1
|
Oh S, Park SY, Seo HI, Chung I. L-Threonine-Derived Biodegradable Polyurethane Nanoparticles for Sustained Carboplatin Release. Pharmaceutics 2024; 17:28. [PMID: 39861677 PMCID: PMC11769003 DOI: 10.3390/pharmaceutics17010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Background and objectives: The use of polymeric nanoparticles (NPs) in drug delivery systems offers the advantages of enhancing drug efficacy and minimizing side effects; Methods: In this study, L-threonine polyurethane (LTPU) NPs have been fabricated by water-in-oil-in-water emulsion and solvent evaporation using biodegradable and biocompatible LTPU. This polymer was pre-synthesized through the use of an amino acid-based chain extender, desaminotyrosyl L-threonine hexyl ester (DLTHE), where urethane bonds are formed by poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) triblock copolymer and 1,6-hexamethylene diisocyanate (HDI). LTPU is designed to be degraded by hydrolysis and enzymatic activity due to the presence of ester bonds and peptide bonds within the polymer backbone. LTPU NPs were fabricated by water-in-oil-in-water double emulsion solvent evaporation methods; Results: The polymerization of LTPU was confirmed by 1H-NMR, 13C-NMR, and FT-IR spectroscopies. The molecular weights and polydispersity, determined with GPC, were 28,800 g/mol and 1.46, respectively. The morphology and size of NPs, characterized by DLS, FE-SEM, TEM, and confocal microscopy, showed smooth and spherical particles with diameters less than 200 nm; Conclusions: In addition, the drug loading, encapsulation efficiency, and drug release profiles, using UV-Vis spectroscopy, showed the highest encapsulation efficiency with 2.5% carboplatin and sustained release profile.
Collapse
Affiliation(s)
- Seoeun Oh
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Soo-Yong Park
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung Il Seo
- Department of Surgery, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea;
| | - Ildoo Chung
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
2
|
Liu Y, Liu F, Zeng Y, Lin L, Yu H, Zhang S, Yang W. Hydrogel systems for spatiotemporal controlled delivery of immunomodulators: engineering the tumor immune microenvironment for enhanced cancer immunotherapy. Front Cell Dev Biol 2024; 12:1514595. [PMID: 39735340 PMCID: PMC11681625 DOI: 10.3389/fcell.2024.1514595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/28/2024] [Indexed: 12/31/2024] Open
Abstract
Tumor immunotherapy, modulating innate and adaptive immunity, has become an important therapeutic strategy. However, the tumor immune microenvironment's (TIME) complexity and heterogeneity challenge tumor immunotherapy. Hydrogel is a hydrophilic three-dimensional (3D) mesh structure with good biocompatibility and drug release control, which is widely used in drug delivery, agriculture, industry, etc. Hydrogels loaded with immune cells, cytokines, immune checkpoint inhibitors, and anti-tumor drugs can achieve targeted delivery and ultimately activate the immune response in the TIME. In this review, we will summarize the components of the TIME and their immune effects, the emerging immunomodulatory agents, the characteristics and functions of hydrogels, and how hydrogels regulate innate and adaptive immune cells in the TIME.
Collapse
Affiliation(s)
- Yanting Liu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Fang Liu
- Department of Neurosurgery, Department of Urology, Medical Research Center, The Second Chengdu Hospital Affiliated to Chongqing Medical University, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, China
- College of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yan Zeng
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Liangbin Lin
- Department of Neurosurgery, Department of Urology, Medical Research Center, The Second Chengdu Hospital Affiliated to Chongqing Medical University, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, China
- Obesity and Metabolism Medicine-Engineering Integration Laboratory, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Hui Yu
- Department of Neurosurgery, Department of Urology, Medical Research Center, The Second Chengdu Hospital Affiliated to Chongqing Medical University, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Sunfu Zhang
- Department of Neurosurgery, Department of Urology, Medical Research Center, The Second Chengdu Hospital Affiliated to Chongqing Medical University, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Wenyong Yang
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
- Department of Neurosurgery, Department of Urology, Medical Research Center, The Second Chengdu Hospital Affiliated to Chongqing Medical University, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, China
| |
Collapse
|
3
|
El-Adl K, Ghobashy MM, Ismail AFM, El-Morsy A, Shoman NA. Radiation-induced nanogel engineering based on pectin for pH-responsive rutin delivery for cancer treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03573-y. [PMID: 39540896 DOI: 10.1007/s00210-024-03573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
This research investigates the formulation of a nanogel complex using pectin and poly(acrylic acid) (PAAc) to encapsulate rutin. The nanogel's pH-responsive behavior and its potential as a targeted drug delivery platform are investigated. The gamma irradiation-induced crosslinking mechanism is elucidated, highlighting its role in creating a stable three-dimensional network structure within the polymer matrix. Fourier transform infrared spectroscopy analysis sheds light on the molecular interactions within rutin and the nanogel-rutin complex. The pH-responsive behavior of the nanogel is explored, showcasing its ability to release rutin selectively in response to pH variations and displaying high physical and chemical stability. Transmission electron microscopy imaging provides visual insights into nanogel morphology and interactions. The cumulative drug content from the nanogel was 86.14 ± 2.61%. The pH-dependent release profile of the nanogel was examined, demonstrating selective rutin release in response to varying pH levels. Cytotoxicity studies were conducted against four human cancer cell lines-HepG2, A549, MCF-7, and HCT-116 showing significant reductions in IC50 values, indicating enhanced therapeutic efficacy. Additionally, molecular docking studies revealed strong binding interactions of rutin with VEGFR-2 and EGFRT790M. Our nanogel compound 5 significantly reduced the IC50 values for HepG2, A549, MCF-7, and HCT-116 cells by 58.19%, 81.29%, 71.81%, and 67.16%, respectively. Furthermore, it lowered the IC50 values for VEGFR-2 and EGFRT790M by 29.66% and 68.18%, respectively.
Collapse
Affiliation(s)
- Khaled El-Adl
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt.
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| | - Mohamed M Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Nasr City, P.O. Cairo, Egypt
| | - Amel F M Ismail
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Ahmed El-Morsy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
- Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University, Najaf, Iraq
| | - Nabil A Shoman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| |
Collapse
|
4
|
Demartis S, Picco CJ, Larrañeta E, Korelidou A, Islam R, Coulter JA, Giunchedi P, Donnelly RF, Rassu G, Gavini E. Evaluating the efficacy of Rose Bengal-PVA combinations within PCL/PLA implants for sustained cancer treatment. Drug Deliv Transl Res 2024:10.1007/s13346-024-01711-w. [PMID: 39313735 DOI: 10.1007/s13346-024-01711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
The current investigation aims to address the limitations of conventional cancer therapy by developing an advanced, long-term drug delivery system using biocompatible Rose Bengal (RB)-loaded polyvinyl alcohol (PVA) matrices incorporated into 3D printed polycaprolactone (PCL) and polylactic acid (PLA) implants. The anticancer drug RB's high solubility and low lipophilicity require frequent and painful administration to the tumour site, limiting its clinical application. In this study, RB was encapsulated in a PVA (RB@PVA) matrix to overcome these challenges and achieve a localised and sustained drug release system within a biodegradable implant designed to be implanted near the tumour site. The RB@PVA matrix demonstrated an RB loading efficiency of 77.34 ± 1.53%, with complete RB release within 30 min. However, when integrated into implants, the system provided a sustained RB release of 75.84 ± 8.75% over 90 days. Cytotoxicity assays on PC-3 prostate cancer cells indicated an IC50 value of 1.19 µM for RB@PVA compared to 2.49 µM for free RB, effectively inhibiting cancer cell proliferation. This innovative drug delivery system, which incorporates a polymer matrix within an implantable device, represents a significant advancement in the sustained release of hydrosoluble drugs. It holds promise for reducing the frequency of drug administration, thereby improving patient compliance and translating experimental research into practical therapeutic applications.
Collapse
Affiliation(s)
- Sara Demartis
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, 07100, Italy
| | - Camila J Picco
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK.
| | - Anna Korelidou
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Rayhanul Islam
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | | | - Paolo Giunchedi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, 07100, Italy
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Giovanna Rassu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, 07100, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, 07100, Italy.
| |
Collapse
|
5
|
Liang S, Xiao L, Chen T, Roa P, Cocco E, Peng Z, Yu L, Wu M, Liu J, Zhao X, Deng W, Wang X, Zhao C, Deng Y, Mai Y. Injectable Nanocomposite Hydrogels Improve Intraperitoneal Co-delivery of Chemotherapeutics and Immune Checkpoint Inhibitors for Enhanced Peritoneal Metastasis Therapy. ACS NANO 2024; 18:18963-18979. [PMID: 39004822 DOI: 10.1021/acsnano.4c02312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Intraperitoneal co-delivery of chemotherapeutic drugs (CDs) and immune checkpoint inhibitors (ICIs) brings hope to improve treatment outcomes in patients with peritoneal metastasis from ovarian cancer (OC). However, current intraperitoneal drug delivery systems face issues such as rapid drug clearance from lymphatic drainage, heterogeneous drug distribution, and uncontrolled release of therapeutic agents into the peritoneal cavity. Herein, we developed an injectable nanohydrogel by combining carboxymethyl chitosan (CMCS) with bioadhesive nanoparticles (BNPs) based on polylactic acid-hyperbranched polyglycerol. This system enables the codelivery of CD and ICI into the intraperitoneal space to extend drug retention. The nanohydrogel is formed by cross-linking of aldehyde groups on BNPs with amine groups on CMCS via reversible Schiff base bonds, with CD and ICI loaded separately into BNPs and CMCS network. BNP/CMCS nanohydrogel maintained the activity of the biomolecules and released drugs in a sustained manner over a 7 day period. The adhesive property, through the formation of Schiff bases with peritoneal tissues, confers BNPs with an extended residence time in the peritoneal cavity after being released from the nanohydrogel. In a mouse model, BNP/CMCS nanohydrogel loaded with paclitaxel (PTX) and anti-PD-1 antibodies (αPD-1) significantly suppressed peritoneal metastasis of OC compared to all other tested groups. In addition, no systemic toxicity of nanohydrogel-loaded PTX and αPD-1 was observed during the treatment, which supports potential translational applications of this delivery system.
Collapse
Affiliation(s)
- Shu Liang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Lingyun Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Southern University of Science and Technology), Shenzhen 518020, China
| | - Tian Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Paola Roa
- Department of Biochemistry and Molecular Biology/Sylvester Comprehensive Cancer Center, University of Miami/Miller School of Medicine, Miami, Florida 33136, United States
| | - Emiliano Cocco
- Department of Biochemistry and Molecular Biology/Sylvester Comprehensive Cancer Center, University of Miami/Miller School of Medicine, Miami, Florida 33136, United States
| | - Zhangwen Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Liu Yu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Jie Liu
- ISCTE Business School, BRU-IUL, University Institute of Lisbon, Avenida das Armadas, Lisbon 1649-026, Portugal
| | - Xizhe Zhao
- Department of Chemistry, College of Staten Island, City University of New York, New York, New York 10314, United States
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Xiongjun Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Chao Zhao
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Yang Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| |
Collapse
|
6
|
Peng Y, Liang S, Meng QF, Liu D, Ma K, Zhou M, Yun K, Rao L, Wang Z. Engineered Bio-Based Hydrogels for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313188. [PMID: 38362813 DOI: 10.1002/adma.202313188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Immunotherapy represents a revolutionary paradigm in cancer management, showcasing its potential to impede tumor metastasis and recurrence. Nonetheless, challenges including limited therapeutic efficacy and severe immune-related side effects are frequently encountered, especially in solid tumors. Hydrogels, a class of versatile materials featuring well-hydrated structures widely used in biomedicine, offer a promising platform for encapsulating and releasing small molecule drugs, biomacromolecules, and cells in a controlled manner. Immunomodulatory hydrogels present a unique capability for augmenting immune activation and mitigating systemic toxicity through encapsulation of multiple components and localized administration. Notably, hydrogels based on biopolymers have gained significant interest owing to their biocompatibility, environmental friendliness, and ease of production. This review delves into the recent advances in bio-based hydrogels in cancer immunotherapy and synergistic combinatorial approaches, highlighting their diverse applications. It is anticipated that this review will guide the rational design of hydrogels in the field of cancer immunotherapy, fostering clinical translation and ultimately benefiting patients.
Collapse
Affiliation(s)
- Yuxuan Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qian-Fang Meng
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kongshuo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mengli Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kaiqing Yun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
7
|
Seo HS, Han JH, Lim J, Bae GH, Byun MJ, Wang CPJ, Han J, Park J, Park HH, Shin M, Park TE, Kim TH, Kim SN, Park W, Park CG. Enhanced Postsurgical Cancer Treatment Using Methacrylated Glycol Chitosan Hydrogel for Sustained DNA/Doxorubicin Delivery and Immunotherapy. Biomater Res 2024; 28:0008. [PMID: 38532906 PMCID: PMC10964224 DOI: 10.34133/bmr.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/09/2024] [Indexed: 03/28/2024] Open
Abstract
Background: Cancer recurrence and metastasis are major contributors to treatment failure following tumor resection surgery. We developed a novel implantable drug delivery system utilizing glycol chitosan to address these issues. Glycol chitosan is a natural adjuvant, inducing dendritic cell activation to promote T helper 1 cell immune responses, macrophage activation, and cytokine production. Effective antigen production by dendritic cells initiates T-cell-mediated immune responses, aiding tumor growth control. Methods: In this study, we fabricated multifunctional methacrylated glycol chitosan (MGC) hydrogels with extended release of DNA/doxorubicin (DOX) complex for cancer immunotherapy. We constructed the resection model of breast cancer to verify the anticancer effects of MGC hydrogel with DNA/DOX complex. Results: This study demonstrated the potential of MGC hydrogel with extended release of DNA/DOX complex for local and efficient cancer therapy. The MGC hydrogel was implanted directly into the surgical site after tumor resection, activating tumor-related immune cells both locally and over a prolonged period of time through immune-reactive molecules. Conclusions: The MGC hydrogel effectively suppressed tumor recurrence and metastasis while enhancing immunotherapeutic efficacy and minimizing side effects. This biomaterial-based drug delivery system, combined with cancer immunotherapy, can substantial improve treatment outcomes and patient prognosis.
Collapse
Affiliation(s)
- Hee Seung Seo
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jun-Hyeok Han
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering,
SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jaesung Lim
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Ga-Hyun Bae
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering,
SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of MetaBioHealth,
SKKU Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Min Ji Byun
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Chi-Pin James Wang
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jieun Han
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering,
SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Institute of Biotechnology and Bioengineering, College of Biotechnology and Bioengineering, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School Medicine,
University of Hawai'i at Manoa, Honolulu, HI 96813, USA
| | - Hee Ho Park
- Department of Bioengineering,
Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Mikyung Shin
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering,
Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering,
Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Se-Na Kim
- Research and Development Center,
MediArk Inc., 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk 28644, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering,
SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of MetaBioHealth,
SKKU Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Institute of Biotechnology and Bioengineering, College of Biotechnology and Bioengineering, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Biomaterials Research Center,
Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Biomedical Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| |
Collapse
|
8
|
Gazo Hanna E, Younes K, Roufayel R, Khazaal M, Fajloun Z. Engineering innovations in medicine and biology: Revolutionizing patient care through mechanical solutions. Heliyon 2024; 10:e26154. [PMID: 38390063 PMCID: PMC10882044 DOI: 10.1016/j.heliyon.2024.e26154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The overlap between mechanical engineering and medicine is expanding more and more over the years. Engineers are now using their expertise to design and create functional biomaterials and are continually collaborating with physicians to improve patient health. In this review, we explore the state of scientific knowledge in the areas of biomaterials, biomechanics, nanomechanics, and computational fluid dynamics (CFD) in relation to the pharmaceutical and medical industry. Focusing on current research and breakthroughs, we provide an overview of how these fields are being used to create new technologies for medical treatments of human patients. Barriers and constraints in these fields, as well as ways to overcome them, are also described in this review. Finally, the potential for future advances in biomaterials to fundamentally change the current approach to medicine and biology is also discussed.
Collapse
Affiliation(s)
- Eddie Gazo Hanna
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Khaled Younes
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Mickael Khazaal
- École Supérieure des Techniques Aéronautiques et de Construction Automobile, ISAE-ESTACA, France
| | - Ziad Fajloun
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, 1300, Tripoli, Lebanon
| |
Collapse
|
9
|
Mohaghegh N, Ahari A, Zehtabi F, Buttles C, Davani S, Hoang H, Tseng K, Zamanian B, Khosravi S, Daniali A, Kouchehbaghi NH, Thomas I, Serati Nouri H, Khorsandi D, Abbasgholizadeh R, Akbari M, Patil R, Kang H, Jucaud V, Khademhosseini A, Hassani Najafabadi A. Injectable hydrogels for personalized cancer immunotherapies. Acta Biomater 2023; 172:67-91. [PMID: 37806376 DOI: 10.1016/j.actbio.2023.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
The field of cancer immunotherapy has shown significant growth, and researchers are now focusing on effective strategies to enhance and prolong local immunomodulation. Injectable hydrogels (IHs) have emerged as versatile platforms for encapsulating and controlling the release of small molecules and cells, drawing significant attention for their potential to enhance antitumor immune responses while inhibiting metastasis and recurrence. IHs delivering natural killer (NK) cells, T cells, and antigen-presenting cells (APCs) offer a viable method for treating cancer. Indeed, it can bypass the extracellular matrix and gradually release small molecules or cells into the tumor microenvironment, thereby boosting immune responses against cancer cells. This review provides an overview of the recent advancements in cancer immunotherapy using IHs for delivering NK cells, T cells, APCs, chemoimmunotherapy, radio-immunotherapy, and photothermal-immunotherapy. First, we introduce IHs as a delivery matrix, then summarize their applications for the local delivery of small molecules and immune cells to elicit robust anticancer immune responses. Additionally, we discuss recent progress in IHs systems used for local combination therapy, including chemoimmunotherapy, radio-immunotherapy, photothermal-immunotherapy, photodynamic-immunotherapy, and gene-immunotherapy. By comprehensively examining the utilization of IHs in cancer immunotherapy, this review aims to highlight the potential of IHs as effective carriers for immunotherapy delivery, facilitating the development of innovative strategies for cancer treatment. In addition, we demonstrate that using hydrogel-based platforms for the targeted delivery of immune cells, such as NK cells, T cells, and dendritic cells (DCs), has remarkable potential in cancer therapy. These innovative approaches have yielded substantial reductions in tumor growth, showcasing the ability of hydrogels to enhance the efficacy of immune-based treatments. STATEMENT OF SIGNIFICANCE: As cancer immunotherapy continues to expand, the mode of therapeutic agent delivery becomes increasingly critical. This review spotlights the forward-looking progress of IHs, emphasizing their potential to revolutionize localized immunotherapy delivery. By efficiently encapsulating and controlling the release of essential immune components such as T cells, NK cells, APCs, and various therapeutic agents, IHs offer a pioneering pathway to amplify immune reactions, moderate metastasis, and reduce recurrence. Their adaptability further shines when considering their role in emerging combination therapies, including chemoimmunotherapy, radio-immunotherapy, and photothermal-immunotherapy. Understanding IHs' significance in cancer therapy is essential, suggesting a shift in cancer treatment dynamics and heralding a novel period of focused, enduring, and powerful therapeutic strategies.
Collapse
Affiliation(s)
- Neda Mohaghegh
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Amir Ahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Surgery, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Claire Buttles
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Indiana University Bloomington, Department of Biology, Bloomington, IN 47405, USA
| | - Saya Davani
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Hanna Hoang
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90024, USA
| | - Kaylee Tseng
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90007, USA
| | - Benjamin Zamanian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Safoora Khosravi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - Ariella Daniali
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Negar Hosseinzadeh Kouchehbaghi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, Tehran, Iran
| | - Isabel Thomas
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Hamed Serati Nouri
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Rameshwar Patil
- Department of Basic Science and Neurosurgery, Division of Cancer Science, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Heemin Kang
- Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA.
| | | |
Collapse
|
10
|
Zhang Y, Wu BM. Current Advances in Stimuli-Responsive Hydrogels as Smart Drug Delivery Carriers. Gels 2023; 9:838. [PMID: 37888411 PMCID: PMC10606589 DOI: 10.3390/gels9100838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
In recent years, significant advancements in the field of advanced materials and hydrogel engineering have enabled the design and fabrication of smart hydrogels and nanogels that exhibit sensitivity to specific signals or pathological conditions, leading to a wide range of applications in drug delivery and disease treatment. This comprehensive review aims to provide an in-depth analysis of the stimuli-responsive principles exhibited by smart hydrogels in response to various triggers, such as pH levels, temperature fluctuations, light exposure, redox conditions, or the presence of specific biomolecules. The functionality and performance characteristics of these hydrogels are highly influenced by both their constituent components and fabrication processes. Key design principles, their applications in disease treatments, challenges, and future prospects were also discussed. Overall, this review aims to contribute to the current understanding of gel-based drug delivery systems and stimulate further research in this rapidly evolving field.
Collapse
Affiliation(s)
- Yulong Zhang
- Department of Mineralized Tissue Biology, The Forsyth Institute, Cambridge, MA 02140, USA;
| | - Benjamin M. Wu
- Department of Mineralized Tissue Biology, The Forsyth Institute, Cambridge, MA 02140, USA;
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Askari E, Shokrollahi Barough M, Rahmanian M, Mojtabavi N, Sarrami Forooshani R, Seyfoori A, Akbari M. Cancer Immunotherapy Using Bioengineered Micro/Nano Structured Hydrogels. Adv Healthc Mater 2023; 12:e2301174. [PMID: 37612251 PMCID: PMC11468077 DOI: 10.1002/adhm.202301174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Hydrogels, a class of materials with a 3D network structure, are widely used in various applications of therapeutic delivery, particularly cancer therapy. Micro and nanogels as miniaturized structures of the bioengineered hydrogels may provide extensive benefits over the common hydrogels in encapsulation and controlled release of small molecular drugs, macromolecular therapeutics, and even cells. Cancer immunotherapy is rapidly developing, and micro/nanostructured hydrogels have gained wide attention regarding their engineered payload release properties that enhance systemic anticancer immunity. Additionally, they are a great candidate due to their local administration properties with a focus on local immune cell manipulation in favor of active and passive immunotherapies. Although applied locally, such micro/nanostructured can also activate systemic antitumor immune responses by releasing nanovaccines safely and effectively inhibiting tumor metastasis and recurrence. However, such hydrogels are mostly used as locally administered carriers to stimulate the immune cells by releasing tumor lysate, drugs, or nanovaccines. In this review, the latest developments in cancer immunotherapy are summarized using micro/nanostructured hydrogels with a particular emphasis on their function depending on the administration route. Moreover, the potential for clinical translation of these hydrogel-based cancer immunotherapies is also discussed.
Collapse
Affiliation(s)
- Esfandyar Askari
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBC V8P 5C2Canada
| | - Mahdieh Shokrollahi Barough
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBC V8P 5C2Canada
- Department of ImmunologySchool of MedicineIran University of Medical SciencesTehran1449614535Iran
- ATMP DepartmentBreast Cancer Research CenterMotamed Cancer InstituteACECRTehran1517964311Iran
| | - Mehdi Rahmanian
- Biomaterials and Tissue Engineering DepartmentBreast Cancer Research CenterMotamed Cancer InstituteACECRTehran1517964311Iran
| | - Nazanin Mojtabavi
- Department of ImmunologySchool of MedicineIran University of Medical SciencesTehran1449614535Iran
| | | | - Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBC V8P 5C2Canada
- Biomaterials and Tissue Engineering DepartmentBreast Cancer Research CenterMotamed Cancer InstituteACECRTehran1517964311Iran
- Center for Advanced Materials and Related TechnologiesUniversity of VictoriaVictoriaBC V8P 5C2Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBC V8P 5C2Canada
- Center for Advanced Materials and Related TechnologiesUniversity of VictoriaVictoriaBC V8P 5C2Canada
- Center for Biomedical ResearchUniversity of VictoriaVictoriaBC V8P 5C2Canada
| |
Collapse
|
12
|
Bhatt P, Kumar V, Subramaniyan V, Nagarajan K, Sekar M, Chinni SV, Ramachawolran G. Plasma Modification Techniques for Natural Polymer-Based Drug Delivery Systems. Pharmaceutics 2023; 15:2066. [PMID: 37631280 PMCID: PMC10459779 DOI: 10.3390/pharmaceutics15082066] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 08/27/2023] Open
Abstract
Natural polymers have attracted significant attention in drug delivery applications due to their biocompatibility, biodegradability, and versatility. However, their surface properties often limit their use as drug delivery vehicles, as they may exhibit poor wettability, weak adhesion, and inadequate drug loading and release. Plasma treatment is a promising surface modification technique that can overcome these limitations by introducing various functional groups onto the natural polymer surface, thus enhancing its physicochemical and biological properties. This review provides a critical overview of recent advances in the plasma modification of natural polymer-based drug delivery systems, with a focus on controllable plasma treatment techniques. The review covers the fundamental principles of plasma generation, process control, and characterization of plasma-treated natural polymer surfaces. It discusses the various applications of plasma-modified natural polymer-based drug delivery systems, including improved biocompatibility, controlled drug release, and targeted drug delivery. The challenges and emerging trends in the field of plasma modification of natural polymer-based drug delivery systems are also highlighted. The review concludes with a discussion of the potential of controllable plasma treatment as a versatile and effective tool for the surface functionalization of natural polymer-based drug delivery systems.
Collapse
Affiliation(s)
- Pankaj Bhatt
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad 201206, Uttar Pradesh, India; (P.B.)
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar 249404, Uttarakhand, India;
| | - Vipin Kumar
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar 249404, Uttarakhand, India;
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Kandasamy Nagarajan
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad 201206, Uttar Pradesh, India; (P.B.)
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602117, Tamil Nadu, India
| | - Gobinath Ramachawolran
- Department of Foundation, RCSI & UCD Malaysia Campus, No. 4, Jalan Sepoy Lines, Georgetown 10450, Pulau Pinang, Malaysia
| |
Collapse
|
13
|
Marques AC, Costa PC, Velho S, Amaral MH. Injectable Poloxamer Hydrogels for Local Cancer Therapy. Gels 2023; 9:593. [PMID: 37504472 PMCID: PMC10379388 DOI: 10.3390/gels9070593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023] Open
Abstract
The widespread push to invest in local cancer therapies comes from the need to overcome the limitations of systemic treatment options. In contrast to intravenous administration, local treatments using intratumoral or peritumoral injections are independent of tumor vasculature and allow high concentrations of therapeutic agents to reach the tumor site with minimal systemic toxicity. Injectable biodegradable hydrogels offer a clear advantage over other delivery systems because the former requires no surgical procedures and promotes drug retention at the tumor site. More precisely, in situ gelling systems based on poloxamers have garnered considerable attention due to their thermoresponsive behavior, biocompatibility, ease of preparation, and possible incorporation of different anticancer agents. Therefore, this review focuses on the use of injectable thermoresponsive hydrogels based on poloxamers and their physicochemical and biological characterization. It also includes a summary of these hydrogel applications in local cancer therapies using chemotherapy, phototherapy, immunotherapy, and gene therapy.
Collapse
Affiliation(s)
- Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paulo Cardoso Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sérgia Velho
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
14
|
Zare I, Taheri-Ledari R, Esmailzadeh F, Salehi MM, Mohammadi A, Maleki A, Mostafavi E. DNA hydrogels and nanogels for diagnostics, therapeutics, and theragnostics of various cancers. NANOSCALE 2023. [PMID: 37337663 DOI: 10.1039/d3nr00425b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
As an efficient class of hydrogel-based therapeutic drug delivery systems, deoxyribonucleic acid (DNA) hydrogels (particularly DNA nanogels) have attracted massive attention in the last five years. The main contributor to this is the programmability of these 3-dimensional (3D) scaffolds that creates fundamental effects, especially in treating cancer diseases. Like other active biological ingredients (ABIs), DNA hydrogels can be functionalized with other active agents that play a role in targeting drug delivery and modifying the half-life of the therapeutic cargoes in the body's internal environment. Considering the brilliant advantages of DNA hydrogels, in this survey, we intend to submit an informative collection of feasible methods for the design and preparation of DNA hydrogels and nanogels, and the responsivity of the immune system to these therapeutic cargoes. Moreover, the interactions of DNA hydrogels with cancer biomarkers are discussed in this account. Theragnostic DNA nanogels as an advanced species for both detection and therapeutic purposes are also briefly reviewed.
Collapse
Affiliation(s)
- Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Farhad Esmailzadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
15
|
Walvekar P, Kumar P, Choonara YE. Long-acting vaccine delivery systems. Adv Drug Deliv Rev 2023; 198:114897. [PMID: 37225091 DOI: 10.1016/j.addr.2023.114897] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/27/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
Bolus vaccines are often administered multiple times due to rapid clearance and reduced transportation to draining lymph nodes resulting in inadequate activation of T and B lymphocytes. In order to achieve adaptive immunity, prolonged exposure of antigens to these immune cells is crucial. Recent research has been focusing on developing long-acting biomaterial-based vaccine delivery systems, which can modulate the release of encapsulated antigens or epitopes to facilitate enhanced antigen presentation in lymph nodes and subsequently achieve robust T and B cell responses. Over the past few years, various polymers and lipids have been extensively explored to develop effective biomaterial-based vaccine strategies. The article reviews relevant polymer and lipid-based strategies used to prepare long-acting vaccine carriers and discusses their results concerning immune responses.
Collapse
Affiliation(s)
- Pavan Walvekar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Gauteng, 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Gauteng, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Gauteng, 2193, South Africa.
| |
Collapse
|
16
|
Gan S, Wu Y, Zhang X, Zheng Z, Zhang M, Long L, Liao J, Chen W. Recent Advances in Hydrogel-Based Phototherapy for Tumor Treatment. Gels 2023; 9:gels9040286. [PMID: 37102898 PMCID: PMC10137920 DOI: 10.3390/gels9040286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Phototherapeutic agent-based phototherapies activated by light have proven to be safe modalities for the treatment of various malignant tumor indications. The two main modalities of phototherapies include photothermal therapy, which causes localized thermal damage to target lesions, and photodynamic therapy, which causes localized chemical damage by generated reactive oxygen species (ROS). Conventional phototherapies suffer a major shortcoming in their clinical application due to their phototoxicity, which primarily arises from the uncontrolled distribution of phototherapeutic agents in vivo. For successful antitumor phototherapy, it is essential to ensure the generation of heat or ROS specifically occurs at the tumor site. To minimize the reverse side effects of phototherapy while improving its therapeutic performance, extensive research has focused on developing hydrogel-based phototherapy for tumor treatment. The utilization of hydrogels as drug carriers allows for the sustained delivery of phototherapeutic agents to tumor sites, thereby limiting their adverse effects. Herein, we summarize the recent advancements in the design of hydrogels for antitumor phototherapy, offer a comprehensive overview of the latest advances in hydrogel-based phototherapy and its combination with other therapeutic modalities for tumor treatment, and discuss the current clinical status of hydrogel-based antitumor phototherapy.
Collapse
Affiliation(s)
- Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Min Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Long
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Woodring RN, Gurysh EG, Bachelder EM, Ainslie KM. Drug Delivery Systems for Localized Cancer Combination Therapy. ACS APPLIED BIO MATERIALS 2023; 6:934-950. [PMID: 36791273 PMCID: PMC10373430 DOI: 10.1021/acsabm.2c00973] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
With over 2 million cancer cases and over 600,000 cancer-associated deaths predicted in the U.S. for 2022, this life-debilitating disease continuously impacts the lives of people across the nation every day. Therapeutic treatment options for cancer have historically involved chemotherapies to eradicate tumors with cytotoxic mechanisms which can negatively affect the efficacy versus toxicity ratio of treatment. With a need for more directed and therapeutically active options, targeted small-molecule inhibitors and immunotherapies have since emerged to mitigate treatment-associated toxicities. However, aggressive tumors can employ a wide range of defense mechanisms to evade monotherapy treatment altogether, resulting in the recurrence of therapeutically resistant tumors. Therefore, many clinical routines have included combination therapy in which anticancer agents are combined to provide a synergistic attack on tumors. Even with this approach, maximizing the efficacy of cancer treatment is contingent upon the dose of drug that reaches the site of the tumor, so often therapy is administered at the site of a tumor via localized delivery platforms. Commonly used platforms for localized drug delivery include polymeric wafers, nanofibrous scaffolds, and hydrogels where drug combinations can be loaded and delivered synchronously. Attaining synergistic activity from these localized systems is dependent on proper material selection and fabrication methods. Herein, we describe these important considerations for enhancing the efficacy of cancer combination therapy through biodegradable, localized delivery systems.
Collapse
Affiliation(s)
- Ryan N. Woodring
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth G. Gurysh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eric M. Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
18
|
Qian Q, Song J, Chen C, Pu Q, Liu X, Wang H. Recent advances in hydrogels for preventing tumor recurrence. Biomater Sci 2023; 11:2678-2692. [PMID: 36877511 DOI: 10.1039/d3bm00003f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Malignant tumors remain a high-risk disease with high mortality all over the world. Among all the cancer treatments, surgery is the primary approach in the clinical treatment of tumors. However, tumor invasion and metastasis pose challenges for complete tumor resection, accompanied by high recurrence rates and reduced quality of life. Hence, there is an urgent need to explore effective adjuvant therapies to prevent postoperative tumor recurrence and relieve the pain of the patients. Nowadays, the booming local drug delivery systems which can be applied as postoperative adjuvant therapies have aroused people's attention, along with the rapid development in the pharmaceutical and biological materials fields. Hydrogels are a kind of unique carrier with prominent biocompatibility among a variety of biomaterials. Due to their high similarity to human tissues, hydrogels which load drugs/growth factors can prevent rejection reactions and promote wound healing. In addition, hydrogels are able to cover the postoperative site and maintain sustained drug release for the prevention of tumor recurrence. In this review, we survey controlled drug delivery hydrogels such as implantable, injectable and sprayable formulations and summarize the properties required for hydrogels used as postoperative adjuvant therapies. The opportunities and challenges in the design and clinical application of these hydrogels are also elaborated.
Collapse
Affiliation(s)
- Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jie Song
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Chen Chen
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Qian Pu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xingcheng Liu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
19
|
Živanić M, Espona‐Noguera A, Lin A, Canal C. Current State of Cold Atmospheric Plasma and Cancer-Immunity Cycle: Therapeutic Relevance and Overcoming Clinical Limitations Using Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205803. [PMID: 36670068 PMCID: PMC10015903 DOI: 10.1002/advs.202205803] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/27/2022] [Indexed: 05/19/2023]
Abstract
Cold atmospheric plasma (CAP) is a partially ionized gas that gains attention as a well-tolerated cancer treatment that can enhance anti-tumor immune responses, which are important for durable therapeutic effects. This review offers a comprehensive and critical summary on the current understanding of mechanisms in which CAP can assist anti-tumor immunity: induction of immunogenic cell death, oxidative post-translational modifications of the tumor and its microenvironment, epigenetic regulation of aberrant gene expression, and enhancement of immune cell functions. This should provide a rationale for the effective and meaningful clinical implementation of CAP. As discussed here, despite its potential, CAP faces different clinical limitations associated with the current CAP treatment modalities: direct exposure of cancerous cells to plasma, and indirect treatment through injection of plasma-treated liquids in the tumor. To this end, a novel modality is proposed: plasma-treated hydrogels (PTHs) that can not only help overcome some of the clinical limitations but also offer a convenient platform for combining CAP with existing drugs to improve therapeutic responses and contribute to the clinical translation of CAP. Finally, by integrating expertise in biomaterials and plasma medicine, practical considerations and prospective for the development of PTHs are offered.
Collapse
Affiliation(s)
- Milica Živanić
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringEscola d'Enginyeria Barcelona Est (EEBE)and Research Centre for Biomedical Engineering (CREB)Universitat Politècnica de Catalunya (UPC)c/Eduard Maristany 14Barcelona08019Spain
- Biomaterials and Tissue EngineeringInstitut de Recerca Sant Joan de DéuSanta Rosa 39–57Esplugues de Llobregat08950Spain
- Plasma Lab for Applications in Sustainability and Medicine‐Antwerp (PLASMANT)Department of ChemistryUniversity of AntwerpUniversiteitsplein 1Wilrijk‐Antwerp2610Belgium
| | - Albert Espona‐Noguera
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringEscola d'Enginyeria Barcelona Est (EEBE)and Research Centre for Biomedical Engineering (CREB)Universitat Politècnica de Catalunya (UPC)c/Eduard Maristany 14Barcelona08019Spain
- Biomaterials and Tissue EngineeringInstitut de Recerca Sant Joan de DéuSanta Rosa 39–57Esplugues de Llobregat08950Spain
| | - Abraham Lin
- Plasma Lab for Applications in Sustainability and Medicine‐Antwerp (PLASMANT)Department of ChemistryUniversity of AntwerpUniversiteitsplein 1Wilrijk‐Antwerp2610Belgium
- Center for Oncological Research (CORE)Integrated Personalized & Precision Oncology Network (IPPON)University of AntwerpUniversiteitsplein 1Wilrijk‐Antwerp2610Belgium
| | - Cristina Canal
- BiomaterialsBiomechanics and Tissue Engineering GroupDepartment of Materials Science and EngineeringEscola d'Enginyeria Barcelona Est (EEBE)and Research Centre for Biomedical Engineering (CREB)Universitat Politècnica de Catalunya (UPC)c/Eduard Maristany 14Barcelona08019Spain
- Biomaterials and Tissue EngineeringInstitut de Recerca Sant Joan de DéuSanta Rosa 39–57Esplugues de Llobregat08950Spain
| |
Collapse
|
20
|
Liu C, Liao Y, Liu L, Xie L, Liu J, Zhang Y, Li Y. Application of injectable hydrogels in cancer immunotherapy. Front Bioeng Biotechnol 2023; 11:1121887. [PMID: 36815890 PMCID: PMC9935944 DOI: 10.3389/fbioe.2023.1121887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Immunotherapy is a revolutionary and promising approach to cancer treatment. However, traditional cancer immunotherapy often has the disadvantages of limited immune response rate, poor targeting, and low treatment index due to systemic administration. Hydrogels are drug carriers with many advantages. They can be loaded and transported with immunotherapeutic agents, chemical anticancer drugs, radiopharmaceuticals, photothermal agents, photosensitizers, and other therapeutic agents to achieve controlled release of drugs, extend the retention time of drugs, and thus successfully trigger anti-tumor effects and maintain long-term therapeutic effects after administration. This paper reviews recent advances in injectable hydrogel-based cancer immunotherapy, including immunotherapy alone, immunotherapy with combination chemotherapy, radiotherapy, phototherapy, and DNA hydrogel-based immunotherapy. Finally, we review the potential and limitations of injectable hydrogels in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Junbo Liu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yumao Zhang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuzhen Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
21
|
Gao X, Xu Z, Li S, Cheng L, Xu D, Li L, Chen L, Xu Y, Liu Z, Liu Y, Sun J. Chitosan-vancomycin hydrogel incorporated bone repair scaffold based on staggered orthogonal structure: a viable dually controlled drug delivery system. RSC Adv 2023; 13:3759-3765. [PMID: 36756570 PMCID: PMC9890554 DOI: 10.1039/d2ra07828g] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
In clinical practice, challenges remain in the treatment of large infected bone defects. Bone tissue engineering scaffolds with good mechanical properties and antibiotic-controlled release are powerful strategies for infection treatment. In this study, we prepared polylactic acid (PLA)/nano-hydroxyapatite (nHA) scaffolds with vertical orthogonal and staggered orthogonal structures by applying 3D printing technology. In addition, vancomycin (Van)-based chitosan (CS) hydrogel (Gel@Van) was loaded on the scaffold (PLA/nHA/CS-Van) to form a local antibiotic release system. The microstructure of the composite scaffold had high porosity with interconnected three-dimensional networks. The mechanical properties of the PLA/nHA/CS-Van composite scaffold were enhanced by the addition of CS-Van. The results of the water contact angle analysis showed that the hydrophilicity of the drug-loaded scaffold improved. In addition, the composite scaffold could produce sustained release in vitro for more than 8 weeks without adverse effects on the proliferation and differentiation of mouse embryonic osteoblasts (MC3T3-E1), which confirmed its good biocompatibility. During the in vitro antimicrobial study, the composite scaffold effectively inhibited the growth of Staphylococcus aureus (S. aureus). Therefore, our results suggest that the PLA/nHA/CS-Van composite scaffold is a promising strategy for treating infected bone defects.
Collapse
Affiliation(s)
- Xiaohan Gao
- The Affiliated Hospital of Qingdao University Qingdao 266000 China .,School of Stomatology of Qingdao University Qingdao 266000 China
| | - Zexian Xu
- The Affiliated Hospital of Qingdao University Qingdao 266000 China .,School of Stomatology of Qingdao University Qingdao 266000 China
| | - Shangbo Li
- The Affiliated Hospital of Qingdao University Qingdao 266000 China .,School of Stomatology of Qingdao University Qingdao 266000 China
| | - Lidi Cheng
- The Affiliated Hospital of Qingdao University Qingdao 266000 China .,School of Stomatology of Qingdao University Qingdao 266000 China
| | - Dian Xu
- The Affiliated Hospital of Qingdao University Qingdao 266000 China .,School of Stomatology of Qingdao University Qingdao 266000 China
| | - Li Li
- The Affiliated Hospital of Qingdao University Qingdao 266000 China .,School of Stomatology of Qingdao University Qingdao 266000 China
| | - Liqiang Chen
- The Affiliated Hospital of Qingdao University Qingdao 266000 China .,School of Stomatology of Qingdao University Qingdao 266000 China .,Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao Qingdao 266000 China
| | - Yaoxiang Xu
- The Affiliated Hospital of Qingdao University Qingdao 266000 China .,School of Stomatology of Qingdao University Qingdao 266000 China
| | - Zijian Liu
- The Affiliated Hospital of Qingdao University Qingdao 266000 China .,School of Stomatology of Qingdao University Qingdao 266000 China
| | - Yanshan Liu
- The Affiliated Hospital of Qingdao University Qingdao 266000 China .,School of Stomatology of Qingdao University Qingdao 266000 China .,Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao Qingdao 266000 China.,Shandong Provincial Key Laboratory of Digital Medicine and Computer-Assisted Surgery Qingdao 266000 China
| | - Jian Sun
- The Affiliated Hospital of Qingdao University Qingdao 266000 China .,School of Stomatology of Qingdao University Qingdao 266000 China .,Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao Qingdao 266000 China.,Shandong Provincial Key Laboratory of Digital Medicine and Computer-Assisted Surgery Qingdao 266000 China
| |
Collapse
|
22
|
de Castro KC, Coco JC, Dos Santos ÉM, Ataide JA, Martinez RM, do Nascimento MHM, Prata J, da Fonte PRML, Severino P, Mazzola PG, Baby AR, Souto EB, de Araujo DR, Lopes AM. Pluronic® triblock copolymer-based nanoformulations for cancer therapy: A 10-year overview. J Control Release 2023; 353:802-822. [PMID: 36521691 DOI: 10.1016/j.jconrel.2022.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
This paper provides a review of the literature on the use of Pluronic® triblock copolymers for drug encapsulation over the last 10 years. A special focus is given to the progress of drug delivery systems (e.g., micelles, liposomes, micro/nanoemulsions, hydrogels and nanogels, and polymersomes and niosomes); the beneficial aspects of Pluronic® triblock copolymers as biological response modifiers and as pharmaceutical additives, adjuvants, and stabilizers, are also discussed. The advantages and limitations encountered in developing site-specific targeting approaches based on Pluronic-based nanostructures in cancer treatment are highlighted, in addition to innovative examples for improving tumor cytotoxicity while reducing side effects.
Collapse
Affiliation(s)
| | - Julia Cedran Coco
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Janaína Artem Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - João Prata
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro Ricardo Martins Lopes da Fonte
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, Portugal; Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| | - Patrícia Severino
- Nanomedicine and Nanotechnology Laboratory (LNMed), Institute of Technology and Research (ITP) and Tiradentes University, Aracaju, Brazil
| | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - André Rolim Baby
- Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Eliana Barbosa Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | | | - André Moreni Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
23
|
Moakes RJA, Grover LM, Robinson TE. Can We Structure Biomaterials to Spray Well Whilst Maintaining Functionality? BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010003. [PMID: 36671575 PMCID: PMC9855191 DOI: 10.3390/bioengineering10010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Structured fluid biomaterials, including gels, creams, emulsions and particle suspensions, are used extensively across many industries, including great interest within the medical field as controlled release vehicles to improve the therapeutic benefit of delivered drugs and cells. Colloidal forces within these materials create multiscale cohesive interactions, giving rise to intricate microstructures and physical properties, exemplified by increasingly complex mathematical descriptions. Yield stresses and viscoelasticity, typically arising through the material microstructure, vastly improve site-specific retention, and protect valuable therapeutics during application. One powerful application route is spraying, a convenient delivery method capable of applying a thin layer of material over geometrically uneven surfaces and hard-to-reach anatomical locations. The process of spraying is inherently disruptive, breaking a bulk fluid in successive steps into smaller elements, applying multiple forces over several length scales. Historically, spray research has focused on simple, inviscid solutions and dispersions, far from the complex microstructures and highly viscoelastic properties of concentrated colloidal biomaterials. The cohesive forces in colloidal biomaterials appear to conflict with the disruptive forces that occur during spraying. This review explores the physical bass and mathematical models of both the multifarious material properties engineered into structured fluid biomaterials and the disruptive forces imparted during the spray process, in order to elucidate the challenges and identify opportunities for rational design of sprayable, structured fluid biomaterials.
Collapse
|
24
|
Su L, Hao Y, Li R, Pan W, Ma X, Weng J, Min Y. Red blood cell-based vaccines for ameliorating cancer chemoimmunotherapy. Acta Biomater 2022; 154:401-411. [PMID: 36241013 DOI: 10.1016/j.actbio.2022.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
Immune checkpoint blockade (ICB) therapy has shown promising antitumor effects, but its immune response rate remains unsatisfactory. In recent years, chemotherapy has been proven to have synergistic effects with ICB therapy because some chemotherapeutic agents can enhance the immunogenicity of tumor cells by inducing immunogenic cell death (ICD). However, it cannot be ignored that chemotherapy often shows limited therapeutic efficacy due to high cytotoxicity, drug resistance, and some other side effects. Herein, we report a strategy to improve cancer immunotherapy by utilizing red blood cell-based vaccines (RBC-vaccines) where chemotherapy-induced tumor antigens (cAgs) are anchored onto red blood cells (RBCs) via the EDC/NHS-mediated amine coupling reaction. In this work, RBC-vaccines administered subcutaneously are primarily devoured by dendritic cells (DCs) and significantly improve the efficacy of αPD-1 (anti-programmed cell death 1) treatment by increasing the infiltration of intratumoral CD8+ and CD4+ T cells and elevating the intratumoral ratio of CD8+ T cells to regulatory T cells in the CT-26 colon cancer model. Finally, based on the rejection of tumor rechallenge in cured mice, the combination therapy of RBC-vaccines and αPD-1 can induce the expansion of memory T cells and thereby establish a long-term antitumor immune response. Taken together, the proposed RBC-vaccines have great potential to improve chemoimmunotherapy. STATEMENT OF SIGNIFICANCE: Immunotherapy, especially immune checkpoint blockade therapy, has made great contributions to the treatment of some advanced cancers. Unfortunately, the great majority of patients with cancer do not benefit from immunotherapy. To enhance the response rate of immunotherapy, we developed red blood cell-based vaccines (RBC-vaccines) against cancers where antigens were harvested from chemotherapy-treated cancer cells and then attached to erythrocytes via covalent surface modification. Such RBC-vaccines could provide a wide variety of tumor antigens and damage-associated molecular patterns without the use of any extra ingredients to trigger a stronger antitumor immune response. More importantly, the combination of RBC-vaccines with PD-1 blockade could significantly improve the efficacy of cancer immunotherapy and induce durable antitumor immunity.
Collapse
Affiliation(s)
- Lanhong Su
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Yuhao Hao
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Rui Li
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Wen Pan
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Xiaopeng Ma
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Jianping Weng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuanzeng Min
- Department of Chemistry, University of Science and Technology of China, Hefei, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China; CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
25
|
Han S, Wu J. Three-dimensional (3D) scaffolds as powerful weapons for tumor immunotherapy. Bioact Mater 2022; 17:300-319. [PMID: 35386452 PMCID: PMC8965033 DOI: 10.1016/j.bioactmat.2022.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Though increasing understanding and remarkable clinical successes have been made, enormous challenges remain to be solved in the field of cancer immunotherapy. In this context, biomaterial-based immunomodulatory strategies are being developed to boost antitumor immunity. For the local immunotherapy, macroscale biomaterial scaffolds with 3D network structures show great superiority in the following aspects: facilitating the encapsulation, localized delivery, and controlled release of immunotherapeutic agents and even immunocytes for more efficient immunomodulation. The concentrating immunomodulation in situ could minimize systemic toxicities, but still exert abscopal effects to harness the power of overall anticancer immune response for eradicating malignancy. To promote such promising immunotherapies, the design requirements of macroscale 3D scaffolds should comprehensively consider their physicochemical and biological properties, such as porosity, stiffness, surface modification, cargo release kinetics, biocompatibility, biodegradability, and delivery modes. To date, increasing studies have focused on the relationships between these parameters and the biosystems which will guide/assist the 3D biomaterial scaffolds to achieve the desired immunotherapeutic outcomes. In this review, by highlighting some recent achievements, we summarized the latest advances in the development of various 3D scaffolds as niches for cancer immunotherapy. We also discussed opportunities, challenges, current trends, and future perspectives in 3D macroscale biomaterial scaffold-assisted local treatment strategies. More importantly, this review put more efforts to illustrate how the 3D biomaterial systems affect to modulate antitumor immune activities, where we discussed how significant the roles and behaviours of 3D macroscale scaffolds towards in situ cancer immunotherapy in order to direct the design of 3D immunotherapeutic.
Collapse
Affiliation(s)
- Shuyan Han
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518057, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518057, China
| |
Collapse
|
26
|
Ma Q, Li Q, Cai X, Zhou P, Wu Z, Wang B, Ma W, Fu S. Injectable hydrogels as drug delivery platform for in-situ treatment of malignant tumor. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Fan R, Cheng Y, Wang R, Zhang T, Zhang H, Li J, Song S, Zheng A. Thermosensitive Hydrogels and Advances in Their Application in Disease Therapy. Polymers (Basel) 2022; 14:polym14122379. [PMID: 35745954 PMCID: PMC9227257 DOI: 10.3390/polym14122379] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
Thermosensitive hydrogels, having unique sol–gel transition properties, have recently received special research attention. These hydrogels exhibit a phase transition near body temperature. This feature is the key to their applications in human medicine. In addition, hydrogels can quickly gel at the application site with simple temperature stimulation and without additional organic solvents, cross-linking agents, or external equipment, and the loaded drugs can be retained locally to improve the local drug concentration and avoid unexpected toxicity or side effects caused by systemic administration. All of these features have led to thermosensitive hydrogels being some of the most promising and practical drug delivery systems. In this paper, we review thermosensitive hydrogel materials with biomedical application potential, including natural and synthetic materials. We describe their structural characteristics and gelation mechanism and briefly summarize the mechanism of drug release from thermosensitive hydrogels. Our focus in this review was to summarize the application of thermosensitive hydrogels in disease treatment, including the postoperative recurrence of tumors, the delivery of vaccines, the prevention of postoperative adhesions, the treatment of nervous system diseases via nasal brain targeting, wound healing, and osteoarthritis treatment.
Collapse
Affiliation(s)
- Ranran Fan
- School of Pharmacy, Bengbu Medical College, Anhui 233030, China;
| | - Yi Cheng
- College of Pharmacy, Yanbian University, Jilin 133002, China;
| | - Rongrong Wang
- School of Pharmacy, North China University of Science and Technology, Hebei 063210, China;
| | - Ting Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Hui Zhang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China;
- Correspondence: (H.Z.); (J.L.); (S.S.)
| | - Jianchun Li
- School of Pharmacy, Bengbu Medical College, Anhui 233030, China;
- Correspondence: (H.Z.); (J.L.); (S.S.)
| | - Shenghan Song
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Correspondence: (H.Z.); (J.L.); (S.S.)
| | - Aiping Zheng
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China;
| |
Collapse
|
28
|
Naghibi S, Sabouri S, Hong Y, Jia Z, Tang Y. Brush-like Polymer Prodrug with Aggregation-Induced Emission Features for Precise Intracellular Drug Tracking. BIOSENSORS 2022; 12:bios12060373. [PMID: 35735521 PMCID: PMC9221197 DOI: 10.3390/bios12060373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
In this study, a brush-like polymer with aggregation-induced emission (AIE) features was synthesized for drug delivery and intracellular drug tracking. The polymer consisting of tetraphenylethene (TPE) chain-end as well as oligo-poly (ethylene glycol) (PEG) and hydrazine functionalities was successfully synthesized through copper (0)-mediated reversible-deactivation radical polymerization (Cu0-mediated RDRP). Anticancer drug doxorubicin (DOX) was conjugated to the polymer and formed a prodrug named TPE-PEGA-Hyd-DOX, which contains 11% DOX. The hydrazone between DOX and polymer backbone is a pH-sensitive linkage that can control the release of DOX in slightly acidic conditions, which can precisely control the DOX release rate. The drug release of 10% after 96 h in normal cell environments compared with about 40% after 24 h in cancer cell environments confirmed the influence of the hydrazone bond. The ratiometric design of fluorescent intensities with peaks at 410 nm (emission due to AIE feature of TPE) and 600 nm (emission due to ACQ feature of DOX) provides an excellent opportunity for this product as a precise intracellular drug tracker. Cancer cells confocal microscopy showed negligible DOX solution uptake, but an intense green emission originated from prodrug uptake. Moreover, a severe red emission in the DOX channel confirmed a promising level of drug release from the prodrug in the cytoplasm. The merged images of cancer cells confirmed the high performance of the TPE-PEGA-Hyd-DOX compound in the viewpoints of cellular uptake and drug release. This polymer prodrug successfully demonstrates low cytotoxicity in healthy cells and high performance in killing cancer cells.
Collapse
Affiliation(s)
- Sanaz Naghibi
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Tonsley, SA 5042, Australia;
| | - Soheila Sabouri
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; (S.S.); (Y.H.)
| | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; (S.S.); (Y.H.)
- Australia-China Joint Research Centre on Personal Health Technologies, Tonsley, SA 5042, Australia
| | - Zhongfan Jia
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Tonsley, SA 5042, Australia;
- Correspondence: (Z.J.); (Y.T.); Tel.: +61-8-8201-2804 (Z.J.); +61-8-8201-2138 (Y.T.)
| | - Youhong Tang
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Tonsley, SA 5042, Australia;
- Australia-China Joint Research Centre on Personal Health Technologies, Tonsley, SA 5042, Australia
- Correspondence: (Z.J.); (Y.T.); Tel.: +61-8-8201-2804 (Z.J.); +61-8-8201-2138 (Y.T.)
| |
Collapse
|
29
|
Vincent MP, Navidzadeh JO, Bobbala S, Scott EA. Leveraging self-assembled nanobiomaterials for improved cancer immunotherapy. Cancer Cell 2022; 40:255-276. [PMID: 35148814 PMCID: PMC8930620 DOI: 10.1016/j.ccell.2022.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
Nanomaterials and targeted drug delivery vehicles improve the therapeutic index of drugs and permit greater control over their pharmacokinetics, biodistribution, and bioavailability. Here, nanotechnologies applied to cancer immunotherapy are discussed with a focus on current and next generation self-assembling drug delivery systems composed of lipids and/or polymers. Topics covered include the fundamental design, suitability, and inherent properties of nanomaterials that induce anti-tumor immune responses and support anti-cancer vaccination. Established active and passive targeting strategies as well as newer "indirect" methods are presented together with insights into how nanocarrier structure and surface chemistry can be leveraged for controlled delivery to the tumor microenvironment while minimizing off-target effects.
Collapse
Affiliation(s)
- Michael P Vincent
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Justin O Navidzadeh
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Sharan Bobbala
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA; Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
30
|
Keller CR, Hu Y, Ruud KF, VanDeen AE, Martinez SR, Kahn BT, Zhang Z, Chen RK, Li W. Human Breast Extracellular Matrix Microstructures and Protein Hydrogel 3D Cultures of Mammary Epithelial Cells. Cancers (Basel) 2021; 13:cancers13225857. [PMID: 34831010 PMCID: PMC8616054 DOI: 10.3390/cancers13225857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 01/21/2023] Open
Abstract
Simple Summary Human breast tissue extracellular matrix (ECM) is a microenvironment essential for the survival and biological activities of mammary epithelial cells. The ECM structural features of human breast tissues remain poorly defined. In this study, we identified the structural and mechanical properties of human normal breast and invasive ductal carcinoma tissue ECM using histological methods and atomic force microscopy. Additionally, a protein hydrogel was generated using human breast tissue ECM and defined for its microstructural features using immunofluorescence imaging and machine learning. Furthermore, we examined the three-dimensional growth of normal mammary epithelial cells or breast cancer cells cultured on the ECM protein hydrogel, where the cells exhibited biological phenotypes like those seen in native breast tissues. Our data provide novel insights into cancer cell biology, tissue microenvironment mimicry and engineering, and native tissue ECM-based biomedical and pharmaceutical applications. Abstract Tissue extracellular matrix (ECM) is a structurally and compositionally unique microenvironment within which native cells can perform their natural biological activities. Cells grown on artificial substrata differ biologically and phenotypically from those grown within their native tissue microenvironment. Studies examining human tissue ECM structures and the biology of human tissue cells in their corresponding tissue ECM are lacking. Such investigations will improve our understanding about human pathophysiological conditions for better clinical care. We report here human normal breast tissue and invasive ductal carcinoma tissue ECM structural features. For the first time, a hydrogel was successfully fabricated using whole protein extracts of human normal breast ECM. Using immunofluorescence staining of type I collagen (Col I) and machine learning of its fibrous patterns in the polymerized human breast ECM hydrogel, we have defined the microstructural characteristics of the hydrogel and compared the microstructures with those of other native ECM hydrogels. Importantly, the ECM hydrogel supported 3D growth and cell-ECM interaction of both normal and cancerous mammary epithelial cells. This work represents further advancement toward full reconstitution of the human breast tissue microenvironment, an accomplishment that will accelerate the use of human pathophysiological tissue-derived matrices for individualized biomedical research and therapeutic development.
Collapse
Affiliation(s)
- Chandler R. Keller
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.R.K.); (K.F.R.)
| | - Yang Hu
- Department of Crop and Soil Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA 99164, USA; (Y.H.); (Z.Z.)
| | - Kelsey F. Ruud
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.R.K.); (K.F.R.)
| | - Anika E. VanDeen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA; (A.E.V.); (R.K.C.)
| | - Steve R. Martinez
- Department of Surgery, The Everett Clinic and Providence Regional Cancer Partnership, Everett, WA 98201, USA;
- Department of Medical Education and Clinical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Barry T. Kahn
- CellNetix Pathology & Laboratories, Seattle, WA 98104, USA;
- Providence Regional Medical Center, Everett, WA 98201, USA
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA 99164, USA; (Y.H.); (Z.Z.)
| | - Roland K. Chen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA; (A.E.V.); (R.K.C.)
| | - Weimin Li
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.R.K.); (K.F.R.)
- Correspondence:
| |
Collapse
|
31
|
Elkihel A, Christie C, Vernisse C, Ouk TS, Lucas R, Chaleix V, Sol V. Xylan-Based Cross-Linked Hydrogel for Photodynamic Antimicrobial Chemotherapy. ACS APPLIED BIO MATERIALS 2021; 4:7204-7212. [PMID: 35006952 DOI: 10.1021/acsabm.1c00760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photodynamic antimicrobial chemotherapy or PACT has been shown to be a promising antibacterial treatment that could overcome the challenge of multidrug-resistant bacteria. However, the use of most existing photosensitizers has been severely hampered by their significant self-quenching effect, poor water solubility, lack of selectivity against bacterial cells, and possible damage to the surrounding tissues. The use of hydrogels may overcome some of these limitations. We herein report a simple strategy to synthesize a cross-linked hydrogel from beech xylan. The hydrogel showed a high swelling ratio, up to 62, an interconnected porous structure, and good mechanical integrity, and 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin tetraiodide (TMPyP) was chosen as a model of hydrophilic photosensitizer (PS) and was encapsulated inside the xylan-based hydrogel. TMPyP-loaded hydrogel prolonged release of PS up to 24 h with a cumulative amount that could reach 100%. TMPyP-loaded hydrogel showed a photocytotoxic effect against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus strains, and Bacillus cereus, while no cytotoxicity was observed in the dark.
Collapse
Affiliation(s)
- Abdechakour Elkihel
- Université de Limoges, Laboratoire PEIRENE, EA 7500, Faculté des Sciences et Techniques, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Camille Christie
- Université de Limoges, Laboratoire PEIRENE, EA 7500, Faculté des Sciences et Techniques, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Charlotte Vernisse
- Université de Limoges, Laboratoire PEIRENE, EA 7500, Faculté des Sciences et Techniques, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Tan-Sothéa Ouk
- Université de Limoges, Laboratoire PEIRENE, EA 7500, Faculté des Sciences et Techniques, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Romain Lucas
- Université de Limoges, IRCER, UMR 7315, F-87068 Limoges, France
| | - Vincent Chaleix
- Université de Limoges, Laboratoire PEIRENE, EA 7500, Faculté des Sciences et Techniques, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Vincent Sol
- Université de Limoges, Laboratoire PEIRENE, EA 7500, Faculté des Sciences et Techniques, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| |
Collapse
|
32
|
Cui R, Wu Q, Wang J, Zheng X, Ou R, Xu Y, Qu S, Li D. Hydrogel-By-Design: Smart Delivery System for Cancer Immunotherapy. Front Bioeng Biotechnol 2021; 9:723490. [PMID: 34368109 PMCID: PMC8334721 DOI: 10.3389/fbioe.2021.723490] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022] Open
Abstract
Immunotherapy has emerged as a promising strategy for cancer treatment, in which durable immune responses were generated in patients with malignant tumors. In the past decade, biomaterials have played vital roles as smart drug delivery systems for cancer immunotherapy to achieve both enhanced therapeutic benefits and reduced side effects. Hydrogels as one of the most biocompatible and versatile biomaterials have been widely applied in localized drug delivery systems due to their unique properties, such as loadable, implantable, injectable, degradable and stimulus responsible. Herein, we have briefly summarized the recent advances on hydrogel-by-design delivery systems including the design of hydrogels and their applications for delivering of immunomodulatory molecules (e.g., cytokine, adjuvant, checkpoint inhibitor, antigen), immune cells and environmental regulatory substances in cancer immunotherapy. We have also discussed the challenges and future perspectives of hydrogels in the development of cancer immunotherapy for precision medicine at the end.
Collapse
Affiliation(s)
- Rongwei Cui
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qiang Wu
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jing Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Xiaoming Zheng
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Rongying Ou
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunsheng Xu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shuxin Qu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Danyang Li
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|