Zhu
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Yanbo Chen
- Department of Arrhythmia, Weifang People's Hospital, Weifang, Shandong, People's Republic of China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Shuanghong Li
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Qian Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qingquan Pan
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
19
|
Singhai H, Rathee S, Jain SK, Patil UK. The Potential of Natural Products in the Management of Cardiovascular Disease. Curr Pharm Des 2024; 30:624-638. [PMID: 38477208 DOI: 10.2174/0113816128295053240207090928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/22/2024] [Indexed: 03/14/2024]
Abstract
Cardiovascular Disease (CVD) is one of the most prevalent diseases in the world, comprising a variety of disorders such as hypertension, heart attacks, Peripheral Vascular Disease (PVD), dyslipidemias, strokes, coronary heart disease, and cardiomyopathies. The World Health Organization (WHO) predicts that 22.2 million people will die from CVD in 2030. Conventional treatments for CVDs are often quite expensive and also have several side effects. This potentiates the use of medicinal plants, which are still a viable alternative therapy for a number of diseases, including CVD. Natural products' cardio-protective effects result from their anti-oxidative, anti-hypercholesterolemia, anti-ischemic, and platelet aggregation-inhibiting properties. The conventional therapies used to treat CVD have the potential to be explored in light of the recent increase in the popularity of natural goods and alternative medicine. Some natural products with potential in the management of cardiovascular diseases such as Allium sativum L., Ginkgo biloba, Cinchona ledgeriana, Ginseng, Commiphora mukul, Digitalis lanata, Digitalis purpurea L., Murrayakoenigii, Glycyrrhiza glabra, Polygonum cuspidatum, Fenugreek, Capsicum annuum, etc. are discussed in this article.
Collapse
Affiliation(s)
- Harshita Singhai
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Sunny Rathee
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Umesh Kumar Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| |
Collapse
|
20
|
Khezri MR, Mohammadipanah S, Ghasemnejad-Berenji M. The pharmacological effects of Berberine and its therapeutic potential in different diseases: Role of the phosphatidylinositol 3-kinase/AKT signaling pathway. Phytother Res 2024; 38:349-367. [PMID: 37922566 DOI: 10.1002/ptr.8040] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/15/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway plays a central role in cell growth and survival and is disturbed in various pathologies. The PI3K is a kinase that generates phosphatidylinositol-3,4,5-trisphosphate (PI (3-5) P3), as a second messenger responsible for the translocation of AKT to the plasma membrane and its activation. However, due to the crucial role of the PI3K/AKT pathway in regulation of cell survival processes, it has been introduced as a main therapeutic target for natural compounds during the progression of different pathologies. Berberine, a plant-derived isoquinone alkaloid, is known because of its anti-inflammatory, antioxidant, antidiabetic, and antitumor properties. The effect of this natural compound on cell survival processes has been shown to be mediated by modulation of the intracellular pathways. However, the effects of this natural compound on the PI3K/AKT pathway in various pathologies have not been reviewed so far. Therefore, this paper aims to review the PI3K/AKT-mediated effects of Berberine in different types of cancer, diabetes, cardiovascular, and central nervous system diseases.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
- Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
21
|
Srinivas AN, Suresh D, Chidambaram SB, Santhekadur PK, Kumar DP. Apoptosis antagonizing transcription factor-mediated liver damage and inflammation to cancer: Therapeutic intervention by curcumin in experimental metabolic dysfunction associated steatohepatitis-hepatocellular carcinoma. J Cell Physiol 2024; 239:135-151. [PMID: 37942831 DOI: 10.1002/jcp.31151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
In tandem with the expanding obesity pandemic, the prevalence of metabolic dysfunction associated steatohepatitis (MASH, formerly known as NASH)- driven hepatocellular carcinoma (HCC) is predicted to rise globally, creating a significant need for therapeutic interventions. We previously identified the upregulation of apoptosis antagonizing transcription factor (AATF), which is implicated in facilitating the progression from MASH to HCC. The objective of this study was to examine whether the intervention of curcumin could alleviate AATF-mediated MASH, inhibit tumor growth, and elucidate the underlying mechanism. A preclinical murine model mimicking human MASH-HCC was employed, subjecting mice to either a chow diet normal water (CDNW) or western diet sugar water (WDSW) along with very low dose of carbon tetrachloride (CCl4 - 0.2 μL/g, weekly). Mice receiving curcumin (CUR) alongside WDSW/CCl4 exhibited significant improvements, including reduced liver enzymes, dyslipidemia, steatosis, inflammation, and hepatocellular ballooning. Curcumin treatment also suppressed hepatic expression of inflammatory, fibrogenic, and oncogenic markers. Of note, there was a significant reduction in the expression of AATF upon curcumin treatment in WDSW/CCl4 mice and human HCC cells. In contrast, curcumin upregulated Kruppel-like factor 4 (KLF4) in MASH liver and HCC cells, which is known to downregulate sp1 (specificity protein-1) expression. Thus, curcumin treatment effectively inhibited the progression of MASH to HCC by downregulating the expression of AATF via the KLF4-Sp1 signaling pathway. These preclinical findings establish a novel molecular connection between curcumin and AATF in reducing hepatocarcinogenesis, and provide a strong rationale for the development of curcumin as a viable treatment for MASH-HCC in humans.
Collapse
Affiliation(s)
- Akshatha N Srinivas
- Department of Biochemistry, CEMR lab, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Diwakar Suresh
- Department of Biochemistry, CEMR lab, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Saravana B Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Prasanna K Santhekadur
- Department of Biochemistry, CEMR lab, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Divya P Kumar
- Department of Biochemistry, CEMR lab, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
22
|
Talebi M, Sadoughi MM, Ayatollahi SA, Ainy E, Kiani R, Zali A, Miri M. Therapeutic potentials of cannabidiol: Focus on the Nrf2 signaling pathway. Biomed Pharmacother 2023; 168:115805. [PMID: 39491419 DOI: 10.1016/j.biopha.2023.115805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024] Open
Abstract
Cannabidiol (CBD), a cannabinoid that does not create psychoactive activities, has been identified as having a multitude of therapeutic benefits. This study delves into the chemical properties, pharmacokinetics, safety and toxicity, pharmacological effects, and most importantly, the association between the therapeutic potential of CBD and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. The relationship between Nrf2 and CBD is closely linked to certain proteins that are associated with cardiovascular dysfunctions, cancers, and neurodegenerative conditions. Specifically, Nrf2 is connected to the initiation and progression of diverse health issues, including nephrotoxicity, bladder-related diseases, oral mucositis, cancers, obesity, myocardial injury and angiogenesis, skin-related inflammations, psychotic disorders, neuropathic pain, Huntington's disease, Alzheimer's disease, Parkinson's disease, neuroinflammation, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis. The association between CBD and Nrf2 is a zone of great interest in the medical field, as it has the potential to significantly impact the treatment and prevention of wide-ranging health conditions. Additional investigation is necessary to entirely apprehend the mechanisms underlying this crucial interplay and to develop effective therapeutic interventions.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Sadoughi
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Elaheh Ainy
- Safety Promotion and Injury Prevention Research Center, Department of Vice Chancellor Research Affairs, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghayeh Kiani
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Zali
- Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - MirMohammad Miri
- Department of Anesthesiology and Critical Care, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Zhao C, Zhou X, Cao Z, Ye L, Cao Y, Pan J. Curcumin and analogues against head and neck cancer: From drug delivery to molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154986. [PMID: 37506572 DOI: 10.1016/j.phymed.2023.154986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is one of the most life-threatening diseases which also causes economic burden worldwide. To overcome the limitations of traditional therapies, investigation into alternative adjuvant treatments is crucial. PURPOSE Curcumin, a turmeric-derived compound, demonstrates significant therapeutic potential in diverse diseases, including cancer. Furthermore, research focuses on curcumin analogues and novel drug delivery systems, offering approaches for improved efficacy. This review aims to provide a comprehensive overview of curcumin's current findings, emphasizing its mechanisms of anti-HNSCC effects and potential for clinical application. METHOD An electronic search of Web of Science, MEDLINE, and Embase was conducted to identify literature about the application of curcumin or analogues in HNSCC. Titles and abstracts were screened to identify potentially eligible studies. Full-text articles will be obtained and independently evaluated by two authors to make the decision of inclusion in the review. RESULTS Curcumin's clinical application is hindered by poor bioavailability, prompting the exploration of methods to enhance it, such as curcumin analogues and novel drug delivery systems. Curcumin could exhibit anti-cancer effects by targeting cancer cells and modulating the tumor microenvironment in HNSCC. Mechanisms of action include cell cycle arrest, apoptosis promotion, reactive oxygen species induction, endoplasmic reticulum stress, inhibition of epithelial-mesenchymal transition, attenuation of extracellular matrix degradation, and modulation of tumor metabolism in HNSCC cells. Curcumin also targets various components of the tumor microenvironment, including cancer-associated fibroblasts, innate and adaptive immunity, and lymphovascular niches. Furthermore, curcumin enhances the anti-cancer effects of other drugs as adjunctive therapy. Two clinical trials report its potential clinical applications in treating HNSCC. CONCLUSION Curcumin has demonstrated therapeutic potential in HNSCC through in vitro and in vivo studies. Its effectiveness is attributed to its ability to modulate cancer cells and interact with the intricate tumor microenvironment. The development of curcumin analogues and novel drug delivery systems has shown promise in improving its bioavailability, thereby expanding its clinical applications. Further research and exploration in this area hold great potential for harnessing the full therapeutic benefits of curcumin in HNSCC treatment.
Collapse
Affiliation(s)
- Chengzhi Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China
| | - Xueer Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China
| | - Zhiwei Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China
| | - Li Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China.
| | - Jian Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China.
| |
Collapse
|
24
|
Ilhan H. Nanoarchitectonics of the Effects of Curcumin Carbon Dot-Decorated Chitosan Nanoparticles on Proliferation and Apoptosis-Related Gene Expressions in HepG2 Hepatocellular Carcinoma Cells. ACS OMEGA 2023; 8:33554-33563. [PMID: 37744806 PMCID: PMC10515349 DOI: 10.1021/acsomega.3c03405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023]
Abstract
This study examines the potential anticancer properties of curcumin carbon nanodot-decorated chitosan nanoparticles (CCM@CD/CS-NP) in HepG2 hepatocellular carcinoma cells. CCM@CD/CS-NPs were synthesized, and their size, morphology, and elemental analysis were characterized. The combination of curcumin carbon dots and chitosan in the form of a nanoparticle has a number of benefits, including improved solubility and bioavailability of curcumin, enhanced stability and biocompatibility of carbon dots, and sustained release of the drug due to the mucoadhesive properties of chitosan. The purpose of this research was to examine the efficacy of curcumin carbon dot-decorated chitosan nanoparticles as an anticancer agent in the treatment of HepG2 cell lines. The cell proliferation and apoptosis-related gene expressions in HepG2 cells were assessed to investigate the potential use of nanoparticles in vitro. The IC50 value for the inhibitory effect of CCM@CD/CS-NPs on cell growth and proliferation was determined to be 323.61 μg/mL at 24 h and 267.73 μg/mL at 48 h. Increased caspase-3 and -9 activation shows that CCM@CD/CS-NPs promoted apoptosis in HepG2 cells. It was also shown that the overexpression of Bax and the downregulation of Bcl-2 were responsible for the apoptotic impact of CCM@CD/CS-NPs. The nanoparticles have been shown to have minimal toxicity to normal liver cells, indicating their potential as a safe and effective treatment for HepG2. These novel nanomaterials effectively suppressed tumor development and boosted the rate of apoptotic cell death.
Collapse
Affiliation(s)
- Hasan Ilhan
- Department of Chemistry,
Faculty of Science, Ordu University, Ordu 52200, Turkey
| |
Collapse
|
25
|
Yang S, Sun Y, Kapilevich L, Zhang X, Huang Y. Protective effects of curcumin against osteoporosis and its molecular mechanisms: a recent review in preclinical trials. Front Pharmacol 2023; 14:1249418. [PMID: 37790808 PMCID: PMC10544586 DOI: 10.3389/fphar.2023.1249418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Osteoporosis (OP) is one of the most common metabolic skeletal disorders and is commonly seen in the elderly population and postmenopausal women. It is mainly associated with progressive loss of bone mineral density, persistent deterioration of bone microarchitecture, and increased fracture risk. To date, drug therapy is the primary method used to prevent and treat osteoporosis. However, long-term drug therapy inevitably leads to drug resistance and specific side effects. Therefore, researchers are constantly searching for new monomer compounds from natural plants. As a candidate for the treatment of osteoporosis, curcumin (CUR) is a natural phenolic compound with various pharmacological and biological activities, including antioxidant, anti-apoptotic, and anti-inflammatory. This compound has gained research attention for maintaining bone health in various osteoporosis models. We reviewed preclinical and clinical studies of curcumin in preventing and alleviating osteoporosis. These results suggest that if subjected to rigorous pharmacological and clinical trials, naturally-derived curcumin could be used as a complementary and alternative medicine for the treatment of osteoporosis by targeting osteoporosis-related mechanistic pathways. This review summarizes the mechanisms of action and potential therapeutic applications of curcumin in the prevention and mitigation of osteoporosis and provides reference for further research and development of curcumin.
Collapse
Affiliation(s)
- Shenglei Yang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yuying Sun
- School of Stomatology, Binzhou Medical College, Yantai, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Nаtionаl Reseаrch Tomsk Stаte University, Tomsk, Russiа
| | - Xin’an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yue Huang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
26
|
Dietert RR. Dietary Approaches from Moms, Farms, and Nature to Overcome Chronic Diseases and the Pharmacracy. Nutrients 2023; 15:3965. [PMID: 37764749 PMCID: PMC10537657 DOI: 10.3390/nu15183965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic diseases, previously called noncommunicable diseases, are the leading cause of global death and were recently estimated by the World Health Organization to account for 74% of all deaths [...].
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
27
|
Yan Q, Liu S, Sun Y, Chen C, Yang S, Lin M, Long J, Yao J, Lin Y, Yi F, Meng L, Tan Y, Ai Q, Chen N, Yang Y. Targeting oxidative stress as a preventive and therapeutic approach for cardiovascular disease. J Transl Med 2023; 21:519. [PMID: 37533007 PMCID: PMC10394930 DOI: 10.1186/s12967-023-04361-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023] Open
Abstract
Cardiovascular diseases (CVDs) continue to exert a significant impact on global mortality rates, encompassing conditions like pulmonary arterial hypertension (PAH), atherosclerosis (AS), and myocardial infarction (MI). Oxidative stress (OS) plays a crucial role in the pathogenesis and advancement of CVDs, highlighting its significance as a contributing factor. Maintaining an equilibrium between reactive oxygen species (ROS) and antioxidant systems not only aids in mitigating oxidative stress but also confers protective benefits on cardiac health. Herbal monomers can inhibit OS in CVDs by activating multiple signaling pathways, such as increasing the activity of endogenous antioxidant systems and decreasing the level of ROS expression. Given the actions of herbal monomers to significantly protect the normal function of the heart and reduce the damage caused by OS to the organism. Hence, it is imperative to recognize the significance of herbal monomers as prospective therapeutic interventions for mitigating oxidative damage in CVDs. This paper aims to comprehensively review the origins and mechanisms underlying OS, elucidate the intricate association between CVDs and OS, and explore the therapeutic potential of antioxidant treatment utilizing herbal monomers. Furthermore, particular emphasis will be placed on examining the cardioprotective effects of herbal monomers by evaluating their impact on cardiac signaling pathways subsequent to treatment.
Collapse
Affiliation(s)
- Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal&Child Health Care, Changsha, People's Republic of China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jiao Yao
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Lei Meng
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yong Tan
- Department of Nephrology, Xiangtan Central Hospital, Xiangtan, 411100, China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
28
|
Khidr EG, Abulsoud AI, Doghish AA, El-Mahdy HA, Ismail A, Elballal MS, Sarhan OM, Abdel Mageed SS, Elsakka EGE, Elkhawaga SY, El-Husseiny AA, Abdelmaksoud NM, El-Demerdash AA, Shahin RK, Midan HM, Elrebehy MA, Mohammed OA, Abulsoud LA, Doghish AS. The potential role of miRNAs in the pathogenesis of cardiovascular diseases - A focus on signaling pathways interplay. Pathol Res Pract 2023; 248:154624. [PMID: 37348290 DOI: 10.1016/j.prp.2023.154624] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
For the past two decades since their discovery, scientists have linked microRNAs (miRNAs) to posttranscriptional regulation of gene expression in critical cardiac physiological and pathological processes. Multiple non-coding RNA species regulate cardiac muscle phenotypes to stabilize cardiac homeostasis. Different cardiac pathological conditions, including arrhythmia, myocardial infarction, and hypertrophy, are modulated by non-coding RNAs in response to stress or other pathological conditions. Besides, miRNAs are implicated in several modulatory signaling pathways of cardiovascular disorders including mitogen-activated protein kinase, nuclear factor kappa beta, protein kinase B (AKT), NOD-like receptor family pyrin domain-containing 3 (NLRP3), Jun N-terminal kinases (JNKs), Toll-like receptors (TLRs) and apoptotic protease-activating factor 1 (Apaf-1)/caspases. This review highlights the potential role of miRNAs as therapeutic targets and updates our understanding of their roles in the processes underlying pathogenic phenotypes of cardiac muscle.
Collapse
Affiliation(s)
- Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ayman A Doghish
- Department of Cardiovascular & Thoracic Surgery, Ain-Shams University Hospital, Faculty of Medicine, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Omnia M Sarhan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | | | - Aya A El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Logyna A Abulsoud
- Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
29
|
Laneri F, Conte C, Parisi C, Catanzano O, Fraix A, Quaglia F, Sortino S. On the photobehaviour of curcumin in biocompatible hosts: The role of H-abstraction in the photodegradation and photosensitization. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 245:112756. [PMID: 37454510 DOI: 10.1016/j.jphotobiol.2023.112756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/24/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Curcumin (CUR) is a naturally occurring pigment extensively studied due to its therapeutic activity and delivered by suitable nanocarriers to overcome poor solubility in aqueous media. The significant absorption of CUR in the visible blue region has prompted its use as a potential phototherapeutic agent in treating infectious and cancer diseases, although the mechanism underlying the phototoxic effects is still not fully understood. This contribution investigates the photobehaviour of CUR within polymeric micelles, microemulsions, and zein nanoparticles, chosen as biocompatible nanocarriers, and human serum albumin as a representative biomolecule. Spectroscopic studies indicate that in all host systems, the enolic tautomeric form of CUR is converted in a significant amount of the diketo form because of the perturbation of the intramolecular hydrogen bond. This leads to intermolecular H-abstraction from the host components by the lowest excited triplet state of CUR with the formation of the corresponding ketyl radical, detected by nanosecond laser flash photolysis. This radical is oxidized by molecular oxygen, likely generating peroxyl and hydroperoxyl radical species, unless in Zein, reasonably due to the poor availability of oxygen in the closely packed structure of this nanocarrier. In contrast, no detectable formation of singlet oxygen was revealed in all the systems. Overall these results highlight the key role of the H-abstraction process over singlet oxygen sensitization as a primary photochemical pathway strictly dictated by the specific features of the microenvironment, providing new insights into the photoreactivity of CUR in biocompatible hosts that can also be useful for a better understanding of its phototoxicity mechanism.
Collapse
Affiliation(s)
- Francesca Laneri
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Claudia Conte
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy
| | - Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Ovidio Catanzano
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy
| | - Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy.
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| |
Collapse
|
30
|
Dehzad MJ, Ghalandari H, Amini MR, Askarpour M. Effects of curcumin/turmeric supplementation on lipid profile: A GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Complement Ther Med 2023; 75:102955. [PMID: 37230418 DOI: 10.1016/j.ctim.2023.102955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION Numerous approaches have been assigned to treat dyslipidemia (DLP). Turmeric/curcumin have been widely investigated with this regard. In the current study, we explored the effect of curcumin/turmeric supplementation on lipid profile. METHODS Online databases were searched up to October 2022. The outcomes included triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), apolipoprotein B (Apo-B), and apolipoprotein A (Apo-A). We used the Cochrane quality assessment tool to evaluate the risk of bias. The effect sizes were estimated as weighted mean difference (WMD) and 95% confidence intervals (CIs). RESULTS Out of 4182 articles retrieved from the initial search, 64 randomized clinical trials (RCTs) were included in the study. Between-study heterogeneity was significant. Meta-analysis showed that turmeric/curcumin supplementation exerts statistically significant improvements on blood levels of TC (WMD = -3.99mg/dL; 95% CI = -5.33, -2.65), TG (WMD = -6.69mg/dL; 95% CI = -7.93, -5.45), LDL-c (WMD = -4.89mg/dL; 95% CI = -5.92, -3.87), and HDL-c (WMD = 1.80mg/dL; 95% CI = 1.43, 2.17). However, turmeric/curcumin supplementation was not associated with improvements in blood levels of Apo-A or Apo-B. The studies did not thoroughly address the issues of potency, purity, or consumption with other foods. CONCLUSION Turmeric/curcumin supplementation seems to be effective in improving blood levels of TC, TG, LDL-c, and HDL-c; but may not be capable of improving their pertinent apolipoproteins. Since the evidence was assessed to be low and very low concerning the outcomes, these findings should be dealt with caution.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Askarpour
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
31
|
Sadeghi M, Dehnavi S, Asadirad A, Xu S, Majeed M, Jamialahmadi T, Johnston TP, Sahebkar A. Curcumin and chemokines: mechanism of action and therapeutic potential in inflammatory diseases. Inflammopharmacology 2023; 31:1069-1093. [PMID: 36997729 DOI: 10.1007/s10787-023-01136-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/09/2023] [Indexed: 04/01/2023]
Abstract
Chemokines belong to the family of cytokines with chemoattractant properties that regulate chemotaxis and leukocyte migration, as well as the induction of angiogenesis and maintenance of hemostasis. Curcumin, the major component of the Curcuma longa rhizome, has various pharmacological actions, including anti-inflammatory, immune-regulatory, anti-oxidative, and lipid-modifying properties. Chemokines and chemokine receptors are influenced/modulated by curcumin. Thus, the current review focuses on the molecular mechanisms associated with curcumin's effects on chemoattractant cytokines, as well as putting into context the many studies that have reported curcumin-mediated regulatory effects on inflammatory conditions in the organs/systems of the body (e.g., the central nervous system, liver, and cardiovascular system). Curcumin's effects on viral and bacterial infections, cancer, and adverse pregnancy outcomes are also reviewed.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Asadirad
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | | | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine, The University of Western Australia, Perth, Australia.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box, Mashhad, 91779-48564, Iran.
| |
Collapse
|
32
|
Ribeiro IP. High-throughput technologies and bioinformatic tools to clarify the molecular mechanisms behind sepsis-induced cardiomyopathy. Rev Port Cardiol 2023; 42:223-224. [PMID: 36693522 DOI: 10.1016/j.repc.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Ilda Patrícia Ribeiro
- Cytogenetics and Genomics Laboratory, Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
33
|
Ashraaf S, Tahir HM, Raza C, Awad EM, Ali S, Khan SY, Barisani-Asenbauer T. Synergistic Effect of Silk Sericin and Curcumin to Treat an Inflammatory Condition. J Burn Care Res 2023; 44:106-113. [PMID: 36269798 DOI: 10.1093/jbcr/irac157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/11/2023]
Abstract
Inflammation-related diseases are recognized as the major cause of morbidity around the globe. In this study, the anti-inflammatory potential of sericin, curcumin, and their mixture was investigated in vivo and in vitro. Edema was induced via 1% carrageenan and then sericin (0.03, 0.06, 0.09 mg/ml), curcumin (1%, 2%, 3%), and their mixture doses were applied topically. The paw circumference and thickness were measured after 1-, 2-, 3-, 4-, 5-, and 6-hour post-carrageenan injection. The levels of IL-4 and IL-10 were measured from the serum. In mice fibroblast cells, sericin (20, 40, 60 μg/ml), curcumin (5, 10, 20 μM), and mixture concentrations were applied and then stimulated with lipopolysaccharide (LPS). Afterward, the cells were used for the analysis of gene expression, and the supernatant was collected for protein expression of IL-1β, IL-4, and IL-10. Our results demonstrated that sericin and curcumin caused a dose-dependent reduction in edema, whereas the mixture-treated group reduced the paw thickness and circumference most significantly (p = .0001). Furthermore, the mixture treatment of carrageenan-inflicted group increased the levels of anti-inflammatory cytokines, IL-4 (650.87 pg/ml) and IL-10 (183.14 pg/ml), in comparison to the carrageenan control. The in vitro data revealed that among all the treatment doses, the mixture-treated group has effectively reduced the gene (1.13-fold) and protein (51.9 pg/ml) expression of IL-1β in comparison to McCoy cells stimulated with LPS. Moreover, mixture treatment elevated the expression of IL-4 and IL-10 at genes (4.3-fold and 3.7-fold, respectively) and protein levels (169.33 and 141.83 pg/ml, respectively). The current study reports the enhanced anti-inflammatory effects of the mixture of curcumin and sericin through modulating expressions of interleukins in vitro and in vivo. Thus, natural products (curcumin and sericin)-based formulations have greater potential for clinical investigations.
Collapse
Affiliation(s)
- Sehrish Ashraaf
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Chand Raza
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Ezzat M Awad
- Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise (OCUVAC), Institute of Specific Prophylaxis and Tropical Medicine [ISPTM], Center for Pathophysiology, Infectiology and Immunology (CePII), Medical University of Vienna, Vienna, Austria
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Shafaat Yar Khan
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Talin Barisani-Asenbauer
- Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise (OCUVAC), Institute of Specific Prophylaxis and Tropical Medicine [ISPTM], Center for Pathophysiology, Infectiology and Immunology (CePII), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Kar S, Singh SK. Cationic nanoliposomes of carvedilol for intranasal application: In vitro, in vivo and in silico studies. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Grewal J, Kumar V, Gandhi Y, Rawat H, Singh R, Singh A, Narasimhaji CV, Acharya R, Mishra SK. Current Perspective and Mechanistic Insights on Bioactive Plant Secondary Metabolites for the Prevention and Treatment of Cardiovascular Diseases. Cardiovasc Hematol Disord Drug Targets 2023; 23:157-176. [PMID: 37921163 DOI: 10.2174/011871529x262371231009132426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/28/2023] [Accepted: 08/31/2023] [Indexed: 11/04/2023]
Abstract
Cardiovascular diseases (CVDs) are one of the most prevalent medical conditions of modern era and are one of the primary causes of adult mortality in both developing and developed countries. Conventional medications such as use of aspirin, beta-blockers, statins and angiotensin- converting enzyme inhibitors involve use of drugs with many antagonistic effects. Hence, alternative therapies which are safe, effective, and relatively cheap are increasingly being investigated for the treatment and prevention of CVDs. The secondary metabolites of medicinal plants contain several bioactive compounds which have emerged as alternatives to toxic modern medicines. The detrimental effects of CVDs can be mitigated via the use of various bioactive phytochemicals such as catechin, isoflavones, quercetin etc. present in medicinal plants. Current review intends to accumulate previously published data over the years using online databases concerning herbal plant based secondary metabolites that can help in inhibition and treatment of CVDs. An in-depth review of various phytochemical constituents with therapeutic actions such as antioxidant, anti-inflammatory, vasorelaxant, anti-hypertensive and cardioprotective properties has been delineated. An attempt has been made to provide a probable mechanistic overview for the pertinent phytoconstituent which will help in achieving a better prognosis and effective treatment for CVDs.
Collapse
Affiliation(s)
- Jyotika Grewal
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Vijay Kumar
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Yashika Gandhi
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Hemant Rawat
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Ravindra Singh
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Arjun Singh
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Ch V Narasimhaji
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Rabinarayan Acharya
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Sujeet K Mishra
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| |
Collapse
|
36
|
Talebi M, Esmaeeli H, İlgün S, Talebi M, Farkhondeh T, Mishra G, Samarghandian S. The Protective Role of Grape Seed in Obesity and Lipid Profile: An Updated Narrative Overview of Preclinical and Clinical Studies. Endocr Metab Immune Disord Drug Targets 2023; 23:46-62. [PMID: 35786197 DOI: 10.2174/1871530322666220630091859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
Abstract
Obesity and dyslipidemia are common disorders universally. According to the acquired outcomes of recent studies, dietary supplementations which have great content of phenolic compounds exert protective effects against obesity and dyslipidemia. Grape [Vitis vinifera] seeds are considered attractive sources of phenolic compounds with anti-oxidative stress and anti-inflammatory effects. There are also various experimental studies describing hepatoprotective, neuroprotective, anti-aging, cardioprotective, and anti-carcinogenic effects of polyphenols isolated from grape seed, highlighting the therapeutic and biological aspects of proanthocyanidins. The present review article first discusses pharmacological, botanical, toxicological, and phytochemical characteristics of Vitis vinifera seeds and afterward designates the protective properties which are attributed to the intake of grape seeds in obesity and hyperlipidemia. Overall valuable and updated findings of this study display that polyphenol of grape seeds has meaningful impacts on the regulation of lipid profile levels and management of obesity.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 1991953381, Iran
| | - Hadi Esmaeeli
- Research and Development Unit, NIAK Pharmaceutical Company, Gorgan, Iran.,Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - Mohsen Talebi
- Viatris Pharmaceuticals Inc., 3300 Research Plaza, San Antonio, Texas, United States.,Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, United States
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Gaurav Mishra
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
37
|
Regulatory Effects of Curcumin on Platelets: An Update and Future Directions. Biomedicines 2022; 10:biomedicines10123180. [PMID: 36551934 PMCID: PMC9775400 DOI: 10.3390/biomedicines10123180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
The rhizomatous plant turmeric, which is frequently used as a spice and coloring ingredient, yields curcumin, a bioactive compound. Curcumin inhibits platelet activation and aggregation and improves platelet count. Platelets dysfunction results in several disorders, including inflammation, atherothrombosis, and thromboembolism. Several studies have proved the beneficial role of curcumin on platelets and hence proved it is an important candidate for the treatment of the aforementioned diseases. Moreover, curcumin is also frequently employed as an anti-inflammatory agent in conventional medicine. In arthritic patients, it has been shown to reduce the generation of pro-inflammatory eicosanoids and to reduce edema, morning stiffness, and other symptoms. Curcumin taken orally also reduced rats' acute inflammation brought on by carrageenan. Curcumin has also been proven to prevent atherosclerosis and platelet aggregation, as well as to reduce angiogenesis in adipose tissue. In the cerebral microcirculation, curcumin significantly lowered platelet and leukocyte adhesion. It largely modulated the endothelium to reduce platelet adhesion. Additionally, P-selectin expression and mice survival after cecal ligation and puncture were improved by curcumin, which also altered platelet and leukocyte adhesion and blood-brain barrier dysfunction. Through regulating many processes involved in platelet aggregation, curcuminoids collectively demonstrated detectable antiplatelet activity. Curcuminoids may therefore be able to prevent disorders linked to platelet activation as possible therapeutic agents. This review article proposes to highlight and discuss the regulatory effects of curcumin on platelets.
Collapse
|
38
|
Dai C, Tian E, Hao Z, Tang S, Wang Z, Sharma G, Jiang H, Shen J. Aflatoxin B1 Toxicity and Protective Effects of Curcumin: Molecular Mechanisms and Clinical Implications. Antioxidants (Basel) 2022; 11:antiox11102031. [PMID: 36290754 PMCID: PMC9598162 DOI: 10.3390/antiox11102031] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022] Open
Abstract
One of the most significant classes of mycotoxins, aflatoxins (AFTs), can cause a variety of detrimental outcomes, including cancer, hepatitis, aberrant mutations, and reproductive issues. Among the 21 identified AFTs, aflatoxin B1 (AFB1) is the most harmful to humans and animals. The mechanisms of AFB1-induced toxicity are connected to the generation of excess reactive oxygen species (ROS), upregulation of CYP450 activities, oxidative stress, lipid peroxidation, apoptosis, mitochondrial dysfunction, autophagy, necrosis, and inflammatory response. Several signaling pathways, including p53, PI3K/Akt/mTOR, Nrf2/ARE, NF-κB, NLRP3, MAPKs, and Wnt/β-catenin have been shown to contribute to AFB1-mediated toxic effects in mammalian cells. Curcumin, a natural product with multiple therapeutic activities (e.g., anti-inflammatory, antioxidant, anticancer, and immunoregulation activities), could revise AFB1-induced harmful effects by targeting these pathways. Therefore, the potential therapeutic use of curcumin against AFB1-related side effects and the underlying molecular mechanisms are summarized. This review, in our opinion, advances significant knowledge, sparks larger discussions, and drives additional improvements in the hazardous examination of AFTs and detoxifying the application of curcumin.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Correspondence:
| | - Erjie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhihui Hao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shusheng Tang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhanhui Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Gaurav Sharma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Haiyang Jiang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
39
|
Ashraf H, Butt MS, Iahtisham-Ul-Haq, Nadeem M, Aadil RM, Rusu AV, Trif M. Microencapsulated curcumin from Curcuma longa modulates diet-induced hypercholesterolemia in Sprague Dawley rats. Front Nutr 2022; 9:1026890. [PMID: 36276841 PMCID: PMC9583535 DOI: 10.3389/fnut.2022.1026890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Hypercholesterolemia is one of the major causes of cardiovascular ailments. The study has been conducted on the hypothesis that hypercholesterolemia can be modulated by microencapsulated curcumin due to its enhanced bioavailability. In this context, curcumin obtained from fresh rhizomes of Curcuma longa by conventional (CSE) and supercritical fluid (SFE) extractions, has been successfully microencapsulated using a mixture of gelatin and maltodextrin. The microencapsulated curcumin CSE&SFE, has been added as supplemented diet and has been resulted in maximum plasma concentration of curcumin at 100 min as 529.31 ± 8.73 and 405.23 ± 7.12 μg/mL, respectively compared to non-encapsulated turmeric powder used as control. During the bio evaluation trial, turmeric powder (3%), microencapsulated curcuminCSE (1%) and microencapsulated curcuminSFE (0.5%) were provided to designate rat groups categorized by normal; N1, N2, and N3 and hypercholesterolemic; H1, H2, and H3 conditions, respectively. The incorporation of microencapsulated curcuminSFE in the supplemented diet caused a reduction in serum cholesterol, low density lipoprotein (LDL) and triglycerides, athrogenic index (AI) and cardiac risk ration (CRR) as 5.42 and 12.81%, 7.25 and 15.42%, 3.17 and 9.38%, 15.38 and 29.28%, and 10.98 19.38% in normo- and hypercholesterolemic rat groups. Additionally, high-density lipoprotein (HDL) and anti-atherogenic index (AAI) indicated a significant increase in all treated rat groups. Conclusively, the inclusion of turmeric and curcumin microencapsulates in the dietary module has been proven effective to alleviate hyperlipidemia. Therefore, the present study is proven that curcumin absorption via the gastrointestinal tract and its stability toward metabolization in the body increased via microencapsulation using maltodextrin and gelatin. Microencapsulated curcumin reaches the target site via oral administration because of sufficient gastrointestinal residence period and stability in the digestive tract.
Collapse
Affiliation(s)
- Humaira Ashraf
- Department of Food Science and Technology, Jinnah University for Women, Karachi, Pakistan
| | - Masood Sadiq Butt
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Iahtisham-Ul-Haq
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan,*Correspondence: Iahtisham-Ul-Haq,
| | - Muhammad Nadeem
- Institute of Human Nutrition and Dietetics, Gulab Devi Educational Complex, Lahore, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania,Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania,Alexandru Vasile Rusu,
| | - Monica Trif
- Department of Food Research, Centre for Innovative Process Engineering (Centiv) GmbH, Syke, Germany,Monica Trif,
| |
Collapse
|
40
|
Gao J, Li Z, Li J, Song P, Yang J, Xiao W, Li N, Xu R. Peptide-Based HDL as an Effective Delivery System for Lipophilic Drugs to Restrain Atherosclerosis Development. Int J Nanomedicine 2022; 17:3877-3892. [PMID: 36097444 PMCID: PMC9464027 DOI: 10.2147/ijn.s374736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Peptide-based high-density lipoprotein (pHDL) structurally and functionally resembles the natural HDL as anti-atherosclerosis (AS) therapies. Since pHDL contains a large hydrophobic core, this study aims to evaluate the potentials of pHDL as a hydrophobic drug carrier and the efficiency of drug-loaded pHDL in the control of AS. Methods The pHDL encapsulation of hydrophobic components from natural plants, including curcumin (Cur) and tanshinone IIA (TanIIA), was achieved using one-step microfluidics. Then, morphological features and loading efficiencies of pHDL-Cur and pHDL-TanIIA were determined by TEM and high-performance liquid chromatography (HPLC), respectively. Taking the fluorescence advantage of Cur, localizations of loaded Cur in pHDL were investigated by fluorescence quenchers, and recruitments of Cur to AS plaques were assessed with ex vivo imaging. Based on anti-inflammatory properties of TanIIA, pHDL-TanIIA was accordingly developed to evaluate the anti-AS effects through examinations of plasma lipid parameters and pathological alterations of plaque-associated regions. Results Both lipophilic Cur and TanIIA can be efficiently loaded into pHDL carriers. The resultant pHDL-Cur and pHDL-TanIIA inherit the homogeneous nano-disk structure of pHDL. By using pHDL-Cur, the encapsulated hydrophobics are tracked in the core of pHDL, and incorporations of Cur with pHDL vehicles greatly improve the bioavailability and association of Cur with AS plaques. Moreover, when loaded with TanIIA, which has established its role in anti-AS as an anti-inflammatory candidate, synergistic effects in reducing AS lesions and improving pathological alterations of main organs related to AS were achieved. Conclusion The pHDL system could potentially be applied for both imaging and therapy in animal models of AS. Benefits of pHDL-based drug delivery will potentially extend the application scenarios of bioactive chemicals from natural plants which are underutilized due to features like low bioavailability and facilitate the clinical translation of synthetic HDL therapies in HDL-associated disorders, including but not limited to AS.
Collapse
Affiliation(s)
- Junwei Gao
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Ziyun Li
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Jing Li
- Department of Nephropathy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Ping Song
- Department of Dermatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Jinsheng Yang
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Wei Xiao
- Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, People's Republic of China
| | - Ning Li
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Ruodan Xu
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
41
|
Zhang S, Wang J, Liu L, Sun X, Zhou Y, Chen S, Lu Y, Cai X, Hu M, Yan G, Miao X, Li X. Efficacy and safety of curcumin in psoriasis: preclinical and clinical evidence and possible mechanisms. Front Pharmacol 2022; 13:903160. [PMID: 36120325 PMCID: PMC9477188 DOI: 10.3389/fphar.2022.903160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/01/2022] [Indexed: 12/09/2022] Open
Abstract
Background: Psoriasis is a chronic and immune-mediated inflammatory skin disease. Many studies have shown that curcumin (CUR) has strong anti-inflammatory effects and can improve psoriasis; however, its efficacy and safety have not been confirmed, and the specific mechanism remains to be elucidated. Objective: To evaluate the efficacy, safety, and possible mechanisms of CUR in the treatment of psoriasis. Methods: The Cochrane Library, Embase, PubMed, Web of Science, China National Knowledge Infrastructure, Wanfang, and VIP (China Science and Technology Journal Database) were systematically searched for clinical trials and preclinical studies on the use of CUR in psoriasis treatment. All databases were searched from inception to January 2022. The meta-analysis was performed using RevMan 5.3 software. Results: Our meta-analysis included 26 studies, comprising seven clinical randomized controlled trials and 19 preclinical studies. A meta-analysis of clinical trials showed that both CUR monotherapy and combination therapy improved Psoriasis Area and Severity Index (PASI) scores in patients compared to controls (standard mean difference [std.MD]: −0.83%; 95% confidence interval [CI]: −1.53 to 0.14; p = 0.02). In preclinical studies, CUR showed better performance in improving the phenotype of psoriatic dermatitis mice compared to controls, including total PASI score (std.MD: 6.50%; 95% CI: 10.10 to −2.90; p = 0.0004); ear thickness (p = 0.01); and the expression of inflammatory cytokines such as interleukin (IL)-17, tumor necrosis factor (TNF)-α, IL-17F, and IL-22 (p < 0.05). In cell studies, CUR inhibited cell proliferation (p = 0.04) and the cell cycle (p = 0.03) and downregulated the inflammatory cytokines IL-6 and IL-8 (p < 0.05). Conclusions: CUR has excellent efficacy and broad potential to treat psoriasis in multiple ways. Its use also plays a crucial role in improving the psoriasis phenotype and reducing the inflammatory microenvironment. In conclusion, our findings suggest that CUR alone or in combination with other conventional treatments can effectively treat psoriasis.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiao Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoying Sun
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yaqiong Zhou
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Siting Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Lu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoce Cai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Manqi Hu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ge Yan
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Miao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xin Li, ; Xiao Miao,
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xin Li, ; Xiao Miao,
| |
Collapse
|
42
|
Butnariu M, Quispe C, Koirala N, Khadka S, Salgado-Castillo CM, Akram M, Anum R, Yeskaliyeva B, Cruz-Martins N, Martorell M, Kumar M, Vasile Bagiu R, Abdull Razis AF, Sunusi U, Muhammad Kamal R, Sharifi-Rad J. Bioactive Effects of Curcumin in Human Immunodeficiency Virus Infection Along with the Most Effective Isolation Techniques and Type of Nanoformulations. Int J Nanomedicine 2022; 17:3619-3632. [PMID: 35996526 PMCID: PMC9391931 DOI: 10.2147/ijn.s364501] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Human immunodeficiency virus (HIV) is one of the leading causes of death worldwide, with African countries being the worst affected by this deadly virus. Curcumin (CUR) is a Curcuma longa-derived polyphenol that has attracted the attention of researchers due to its antimicrobial, anti-inflammatory, antioxidant, immunomodulatory and antiviral effects. CUR also demonstrates anti-HIV effects by acting as a possible inhibitor of gp120 binding, integrase, protease, and topoisomerase II activities, besides also exerting a protective action against HIV-associated diseases. However, its effectiveness is limited due to its poor water solubility, rapid metabolism, and systemic elimination. Nanoformulations have been shown to be useful to enhance curcumin’s bioavailability and its effectiveness as an anti-HIV agent. In this sense, bioactive effects of CUR in HIV infection are carefully reviewed, along with the most effective isolation techniques and type of nanoformulations available.
Collapse
Affiliation(s)
- Monica Butnariu
- Chemistry & Biochemistry Discipline, University of Life Sciences "King Mihai I" from Timisoara, 300645, Calea Aradului 119, Timis, Romania
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, 1110939, Chile
| | - Niranjan Koirala
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu, 44600, Nepal.,Laboratory of Biotechnology, Faculty of Science and Technology, University of Macau, Macau SAR, 999078, People's Republic of China
| | - Sujan Khadka
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,State Key Laboratory of Environmental Aquatic Chemistry" with "State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | | | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rabia Anum
- SINA Health, Education and Welfare Trust, Karachi, Pakistan
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Gandra PRD, 4585-116, Portugal.,TOXRUN-Oxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, 4585-116, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, 4070386, Chile.,Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción, 4070386, Chile
| | - Manoj Kumar
- Chemical and BioChemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Radu Vasile Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara Department of Microbiology, Timisoara, Romania.,Preventive Medicine Study Center, Timisoara, Romania
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Biochemistry, Bayero University Kano, Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Pharmacology, Federal University Dutse, Dutse, Jigawa State, Nigeria
| | | |
Collapse
|
43
|
Zhang L, Li C, Wang S, Avtanski D, Hadzi-Petrushev N, Mitrokhin V, Mladenov M, Wang F. Tetrahydrocurcumin-Related Vascular Protection: An Overview of the Findings from Animal Disease Models. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165100. [PMID: 36014335 PMCID: PMC9412611 DOI: 10.3390/molecules27165100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 01/05/2023]
Abstract
Tetrahydrocurcumin (THC), one of the major metabolites of CUR, possesses several CUR-like pharmacological effects; however, its mechanisms of action are largely unknown. This manuscript aims to summarize the literature on the preventive role of THC on vascular dysfunction and the development of hypertension by exploring the effects of THC on hemodynamic status, aortic elasticity, and oxidative stress in vasculature in different animal models. We review the protective effects of THC against hypertension induced by heavy metals (cadmium and iron), as well as its impact on arterial stiffness and vascular remodeling. The effects of THC on angiogenesis in CaSki xenografted mice and the expression of vascular endothelial growth factor (VEGF) are well documented. On the other hand, as an anti-inflammatory and antioxidant compound, THC is involved in enhancing homocysteine-induced mitochondrial remodeling in brain endothelial cells. The experimental evidence regarding the mechanism of mitochondrial dysfunction during cerebral ischemic/reperfusion injury and the therapeutic potential of THC to alleviate mitochondrial cerebral dysmorphic dysfunction patterns is also scrutinized and explored. Overall, the studies on different animal models of disease suggest that THC can be used as a dietary supplement to protect against cardiovascular changes caused by various factors (such as heavy metal overload, oxidative stress, and carcinogenesis). Additionally, the reviewed literature data seem to confirm THC's potential to improve mitochondrial dysfunction in cerebral vasculature during ischemic stroke through epigenetic mechanisms. We suggest that further preclinical studies should be implemented to demonstrate THC's vascular-protective, antiangiogenic, and anti-tumorigenic effects in humans. Applying the methods used in the presently reviewed studies would be useful and will help define the doses and methods of THC administration in various disease settings.
Collapse
Affiliation(s)
- Li Zhang
- Cancer Center, Department of Medical Oncology, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Changhu Li
- Cancer Center, Division of Radiation Physics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Sicheng Wang
- Medical Department, 6th City Clinical Hospital, 220037 Minsk, Belarus
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, “Ss. Cyril and Methodius” University, P.O. Box 162, 1000 Skopje, North Macedonia
| | - Vadim Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, 117997 Moscow, Russia
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, “Ss. Cyril and Methodius” University, P.O. Box 162, 1000 Skopje, North Macedonia
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, 117997 Moscow, Russia
| | - Feng Wang
- Cancer Center, Department of Medical Oncology, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
44
|
Naghdi A, Goodarzi MT, Karimi J, Hashemnia M, Khodadadi I. Effects of curcumin and metformin on oxidative stress and apoptosis in heart tissue of type 1 diabetic rats. J Cardiovasc Thorac Res 2022; 14:128-137. [PMID: 35935389 PMCID: PMC9339728 DOI: 10.34172/jcvtr.2022.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/01/2022] [Indexed: 12/07/2022] Open
Abstract
Introduction: Hyperglycemia enhances oxidative stress and apoptosis and induces damages in heart tissue. Based on antioxidant properties of curcumin and metformin, we hypothesized that these agents may exhibit cardioprotective effects by attenuating oxidative stress and modulating expression of the genes involved in apoptosis in type-1 diabetes.
Methods: Thirty-six male rats were randomly divided into six groups; (N): control; (D): streptozotocin-induced diabetic rats; (D+Cur50) and (D+Cur150): diabetic rats treated with 50 and 150 milligram of curcumin per kilogram of body weight (mg/kg.bw), respectively; (D+Met300) and (D+Met500): diabetic rats received 300 and 500 mg/kg.bw of metformin, respectively. Heart tissues were dissected and gene expression levels of Bax, Bcl-2, and caspase-3 were analyzed. Total anti-oxidant capacity (TAC), total oxidant status (TOS), and malondialdehyde (MDA) level, and activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) were measured.
Results: Enhancement in TOS, OSI, and MDA levels as well as increased in the activity of CAT and reduction in SOD and GPx activities were observed in diabetic group (D) compared with control rats. Treatment of diabetic animals with either curcumin or metformin normalized TOS, OSI, and MDA levels and restored CAT, SOD, and GPx activities. Diabetes caused extensive damages in heart tissue of rats (group D) and increased expression of caspase-3 and Bax genes and enhanced ratio of Bax/Bcl-2 expression compared with controls. Treatment with curcumin or metformin mitigated histopathological changes and dampened apoptosis by normalizing Bax and caspase-3 expression.
Conclusion: Curcumin and metformin modulated diabetes-induced cardiac damage probably by reducing oxidative stress.
Collapse
Affiliation(s)
- Atefeh Naghdi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taghi Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Biochemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Hashemnia
- Department of Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
45
|
Insight into the Progress on Natural Dyes: Sources, Structural Features, Health Effects, Challenges, and Potential. Molecules 2022; 27:molecules27103291. [PMID: 35630767 PMCID: PMC9144664 DOI: 10.3390/molecules27103291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Dyes play an important role in food, medicine, textile, and other industries, which make human life more colorful. With the increasing demand for food safety, the development of natural dyes becomes more and more attractive. (2) Methods: The literature was searched using the electronic databases PubMed, Web of Science, and SciFinder and this scoping review was carried out following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). (3) Results: 248 articles were included in this review. This review summarizes the research progress on natural dyes in the last ten years. According to structural features, natural dyes mainly include carotenoids, polyphenols, porphyrins, and alkaloids, and some of the newest dyes are summarized. Some pharmacological activities of carotenoids, anthocyanin, curcumin, and betalains in the last 10 years are summarized, and the biological effects of dyes regarding illumination conditions. The disadvantages of natural dyes, including sources, cost, stability, and poor bioavailability, limit their application. Here, some feasible strategies (potential resources, biotechnology, new extraction and separation strategies, strategies for improving stability) are described, which will contribute to the development and utilization of natural dyes. (4) Conclusion: Natural dyes show health benefits and potential in food additives. However, it is necessary for natural dyes to pass toxicity tests and quality tests and receive many regulatory approvals before their final entry into the market as food colorants or as drugs.
Collapse
|
46
|
Edible Bioactive Film with Curcumin: A Potential "Functional" Packaging? Int J Mol Sci 2022; 23:ijms23105638. [PMID: 35628450 PMCID: PMC9147907 DOI: 10.3390/ijms23105638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Edible packaging has been developed as a biodegradable and non-toxic alternative to traditional petroleum-based food packaging. Biopolymeric edible films, in addition to their passive protective function, may also play a bioactive role as vehicles for bioactive compounds of importance to human health. In recent years, a new generation of edible food packaging has been developed to incorporate ingredients with functional potential that have beneficial effects on consumer health. Curcumin, a bioactive compound widely used as a natural dye obtained from turmeric rhizomes (Curcuma longa L.), has a broad spectrum of beneficial properties for human health, such as anti-inflammatory, anti-hypertensive, antioxidant, anti-cancer, and other activities. To demonstrate these properties, curcumin has been explored as a bioactive agent for the development of bioactive packaging, which can be referred to as functional packaging and used in food. The aim of this review was to describe the current and potential research on the development of functional-edible-films incorporating curcumin for applications such as food packaging.
Collapse
|
47
|
Zhang X, Zhu Y, Fan L, Ling J, Yang LY, Wang N, Ouyang XK. Delivery of curcumin by fucoidan-coated mesoporous silica nanoparticles: Fabrication, characterization, and in vitro release performance. Int J Biol Macromol 2022; 211:368-379. [PMID: 35577185 DOI: 10.1016/j.ijbiomac.2022.05.086] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 02/07/2023]
Abstract
Mesoporous silica nanoparticles (MSN) are effective drug delivery carriers because of their adjustable large pore size and high porosity. In this study, complex nanoparticles containing disulfide bonds (SS) were designed and prepared as curcumin (Cur) carriers by using fucoidan (FUC) and MSN as the polymer matrix. The product was characterized using scanning electron microscopy, transmission electron microscopy, dynamic light scattering, Fourier-transform infrared spectroscopy, and an N2 adsorption and desorption test. When the mass ratio of MSN to FUC was 2:1, the nanospheres particle size was the smallest (295.6 ± 0.98 nm, -35.2 ± 0.8 mV). Furthermore, the curcumin encapsulation rate by MSN-Cur-SS-FUC was over 90%, and the cumulative release rate in 24 h was over 80% due to the combined effect of weak acidity and high glutathione concentration in the tumor site microenvironment. When the Cur concentration was 50 μg/mL, the cell viability of free Cur was 63.8%, the cell viability of MSN-Cur-SS-FUC was 14.5%, and the cell viability of MSN-SS-FUC at the same concentration remained above 74.6%. MSN-SS-FUC composite nanoparticles showed a good delivery of Cur, a lipid-soluble active compound, and provides a new delivery route for other lipid-soluble and poorly bioavailable active compounds.
Collapse
Affiliation(s)
- Xu Zhang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Yanfei Zhu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Lihong Fan
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Li-Ye Yang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Nan Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
48
|
Mirzaei S, Saghari S, Bassiri F, Raesi R, Zarrabi A, Hushmandi K, Sethi G, Tergaonkar V. NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial-mesenchymal transition. J Cell Physiol 2022; 237:2770-2795. [PMID: 35561232 DOI: 10.1002/jcp.30759] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
Metastasis of tumor cells is a complex challenge and significantly diminishes the overall survival and prognosis of cancer patients. The epithelial-to-mesenchymal transition (EMT) is a well-known mechanism responsible for the invasiveness of tumor cells. A number of molecular pathways can regulate the EMT mechanism in cancer cells and nuclear factor-kappaB (NF-κB) is one of them. The nuclear translocation of NF-κB p65 can induce the transcription of several genes involved in EMT induction. The present review describes NF-κB and EMT interaction in cancer cells and their association in cancer progression. Due to the oncogenic role NF-κB signaling, its activation enhances metastasis of tumor cells via EMT induction. This has been confirmed in various cancers including brain, breast, lung and gastric cancers, among others. The ZEB1/2, transforming growth factor-β, and Slug as inducers of EMT undergo upregulation by NF-κB to promote metastasis of tumor cells. After EMT induction driven by NF-κB, a significant decrease occurs in E-cadherin levels, while N-cadherin and vimentin levels undergo an increase. The noncoding RNAs can potentially also function as upstream mediators and modulate NF-κB/EMT axis in cancers. Moreover, NF-κB/EMT axis is involved in mediating drug resistance in tumor cells. Thus, suppressing NF-κB/EMT axis can also promote the sensitivity of cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sam Saghari
- Department of Health Services Management, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Bassiri
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Rasoul Raesi
- PhD in Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
49
|
Afjeh-Dana E, Naserzadeh P, Moradi E, Hosseini N, Seifalian AM, Ashtari B. Stem Cell Differentiation into Cardiomyocytes: Current Methods and Emerging Approaches. Stem Cell Rev Rep 2022; 18:2566-2592. [PMID: 35508757 DOI: 10.1007/s12015-021-10280-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/26/2022]
Abstract
Cardiovascular diseases (CVDs) are globally known to be important causes of mortality and disabilities. Common treatment strategies for CVDs, such as pharmacological therapeutics impose serious challenges due to the failure of treatments for myocardial necrosis. By contrast, stem cells (SCs) based therapies are seen to be promising approaches to CVDs treatment. In such approaches, cardiomyocytes are differentiated from SCs. To fulfill SCs complete potential, the method should be appointed to generate cardiomyocytes with more mature structure and well-functioning operations. For heart repairing applications, a greatly scalable and medical-grade cardiomyocyte generation must be used. Nonetheless, there are some challenges such as immune rejection, arrhythmogenesis, tumorigenesis, and graft cell death potential. Herein, we discuss the types of potential SCs, and commonly used methods including embryoid bodies related techniques, co-culture, mechanical stimulation, and electrical stimulation and their applications, advantages and limitations in this field. An estimated 17.9 million people died from CVDs in 2019, representing 32 % of all global deaths. Of these deaths, 85 % were due to heart attack and stroke.
Collapse
Affiliation(s)
- Elham Afjeh-Dana
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Parvaneh Naserzadeh
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Moradi
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Hosseini
- Neuroscience Research Centre, Iran University of Medical Sciences, Tehran, Iran.
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, UK
| | - Behnaz Ashtari
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran. .,Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran. .,Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Ashrafizadeh M, Kumar AP, Aref AR, Zarrabi A, Mostafavi E. Exosomes as Promising Nanostructures in Diabetes Mellitus: From Insulin Sensitivity to Ameliorating Diabetic Complications. Int J Nanomedicine 2022; 17:1229-1253. [PMID: 35340823 PMCID: PMC8943613 DOI: 10.2147/ijn.s350250] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus (DM) is among the chronic metabolic disorders that its incidence rate has shown an increase in developed and wealthy countries due to lifestyle and obesity. The treatment of DM has always been of interest, and significant effort has been made in this field. Exosomes belong to extracellular vesicles with nanosized features (30-150 nm) that are involved in cell-to-cell communication and preserving homeostasis. The function of exosomes is different based on their cargo, and they may contain lipids, proteins, and nucleic acids. The present review focuses on the application of exosomes in the treatment of DM; both glucose and lipid levels are significantly affected by exosomes, and these nanostructures enhance lipid metabolism and decrease its deposition. Furthermore, exosomes promote glucose metabolism and affect the level of glycolytic enzymes and glucose transporters in DM. Type I DM results from the destruction of β cells in the pancreas, and exosomes can be employed to ameliorate apoptosis and endoplasmic reticulum (ER) stress in these cells. The exosomes have dual functions in mediating insulin resistance/sensitivity, and M1 macrophage-derived exosomes inhibit insulin secretion. The exosomes may contain miRNAs, and by transferring among cells, they can regulate various molecular pathways such as AMPK, PI3K/Akt, and β-catenin to affect DM progression. Noteworthy, exosomes are present in different body fluids such as blood circulation, and they can be employed as biomarkers for the diagnosis of diabetic patients. Future studies should focus on engineering exosomes derived from sources such as mesenchymal stem cells to treat DM as a novel strategy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956, Istanbul, Turkey
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Translational Sciences, Xsphera Biosciences Inc., Boston, MA, 02210, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|