1
|
Lupu VV, Miron I, Trandafir LM, Jechel E, Starcea IM, Ioniuc I, Frasinariu OE, Mocanu A, Petrariu FD, Danielescu C, Nedelcu AH, Salaru DL, Revenco N, Lupu A. Challenging directions in pediatric diabetes - the place of oxidative stress and antioxidants in systemic decline. Front Pharmacol 2024; 15:1472670. [PMID: 39744134 PMCID: PMC11688324 DOI: 10.3389/fphar.2024.1472670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/04/2024] [Indexed: 01/06/2025] Open
Abstract
Diabetes is a complex condition with a rising global incidence, and its impact is equally evident in pediatric practice. Regardless of whether we are dealing with type 1 or type 2 diabetes, the development of complications following the onset of the disease is inevitable. Consequently, contemporary medicine must concentrate on understanding the pathophysiological mechanisms driving systemic decline and on finding ways to address them. We are particularly interested in the effects of oxidative stress on target cells and organs, such as pancreatic islets, the retina, kidneys, and the neurological or cardiovascular systems. Our goal is to explore, using the latest data from international scientific databases, the relationship between oxidative stress and the development or persistence of systemic damage associated with diabetes in children. Additionally, we highlight the beneficial roles of antioxidants such as vitamins, minerals, polyphenols, and other bioactive molecules; in mitigating the pathogenic cascade, detailing how they intervene and their bioactive properties. As a result, our study provides a comprehensive exploration of the key aspects of the oxidative stress-antioxidants-pediatric diabetes triad, expanding understanding of their significance in various systemic diseases.
Collapse
Affiliation(s)
- Vasile Valeriu Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ingrith Miron
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Elena Jechel
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Ileana Ioniuc
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Adriana Mocanu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Ciprian Danielescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ninel Revenco
- Pediatrics, “Nicolae Testemitanu” State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Ancuta Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
2
|
Eren Ozdemir A. Evaluation of the effect of melatonin treatment on telomere length of the retinal pigment epithelium in streptozotocin-induced diabetic rat model. BMC Ophthalmol 2024; 24:532. [PMID: 39695460 DOI: 10.1186/s12886-024-03732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/14/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVES We aimed to investigate the effect of diabetic retinopathy and melatonin treatment on the relative telomer lengths (RTL) in retinal pigment epithelium (RPE) cells in a streptozotocin-induced diabetic rat model. BACKGROUND TL can be used to evaluate diabetes mellitus, its complications, and the effectiveness of its treatment. However, TL assessment has not been performed in retinal cells in a diabetic retinopathy model until now. METHODS Forty Sprague-Dawley male rats were randomly divided into four groups. The experimental groups were: Control Group (C): non- diabetic rats; Diabetes Mellitus Group (DM): rats induced to diabetes without treatment; Melatonin and Diabetes Mellitus Group (Mel + DM): rats induced to diabetes and after confirmation, treated with melatonin; Melatonin Group (Mel): rats were not induced to diabetes, treated with melatonin. Diabetes was induced by intraperitoneal administration of streptozotocin solution after 12 h food fasting. For eight weeks after the diabetes was induced, melatonin was administered via subcutaneous injection at a dose of 10 mg / kg. RTLs were measured by qPCR method with modifications. The comparison of averaged data among groups was performed using least significant difference (LSD) and Kruskal - Wallis Test and One way ANOVA test. RESULTS RTL was significantly similar in control and melatonin group. RTL was thinnest in DM group, in addition melatonin treatment significantly prevented the RTL shortening in DM + Mel group (p = 0.031). CONCLUSION We demonstrated that diabetic retinopathy led to the shortening of RTL in RPE cells in rats and melatonin treatment prevents this shortening.
Collapse
Affiliation(s)
- Ayla Eren Ozdemir
- Department of health laboratory techniques, Sakarya University, Serdivan Sakarya, Turkey.
| |
Collapse
|
3
|
Liu Y, Zhu M, Dou Y, Xue A, Chen X, Leng K, Dong L, Cao G. Knockdown of KCNQ1OT1 Alleviates the Activation of NLRP3 Inflammasome Through miR-17-5p/TXNIP Axis in Retinal Müller Cells. Curr Eye Res 2024; 49:1285-1294. [PMID: 39104014 DOI: 10.1080/02713683.2024.2378037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/05/2024] [Accepted: 06/30/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE Diabetic retinopathy (DR) is one of the most severe and common complications caused by diabetic mellites. Inhibiting NLRP3 inflammasome activation displays a crucial therapeutic value in DR. Studies have shown that KCNQ1OT1 plays a critical role in regulating NLRP3 inflammasome activation and participates in the pathogenesis of diabetic complications. The present study aims to explore the role, and the potential mechanism of KCNQ1OT1 in regulating the activation of NLRP3 inflammasome in DR. METHODS qRT-PCR was used to detect the expression of KCNQ1OT1, miR-17-5p, TXNIP, NLRP3, ASC, caspase-1 and IL-1β. Western blot was performed to detect the expression of NLRP3, ASC, caspase-1, IL-1β and TXNIP. Immunohistochemistry and immunostaining were performed to detect the expression of caspase-1. The levels of the inflammatory cytokine IL-1β were determined by ELISA assay. FISH was used to detect the subcellular localisation of KCNQ1OT1. Bioinformatic analysis, luciferase reporter assay and in vitro studies were performed to elucidate the mechanism of KCNQ1OT1-mediated dysfunction. RESULTS The expression of KCNQ1OT1 and the activation of NLRP3 inflammasome were increased in experimental DR models. KCNQ1OT1 knockdown alleviated NLRP3 inflammasome-associated molecules expression. In addition, KCNQ1OT1 was found to be localized mainly in the cytoplasm of Müller cells and facilitated TXNIP expression by acting as a miR-17-5p sponge. KCNQ1OT1 promoted the activation of NLRP3 inflammasome through miR-17-5p/TXNIP axis. CONCLUSIONS In conclusion, it was found in this study that KCNQ1OT1 promoted the activation of NLRP3 inflammasome both in vitro and in vivo, which was mediated by miR-17-5p/TXNIP axis. KCNQ1OT1 might be an effective interference target for the prevention and treatment of DR.
Collapse
Affiliation(s)
- Yu Liu
- Department of Ophthalmology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuping Dou
- Department of Ophthalmology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Aihua Xue
- Department of Ophthalmology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Xiujuan Chen
- Department of Ophthalmology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Kai Leng
- Department of Medical Informatics, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lili Dong
- Department of Ophthalmology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Guoping Cao
- Department of Ophthalmology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| |
Collapse
|
4
|
Gou ZX, Zhou Y, Fan Y, Zhang F, Ning XM, Tang F, Lu LQ. Melatonin Improves Oxidative Stress Injury in Retinopathy of Prematurity by Targeting miR-23a-3p/Nrf2. Curr Eye Res 2024; 49:1295-1307. [PMID: 39103986 DOI: 10.1080/02713683.2024.2380433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/13/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE Melatonin has promising protective effects for retinopathy. However, its roles in retinopathy of prematurity (ROP) and the underlying mechanisms remain unknown. We aimed to explore its roles and mechanisms in a ROP model. METHODS Hematoxylin and eosin staining were used to observe the morphology of the retina. Immunofluorescence was used to detect positive (Nrf2+ and VEGF+) cells. Immunohistochemistry was used to detect the level of nuclear expression of PCNA in retinal tissue. Transmission electron microscope (TEM) was used to observe the morphology and structure of pigment cells. qRT-PCR was used to assay the expression of miR-23a-3p, Nrf2, and HO-1. Western blotting was used to detect the expression of Nrf2, HO-1, β-actin, and Lamin B1. RESULTS Melatonin or miR-23a-3p antagomir treatment could ameliorate the Oxygen-induced pathological changes, increased the expression of Nrf2 and HO-1, SOD, and GSH-Px, and decreased the expression of VEGF, miR-23a-3p, MDA and the apoptosis in the ROP model. Further target prediction and luciferase reporter assays confirmed the targeted binding relationship between miR-23a-3p and Nrf2. CONCLUSION Our study showed that melatonin could ameliorate H2O2-induced apoptosis and oxidative stress injury in RGC cells by mediating miR-23a-3p/Nrf2 signaling pathway, thereby improving retinal degeneration.
Collapse
Affiliation(s)
- Zhi-Xian Gou
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P.R. China
- Department of Pediatrics, School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Yue Zhou
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P.R. China
- Department of Pediatrics, School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Yang Fan
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P.R. China
- Department of Pediatrics, School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Feng Zhang
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P.R. China
- Department of Pediatrics, School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Xue-Mei Ning
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P.R. China
- Department of Pediatrics, School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P.R. China
| | - Fei Tang
- Clinic Medical College, Chengdu Medical College, Chengdu, P.R. China
| | - Li-Qun Lu
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P.R. China
- Department of Pediatrics, School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P.R. China
| |
Collapse
|
5
|
Gao M, Li J, Han X, Zhang B, Chen J, Lang J, Zhang Q. Effect of melatonin on gut microbiome and metabolomics in diabetic cognitive impairment. Front Pharmacol 2024; 15:1489834. [PMID: 39640487 PMCID: PMC11619431 DOI: 10.3389/fphar.2024.1489834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Diabetic cognitive impairment(DCI) presents as a central nervous complication of diabetes especially among aging population. Melatonin (MEL) is known for its antioxidant and anti-inflammation effects in neuroprotective aspects. Recent evidence has demonstrated that the gut microbiome plays a key role in DCI by modulating cognitive function through the gut-brain crosstalk. MEL has been shown to modulate gut microbiota composition in diabetic model. However, the underlying mechanism through which the gut microbiome contributes to DCI remains unclear. This study aims to investigate the effect and mechanism of MEL in attenuating DCI in relation to regulating the gut microbiome and metabolomics. Methods Cognitive and memory function were assessed by the Morris water maze test, histopathological assessment of brain tissues, and immunoblotting of neuroinflammation and apoptosis. The levels of serum tumor necrosis factor-α (TNF-α) and Interleukin-18 (IL-18) were measured by enzyme-linked immunoassays to reflect the circulatory inflammation level.16S rRNA microbiome sequencing analysis was performed on control mice(db-m group), diabetic mice(db-db group) and MEL-treated diabetic mice(db-dbMEL group). Gut metabolites changes were characterized using liquid chromatography tandem mass spectrometry (LC-MS/MS). Results Our study confirmed that MEL alleviated diabetes-induced cognition and memory dysfunction. MEL protected against neuroinflammation and apoptosis in hippocampus of db-db mice. MEL corrected the increased abundance of Bacteroides and Dorea and the reduced abundance of Prevotella in db-db mice. The vast majority of differential metabolites among the three groups were lipids and lipid-like molecules. MEL significantly restored the reduced levels of pyruvate and lactic acid. Discussion Our results supported the use of MEL as a promising therapeutic agent for DCI, in which the underlying mechanism may be associated with gut microbiome and metabolomics regulation.
Collapse
Affiliation(s)
- Ming Gao
- Department of Endocrinology and Rare Disease, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Rare Disease, Hebei Provincial Department of Science and Technology, Shijiazhuang, Hebei, China
| | - Jie Li
- Department of Endocrinology and Rare Disease, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Rare Disease, Hebei Provincial Department of Science and Technology, Shijiazhuang, Hebei, China
| | - Xu Han
- Department of Endocrinology and Rare Disease, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Beiyao Zhang
- Department of Endocrinology and Rare Disease, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinting Chen
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiadong Lang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qiangqiang Zhang
- Department of Endocrinology and Rare Disease, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
6
|
Xiao J, Xu Z. Roles of noncoding RNAs in diabetic retinopathy: Mechanisms and therapeutic implications. Life Sci 2024; 357:123092. [PMID: 39368772 DOI: 10.1016/j.lfs.2024.123092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes that leads to vision loss. The striking features of DR are hard exudate, cotton-wool spots, hemorrhage, and neovascularization. The dysregulated retinal cells, encompassing microvascular endothelial cells, pericytes, Müller cells, and adjacent retinal pigment epithelial cells, are involved in the pathological processes of DR. According to recent research, oxidative stress, inflammation, ferroptosis, pyroptosis, apoptosis, and angiogenesis contribute to DR. Recent advancements have highlighted that noncoding RNAs could regulate diverse targets in pathological processes that contribute to DR. Noncoding RNAs, including long noncoding RNAs, microRNAs (miRNA), and circular RNAs, are dysregulated in DR, and interact with miRNA, mRNA, or proteins to control the pathological processes of DR. Hence, modulation of noncoding RNAs may have therapeutic effects on DR. Small extracellular vesicles may be valuable tools for transferring noncoding RNAs and regulating the genes involved in progression of DR. However, the roles of noncoding RNA in developing DR are not fully understood; it is critical to summarize the mechanisms for noncoding RNA regulation of pathological processes and pathways related to DR. This review provides a fundamental understanding of the relationship between noncoding RNAs and DR, exploring the mechanism of how noncoding RNA modulates different signaling pathways, and pave the way for finding potential therapeutic strategies for DR.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
7
|
Sun J, Liu Y, Chen Z. Melatonin and retinal cell damage: molecular and biological functions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03575-w. [PMID: 39520554 DOI: 10.1007/s00210-024-03575-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
The indoleamine hormone, melatonin, is produced in the pineal gland and has an essential role in many physiological functions. The pineal gland is considered to be the most important organ for producing melatonin. Nevertheless, it is important to point out that the eye is also capable of producing melatonin, and has its own circadian rhythm in producing this hormone. Melatonin is mainly produced by a subpopulation of photoreceptors in a diurnal rhythm. Numerous in vitro and in vivo studies have shown the beneficial effects of melatonin in eye-related disorders. These diseases primarily affect retinal cells, highlighting the therapeutic potential of melatonin, especially in the retina. Melatonin's ability to regulate oxidative stress response pathways and modulate the expression of antioxidant genes makes it a promising candidate for mitigating retinal cell damage. Moreover, melatonin can modulate inflammatory pathways such as NF-кB and further reduce retinal damage, as well as affecting programmed cell death such as apoptosis and autophagy in retinal cells. Therefore, the goal of this review is to explore the ways in which melatonin protects retinal cells from damage and ischemia. We discuss the mechanisms involved in order to gain valuable understanding of the possible therapeutic applications of melatonin in protection of retinal cells and treatment of retinal disorders.
Collapse
Affiliation(s)
- Jingwen Sun
- Harbin 242 Hospital, Harbin, Heilongjiang, 150000, China
| | - Yan Liu
- Harbin 242 Hospital, Harbin, Heilongjiang, 150000, China
| | - Zhangming Chen
- Harbin 242 Hospital, Harbin, Heilongjiang, 150000, China.
| |
Collapse
|
8
|
Li J, Liu Y, Geng K, Lu X, Shen X, Guo Q. ROS-Responsive Nanoparticles with Antioxidative Effect for the treatment of Diabetic Retinopathy. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-22. [PMID: 39316729 DOI: 10.1080/09205063.2024.2406628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/29/2024] [Indexed: 09/26/2024]
Abstract
Diabetic retinopathy (DR) is a common microvascular complication of diabetes necessitating early intervention to impede progression, despite current clinical treatments focusing on advanced stages. Essential oils from Fructus Alpiniae zerumbet (EOFAZ) have demonstrated efficacy in protecting against high glucose (HG)-induced Müller cell activation and DR development. This study introduced a reactive oxidative species (ROS)-responsive drug delivery system (NPSPHE@EOFAZ) targeting early DR stages and oxidative stress. Our engineered nanoparticles effectively deliver EOFAZ into HG-exposed Müller cells by detecting and responding to elevated oxidative stress levels. The NPSPHE@EOFAZ significantly inhibited abnormal cell growth, reduced oxidative stress, and alleviated inflammation in vitro. In vivo experiments on diabetic mice with DR revealed that NPSPHE@EOFAZ mitigated early pathological changes by reducing oxidative stress and inflammation while also alleviating organ damage in the heart, liver, spleen, lung, and kidney. These findings underscore the potential of NPSPHE@EOFAZ as a promising antioxidant for early intervention in DR pathogenesis.
Collapse
Affiliation(s)
- Jinjin Li
- The Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
- The Department of Pharmacology of Materia Medica (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
- The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yujia Liu
- The Department of Pharmacology of Materia Medica (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
- The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guiyang, Guizhou Province, China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Kedui Geng
- The Department of Pharmacology of Materia Medica (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Xin Lu
- The Department of Pharmacology of Materia Medica (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Xiangchun Shen
- The Department of Pharmacology of Materia Medica (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
- The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guiyang, Guizhou Province, China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Qianqian Guo
- The Department of Pharmacology of Materia Medica (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
- The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guiyang, Guizhou Province, China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
| |
Collapse
|
9
|
Li Z, Wang Y, Huang W, Shi X, Ma T, Yu X. miR-155 induces sepsis-associated damage to the intestinal mucosal barrier via sirtuin 1/nuclear factor-κB-mediated intestinal pyroptosis. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39262326 DOI: 10.3724/abbs.2024124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Sepsis is a life-threatening state of organ dysfunction caused by systemic inflammation and a dysfunctional response to host infections that can induce severe intestinal mucosal damage. Pyroptosis is mediated by the activated NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome after stimulation by various inflammatory factors during sepsis. The inflammatory response is a major driver of intestinal damage during sepsis. Intestinal mucosal barrier dysfunction in sepsis is associated with pyroptosis, a type of programmed inflammatory cell death. Several studies have confirmed the role of miR-155 in sepsis and other diseases. However, the effect of miR-155 on intestinal pyroptosis in the context of intestinal mucosal barrier dysfunction during sepsis remains unclear. Thus, a model of sepsis in Sprague-Dawley rats is established using cecal ligation and puncture (CLP), and a series of molecular biological methods are used in this study. The results show that the expression of miR-155 is increased and that of sirtuin 1 (SIRT1) is decreased in the intestinal tissues of patients with sepsis. miR-155 expression is negatively correlated with SIRT1 expression. Increased miR-155 expression significantly inhibits SIRT1 activity and upregulates the expressions of NOD-like receptor family pyrin domain-containing 3 (NLRP3), caspase-1, apoptosis-associated speck-like protein containing a CARD (ASC), interleukin-1β (IL-1β) and interleukin-18 (IL-18) to promote pyroptosis. The inhibition of miR-155 expression is associated with increased SIRT1 expression, promotes the deacetylation of p65, and significantly downregulates p65 acetylation. Herein, we propose that miR-155 induces pyroptosis in the intestine partly by regulating SIRT1, thereby reducing the deacetylation of the nuclear factor (NF)-κB subunit p65 and increasing NF-κB signaling activity in sepsis, leading to intestinal barrier damage.
Collapse
Affiliation(s)
- Zhihua Li
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Yi Wang
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
- Department of Critical Medicine, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Weiwei Huang
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Xingyu Shi
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Tao Ma
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Xiangyou Yu
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
- Department of Critical Medicine, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| |
Collapse
|
10
|
Pei X, Huang D, Li Z. Genetic insights and emerging therapeutics in diabetic retinopathy: from molecular pathways to personalized medicine. Front Genet 2024; 15:1416924. [PMID: 39246572 PMCID: PMC11378321 DOI: 10.3389/fgene.2024.1416924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Diabetic retinopathy (DR) is a major complication of diabetes worldwide, significantly causing vision loss and blindness in working-age adults, and imposing a substantial socioeconomic burden globally. This review examines the crucial role of genetic factors in the development of DR and highlights the shift toward personalized treatment approaches. Advances in genetic research have identified specific genes and variations involved in angiogenesis, inflammation, and oxidative stress that increase DR susceptibility. Understanding these genetic markers enables early identification of at-risk individuals and the creation of personalized treatment plans. Incorporating these genetic insights, healthcare providers can develop early intervention strategies and tailored treatment plans to improve patient outcomes and minimize side effects. This review emphasizes the transformative potential of integrating genetic information into clinical practice, marking a paradigm shift in DR management and advancing toward a more personalized and effective healthcare model.
Collapse
Affiliation(s)
- Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Duliurui Huang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Zeng H, Yang X, Liao K, Zuo X, Liang L, He D, Ju R, Wang B, Yuan J. Circadian disruption reduces MUC4 expression via the clock molecule BMAL1 during dry eye development. Exp Mol Med 2024; 56:1655-1666. [PMID: 38956298 PMCID: PMC11297157 DOI: 10.1038/s12276-024-01269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 07/04/2024] Open
Abstract
Circadian disruption, as a result of shiftwork, jet lag, and other lifestyle factors, is a common public health problem associated with a wide range of diseases, such as metabolic disorders, neurodegenerative diseases, and cancer. In the present study, we established a chronic jet lag model using a time shift method every 3 days and assessed the effects of circadian disruption on ocular surface homeostasis. Our results indicated that jet lag increased corneal epithelial defects, cell apoptosis, and proinflammatory cytokine expression. However, the volume of tear secretion and the number of conjunctival goblet cells did not significantly change after 30 days of jet lag. Moreover, further analysis of the pathogenic mechanism using RNA sequencing revealed that jet lag caused corneal transmembrane mucin deficiency, specifically MUC4 deficiency. The crucial role of MUC4 in pathogenic progression was demonstrated by the protection of corneal epithelial cells and the inhibition of inflammatory activation following MUC4 replenishment. Unexpectedly, genetic ablation of BMAL1 in mice caused MUC4 deficiency and dry eye disease. The underlying mechanism was revealed in cultured human corneal epithelial cells in vitro, where BMAL1 silencing reduced MUC4 expression, and BMAL1 overexpression increased MUC4 expression. Furthermore, melatonin, a circadian rhythm restorer, had a therapeutic effect on jet lag-induced dry eye by restoring the expression of BMAL1, which upregulated MUC4. Thus, we generated a novel dry eye mouse model induced by circadian disruption, elucidated the underlying mechanism, and identified a potential clinical treatment.
Collapse
Affiliation(s)
- Hao Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Xue Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Kai Liao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Xin Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Lihong Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Dalian He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China
| | - Bowen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China.
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
12
|
Zhang J, Zhou H, Cai Y, Yoshida S, Li Y, Zhou Y. Melatonin: Unveiling the functions and implications in ocular health. Pharmacol Res 2024; 205:107253. [PMID: 38862072 DOI: 10.1016/j.phrs.2024.107253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Melatonin, a versatile hormone produced by the pineal gland, has garnered considerable scientific interest due to its diverse functions. In the eye, melatonin regulates a variety of key processes like inhibiting angiogenesis by reducing vascular endothelial growth factor levels and protecting the blood-retinal barrier (BRB) integrity by enhancing tight junction proteins and pericyte coverage. Melatonin also maintains cell health by modulating autophagy via the Sirt1/mTOR pathways, reduces inflammation, promotes antioxidant enzyme activity, and regulates intraocular pressure fluctuations. Additionally, melatonin protects retinal ganglion cells by modulating aging and inflammatory pathways. Understanding melatonin's multifaceted functions in ocular health could expand the knowledge of ocular pathogenesis, and shed new light on therapeutic approaches in ocular diseases. In this review, we summarize the current evidence of ocular functions and therapeutic potential of melatonin and describe its roles in angiogenesis, BRB integrity maintenance, and modulation of various eye diseases, which leads to a conclusion that melatonin holds promising treatment potential for a wide range of ocular health conditions.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Yuting Cai
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| |
Collapse
|
13
|
Yang C, Yu Y, An J. Effect of High-Sucrose Diet on the Occurrence and Progression of Diabetic Retinopathy and Dietary Modification Strategies. Nutrients 2024; 16:1393. [PMID: 38732638 PMCID: PMC11085904 DOI: 10.3390/nu16091393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
As the most serious of the many worse new pathological changes caused by diabetes, there are many risk factors for the occurrence and development of diabetic retinopathy (DR). They mainly include hyperglycemia, hypertension, hyperlipidemia and so on. Among them, hyperglycemia is the most critical cause, and plays a vital role in the pathological changes of DR. High-sucrose diets (HSDs) lead to elevated blood glucose levels in vivo, which, through oxidative stress, inflammation, the production of advanced glycation end products (AGEs) and vascular endothelial growth factor (VEGF), cause plenty of pathological damages to the retina and ultimately bring about loss of vision. The existing therapies for DR primarily target the terminal stage of the disease, when irreversible visual impairment has appeared. Therefore, early prevention is particularly critical. The early prevention of DR-related vision loss requires adjustments to dietary habits, mainly by reducing sugar intake. This article primarily discusses the risk factors, pathophysiological processes and molecular mechanisms associated with the development of DR caused by HSDs. It aims to raise awareness of the crucial role of diet in the occurrence and progression of DR, promote timely changes in dietary habits, prevent vision loss and improve the quality of life. The aim is to make people aware of the importance of diet in the occurrence and progression of DR. According to the dietary modification strategies that we give, patients can change their poor eating habits in a timely manner to avoid theoretically avoidable retinopathy and obtain an excellent prognosis.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, China;
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, China
| | - Yifei Yu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jianhong An
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou 325027, China;
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, China
| |
Collapse
|
14
|
Vasović DD, Ivković S, Živanović A, Major T, Milašin JM, Nikolić NS, Simonović JM, Šutulović N, Hrnčić D, Stanojlović O, Vesković M, Rašić DM, Mladenović D. Reduced light exposure mitigates streptozotocin-induced vascular changes and gliosis in diabetic retina by an anti-inflammatory effect and increased retinal cholesterol turnover. Chem Biol Interact 2024; 394:110996. [PMID: 38593908 DOI: 10.1016/j.cbi.2024.110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Diabetic retinopathy is not cured efficiently and changes of lifestyle measures may delay early retinal injury in diabetes. The aim of our study was to investigate the effects of reduced daily light exposure on retinal vascular changes in streptozotocin (STZ)-induced model of DM with emphasis on inflammation, Aqp4 expression, visual cycle and cholesterol metabolism-related gene expression in rat retina and RPE. Male Wistar rats were divided into the following groups: 1. control; 2. diabetic group (DM) treated with streptozotocin (100 mg/kg); 3. group exposed to light/dark cycle 6/18 h (6/18); 4. diabetic group exposed to light/dark cycle 6/18 h (DM+6/18). Retinal vascular abnormalities were estimated based on lectin staining, while the expression of genes involved in the visual cycle, cholesterol metabolism, and inflammation was determined by qRT-PCR. Reduced light exposure alleviated vasculopathy, gliosis and the expression of IL-1 and TNF-α in the retina with increased perivascular Aqp4 expression. The expression of genes involved in visual cycle and cholesterol metabolism was significantly up-regulated in RPE in DM+6/18 vs. DM group. In the retina only the expression of APOE was significantly higher in DM+6/18 vs. DM group. Reduced light exposure mitigates vascular changes and gliosis in DM via its anti-inflammatory effect, increased retinal cholesterol turnover and perivascular Aqp4 expression.
Collapse
Affiliation(s)
- Dolika D Vasović
- Eye Hospital, University Clinical Centre of Serbia, 11000, Belgrade, Serbia
| | - Sanja Ivković
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Ana Živanović
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Tamara Major
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, 11000, Belgrade, Serbia
| | - Jelena M Milašin
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Nađa S Nikolić
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Jelena M Simonović
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Nikola Šutulović
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Dragan Hrnčić
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Olivera Stanojlović
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Milena Vesković
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Dejan M Rašić
- Eye Hospital, University Clinical Centre of Serbia, 11000, Belgrade, Serbia; School of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Dušan Mladenović
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia.
| |
Collapse
|
15
|
Tian C, Huang R, Xiang M. SIRT1: Harnessing multiple pathways to hinder NAFLD. Pharmacol Res 2024; 203:107155. [PMID: 38527697 DOI: 10.1016/j.phrs.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses hepatic steatosis, non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. It is the primary cause of chronic liver disorders, with a high prevalence but no approved treatment. Therefore, it is indispensable to find a trustworthy therapy for NAFLD. Recently, mounting evidence illustrates that Sirtuin 1 (SIRT1) is strongly associated with NAFLD. SIRT1 activation or overexpression attenuate NAFLD, while SIRT1 deficiency aggravates NAFLD. Besides, an array of therapeutic agents, including natural compounds, synthetic compounds, traditional Chinese medicine formula, and stem cell transplantation, alleviates NALFD via SIRT1 activation or upregulation. Mechanically, SIRT1 alleviates NAFLD by reestablishing autophagy, enhancing mitochondrial function, suppressing oxidative stress, and coordinating lipid metabolism, as well as reducing hepatocyte apoptosis and inflammation. In this review, we introduced the structure and function of SIRT1 briefly, and summarized the effect of SIRT1 on NAFLD and its mechanism, along with the application of SIRT1 agonists in treating NAFLD.
Collapse
Affiliation(s)
- Cheng Tian
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongrong Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
16
|
Jin Q, Liu T, Ma F, Fu T, Yang L, Mao H, Wang Y, Peng L, Li P, Zhan Y. Roles of Sirt1 and its modulators in diabetic microangiopathy: A review. Int J Biol Macromol 2024; 264:130761. [PMID: 38467213 DOI: 10.1016/j.ijbiomac.2024.130761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Diabetic vascular complications include diabetic macroangiopathy and diabetic microangiopathy. Diabetic microangiopathy is characterised by impaired microvascular endothelial function, basement membrane thickening, and microthrombosis, which may promote renal, ocular, cardiac, and peripheral system damage in diabetic patients. Therefore, new preventive and therapeutic strategies are urgently required. Sirt1, a member of the nicotinamide adenine dinucleotide-dependent histone deacetylase class III family, regulates different organ growth and development, oxidative stress, mitochondrial function, metabolism, inflammation, and aging. Sirt1 is downregulated in vascular injury and microangiopathy. Moreover, its expression and distribution in different organs correlate with age and play critical regulatory roles in oxidative stress and inflammation. This review introduces the background of diabetic microangiopathy and the main functions of Sirt1. Then, the relationship between Sirt1 and different diabetic microangiopathies and the regulatory roles mediated by different cells are described. Finally, we summarize the modulators that target Sirt1 to ameliorate diabetic microangiopathy as an essential preventive and therapeutic measure for diabetic microangiopathy. In conclusion, targeting Sirt1 may be a new therapeutic strategy for diabetic microangiopathy.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongfei Fu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
17
|
Rusciano D, Russo C. The Therapeutic Trip of Melatonin Eye Drops: From the Ocular Surface to the Retina. Pharmaceuticals (Basel) 2024; 17:441. [PMID: 38675402 PMCID: PMC11054783 DOI: 10.3390/ph17040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Melatonin is a ubiquitous molecule found in living organisms, ranging from bacteria to plants and mammals. It possesses various properties, partly due to its robust antioxidant nature and partly owed to its specific interaction with melatonin receptors present in almost all tissues. Melatonin regulates different physiological functions and contributes to the homeostasis of the entire organism. In the human eye, a small amount of melatonin is also present, produced by cells in the anterior segment and the posterior pole, including the retina. In the eye, melatonin may provide antioxidant protection along with regulating physiological functions of ocular tissues, including intraocular pressure (IOP). Therefore, it is conceivable that the exogenous topical administration of sufficiently high amounts of melatonin to the eye could be beneficial in several instances: for the treatment of eye pathologies like glaucoma, due to the IOP-lowering and neuroprotection effects of melatonin; for the prevention of other dysfunctions, such as dry eye and refractive defects (cataract and myopia) mainly due to its antioxidant properties; for diabetic retinopathy due to its metabolic influence and neuroprotective effects; for macular degeneration due to the antioxidant and neuroprotective properties; and for uveitis, mostly owing to anti-inflammatory and immunomodulatory properties. This paper reviews the scientific evidence supporting the use of melatonin in different ocular districts. Moreover, it provides data suggesting that the topical administration of melatonin as eye drops is a real possibility, utilizing nanotechnological formulations that could improve its solubility and permeation through the eye. This way, its distribution and concentration in different ocular tissues may support its pleiotropic therapeutic effects.
Collapse
Affiliation(s)
- Dario Rusciano
- Fidia Research Centre, c/o University of Catania, Via Santa Sofia 89, 95123 Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 89, 95123 Catania, Italy;
| |
Collapse
|
18
|
Wu D, Zhang K, Khan FA, Pandupuspitasari NS, Guan K, Sun F, Huang C. A comprehensive review on signaling attributes of serine and serine metabolism in health and disease. Int J Biol Macromol 2024; 260:129607. [PMID: 38253153 DOI: 10.1016/j.ijbiomac.2024.129607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Serine is a metabolite with ever-expanding metabolic and non-metabolic signaling attributes. By providing one‑carbon units for macromolecule biosynthesis and functional modifications, serine and serine metabolism largely impinge on cellular survival and function. Cancer cells frequently have a preference for serine metabolic reprogramming to create a conducive metabolic state for survival and aggressiveness, making intervention of cancer-associated rewiring of serine metabolism a promising therapeutic strategy for cancer treatment. Beyond providing methyl donors for methylation in modulation of innate immunity, serine metabolism generates formyl donors for mitochondrial tRNA formylation which is required for mitochondrial function. Interestingly, fully developed neurons lack the machinery for serine biosynthesis and rely heavily on astrocytic l-serine for production of d-serine to shape synaptic plasticity. Here, we recapitulate recent discoveries that address the medical significance of serine and serine metabolism in malignancies, mitochondrial-associated disorders, and neurodegenerative pathologies. Metabolic control and epigenetic- and posttranslational regulation of serine metabolism are also discussed. Given the metabolic similarities between cancer cells, neurons and germ cells, we further propose the relevance of serine metabolism in testicular homeostasis. Our work provides valuable hints for future investigations that will lead to a deeper understanding of serine and serine metabolism in cellular physiology and pathology.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat 10340, Indonesia
| | | | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
19
|
Dong H, Sun Y, Nie L, Cui A, Zhao P, Leung WK, Wang Q. Metabolic memory: mechanisms and diseases. Signal Transduct Target Ther 2024; 9:38. [PMID: 38413567 PMCID: PMC10899265 DOI: 10.1038/s41392-024-01755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Metabolic diseases and their complications impose health and economic burdens worldwide. Evidence from past experimental studies and clinical trials suggests our body may have the ability to remember the past metabolic environment, such as hyperglycemia or hyperlipidemia, thus leading to chronic inflammatory disorders and other diseases even after the elimination of these metabolic environments. The long-term effects of that aberrant metabolism on the body have been summarized as metabolic memory and are found to assume a crucial role in states of health and disease. Multiple molecular mechanisms collectively participate in metabolic memory management, resulting in different cellular alterations as well as tissue and organ dysfunctions, culminating in disease progression and even affecting offspring. The elucidation and expansion of the concept of metabolic memory provides more comprehensive insight into pathogenic mechanisms underlying metabolic diseases and complications and promises to be a new target in disease detection and management. Here, we retrace the history of relevant research on metabolic memory and summarize its salient characteristics. We provide a detailed discussion of the mechanisms by which metabolic memory may be involved in disease development at molecular, cellular, and organ levels, with emphasis on the impact of epigenetic modulations. Finally, we present some of the pivotal findings arguing in favor of targeting metabolic memory to develop therapeutic strategies for metabolic diseases and provide the latest reflections on the consequences of metabolic memory as well as their implications for human health and diseases.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuezhang Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lulingxiao Nie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Aimin Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pengfei Zhao
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Wai Keung Leung
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Bian J, Ge W, Jiang Z. miR-26a-5p Attenuates Oxidative Stress and Inflammation in Diabetic Retinopathy through the USP14/NF- κB Signaling Pathway. J Ophthalmol 2024; 2024:1470898. [PMID: 38282961 PMCID: PMC10817816 DOI: 10.1155/2024/1470898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Purpose Diabetic retinopathy (DR) is an ocular disease caused by diabetes and may lead to vision impairment and even blindness. Oxidative stress and inflammation are two key pathogenic factors of DR. Recently, regulatory roles of different microRNAs (miRNAs) in DR have been widely verified. miR-26a-5p has been confirmed to be a potential biomarker of DR. Nevertheless, the specific functions of miR-26a-5p in DR are still unclear. Methods Primary cultured mouse retinal Müller cells in exposure to high glucose (HG) were used to establish an in vitro DR model. Müller cells were identified via morphology observation under phase contrast microscope and fluorescence staining for glutamine synthetase. The in vivo animal models for DR were constructed using streptozotocin-induced diabetic C57BL/6 mice. Western blotting was performed to quantify cytochrome c protein level in the cytoplasm and mitochondria of Müller cells and to measure protein levels of glial fibrillary acidic protein (GFAP), ubiquitin-specific peptidase 14 (USP14), as well as factors associated with NF-κB signaling (p-IκBα, IκBα, p-p65, and p65) in Müller cells or murine retinal tissues. ROS production was detected by CM-H2DCFDA staining, and the concentration of oxidative stress markers (MDA, SOD, and CAT) was estimated by using corresponding commercial kits. Quantification of mRNA expression was conducted by RT-qPCR analysis. The concentration of proinflammatory factors (TNF-α, IL-1β, and IL-6) was evaluated by ELISA. Hematoxylin-eosin staining for murine retinal tissues was performed for histopathological analysis. Immunofluorescence staining was conducted to determine NF-κB p65 nuclear translocation in Müller cells. Furthermore, the interaction between miR-26a-5p and USP14 was verified via the luciferase reporter assays. Results HG stimulation contributed to Müller cell dysfunction by inducing inflammation, oxidative injury, and mitochondrial damage to Müller cells. miR-26a-5p was downregulated in Müller cells under HG condition, and overexpression of miR-26a-5p relieved HG-induced Müller cell dysfunction. Moreover, miR-26a-5p targeted USP14 and inversely regulated USP14 expression. Additionally, HG-evoked activation of NF-κB signaling was suppressed by USP14 knockdown or miR-26a-5p upregulation. Rescue assays showed that the protective impact of miR-26a-5p upregulation against HG-induced Müller cell dysfunction was reversed by USP14 overexpression. Furthermore, USP14 upregulation and activation of NF-κB signaling in the retinas of DR mice were detected in animal experiments. Injection with miR-26a-5p agomir improved retinal histopathological injury and weakened the concentration of proinflammatory cytokines and oxidative stress markers in the retinas of DR mice. Conclusion miR-26a-5p inhibits oxidative stress and inflammation in DR progression by targeting USP14 and inactivating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jie Bian
- Department of Ophthalmology, Yixing People's Hospital, The Affiliated Hospital of Jiangsu University, Yixing 214200, Jiangsu, China
| | - Weizhong Ge
- Department of Ophthalmology, Yixing People's Hospital, The Affiliated Hospital of Jiangsu University, Yixing 214200, Jiangsu, China
| | - Zhengmei Jiang
- Department of Ophthalmology, Yixing People's Hospital, The Affiliated Hospital of Jiangsu University, Yixing 214200, Jiangsu, China
| |
Collapse
|
21
|
Zingale E, Bonaccorso A, D’Amico AG, Lombardo R, D’Agata V, Rautio J, Pignatello R. Formulating Resveratrol and Melatonin Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) for Ocular Administration Using Design of Experiments. Pharmaceutics 2024; 16:125. [PMID: 38258134 PMCID: PMC10819881 DOI: 10.3390/pharmaceutics16010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Recent studies have demonstrated that Sirtuin-1 (SIRT-1)-activating molecules exert a protective role in degenerative ocular diseases. However, these molecules hardly reach the back of the eye due to poor solubility in aqueous environments and low bioavailability after topical application on the eye's surface. Such hindrances, combined with stability issues, call for the need for innovative delivery strategies. Within this context, the development of self-nanoemulsifying drug delivery systems (SNEDDS) for SIRT-1 delivery can represent a promising approach. The aim of the work was to design and optimize SNEDDS for the ocular delivery of two natural SIRT-1 agonists, resveratrol (RSV) and melatonin (MEL), with potential implications for treating diabetic retinopathy. Pre-formulation studies were performed by a Design of Experiment (DoE) approach to construct the ternary phase diagram. The optimization phase was carried out using Response Surface Methodology (RSM). Four types of SNEDDS consisting of different surfactants (Tween® 80, Tween® 20, Solutol® HS15, and Cremophor® EL) were optimized to achieve the best physico-chemical parameters for ocular application. Stability tests indicated that SNEDDS produced with Tween® 80 was the formulation that best preserved the stability of molecules, and so it was, therefore, selected for further technological studies. The optimized formulation was prepared with Capryol® PGMC, Tween® 80, and Transcutol® P and loaded with RSV or MEL. The SNEDDS were evaluated for other parameters, such as the mean size (found to be ˂50 nm), size homogeneity (PDI < 0.2), emulsion time (around 40 s), transparency, drug content (>90%), mucoadhesion strength, in vitro drug release, pH and osmolarity, stability to dilution, and cloud point. Finally, an in vitro evaluation was performed on a rabbit corneal epithelial cell line (SIRC) to assess their cytocompatibility. The overall results suggest that SNEDDS can be used as promising nanocarriers for the ocular drug delivery of RSV and MEL.
Collapse
Affiliation(s)
- Elide Zingale
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (A.B.); (R.L.)
- NANOMED—Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (A.B.); (R.L.)
- NANOMED—Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Agata Grazia D’Amico
- Department of Drug and Health Sciences, Section of Systems Biology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Rosamaria Lombardo
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (A.B.); (R.L.)
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy;
| | - Jarkko Rautio
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland;
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (E.Z.); (A.B.); (R.L.)
- NANOMED—Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| |
Collapse
|
22
|
Zeng L, Ying Q, Lou H, Wang F, Pang Y, Hu H, Zhang Z, Song Y, Liu P, Zhang X. Protective effect of the natural flavonoid naringenin in mouse models of retinal injury. Eur J Pharmacol 2024; 962:176231. [PMID: 38052414 DOI: 10.1016/j.ejphar.2023.176231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Glaucoma is an eye disease with a high rate of blindness and a complex pathogenesis. Ocular hypertension (OHT) is a critical risk factor, and retinal ischemia/reperfusion (I/R) is an important pathophysiological basis. This study was designed to investigate the retinal neuroprotective effect of oral naringenin in an acute retinal I/R model and a chronic OHT model and the possible mechanism involved. After the I/R and OHT models were established, mice were given vehicle or naringenin (100 mg/kg or 300 mg/kg). Hematoxylin-eosin (HE) staining and immunostaining of RBPMS and glial fibrillary acidic protein (GFAP) were used to evaluate retinal injury. GFAP, CD38, Sirtuin1 (SIRT1), and NOD-like receptor protein 3 (NLRP3) expression levels were measured by Western blotting. In the OHT model, intraocular pressure (IOP) was dynamically maintained at approximately 20-25 mmHg after injury. The retinal structure was damaged, and retinal ganglion cells (RGCs) were lost in both models. Naringenin ameliorated the abovementioned indications but also demonstrated that high concentrations of naringenin significantly inhibited retinal astrocyte activation and inhibited damage-induced increases in the expression of GFAP, NLRP3, and CD38 proteins, while SIRT1 protein expression was upregulated. This study showed for the first time that naringenin can reduce microbead-induced IOP elevation in the OHT model, providing new evidence for the application of naringenin in glaucoma. Naringenin may mediate the CD38/SIRT1 signaling pathway, inhibit astrocyte activation, and ultimately exert an anti-inflammatory effect to achieve retinal neuroprotection.
Collapse
Affiliation(s)
- Ling Zeng
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Qian Ying
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Hongdou Lou
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Feifei Wang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Yulian Pang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Haijian Hu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Ziqiao Zhang
- Queen Mary School, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yuning Song
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Peiyu Liu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China.
| |
Collapse
|
23
|
Jun JH, Kim JS, Palomera LF, Jo DG. Dysregulation of histone deacetylases in ocular diseases. Arch Pharm Res 2024; 47:20-39. [PMID: 38151648 DOI: 10.1007/s12272-023-01482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Ocular diseases are a growing global concern and have a significant impact on the quality of life. Cataracts, glaucoma, age-related macular degeneration, and diabetic retinopathy are the most prevalent ocular diseases. Their prevalence and the global market size are also increasing. However, the available pharmacotherapy is currently limited. These diseases share common pathophysiological features, including neovascularization, inflammation, and/or neurodegeneration. Histone deacetylases (HDACs) are a class of enzymes that catalyze the removal of acetyl groups from lysine residues of histone and nonhistone proteins. HDACs are crucial for regulating various cellular processes, such as gene expression, protein stability, localization, and function. They have also been studied in various research fields, including cancer, inflammatory diseases, neurological disorders, and vascular diseases. Our study aimed to investigate the relationship between HDACs and ocular diseases, to identify a new strategy for pharmacotherapy. This review article explores the role of HDACs in ocular diseases, specifically focusing on diabetic retinopathy, age-related macular degeneration, and retinopathy of prematurity, as well as optic nerve disorders, such as glaucoma and optic neuropathy. Additionally, we explore the interplay between HDACs and key regulators of fibrosis and angiogenesis, such as TGF-β and VEGF, highlighting the potential of targeting HDAC as novel therapeutic strategies for ocular diseases.
Collapse
Affiliation(s)
- Jae Hyun Jun
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
- Department of Pharmacology, CKD Research Institute, Chong Kun Dang Pharmaceutical Co., Yongin, 16995, Korea
| | - Jun-Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
| | - Leon F Palomera
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea.
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Korea.
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
24
|
Luo Y, Wang H, Wang L, Wu W, Zhao J, Li X, Xiong R, Ding X, Yuan D, Yuan C. LncRNA MEG3: Targeting the Molecular Mechanisms and Pathogenic causes of Metabolic Diseases. Curr Med Chem 2024; 31:6140-6153. [PMID: 37855346 DOI: 10.2174/0109298673268051231009075027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/27/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Non-coding RNA is a type of RNA that does not encode proteins, distributed among rRNA, tRNA, snRNA, snoRNA, microRNA and other RNAs with identified functions, where the Long non-coding RNA (lncRNA) displays a nucleotide length over 200. LncRNAs enable multiple biological processes in the human body, including cancer cell invasion and metastasis, apoptosis, cell autophagy, inflammation, etc. Recently, a growing body of studies has demonstrated the association of lncRNAs with obesity and obesity-induced insulin resistance and NAFLD, where MEG3 is related to glucose metabolism, such as insulin resistance. In addition, MEG3 has been demonstrated in the pathological processes of various cancers, such as mediating inflammation, cardiovascular disease, liver disease and other metabolic diseases. OBJECTIVE To explore the regulatory role of lncRNA MEG3 in metabolic diseases. It provides new ideas for clinical treatment or experimental research. METHODS In this paper, in order to obtain enough data, we integrate and analyze the data in the PubMed database. RESULTS LncRNA MEG3 can regulate many metabolic diseases, such as insulin resistance, NAFLD, inflammation and so on. CONCLUSION LncRNA MEG3 has a regulatory role in a variety of metabolic diseases, which are currently difficult to be completely cured, and MEG3 is a potential target for the treatment of these diseases. Here, we review the role of lncRNA MEG3 in mechanisms of action and biological functions in human metabolic diseases.
Collapse
Affiliation(s)
- Yiyang Luo
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Hailin Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Lijun Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Department of Biochemistry, College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Wei Wu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Jiale Zhao
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Xueqing Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Ruisi Xiong
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Department of Biochemistry, College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Xueliang Ding
- Department of Clinical Laboratory, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443002, China
| | - Ding Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Department of Biochemistry, College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
25
|
Gao J, Tao L, Jiang Z. Alleviate oxidative stress in diabetic retinopathy: antioxidant therapeutic strategies. Redox Rep 2023; 28:2272386. [PMID: 38041593 PMCID: PMC11001280 DOI: 10.1080/13510002.2023.2272386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023] Open
Abstract
OBJECTIVES This review outlines the function of oxidative stress in DR and discusses therapeutic strategies to treat DR with antioxidants. METHODS Published papers on oxidative stress in DR and therapeutic strategies to treat DR with antioxidants were collected and reviewed via database searching on PubMed. RESULTS The abnormal development of DR is a complicated process. The pathogenesis of DR has been reported to involve oxidative stress, despite the fact that the mechanisms underlying this are still not fully understood. Excessive reactive oxygen species (ROS) accumulation can damage retina, eventually leading to DR. Increasing evidence have demonstrated that antioxidant therapy can alleviate the degeneration of retinal capillaries in DR. CONCLUSION Oxidative stress can play an important contributor in the pathogenesis of DR. Furthermore, animal experiments have shown that antioxidants are a beneficial therapy for treating DR, but more clinical trial data is needed.
Collapse
Affiliation(s)
- Jie Gao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Liming Tao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Zhengxuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
26
|
Cha Z, Yin Z, A L, Ge L, Yang J, Huang X, Gao H, Chen X, Feng Z, Mo L, He J, Zhu S, Zhao M, Tao Z, Gu Z, Xu H. Fullerol rescues the light-induced retinal damage by modulating Müller glia cell fate. Redox Biol 2023; 67:102911. [PMID: 37816275 PMCID: PMC10570010 DOI: 10.1016/j.redox.2023.102911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023] Open
Abstract
Excessive light exposure can damage photoreceptors and lead to blindness. Oxidative stress serves a key role in photo-induced retinal damage. Free radical scavengers have been proven to protect against photo-damaged retinal degeneration. Fullerol, a potent antioxidant, has the potential to protect against ultraviolet-B (UVB)-induced cornea injury by activating the endogenous stem cells. However, its effects on cell fate determination of Müller glia (MG) between gliosis and de-differentiation remain unclear. Therefore, we established a MG lineage-tracing mouse model of light-induced retinal damage to examine the therapeutic effects of fullerol. Fullerol exhibited superior protection against light-induced retinal injury compared to glutathione (GSH) and reduced oxidative stress levels, inhibited gliosis by suppressing the TGF-β pathway, and enhanced the de-differentiation of MG cells. RNA sequencing revealed that transcription candidate pathways, including Nrf2 and Wnt10a pathways, were involved in fullerol-induced neuroprotection. Fullerol-mediated transcriptional changes were validated by qPCR, Western blotting, and immunostaining using mouse retinas and human-derived Müller cell lines MIO-M1 cells, confirming that fullerol possibly modulated the Nrf2, Wnt10a, and TGF-β pathways in MG, which suppressed gliosis and promoted the de-differentiation of MG in light-induced retinal degeneration, indicating its potential in treating retinal diseases.
Collapse
Affiliation(s)
- Zhe Cha
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Zhiyuan Yin
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Luodan A
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Lingling Ge
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Junling Yang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Xiaona Huang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Hui Gao
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Xia Chen
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Zhou Feng
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Lingyue Mo
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China
| | - Juncai He
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China; Joint Logistics Support Force of Chinese PLA, No. 927 Hospital, Puer 665000, Yunnan, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Maoru Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zui Tao
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China.
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing 400038, China.
| |
Collapse
|
27
|
Li J, Yang Q, Liu H, Wang M, Pan C, Han L, Lan X. Phloretin alleviates palmitic acid-induced oxidative stress in HUVEC cells by suppressing the expression of LncBAG6-AS. Food Funct 2023; 14:9350-9363. [PMID: 37782102 DOI: 10.1039/d3fo03523a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Oxidative stress (OS) is an important trigger of vascular endothelial injury (VEI), which then leads to cardiovascular disease (CVDs). Phloretin was previously investigated to alleviate OS in human umbilical vein endothelial cells (HUVECs) by activating the AMPK/Nrf2 pathway; however, whether phloretin exerts cardiovascular health benefits by targeting non-coding RNAs (ncRNAs) remains unclear. Herein, the whole transcriptome sequencing and lncRNA library building were performed on HUVECs, a commonly used cell line for CVDs study, from different groups in control (CK), palmitic acid (PA, 100 μM), and PA + phloretin (50 μM, G50). KEGG analysis demonstrated that DE-lncRNAs regulated the pathway related to OS and metabolism in HUVECs. LncBAG6-AS was highly expressed under OS stimulation, which was reversed by phloretin co-treatment. Moreover, the MMP, activities of SOD, GSH-Px, T-AOC and GR were significantly ameliorated after interference of LncBAG6-AS, which were consistent with phloretin recover group. Furthermore, the expression of DE-genes from previously reported mRNA sequencing, including MAPK10, PIK3R1, ATP2B4, AKT2, and ADCY9, were significantly changed with LncBAG6-AS interference, indicating that LncBAG6-AS may participate in the process of OS attenuation by phloretin through regulating gene expression. So, the transcriptome sequencing of HUVECs with LncBAG6-AS knockdown was subsequently performed and DE-genes for "NC vs. si-ASO-LncBAG6-AS" were significantly enriched with GO terms, such as apoptosis, response to OS, ferroptosis, and others, which were similar to those observed from KEGG analysis. Overall, this study provides new insights into the molecular mechanisms by which bioactive substances alleviate OS and potential targets for the early prevention and treatment of VEI.
Collapse
Affiliation(s)
- Jie Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China.
| | - Qing Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China.
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, P. R. China.
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjing, 300072, P. R. China
| | - Hongfei Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100089, P. R. China
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, P. R. China.
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China.
| | - Lin Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, P. R. China.
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China.
| |
Collapse
|
28
|
Atacak A, Baltaci SB, Akgun-Unal N, Mogulkoc R, Baltaci AK. Melatonin protects retinal tissue damage in streptozotocin-induced aged rats. Arch Gerontol Geriatr 2023; 112:105035. [PMID: 37075585 DOI: 10.1016/j.archger.2023.105035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVES The aim of this study was to investigate how melatonin administration affects retinal oxidative damage and retinal SIRT1 gene activation in diabetic elderly female rat model. METHODS 16-months-old female rats were used in the study. A total of 24 rats were divided into 4 groups in equal numbers: Group 1. Control, Group 2. Control + Melatonin, Group 3. Diabetes, Group 4. Diabetes + Melatonin. In group 3 and 4 rats, diabetes was induced by intraperitoneal (IP) injection of streptozotocin. Groups 2 and 4 were given ip melatonin for 4 weeks. SIRT-1 gene expression was determined by PCR method and GSH and MDA levels by ELISA in retinal tissue samples taken from animals sacrificed under general anesthesia. RESULTS In our study, the highest retinal SIRT1 expression values were obtained in the diabetes + melatonin (G4) group. The retinal SIRT1 expression values of the diabetes group (G3) were lower than group 4 and higher than the general control (G1) and control + melatonin (G2) groups. Again in our study, the highest retinal MDA values were obtained in the diabetes group (G3). The highest retinal GSH values were obtained in the Diabetes + melatonin group (G4). CONCLUSION The results of our study showed that melatonin supplementation has a protective effect on retinal tissue in a diabetic elderly female rat model. This protective effect of melatonin supplementation occurs by increasing both retinal antioxidant activity and retinal SIRT1 gene expression.
Collapse
Affiliation(s)
- Adem Atacak
- Medical Faculty Department of Physiology, Selcuk University, Konya, Turkey
| | | | - Nilufer Akgun-Unal
- Department of Biophysics, Faculty of Medicine, University of Ondokuz Mayis, Samsun, Turkey
| | - Rasim Mogulkoc
- Medical Faculty Department of Physiology, Selcuk University, Konya, Turkey
| | | |
Collapse
|
29
|
Li Y, Zhu Y, Hu F, Liu L, Shen G, Tu Q. Procyanidin B2 regulates the Sirt1/Nrf2 signaling pathway to improve random-pattern skin flap survival. Phytother Res 2023; 37:3913-3925. [PMID: 37128130 DOI: 10.1002/ptr.7847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Random-pattern skin flaps have been widely used in the reconstruction of damaged tissues. Ischemia-reperfusion injury occurring in the distal regions of the flap is a common issue, which often leads to flap necrosis and restricts its clinical applications. Procyanidin B2 (PB2), a naturally occurring flavonoid in large quantities in various fruits, has been demonstrated to exhibit several significant pharmacological properties. However, the effect of PB2 on flap viability is not clearly known. Here, using Western blot analysis, immunohistochemistry, and immunofluorescence staining, we observed that PB2 significantly reduced oxidative stress and inflammation and enhanced angiogenesis. Mechanically, we provided evidence for the first time that the beneficial effects of PB2 occur through the activation of the Sirt1/Nrf2 signaling pathway. Moreover, co-administration of PB2 and EX527, a selective inhibitor of Sirt1, resulted in down-regulation of the expression of Sirt1, Nrf2, and downstream antioxidants. In summary, our study showed that PB2 might be a novel therapeutic strategy for improving the survival of random-pattern skin flaps.
Collapse
Affiliation(s)
- Yao Li
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
- Nanjing Medical University, Nanjing, China
| | - Yurun Zhu
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
- Nanjing Medical University, Nanjing, China
| | - Fei Hu
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Lue Liu
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
| | - Guangjie Shen
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
| | - Qiming Tu
- Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China
| |
Collapse
|
30
|
Anaeigoudari F, Anaeigoudari A, Kheirkhah‐Vakilabad A. A review of therapeutic impacts of saffron (Crocus sativus L.) and its constituents. Physiol Rep 2023; 11:e15785. [PMID: 37537722 PMCID: PMC10400758 DOI: 10.14814/phy2.15785] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
Application of herbal medicines in the treatment of diseases is in the center of attention of medical scientific societies. Saffron (Cricus sativus L.) is a medicinal plant belonging to the Iridaceae family with different therapeutic properties. The outcomes of human and animal experiments indicate that therapeutic impacts of saffron and its constituents, crocin, crocetin, and safranal, mainly are mediated via inhibiting the inflammatory reactions and scavenging free radicals. It has been suggested that saffron and crocin extracted from it also up-regulate the expression of sirtuin 1 (SIRT1) and nuclear factor erythroid 2-related factor 2 (Nrf2), down-regulate nuclear factor kappa B (NF-κB) signaling pathway and untimely improve the body organs dysfunction. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 (COX2) also is attributed to crocin. The current review narrates the therapeutic effects of saffron and its constituents on various body systems through looking for the scientific databases including Web of Science, PubMed, Scopus, and Google Scholar from the beginning of 2010 until the end of 2022.
Collapse
Affiliation(s)
- Fatemeh Anaeigoudari
- Student Research Committee, Afzalipour Faculty of MedicineKerman University of Medical SciencesKermanIran
| | - Akbar Anaeigoudari
- Department of Physiology, School of MedicineJiroft University of Medical SciencesJiroftIran
| | | |
Collapse
|
31
|
Li B, Li W, Guo C, Guo C, Chen M. Early diagnosis of retinal neurovascular injury in diabetic patients without retinopathy by quantitative analysis of OCT and OCTA. Acta Diabetol 2023:10.1007/s00592-023-02086-z. [PMID: 37145367 DOI: 10.1007/s00592-023-02086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/26/2023] [Indexed: 05/06/2023]
Abstract
AIMS To quantitatively analyze and compare the differences in retinal neurovascular units (NVUs) between healthy individuals and patients with type 2 diabetes mellitus (DM) by optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) techniques and to determine the value of this technique for the early diagnosis of retinal neurovascular damage in patients with diabetes mellitus without retinopathy (NDR). METHODS This observational case‒control study was conducted from July 1, 2022, to November 30, 2022, at the outpatient ophthalmology clinic of the Affiliated Hospital of Shandong University of Traditional Chinese Medicine. All subjects underwent baseline data entry and mean thickness of the peripapillary retinal nerve fiber layer (pRNFL), the thickness of each retinal layer in the macula 3 × 3 mm, and vascular density (VD) examination. RESULTS The study included 35 healthy individuals and 48 patients with DM. The retinal VD as well as partial pRNFL, macular nerve fiber layer (NFL), and macular ganglion cell layer (GCL) thickness in DM patients exhibited significantly lower VD in the DM group than in the control group (p < 0.05). Age and disease duration of DM patients showed a negative trend with pRNFL thickness, macular NFL thickness, macular GCL thickness, and VD. However, a positive trend was observed between DM duration and partial inner nuclear layer (INL) thickness. Moreover, there was a positive correlation between macular NFL and GCL thickness and VD for the most part, while a negative correlation was shown between INL temporal thickness and DVC-VD. pRNFL-TI and GCL-superior thickness were screened as two variables in the analysis of the predictors of retinal damage in DM according to the presence or absence of DM. The AUCs were 0.765 and 0.673, respectively. By combining the two indicators for diagnosis, the model predicted prognosis with an AUC of 0.831. In the analysis of retinal damage indicators associated with the duration of DM, after regression logistic analysis according to the duration of DM within 5 years and more than 5 years, the model incorporated two indicators, DVC-VD and pRNFL-N thickness, and the AUCs were 0.764 and 0.852, respectively. Combining the two indicators for diagnosis, the AUC reached 0.925. CONCLUSIONS Retinal NVU may have been compromised in patients with DM without retinopathy. Basic clinical information and rapid noninvasive OCT and OCTA techniques are useful for the quantitative assessment of retinal NVU prognosis in patients with DM without retinopathy.
Collapse
Affiliation(s)
- Baohua Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, No. 4655 Da-Xue Road, Jinan, 250355, Shandong Province, People's Republic of China
| | - Wenwen Li
- Ophthalmology Department of Shandong Hospital of Traditional Chinese Medicine, No. 16369 Jing-Shi Road, Jinan, 250013, Shandong Province, People's Republic of China
| | - Chaohong Guo
- Ophthalmology Department of Shandong Hospital of Traditional Chinese Medicine, No. 16369 Jing-Shi Road, Jinan, 250013, Shandong Province, People's Republic of China
| | - Chengwei Guo
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, No. 4655 Da-Xue Road, Jinan, 250355, Shandong Province, People's Republic of China.
| | - Meirong Chen
- Ophthalmology Department of Shandong Hospital of Traditional Chinese Medicine, No. 16369 Jing-Shi Road, Jinan, 250013, Shandong Province, People's Republic of China.
| |
Collapse
|
32
|
Barangi S, Hayes AW, Karimi G. The role of lncRNAs/miRNAs/Sirt1 axis in myocardial and cerebral injury. Cell Cycle 2023; 22:1062-1073. [PMID: 36703306 PMCID: PMC10081082 DOI: 10.1080/15384101.2023.2172265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 01/28/2023] Open
Abstract
In recent years, researchers have begun to realize the importance of the role of non-coding RNAs in the treatment of cancer and cardiovascular and neurological diseases. LncRNAs and miRNAs are important non-coding RNAs, which regulate gene expression and activate mRNA translation through binding to diverse target sites. Their involvement in the regulation of protein function and the modulation of physiological and pathological conditions continues to be investigated. Sirtuins, especially Sirt1, have a critical function in regulating a variety of physiological processes such as oxidative stress, inflammation, apoptosis, and autophagy. The lncRNAs/miRNAs/Sirt1 axis may be a novel regulatory mechanism, which is involved in the progression and/or prevention of numerous diseases. This review focuses on recent findings on the crosstalk between non-coding RNAs and Sirt1 in myocardial and cerebral injuries and may provide some insight into the development of novel approaches in the treatment of these disorders.Abbreviation: BMECs, brain microvascular endothelial cells; C2dat1, calcium/calmodulin-dependent protein kinase type II subunit delta (CAMK2D)-associated transcript 1; EPCs, endothelial progenitor cells; FOXOs, forkhead transcription factors; GAS5, growth arrest-specific 5; HAECs, human aortic endothelial cells; HAND2-AS1, HAND2 Antisense RNA 1; HIF-1α, hypoxia-inducible factor-1α; ILF3-AS1, interleukin enhancer-binding factor 3-antisense RNA 1; KLF3-AS1, KLF3 antisense RNA 1; LncRNA, long noncoding RNA; LUADT1, Lung Adenocarcinoma Associated Transcript 1; MALAT1, Metastasis-associated lung adenocarcinoma transcript 1; miRNA, microRNA; NEAT1, nuclear enriched abundant transcript 1; NF-κB, nuclear factor kappa B; OIP5-AS1, Opa-interacting protein 5-antisense transcript 1; Sirt1-AS, Sirt1 Antisense RNA; SNHG7, small nucleolar RNA host gene 7; SNHG8, small nucleolar RNA host gene 8; SNHG12, small nucleolar RNA host gene 12; SNHG15, small nucleolar RNA host gene 15; STAT3, signal transducers and activators of transcription 3; TUG1, taurine up-regulated gene 1; VSMCs, vascular smooth muscle cells; XIST, X inactive specific transcript; ZFAS1, ZNFX1 Antisense RNA 1.
Collapse
Affiliation(s)
- Samira Barangi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A. Wallace Hayes
- Michigan State University, East Lansing, MI, USA
- University of South Florida, Tampa, FL, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Ozturk I, Elbe H, Bicer Y, Karayakali M, Onal MO, Altinoz E. Therapeutic role of melatonin on acrylamide-induced hepatotoxicity in pinealectomized rats: Effects on oxidative stress, NF-κB signaling pathway, and hepatocellular proliferation. Food Chem Toxicol 2023; 174:113658. [PMID: 36780936 DOI: 10.1016/j.fct.2023.113658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023]
Abstract
Acrylamide (AA) is formed in some foods by the cooking process at high temperatures, and it could be a carcinogen in humans and rodents. The purpose of the current study was to reveal the possible protective effects of melatonin against AA-induced hepatic oxidative stress, hepatic inflammation, and hepatocellular proliferation in pinealectomized rats. Hence, the sham and pinealectomized rats were consecutively given AA alone (25 mg/kg) or with melatonin (10 mg/kg) for 21 days. Melatonin acts as an antioxidant, anti-inflammatory, and antiapoptotic agent and introduces as a therapeutic strategy for AA-induced hepatotoxicity. Melatonin supplementation reduced AA-caused liver damage by decreasing the serum AST, ALT, and ALP levels. Melatonin raised the activities of SOD and CAT and levels of GSH and suppressed hepatic inflammation (TNF-α) and hepatic oxidative stress in liver tissues. Moreover, histopathological alterations and the disturbances in immunohistochemical expression of NF-κB and Ki67 were improved after melatonin treatment in AA-induced hepatotoxicity. Overall, our results demonstrate that melatonin supplementation exhibits adequate hepatoprotective effects against hepatotoxicity of AA on pinealectomized rat liver architecture and the tissue function through the equilibration of oxidant/antioxidant status, the regulation of cell proliferation and the suppression of the release of proinflammatory cytokines.
Collapse
Affiliation(s)
- Ipek Ozturk
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Hulya Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Yasemin Bicer
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Melike Karayakali
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Melike Ozgul Onal
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Eyup Altinoz
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| |
Collapse
|
34
|
Liu S, Bi H, Jiang M, Chen Y, Jiang M. An update on the role of TRIM/NLRP3 signaling pathway in atherosclerosis. Biomed Pharmacother 2023; 160:114321. [PMID: 36736278 DOI: 10.1016/j.biopha.2023.114321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of large and medium arteries that includes lipid metabolism disorder and recruitment of immune cells to the artery wall. An increasing number of studies have confirmed that inflammasome over-activation is associated with the onset and progression of atherosclerosis. The NLRP3 inflammasome, in particular, has been proven to increase the incidence rate of cardiovascular diseases (CVD) by promoting pro-inflammatory cytokine release and reducing plaque stability. The strict control of inflammasome and prevention of excessive inflammatory reactions have been the research focus of inflammatory diseases. Tripartite motif (TRIM) is a protein family with a conservative structure and rapid evolution. Several studies have demonstrated the TRIM family's regulatory role in mediating inflammation. This review aims to clarify the relationship between TRIMs and NLRP3 inflammasome and provide insights for future research and treatment discovery.
Collapse
Affiliation(s)
- Sibo Liu
- The QUEEN MARY school, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Hongfeng Bi
- Medical Equipment Department, Dongying Shengli Oilfield Central Hospital, Dongying, Shandong 257034, China
| | - Meiling Jiang
- Department of obstetrics, Dongying Shengli Oilfield Central Hospital, Dongying, Shandong 257034, China
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Meixiu Jiang
- The Institute of Translational Medicine, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
35
|
Wang J, Feng S, Zhang Q, Qin H, Xu C, Fu X, Yan L, Zhao Y, Yao K. Roles of Histone Acetyltransferases and Deacetylases in the Retinal Development and Diseases. Mol Neurobiol 2023; 60:2330-2354. [PMID: 36637745 DOI: 10.1007/s12035-023-03213-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023]
Abstract
The critical role of epigenetic modification of histones in maintaining the normal function of the nervous system has attracted increasing attention. Among these modifications, the level of histone acetylation, modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), is essential in regulating gene expression. In recent years, the research progress on the function of HDACs in retinal development and disease has advanced remarkably, while that regarding HATs remains to be investigated. Here, we overview the roles of HATs and HDACs in regulating the development of diverse retinal cells, including retinal progenitor cells, photoreceptor cells, bipolar cells, ganglion cells, and Müller glial cells. The effects of HATs and HDACs on the progression of various retinal diseases are also discussed with the highlight of the proof-of-concept research regarding the application of available HDAC inhibitors in treating retinal diseases.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shuyu Feng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Qian Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Chunxiu Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Lin Yan
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yaqin Zhao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China. .,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China. .,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
36
|
Hyttinen JMT, Blasiak J, Kaarniranta K. Non-Coding RNAs Regulating Mitochondrial Functions and the Oxidative Stress Response as Putative Targets against Age-Related Macular Degeneration (AMD). Int J Mol Sci 2023; 24:ijms24032636. [PMID: 36768958 PMCID: PMC9917342 DOI: 10.3390/ijms24032636] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Age-related macular degeneration (AMD) is an ever-increasing, insidious disease which reduces the quality of life of millions of elderly people around the world. AMD is characterised by damage to the retinal pigment epithelium (RPE) in the macula region of the retina. The origins of this multi-factorial disease are complex and still not fully understood. Oxidative stress and mitochondrial imbalance in the RPE are believed to be important factors in the development of AMD. In this review, the regulation of the mitochondrial function and antioxidant stress response by non-coding RNAs (ncRNAs), newly emerged epigenetic factors, is discussed. These molecules include microRNAs, long non-coding RNAs, and circular non-coding RNAs. They act mainly as mRNA suppressors, controllers of other ncRNAs, or by interacting with proteins. We include here examples of these RNA molecules which affect various mitochondrial processes and antioxidant signaling of the cell. As a future prospect, the possibility to manipulate these ncRNAs to strengthen mitochondrial and antioxidant response functions is discussed. Non-coding RNAs could be used as potential diagnostic markers for AMD, and in the future, also as therapeutic targets, either by suppressing or increasing their expression. In addition to AMD, it is possible that non-coding RNAs could be regulators in other oxidative stress-related degenerative diseases.
Collapse
Affiliation(s)
- Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Correspondence:
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland
| |
Collapse
|
37
|
Bondy SC. Melatonin and Aging. Subcell Biochem 2023; 103:291-307. [PMID: 37120473 DOI: 10.1007/978-3-031-26576-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The health problems associated with the aging process are becoming increasingly widespread due to the increase in mean life expectancy taking place globally. While decline of many organ functions is an unavoidable concomitant of senescence, these can be delayed or moderated by a range of factors. Among these are dietary changes and weight control, taking sufficient exercise, and the utilization of various micronutrients. The utility of incurring appropriate changes in lifestyle is generally not confined to a single organ system but has a broadly positive systemic effect.Among one of the most potent means of slowing down age-related changes is the use of melatonin, a widely distributed biological indole. While melatonin is well known as a treatment for insomnia, it has a wide range of beneficial qualities many of which are relevant. This overview describes how several of the properties of melatonin are especially relevant to many of the changes associated with senescence. Changes in functioning of the immune system are particularly marked in the aged, combining diminishing effectiveness with increasing ineffective and harmful activity. Melatonin treatment appears able to moderate and partially reverse this detrimental drift toward immune incompetence.
Collapse
Affiliation(s)
- Stephen C Bondy
- Center for Occupational and Environmental Health, University of California, Irvine, CA, USA.
| |
Collapse
|
38
|
Jiang Y, Luo B. Histone deacetylase 3 inhibitor attenuates diabetic retinopathy in mice. J Neurophysiol 2023; 129:177-183. [PMID: 36541629 DOI: 10.1152/jn.00477.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diabetic retinopathy is one of the most common microvascular complications of diabetes. Inhibition of histone deacetylase 3 (Hdac3) was proven to be a successful way to ameliorate central nervous system injury and vision problem in a glaucoma mouse model. However, its role in diabetic retinopathy remains largely unknown. Eight-week-old C57BL/6J mice were intraperitoneally injected with 50 mg of streptozotocin for 5 consecutive days to induce diabetes. After 1 wk, diabetic mice were selected and treated with Hdac3 inhibitor RGFP966 once every 3 days for 12 consecutive weeks. It was found that RGFP966 could decrease the mRNA and protein expression of Hdac3. It significantly increased diabetic retinopathy-reduced retinal thickness without affecting fasting blood glucose. It also decreased diabetic retinopathy-activated oxidative stress and cell apoptosis. Moreover, diabetic retinopathy mice displayed an increased expression of vascular endothelial growth factor and a decreased expression of glial fibrillary acidic protein, both of which were partially restored by RGFP966 treatment. Mechanically, RGFP966 decreased the expression of NADPH oxidase 2 (Nox2) whereas it increased the expression of superoxide dismutase 2 (Sod2) in diabetic retinopathy mice. In conclusion, RGFP966 significantly reduces oxidative stress, inflammation, and cell apoptosis in the retina of streptozotocin-induced diabetic mice, which may be associated with its modulation of Nox2 and Sod2 expression.NEW & NOTEWORTHY The study demonstrated that RGFP966 significantly reduced oxidative stress, inflammation, and cell apoptosis in the retina of streptozotocin-induced diabetic mice, which may be associated with Nox2 and Sod2 expression.
Collapse
Affiliation(s)
- Yu Jiang
- Ophthalmology Department, Hefei Red Cross Eye Hospital, Hefei, Anhui, China
| | - Bo Luo
- Shanghai Yunhao Biotechnology Center, Shanghai, China
| |
Collapse
|
39
|
Ebrahimi M, Sivaprasad S, Thompson P, Perry G. Retinal Neurodegeneration in Euglycemic Hyperinsulinemia, Prediabetes, and Diabetes. Ophthalmic Res 2022; 66:385-397. [PMID: 36463857 DOI: 10.1159/000528503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2023]
Abstract
Diabetic retinopathy (DR) is a challenging public health problem mainly because of its growing prevalence and risk of blindness. In general, our current knowledge and practice have failed to prevent the onset or progression of DR to sight-threatening complications. While there are treatment options for sight-threatening complications of DR, it is crucial to pay more attention to the early stages of DR to decrease its prevalence. Growing evidence suggests many pathologic changes occur before clinical presentations of DR in euglycemic hyperinsulinemia, prediabetes, and diabetes. These pathological changes occur in retinal neurons, glia, and microvasculature. A new focus on these preclinical pathologies - especially on hyperinsulinemia - may provide further insight into disease mechanisms, endpoints for clinical trials, and druggable targets in early disease. Here, we review the current evidence on the pathophysiological changes reported in preclinical DR and appraise preventive and treatment options for DR.
Collapse
Affiliation(s)
- Moein Ebrahimi
- Network of Immunity in Infection, Malignancy, and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sobha Sivaprasad
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - Paul Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - George Perry
- Department of Biology, University of Texas and San Antonio, San Antonio, Texas, USA
| |
Collapse
|
40
|
Wang M, Sheng KJ, Fang JC, Zhao H, Lu SM, Liu ZY, Chen BT. Redox signaling in diabetic retinopathy and opportunity for therapeutic intervention through natural products. Eur J Med Chem 2022; 244:114829. [DOI: 10.1016/j.ejmech.2022.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/14/2022] [Accepted: 10/01/2022] [Indexed: 11/28/2022]
|
41
|
Li S, Si H, Xu J, Liu Y, Shen B. The therapeutic effect and mechanism of melatonin on osteoarthritis: From the perspective of non-coding RNAs. Front Genet 2022; 13:968919. [PMID: 36267400 PMCID: PMC9576930 DOI: 10.3389/fgene.2022.968919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
Osteoarthritis (OA) is a slowly progressing and irreversible joint disease. The existing non-surgical treatment can only delay its progress, making the early treatment of OA a research hotspot in recent years. Melatonin, a neurohormone mainly secreted by the pineal gland, has a variety of regulatory functions in different organs, and numerous studies have confirmed its therapeutic effect on OA. Non-coding RNAs (ncRNAs) constitute the majority of the human transcribed genome. Various ncRNAs show significant differentially expressed between healthy people and OA patients. ncRNAs play diverse roles in many cellular processes and have been implicated in many pathological conditions, especially OA. Interestingly, the latest research found a close interaction between ncRNAs and melatonin in regulating the pathogenesis of OA. This review discusses the current understanding of the melatonin-mediated modulation of ncRNAs in the early stage of OA. We also delineate the potential link between rhythm genes and ncRNAs in chondrocytes. This review will serve as a solid foundation to formulate ideas for future mechanistic studies on the therapeutic potential of melatonin and ncRNAs in OA and better explore the emerging functions of the ncRNAs.
Collapse
|
42
|
Li X, Kang B, Eom Y, Zhong J, Lee HK, Kim HM, Song JS. SIRT1 Protects Against Particulate Matter-Induced Oxidative Stress in Human Corneal and Conjunctival Epithelial Cells. Invest Ophthalmol Vis Sci 2022; 63:19. [PMID: 36169947 PMCID: PMC9526373 DOI: 10.1167/iovs.63.10.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Sirtuin1 (SIRT1) as a hot therapeutic target for oxidative stress-associated diseases that has been extensively studied. This study aimed to determine the changes in SIRT1 expression in particulate matter (PM)-induced corneal and conjunctival epithelial cell damage and explore potential drugs to reduce PM-associated ocular surface injury. Methods Immortalized human corneal epithelial cells (HCECs) and human conjunctival epithelial cells (HCjECs) were exposed to an ambient PM sample. Cytotoxicity was evaluated by water-soluble tetrazolium salt-8 assay. SIRT1 expression was measured by Western blot analysis. Reactive oxygen species (ROS) production, cell apoptosis, mitochondrial function, and cell senescence were assessed by using 2',7'-dichlorofluorescein diacetate assay, annexin V apoptosis assay, tetramethylrhodamine ethyl ester assay, and senescence β-galactosidase staining, respectively. Results PM-induced cytotoxicity of HCECs and HCjECs occurred in a dose-dependent manner. Increased ROS production, as well as decreased SIRT1 expression, were observed in HCECs and HCjECs after 200 µg/mL PM exposure. In addition, PM induced oxidative stress-mediated cellular damage, including cell apoptosis, mitochondrial damage, and cell senescence. Interestingly, SRT1720, a SIRT1 activator, increased SIRT1 expression and decreased ROS production and attenuated PM-induced cell damage in HCECs and HCjECs. Conclusions This study determined that SIRT1 was involved in PM-induced oxidative stress in HCECs and HCjECs and found that ROS overproduction may a key factor in PM-induced SIRT1 downregulation. The SIRT1 activator, SRT1720, can effectively upregulate SIRT1 expression and inhibit ROS production, thereby reversing PM-induced cell damage. This study provides a new potential target for clinical treatment of PM-associated ocular surface diseases.
Collapse
Affiliation(s)
- Xiangzhe Li
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Boram Kang
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Youngsub Eom
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Jingxiang Zhong
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Ophthalmology, Sixth Affiliated Hospital of Jinan University, Dongguan, China
| | - Hyung Keun Lee
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyo Myung Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | - Jong Suk Song
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
43
|
Ren J, Zhang S, Pan Y, Jin M, Li J, Luo Y, Sun X, Li G. Diabetic retinopathy: Involved cells, biomarkers, and treatments. Front Pharmacol 2022; 13:953691. [PMID: 36016568 PMCID: PMC9396039 DOI: 10.3389/fphar.2022.953691] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic retinopathy (DR), a leading cause of vision loss and blindness worldwide, is caused by retinal neurovascular unit dysfunction, and its cellular pathology involves at least nine kinds of retinal cells, including photoreceptors, horizontal and bipolar cells, amacrine cells, retinal ganglion cells, glial cells (Müller cells, astrocytes, and microglia), endothelial cells, pericytes, and retinal pigment epithelial cells. Its mechanism is complicated and involves loss of cells, inflammatory factor production, neovascularization, and BRB impairment. However, the mechanism has not been completely elucidated. Drug treatment for DR has been gradually advancing recently. Research on potential drug targets relies upon clear information on pathogenesis and effective biomarkers. Therefore, we reviewed the recent literature on the cellular pathology and the diagnostic and prognostic biomarkers of DR in terms of blood, protein, and clinical and preclinical drug therapy (including synthesized molecules and natural molecules). This review may provide a theoretical basis for further DR research.
Collapse
Affiliation(s)
- Jiahui Ren
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
| | - Shuxia Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yunfeng Pan
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Meiqi Jin
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Jiaxin Li
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| | - Guang Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| |
Collapse
|
44
|
Yu S, Cui K, Wu P, Wu B, Lu X, Huang R, Tang X, Lin J, Yang B, Zhao J, He Q, Liang X, Xu Y. Melatonin prevents experimental central serous chorioretinopathy in rats. J Pineal Res 2022; 73:e12802. [PMID: 35436360 DOI: 10.1111/jpi.12802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
Abstract
Central serous chorioretinopathy (CSC) is a vision-threatening disease with no validated treatment and unclear pathogenesis. It is characterized by dilation and leakage of choroidal vasculature, resulting in the accumulation of subretinal fluid, and serous detachment of the neurosensory retina. Numerous studies have demonstrated that melatonin had multiple protective effects against endothelial dysfunction, vascular inflammation, and blood-retinal barrier (BRB) breakdown. However, the effect of melatonin on CSC, and its exact pathogenesis, is not well understood thus far. In this study, an experimental model was established by intravitreal injection of aldosterone in rats, which mimicked the features of CSC. Our results found that melatonin administration in advance significantly inhibited aldosterone-induced choroidal thickening and vasodilation by reducing the expression of calcium-activated potassium channel KCa2.3, and attenuated tortuosity of choroid vessels. Moreover, melatonin protected the BRB integrity and prevented the decrease in tight junction protein (ZO-1, occludin, and claudin-1) levels in the rat model induced by aldosterone. Additionally, the data also showed that intraperitoneal injection of melatonin in advance inhibited aldosterone-induced macrophage/microglia infiltration, and remarkably diminished the levels of inflammatory cytokines (interleukin-6 [IL-6], IL-1β, and cyclooxygenase-2), chemokines (chemokine C-C motif ligand 3, and C-X-C motif ligand 1), and matrix metalloproteinases (MMP-2 and MMP-9). Luzindole, as the nonselective MT1 and MT2 antagonist, and 4-phenyl-2-propionamidotetraline, as the selective MT2 antagonist, neutralized the melatonin-induced inhibition of choroidal thickening and choroidal vasodilation, indicating that melatonin might exert the effects via binding to its receptors. Furthermore, the IL-17A/nuclear factor-κB signaling pathway was activated by intravitreal administration of aldosterone, while it was suppressed in melatonin-treated in advance rat eyes. This study indicates that melatonin could serve as a promising safe therapeutic strategy for CSC patients.
Collapse
Affiliation(s)
- Shanshan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Peiqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Benjuan Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Rong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jianqiang Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Boyu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jinfeng Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qingjing He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
45
|
Feng J, Zhang S, Li W, Bai T, Liu Y, Chang X. Intermittent Fasting to the Eye: A New Dimension Involved in Physiological and Pathological Changes. Front Med (Lausanne) 2022; 9:867624. [PMID: 35685418 PMCID: PMC9171076 DOI: 10.3389/fmed.2022.867624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022] Open
Abstract
Intermittent fasting (IF) is gaining popularity as a therapeutic dietary strategy that regulates metabolism and can alter the development of metabolic disorders. An increasing amount of research has connected ocular diseases to IF and discovered that it has a direct and indirect effect on the eye’s physiological structure and pathological alterations. This article summarizes the progress of research on IF in regulating the physiological structures of the ocular vasculature, the anterior segment of the eye, the retina, and the choroid. We explored the therapeutic potential of IF for various common ocular diseases. In the future, a comprehensive study into the fundamental processes of IF will provide a direct and rigorous approach to eye disease prevention and therapy.
Collapse
Affiliation(s)
- Jiaqing Feng
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Shijiao Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wenning Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Tianle Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yulin Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xingyu Chang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| |
Collapse
|
46
|
Pinilla I, Maneu V, Campello L, Fernández-Sánchez L, Martínez-Gil N, Kutsyr O, Sánchez-Sáez X, Sánchez-Castillo C, Lax P, Cuenca N. Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications. Antioxidants (Basel) 2022; 11:antiox11061086. [PMID: 35739983 PMCID: PMC9219848 DOI: 10.3390/antiox11061086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a large group of genetically and clinically heterogeneous diseases characterized by the progressive degeneration of the retina, ultimately leading to loss of visual function. Oxidative stress and inflammation play fundamental roles in the physiopathology of these diseases. Photoreceptor cell death induces an inflammatory state in the retina. The activation of several molecular pathways triggers different cellular responses to injury, including the activation of microglia to eliminate debris and recruit inflammatory cells from circulation. Therapeutical options for IRDs are currently limited, although a small number of patients have been successfully treated by gene therapy. Many other therapeutic strategies are being pursued to mitigate the deleterious effects of IRDs associated with oxidative metabolism and/or inflammation, including inhibiting reactive oxygen species’ accumulation and inflammatory responses, and blocking autophagy. Several compounds are being tested in clinical trials, generating great expectations for their implementation. The present review discusses the main death mechanisms that occur in IRDs and the latest therapies that are under investigation.
Collapse
Affiliation(s)
- Isabel Pinilla
- Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Department of Ophthalmology, Lozano Blesa, University Hospital, 50009 Zaragoza, Spain
- Department of Surgery, University of Zaragoza, 50009 Zaragoza, Spain
- Correspondence: (I.P.); (V.M.)
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Correspondence: (I.P.); (V.M.)
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Laura Fernández-Sánchez
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
| | - Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Carla Sánchez-Castillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Pedro Lax
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Nicolás Cuenca
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| |
Collapse
|
47
|
Wei H, Gu Q. SOX4 promotes high-glucose-induced inflammation and angiogenesis of retinal endothelial cells by activating NF-κB signaling pathway. Open Life Sci 2022; 17:393-400. [PMID: 35573654 PMCID: PMC9041534 DOI: 10.1515/biol-2022-0045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/26/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022] Open
Abstract
Diabetic retinopathy (DR) is a type of main microvascular complication of diabetes mellitus (DM) and an important factor that causes blindness in adults. SOX4 is a transcription factor expressed in the pancreas and is essential for normal endocrine pancreatic development. However, the effect and the regulatory mechanism of SOX4 on DR have not been reported. In the present study, upregulation of SOX4 was found in DM patients, particularly in DR patients and mice models. The in vitro experiments showed that SOX4 depletion increased the viability and inhibited the inflammation level of human retinal endothelial cells (HRCECs) induced by high glucose. Besides, SOX4 knockdown inhibited the migration and angiogenesis of HRCECs upon high glucose treatment. Mechanically, depletion of SOX4 inhibited the NF-κB pathway. Therefore, SOX4 could serve as a promising target for DR treatment.
Collapse
Affiliation(s)
- Haifeng Wei
- Department of Ophthalmology, Tongxiang First People’s Hospital , No. 1918 Jiaochang East Road , Jiaxing , Zhejiang Province, 314500 , China
| | - Quan Gu
- Department of Ophthalmology, Tongxiang First People’s Hospital , No. 1918 Jiaochang East Road , Jiaxing , Zhejiang Province, 314500 , China
| |
Collapse
|
48
|
Xu J, Chen P, Zhao G, Wei S, Li Q, Guo C, Cao Q, Wu X, Di G. Copolymer micelle-administered melatonin ameliorates hyperosmolarity-induced ocular surface damage through regulating PINK1 mediated mitophagy. Curr Eye Res 2022; 47:688-703. [PMID: 35179400 DOI: 10.1080/02713683.2021.2022163] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate the role and mechanism of melatonin-loaded polymer polyvinyl caprolactam-polyvinyl acetate-polyethyleneglycol graft copolymer (PVCL-PVA-PEG) micelles (Mel-Mic) in dry eye disease (DED). METHODS In vitro, the apoptosis and reactive oxygen species (ROS) generation in HCECs were analyzed by immunostaining and flow cytometry (FCM). The effect of Mel-Mic on autophagy and mitophagy was evaluated by immunostaining and western blots. PINK1 knockdown was analyzed by small interfering RNA (siRNA). In vivo, sodium fluorescein staining, tear secretion test, and periodic acid-schiff (PAS) staining were used to determine whether Mel-Mic can alleviate the severity of DED. Small molecule antagonists were pretreated to investigate whether melatonin type 1 and/or 2 receptors (MT1/MT2) mediate the effects of Mel-Mic. RESULTS Mel-Mic improved the solubility and biological activities of Mel in aqueous solutions. Treatment with Mel-Mic decreased the apoptosis of HCECs exposed to hyperosmotic medium, accompanied by downregulation of cleaved Caspase-3 and upregulation of Bcl-2. In addition, Mel-Mic application suppressed ROS overproduction, rescued mitochondrial function, and decreased the level of oxidative stress associated biomarkers (COX-2 and 4-HNE) in HCECs. Interestingly, HCECs treated with Mel-Mic exhibited increased levels of mitophagy markers (PINK1, PARKIN, Beclin 1 and LC3B) and restored impaired mitophagic flux under hyperosmolarity. While PINK1 knock down largely abolished its protective effects. In vivo, compared to vehicle group, topical Mel-Mic solution treated mice showed significantly improved clinical parameters, increased tear production and decreased goblet cells loss in a dose-dependent manner. Also, TEM assay revealed increased autophagosome number in the corneal epithelium of Mel-Mic group. Moreover, luzindole, a non-selective MT1/MT2 antagonist, but not 4-P-PDOT, a selective MT2 antagonist, blocked the protective effect of Mel-Mic. CONCLUSIONS Our findings demonstrated that Mel-Mic ameliorates hyperosmolarity induced ocular surface damage via PINK1 mediated mitophagy and may represent an effective treatment for DED possibly through acting MT1 receptor.
Collapse
Affiliation(s)
- Jing Xu
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Peng Chen
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Guangfen Zhao
- Department of Medicine, The Liaocheng Third People's Hospital. Liaocheng, China
| | - Susu Wei
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Qiqi Li
- College of Chemical Engineering, Qingdao University of Science and Technology. Qingdao, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology. Qingdao, China
| | - Qilong Cao
- Qingdao Haier Biotech Co.Ltd, Qingdao, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology. Qingdao, China
| | - Guohu Di
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
49
|
Chu PM, Yu CC, Tsai KL, Hsieh PL. Regulation of Oxidative Stress by Long Non-Coding RNAs in Vascular Complications of Diabetes. Life (Basel) 2022; 12:life12020274. [PMID: 35207562 PMCID: PMC8877270 DOI: 10.3390/life12020274] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus is a well-known metabolic disorder with numerous complications, such as macrovascular diseases (e.g., coronary heart disease, diabetic cardiomyopathy, stroke, and peripheral vascular disease), microvascular diseases (e.g., diabetic nephropathy, retinopathy, and diabetic cataract), and neuropathy. Multiple contributing factors are implicated in these complications, and the accumulation of oxidative stress is one of the critical ones. Several lines of evidence have suggested that oxidative stress may induce epigenetic modifications that eventually contribute to diabetic vascular complications. As one kind of epigenetic regulator involved in various disorders, non-coding RNAs have received great attention over the past few years. Non-coding RNAs can be roughly divided into short (such as microRNAs; ~21–25 nucleotides) or long non-coding RNAs (lncRNAs; >200 nucleotides). In this review, we briefly discussed the research regarding the roles of various lncRNAs, such as MALAT1, MEG3, GAS5, SNHG16, CASC2, HOTAIR, in the development of diabetic vascular complications in response to the stimulation of oxidative stress.
Collapse
Affiliation(s)
- Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Cheng-Chia Yu
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan;
- Correspondence:
| |
Collapse
|
50
|
Lu X, Tan Q, Ma J, Zhang J, Yu P. Emerging Role of LncRNA Regulation for NLRP3 Inflammasome in Diabetes Complications. Front Cell Dev Biol 2022; 9:792401. [PMID: 35087834 PMCID: PMC8789514 DOI: 10.3389/fcell.2021.792401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes is a widespread metabolic disease with various complications, including diabetic nephropathy, retinopathy, cardiomyopathy, and other cardiovascular or cerebrovascular diseases. As the prevalence of diabetes increases in all age groups worldwide, diabetes and its complications cause an emerging public health burden. NLRP3 inflammasome is a complex of several proteins that play a critical role in inflammatory response and various diseases, including diabetes and its complications. Accumulating evidences indicate that NLRP3 inflammasome contributes to the development of diabetes and diabetic complications and that NLRP3 inflammation inactivation is beneficial in treating these illnesses. Emerging evidences suggest the critical role of long non-coding RNAs (lncRNAs) in regulating NLRP3 inflammasome activity in various diseases. LncRNAs are non-coding RNAs exceeding 200 nucleotides in length. Its dysregulation has been linked to the development of diseases, including diabetes. Recently, growing evidences hint that regulating lncRNAs on NLRP3 inflammasome is critical in developing and progressing diabetes and diabetic complications. Here, we discuss the role of lncRNAs in regulating NLRP3 inflammasome as well as its participation in diabetes and diabetic complications, providing novel insights into developing future therapeutic approaches for diabetes.
Collapse
Affiliation(s)
- Xiaolin Lu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qihong Tan
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jing Zhang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|