1
|
Heidari H, Lawrence DA. An integrative exploration of environmental stressors on the microbiome-gut-brain axis and immune mechanisms promoting neurological disorders. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:233-263. [PMID: 38994870 DOI: 10.1080/10937404.2024.2378406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The microbiome-gut-brain axis is altered by environmental stressors such as heat, diet, and pollutants as well as microbes in the air, water, and soil. These stressors might alter the host's microbiome and symbiotic relationship by modifying the microbial composition or location. Compartmentalized mutualistic microbes promote the beneficial interactions in the host leading to circulating metabolites and hormones such as insulin and leptin that affect inter-organ functions. Inflammation and oxidative stress induced by environmental stressors may alter the composition, distribution, and activities of the microbes in the microbiomes such that the resultant metabolite and hormone changes are no longer beneficial. The microbiome-gut-brain axis and immune adverse changes that may accompany environmental stressors are reviewed for effects on innate and adaptive immune cells, which may make host immunity less responsive to pathogens and more reactive to self-antigens. Cardiovascular and fluid exchanges to organs might adversely alter organ functionality. Organs, especially the brain, need a consistent supply of nutrients and clearance of debris; disruption of these exchanges by stressors, and involvement of gut microbiome are discussed regarding neural dysfunctions with Alzheimer's disease, autistic spectrum disorders, viral infections, and autoimmune diseases. The focus of this review includes the manner in which environmental stressors may disrupt gut microbiota leading to adverse immune and hormonal influences on development of neuropathology related to hyperhomocysteinemia, inflammation, and oxidative stress, and how certain therapeutics may be beneficial. Strategies are explored to lessen detrimental effects of environmental stressors on central and peripheral health navigated toward (1) understanding neurological disorders and (2) promoting environmental and public health and well-being.
Collapse
Affiliation(s)
- Hajar Heidari
- Department of Biomedical Sciences, University at Albany School of Public Health, Rensselaer, NY, USA
| | - David A Lawrence
- Department of Biomedical Sciences, University at Albany School of Public Health, Rensselaer, NY, USA
- Department of Environmental Health Sciences, University at Albany School of Public Health, Rensselaer, NY, USA
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| |
Collapse
|
2
|
Ltaief SM, Nour-Eldine W, Manaph NPA, Tan TM, Anuar ND, Bensmail I, George J, Abdesselem HB, Al-Shammari AR. Dysregulated plasma autoantibodies are associated with B cell dysfunction in young Arab children with autism spectrum disorder in Qatar. Autism Res 2024; 17:1974-1993. [PMID: 39315457 DOI: 10.1002/aur.3235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction and communication, as well as the occurrence of stereotyped and repetitive behaviors. Previous studies have provided solid evidence of dysregulated immune system in ASD; however, limited studies have investigated autoantibody profiles in individuals with ASD. This study aims to screen plasma autoantibodies in a well-defined cohort of young children with ASD (n = 100) and their matched controls (n = 60) utilizing a high-throughput KoRectly Expressed (KREX) i-Ome protein-array technology. We identified differential protein expression of 16 autoantibodies in ASD, which were correlated with differential gene expression of these markers in independent ASD cohorts. Meanwhile, we identified a distinct list of 33 autoantibodies associated with ASD severity; several of which were correlated with maternal age and birth weight in ASD. In addition, we found dysregulated numbers of circulating B cells and activated HLADR+ B cells in ASD, which were correlated with altered levels of several autoantibodies. Further in-depth analysis of B cell subpopulations revealed an increased frequency of activated naïve B cells in ASD, as well as an association of resting naïve B cells and transitional B cells with ASD severity. Pathway enrichment analysis revealed disrupted MAPK signaling in ASD, suggesting a potential relevance of this pathway to altered autoantibodies and B cell dysfunction in ASD. Finally, we found that a combination of eight autoantibodies associated with ASD severity showed an area under the curve (ROC-AUC) of 0.937 (95% CI = 0.890, 0.983; p < 0.001), which demonstrated the diagnostic accuracy of the eight-marker signature in the severity classification of ASD cases. Overall, this study determined dysregulated autoantibody profiles and B cell dysfunction in children with ASD and identified an eight-autoantibody panel for ASD severity classification.
Collapse
Affiliation(s)
- Samia M Ltaief
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Wared Nour-Eldine
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | | | - Ti-Myen Tan
- Sengenics Corporation, Level M, Plaza Zurich, Damansara Heights, Kuala Lumpur, Malaysia
| | - Nur Diana Anuar
- Sengenics Corporation, Level M, Plaza Zurich, Damansara Heights, Kuala Lumpur, Malaysia
| | - Ilham Bensmail
- Proteomics Core Facility, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Jilbin George
- Proteomics Core Facility, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Houari B Abdesselem
- Proteomics Core Facility, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Abeer R Al-Shammari
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
3
|
Xiaoyue H, Hongwei T, Jianbiao W, Jingbo M, Ying H. Exploratory analysis of high-dose corticosteroid therapy on epileptic encephalopathy with spike-and-wave activation in sleep. Front Pediatr 2024; 12:1388008. [PMID: 39184857 PMCID: PMC11341369 DOI: 10.3389/fped.2024.1388008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Objective This study aims to evaluate the therapeutic efficacy of high-dose corticosteroid therapy in children diagnosed with epileptic encephalopathy with spike-and-wave activation in sleep (EE-SWAS), investigate associated clinical indicators influencing treatment outcomes, and establish a predictive model for recurrence. Methods Children diagnosed with EE-SWAS who received high-dose corticosteroid therapy were categorized into responder group and non-responder group. Data on clinical parameters, electroencephalogram (EEG) features, and serum cytokine levels were collected. Six months post-treatment, the effectively treated children were further stratified into recurrence and non-recurrence groups. Risk factors for poor outcomes following corticosteroid therapy were identified using univariate analysis. Multivariate logistic regression analysis was then employed to determine independent factors influencing the recurrence of corticosteroid therapy, which facilitated the development of a predictive model. Results The study included 48 children, with 33 cases in the responder group (effective rate = 68.8%) and 15 cases in the non-responder group. The responder group exhibited an older onset age of electrical status epilepticus in sleep (ESES) and higher proportions of combined benzodiazepines (BZDs) use (P < 0.05). Among those responding to corticosteroid therapy, 11 cases experienced a recurrence (recurrence rate = 33.3%), while 22 cases did not. Significant differences were observed between the two groups concerning age of seizure onset, age of ESES onset, seizure frequency, atypical presentations, and concomitant frontal lobe discharges (all P < 0.05). Concomitant frontal lobe discharges and an earlier age of seizure onset were identified as risk factors for ESES recurrence following corticosteroid therapy. The predictive model was formulated as Logit(P) = 2.35 × presence of frontal lobe discharges-0.802 × age of seizure onset + 2.457. The Area Under the Curve (AUC) of Receiver Operating Characteristics (ROC) was 0.93, with sensitivity and specificity at 100% and 77.3%, respectively. Conclusion High-dose corticosteroid therapy for EE-SWAS exhibited a high effective rate as well as a notable recurrence rate. Onset age of ESES and combined benzodiazepines usage correlated with therapeutic efficacy. Seizure onset age and the presence of frontal lobe discharges may hold predictive value for recurrence following corticosteroid therapy.
Collapse
Affiliation(s)
| | | | | | | | - Hua Ying
- Department of Neurology, Wuxi Children’sHospital, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Furley K, Mehra C, Goin-Kochel RP, Fahey MC, Hunter MF, Williams K, Absoud M. Developmental regression in children: Current and future directions. Cortex 2023; 169:5-17. [PMID: 37839389 DOI: 10.1016/j.cortex.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/20/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Developmental regression describes when a child loses previously established skills, such as the ability to speak words and is most recognised in neurodevelopmental conditions including Autism; Developmental Epileptic Encephalopathies, such as Landau Kleffner syndrome, and genetic conditions such as Rett syndrome and Phelan McDermid syndrome. Although studies have reported developmental regression for over 100 years, there remain significant knowledge gaps within and between conditions that feature developmental regression. The certainty of evidence from earlier work has been limited by condition-specific studies, retrospective methodology, and inconsistency in the definitions and measures used for classification. Given prior limitations in the field, there is a paucity of knowledge about neurocognitive mechanisms, trajectories and outcomes for children with developmental regression, and their families. Here we provide a comprehensive overview, synthesise key definitions, clinical measures, and aetiological clues associated with developmental regression and discuss impacts on caregiver physical and mental health to clarify challenges and highlight future directions in the field.
Collapse
Affiliation(s)
- Kirsten Furley
- Monash Children's Hospital, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia.
| | - Chirag Mehra
- Children's Neurosciences, Evelina London Children's Hospital, St Thomas' Hospital, London, UK; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Robin P Goin-Kochel
- Department of Pediatrics, Baylor College of Medicine, United States; Meyer Center for Developmental Pediatrics & Autism, Texas Children's Hospital, United States
| | - Michael C Fahey
- Monash Children's Hospital, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| | - Matthew F Hunter
- Monash Children's Hospital, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| | - Katrina Williams
- Monash Children's Hospital, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| | - Michael Absoud
- Children's Neurosciences, Evelina London Children's Hospital, St Thomas' Hospital, London, UK; Department of Women and Children's Health, King's College London, London, UK.
| |
Collapse
|
5
|
Caires CRS, Bossolani-Martins AL. Which form of environmental enrichment is most effective in rodent models of autism? Behav Processes 2023; 211:104915. [PMID: 37451559 DOI: 10.1016/j.beproc.2023.104915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Environmental enrichment (EE) is known to produce experience-dependent changes in the brains and behaviors of rodents, and it has therefore been widely used to study neurodevelopmental disorders, including autism. Current studies show significant protocol variation, such as the presence of running wheels, number of cagemates, duration of enrichment, and the age of the animals at the beginning and end of the enrichment interventions. EE has been shown to have prominent positive effects in animal models of idiopathic and syndromic autism, but little is known about the ideal type of EE and the most efficient protocols for reversing autism spectrum disorder (ASD) behaviors modeled in rodents. This review presents evidence that social enrichment is the most effective way to rescue typical behaviors, and that variables such as onset, duration, and type of induction in the ASD model are important for EE success. Understanding which EE protocols are most beneficial for reversing ASD behaviors modeled in rodents opens up possibilities for the potential treatment of neuropsychiatric disorders characterized by behavioral deficits, such as autism.
Collapse
Affiliation(s)
- Cássia Regina Suzuki Caires
- Laboratory of Experimental Physiology, Faculty of Medicine of São Jose do Rio Preto - FAMERP, Av. Brg. Faria Lima, 5416 - Vila São Pedro, São José do Rio Preto, SP, Brazil.
| | - Ana Luiza Bossolani-Martins
- Federal University of Mato Grosso do Sul - UFMS, Av. Pedro Pedrossian, 725 - Universitário, Paranaíba, MS, Brazil.
| |
Collapse
|
6
|
Sherman HT, Liu K, Kwong K, Chan ST, Li AC, Kong XJ. Carbon monoxide (CO) correlates with symptom severity, autoimmunity, and responses to probiotics treatment in a cohort of children with autism spectrum disorder (ASD): a post-hoc analysis of a randomized controlled trial. BMC Psychiatry 2022; 22:536. [PMID: 35941573 PMCID: PMC9358122 DOI: 10.1186/s12888-022-04151-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/19/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Inflammation, autoimmunity, and gut-brain axis have been implicated in the pathogenesis of autism spectrum disorder (ASD). Carboxyhemoglobin (SpCO) as a non-invasive measurement of inflammation has not been studied in individuals with ASD. We conducted this post-hoc study based on our published clinical trial to explore SpCO and its association with ASD severity, autoimmunity, and response to daily Lactobacillus plantarum probiotic supplementation. METHODS In this study, we included 35 individuals with ASD aged 3-20 years from a previously published clinical trial of the probiotic Lactobacillus plantarum. Subjects were randomly assigned to receive daily Lactobacillus plantarum probiotic (6 × 1010 CFUs) or a placebo for 16 weeks. The outcomes in this analysis include Social Responsiveness Scale (SRS), Aberrant Behavior Checklist second edition (ABC-2), Clinical Global Impression (CGI) scale, SpCO measured by CO-oximetry, fecal microbiome by 16 s rRNA sequencing, blood serum inflammatory markers, autoantibodies, and oxytocin (OT) by ELISA. We performed Kendall's correlation to examine their interrelationships and used Wilcoxon rank-sum test to compare the means of all outcomes between the two groups at baseline and 16 weeks. RESULTS Elevated levels of serum anti-tubulin, CaM kinase II, anti-dopamine receptor D1 (anti-D1), and SpCO were found in the majority of ASD subjects. ASD severity is correlated with SpCO (baseline, R = 0.38, p = 0.029), anti-lysoganglioside GM1 (R = 0.83, p = 0.022), anti-tubulin (R = 0.69, p = 0.042), and anti-D1 (R = 0.71, p = 0.045) in treatment group. CONCLUSIONS The findings of the present study suggests that the easily administered and non-invasive SpCO test offers a potentially promising autoimmunity and inflammatory biomarker to screen/subgroup ASD and monitor the treatment response to probiotics. Furthermore, we propose that the associations between autoantibodies, gut microbiome profile, serum OT level, GI symptom severity, and ASD core symptom severity scores are specific to the usage of probiotic treatment in our subject cohort. Taken together, these results warrant further studies to improve ASD early diagnosis and treatment outcomes. TRIAL REGISTRATION ClinicalTrials.gov NCT03337035 , registered November 8, 2017.
Collapse
Affiliation(s)
- Hannah Tayla Sherman
- grid.32224.350000 0004 0386 9924Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA USA
| | - Kevin Liu
- grid.32224.350000 0004 0386 9924Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA USA
| | - Kenneth Kwong
- grid.32224.350000 0004 0386 9924Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA USA
| | - Suk-Tak Chan
- grid.32224.350000 0004 0386 9924Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA USA
| | - Alice Chukun Li
- grid.32224.350000 0004 0386 9924Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA USA
| | - Xue-Jun Kong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, USA. .,Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
7
|
Tamouza R, Volt F, Richard JR, Wu CL, Bouassida J, Boukouaci W, Lansiaux P, Cappelli B, Scigliuolo GM, Rafii H, Kenzey C, Mezouad E, Naamoune S, Chami L, Lejuste F, Farge D, Gluckman E. Possible Effect of the use of Mesenchymal Stromal Cells in the Treatment of Autism Spectrum Disorders: A Review. Front Cell Dev Biol 2022; 10:809686. [PMID: 35865626 PMCID: PMC9294632 DOI: 10.3389/fcell.2022.809686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Autism spectrum disorder (ASD) represents a set of heterogeneous neurodevelopmental conditions defined by impaired social interactions and repetitive behaviors. The number of reported cases has increased over the past decades, and ASD is now a major public health burden. So far, only treatments to alleviate symptoms are available, with still unmet need for an effective disease treatment to reduce ASD core symptoms. Genetic predisposition alone can only explain a small fraction of the ASD cases. It has been reported that environmental factors interacting with specific inter-individual genetic background may induce immune dysfunctions and contribute to the incidence of ASD. Such dysfunctions can be observed at the central level, with increased microglial cells and activation in ASD brains or in the peripheral blood, as reflected by high circulating levels of pro-inflammatory cytokines, abnormal activation of T-cell subsets, presence of auto-antibodies and of dysregulated microbiota profiles. Altogether, the dysfunction of immune processes may result from immunogenetically-determined inefficient immune responses against a given challenge followed by chronic inflammation and autoimmunity. In this context, immunomodulatory therapies might offer a valid therapeutic option. Mesenchymal stromal cells (MSC) immunoregulatory and immunosuppressive properties constitute a strong rationale for their use to improve ASD clinical symptoms. In vitro studies and pre-clinical models have shown that MSC can induce synapse formation and enhance synaptic function with consequent improvement of ASD-like symptoms in mice. In addition, two preliminary human trials based on the infusion of cord blood-derived MSC showed the safety and tolerability of the procedure in children with ASD and reported promising clinical improvement of core symptoms. We review herein the immune dysfunctions associated with ASD provided, the rationale for using MSC to treat patients with ASD and summarize the current available studies addressing this subject.
Collapse
Affiliation(s)
- Ryad Tamouza
- Translational Neuropsychiatry, INSERM, IMRB, DMU, AP-HP, Univ Paris Est Créteil, Créteil, France
- *Correspondence: Ryad Tamouza,
| | - Fernanda Volt
- Institut de Recherche Saint Louis (IRSL), Eurocord, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Jean-Romain Richard
- Translational Neuropsychiatry, INSERM, IMRB, Univ Paris Est Créteil, Créteil, France
| | - Ching-Lien Wu
- Translational Neuropsychiatry, INSERM, IMRB, Univ Paris Est Créteil, Créteil, France
| | - Jihène Bouassida
- Translational Neuropsychiatry, INSERM, IMRB, Univ Paris Est Créteil, Créteil, France
| | - Wahid Boukouaci
- Translational Neuropsychiatry, INSERM, IMRB, Univ Paris Est Créteil, Créteil, France
| | - Pauline Lansiaux
- Unité de Médecine Interne (UF 04), CRMR MATHEC, Maladies Auto-immunes et Thérapie Cellulaire, Centre de Référence des Maladies Auto-immunes Systémiques Rares D’Ile-de-France MATHEC, AP-HP, Hôpital St-Louis, Paris, France
| | - Barbara Cappelli
- Institut de Recherche Saint Louis (IRSL), Eurocord, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
- Monacord, Centre Scientifique de Monaco, Monaco, Monaco
| | - Graziana Maria Scigliuolo
- Institut de Recherche Saint Louis (IRSL), Eurocord, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
- Monacord, Centre Scientifique de Monaco, Monaco, Monaco
| | - Hanadi Rafii
- Institut de Recherche Saint Louis (IRSL), Eurocord, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Chantal Kenzey
- Institut de Recherche Saint Louis (IRSL), Eurocord, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Esma Mezouad
- Translational Neuropsychiatry, INSERM, IMRB, DMU, AP-HP, Univ Paris Est Créteil, Créteil, France
| | - Soumia Naamoune
- Translational Neuropsychiatry, INSERM, IMRB, DMU, AP-HP, Univ Paris Est Créteil, Créteil, France
| | - Leila Chami
- Translational Neuropsychiatry, INSERM, IMRB, DMU, AP-HP, Univ Paris Est Créteil, Créteil, France
| | - Florian Lejuste
- Translational Neuropsychiatry, INSERM, IMRB, DMU, AP-HP, Univ Paris Est Créteil, Créteil, France
| | - Dominique Farge
- Unité de Médecine Interne (UF 04), CRMR MATHEC, Maladies Auto-immunes et Thérapie Cellulaire, Centre de Référence des Maladies Auto-immunes Systémiques Rares D’Ile-de-France MATHEC, AP-HP, Hôpital St-Louis, Paris, France
| | - Eliane Gluckman
- Institut de Recherche Saint Louis (IRSL), Eurocord, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
- Monacord, Centre Scientifique de Monaco, Monaco, Monaco
| |
Collapse
|
8
|
Ahmed SH, El Ghareeb AEWA, El-Rahman HAA, Almaaty AHA. Impact of maternal desvenlafaxine exposure on brain development in pregnant albino rats and their fetuses. J Biochem Mol Toxicol 2022; 36:e23062. [PMID: 35363936 DOI: 10.1002/jbt.23062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/28/2021] [Accepted: 03/21/2022] [Indexed: 11/08/2022]
Abstract
Depression during pregnancy adversely affects fetal development. Desvenlafaxine drug is used for the treatment of gestational depression. In light of the well-established role of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in regulating neurogenesis and neural survival, the role of S100b in nerve cell energetic metabolism, differentiation of neurons and glial cells, an aberrant increase in NGF, BDNF and S100b expression in the fetal brain may contribute to desvenlafaxine cognitive disorders by altering brain development. This study is trying to determine the effect of desvenlafaxine on brain development. Thirty timed pregnant rats (from the 5th to the 20th day) were divided into three groups: control, low dose (5.14 mg/kg/day) and high dose (10.28 mg/kg/day) of desvenlafaxine where all animals received the corresponding doses by gavage. Maternal and fetal brain samples were fixed for histological, immunohistochemical (IHC) study of NGF and evaluated for BDNF and S100b genes expression. Desvenlafaxine induced some of the histopathological alterations in maternal and fetal rat brains. Moreover, IHC analysis of maternal and fetal rat brains showed that groups treated with desvenlafaxine demonstrated a significant increase of NGF protein immunoreactivity compared with that in the controls. Gene expression results revealed upregulation of messenger RNA BDNF and S100B expression. According to developmental changes in the brain, desvenlafaxine affects neonatal growth during pregnancy, which may lead to delay of brain development. So, it is essential to survey the roles of antidepressant drugs on neonatal development during pregnancy.
Collapse
Affiliation(s)
- Sarah H Ahmed
- Department of Zoology, Faculty of Science, Port Said University, Port Said, Egypt
| | | | | | - Ali H Abu Almaaty
- Department of Zoology, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
9
|
Pleiotropic effects of BDNF on the cerebellum and hippocampus: Implications for neurodevelopmental disorders. Neurobiol Dis 2022; 163:105606. [PMID: 34974125 DOI: 10.1016/j.nbd.2021.105606] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most studied neurotrophins in the mammalian brain, essential not only to the development of the central nervous system but also to synaptic plasticity. BDNF is present in various brain areas, but highest levels of expression are seen in the cerebellum and hippocampus. After birth, BDNF acts in the cerebellum as a mitogenic and chemotactic factor, stimulating the cerebellar granule cell precursors to proliferate, migrate and maturate, while in the hippocampus BDNF plays a fundamental role in synaptic transmission and plasticity, representing a key regulator for the long-term potentiation, learning and memory. Furthermore, the expression of BDNF is highly regulated and changes of its expression are associated with both physiological and pathological conditions. The purpose of this review is to provide an overview of the current state of knowledge on the BDNF biology and its neurotrophic role in the proper development and functioning of neurons and synapses in two important brain areas of postnatal neurogenesis, the cerebellum and hippocampus. Dysregulation of BDNF expression and signaling, resulting in alterations in neuronal maturation and plasticity in both systems, is a common hallmark of several neurodevelopmental diseases, such as autism spectrum disorder, suggesting that neuronal malfunction present in these disorders is the result of excessive or reduced of BDNF support. We believe that the more the relevance of the pathophysiological actions of BDNF, and its downstream signals, in early postnatal development will be highlighted, the more likely it is that new neuroprotective therapeutic strategies will be identified in the treatment of various neurodevelopmental disorders.
Collapse
|
10
|
Krigsman A, Walker SJ. Gastrointestinal disease in children with autism spectrum disorders: Etiology or consequence? World J Psychiatry 2021; 11:605-618. [PMID: 34631464 PMCID: PMC8474996 DOI: 10.5498/wjp.v11.i9.605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/24/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic gastrointestinal (GI) symptoms and disorders are common in children with autism spectrum disorder and have been shown to be significantly correlated with the degree of behavioral and cognitive impairment. In this unique population, GI symptoms often arise very early in development, during infancy or toddlerhood, and may be misdiagnosed - or not diagnosed at all – due in part to the challenges associated with recognition of symptoms in a minimally or non-communicative child. Evidence demonstrating that the gut-brain-axis can communicate gut dysbiosis and systemic immune dysregulation in a bidirectional manner raises the question as to whether an untreated gastrointestinal disorder can directly impact neurodevelopment or, conversely, whether having a neurodevelopmental disorder predisposes a child to chronic GI issues. From the data presented in this mini review, we conclude that the preponderance of available evidence would suggest the former scenario is more strongly supported.
Collapse
Affiliation(s)
- Arthur Krigsman
- Pediatric Gastroenterology Resources of New York and Texas, Georgetown, TX 78628, United States
| | - Stephen J Walker
- Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC 27157, United States
| |
Collapse
|
11
|
Gevezova M, Sarafian V, Anderson G, Maes M. Inflammation and Mitochondrial Dysfunction in Autism Spectrum Disorder. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:320-333. [PMID: 32600237 DOI: 10.2174/1871527319666200628015039] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/30/2020] [Accepted: 05/01/2020] [Indexed: 12/11/2022]
Abstract
Autism Spectrum Disorders (ASD) is a severe childhood psychiatric condition with an array of cognitive, language and social impairments that can significantly impact family life. ASD is classically characterized by reduced communication skills and social interactions, with limitations imposed by repetitive patterns of behavior, interests, and activities. The pathophysiology of ASD is thought to arise from complex interactions between environmental and genetic factors within the context of individual development. A growing body of research has raised the possibility of identifying the aetiological causes of the disorder. This review highlights the roles of immune-inflammatory pathways, nitro-oxidative stress and mitochondrial dysfunctions in ASD pathogenesis and symptom severity. The role of NK-cells, T helper, T regulatory and B-cells, coupled with increased inflammatory cytokines, lowered levels of immune-regulatory cytokines, and increased autoantibodies and microglial activation is elucidated. It is proposed that alterations in mitochondrial activity and nitrooxidative stress are intimately associated with activated immune-inflammatory pathways. Future research should determine as to whether the mitochondria, immune-inflammatory activity and nitrooxidative stress changes in ASD affect the development of amygdala-frontal cortex interactions. A number of treatment implications may arise, including prevention-orientated prenatal interventions, treatment of pregnant women with vitamin D, and sodium butyrate. Treatments of ASD children and adults with probiotics, sodium butyrate and butyrate-inducing diets, antipurinergic therapy with suramin, melatonin, oxytocin and taurine are also discussed.
Collapse
Affiliation(s)
- Maria Gevezova
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, Plovdiv, Bulgaria,Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, Plovdiv, Bulgaria,Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | | | - Michael Maes
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, Plovdiv, Bulgaria,Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,IMPACT Strategic Research Center, Deakin University, Geelong, Australia
| |
Collapse
|
12
|
Bozkurt H, Şimşek Ş, Şahin S. Elevated levels of cortisol, brain-derived neurotropic factor and tissue plasminogen activator in male children with autism spectrum disorder. Autism Res 2021; 14:2078-2084. [PMID: 34291889 DOI: 10.1002/aur.2582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Several studies demonstrated biological effects of cortisol, brain-derived neurotrophic factor (BDNF) and tissue plasminogen activator (tPA) on human metabolism and central nervous system. Our study investigated the serum levels of tPA along with BDNF and cortisol in children with autism spectrum disorder (ASD). Thirty three male children with ASD ranging in age from 2 to 15 years were selected for the study group and 27 age-matched healthy male children were selected for the control group. The ASD severity was determined by the score on the Autism Behavior Checklist (ABC). The mean cortisol levels for the study group and the control group were 79.1 ± 30.2 ng/ml and 60.0 ± 25.1 ng/ml, respectively. The mean BDNF levels for the study group and the control group were 5.9 ± 2.8 ng/ml and 3.7 ± 1.8 ng/ml, respectively. The mean tPA levels for the study group and the control group were 32.9 ± 18.5 ng/ml and 25.5 ± 15.1 ng/ml, respectively. Cortisol, BDNF and tPA levels were significantly higher in the study group compared to the control group (p < 0.001). There was no statistically significant effect in terms of age, ABC total and subscale scores on serum cortisol, BDNF and tPA levels in the study group (p > 0.05). It may be suggested that elevations may indicate a role in the pathogenesis of ASD or it may be the case that ASD may alter the levels or pathways of these metabolic factors. LAY SUMMARY: The underlying mechanism or a specific metabolic target relevant to autism spectrum disorder (ASD) has not yet been identified. Cortisol, brain-derived neurotrophic factor (BDNF) and tissue plasminogen activator (tPA) have biological effects on neuroplasticity but little is known about the role of cortisol and tPA-BDNF pathway in ASD. In the present study focused on male children with ASD, we have found higher blood levels of cortisol, BDNF and tPA than their healthy peers. This is the first clinical study to evaluate the serum tPA levels along with BDNF and cortisol in ASD. The results suggest that several neurotrophic and other related markers should be born in mind while examining children with ASD.
Collapse
Affiliation(s)
- Hasan Bozkurt
- Department of Child and Adolescent Psychiatry, Gaziosmanpasa University School of Medicine, Tokat, Turkey
| | - Şeref Şimşek
- Department of Child and Adolescent Psychiatry, Dicle University School of Medicine, Diyarbakır, Turkey
| | - Serkan Şahin
- Department of Child and Adolescent Psychiatry, Gaziosmanpasa University School of Medicine, Tokat, Turkey
| |
Collapse
|
13
|
Poniatowski ŁA, Cudna A, Kurczych K, Bronisz E, Kurkowska-Jastrzębska I. Kinetics of serum brain-derived neurotrophic factor (BDNF) concentration levels in epileptic patients after generalized tonic-clonic seizures. Epilepsy Res 2021; 173:106612. [PMID: 33774427 DOI: 10.1016/j.eplepsyres.2021.106612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Epilepsy is a chronic neurological disorder characterized by the periodic and unpredictable occurrence of seizures. The serum level of brain-derived neurotrophic factor (BDNF) has been suggested to be a potential biomarker that could detect differences in epilepsy patients. Although there is considerable neurobiological evidence linking BDNF to epilepsy, only a small number of studies investigated the relationship between BDNF serum levels and epilepsy, and these studies obtained inconsistent results. The aim of this study was to elucidate BDNF serum levels in epilepsy cases. METHODS Collectively, group of 143 patients (n = 143) were included in this study and subsequently divided into two groups consisting of individuals after singular generalized tonic-clonic seizures (n = 50) and patients with chronic epilepsy (n = 93). The samples from patients with acute epilepsy were collected 1-3 hours and 72 h after seizure, and a single collection was performed from patients with chronic epilepsy. These samples were compared to the control group (n = 48) using ELISA. RESULTS In the present study, we observed a significant decrease of BDNF serum levels in patients after generalized tonic-clonic seizures compared to the control group. Furthermore, the observed decrease of BDNF levels in this group was sustained at 1 and 72 h after seizure insult. We did not show the relationship between BDNF levels and age, etiology of epilepsy and the duration of illness. SIGNIFICANCE Our results and the findings of previous studies indicate that the serum BDNF level significantly decreases after seizures and should be considered when measuring BDNF in patients with chronic epilepsy. It might be also influenced by neurodegenerative processes, which may be involved in the etiopathogenesis of particular epilepsy syndromes.
Collapse
Affiliation(s)
- Łukasz A Poniatowski
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland; Department of Neurosurgery, Maria Skłodowska-Curie National Research Institute of Oncology, W. K. Roentgena 5, 02-781, Warsaw, Poland.
| | - Agnieszka Cudna
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland.
| | - Katarzyna Kurczych
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland.
| | - Elżbieta Bronisz
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland.
| | | |
Collapse
|
14
|
Liu SH, Shi XJ, Fan FC, Cheng Y. Peripheral blood neurotrophic factor levels in children with autism spectrum disorder: a meta-analysis. Sci Rep 2021; 11:15. [PMID: 33420109 PMCID: PMC7794512 DOI: 10.1038/s41598-020-79080-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence suggests that abnormal regulation of neurotrophic factors is involved in the etiology and pathogenesis of Autism Spectrum Disorder (ASD). However, clinical data on neurotrophic factor levels in children with ASD were inconsistent. Therefore, we performed a systematic review of peripheral blood neurotrophic factors levels in children with ASD, and quantitatively summarized the clinical data of peripheral blood neurotrophic factors in ASD children and healthy controls. A systematic search of PubMed and Web of Science identified 31 studies with 2627 ASD children and 4418 healthy controls to be included in the meta-analysis. The results of random effect meta-analysis showed that the peripheral blood levels of brain-derived neurotrophic factor (Hedges’ g = 0.302; 95% CI = 0.014 to 0.591; P = 0.040) , nerve growth factor (Hedges’ g = 0.395; 95% CI = 0.104 to 0.686; P = 0.008) and vascular endothelial growth factor (VEGF) (Hedges’ g = 0.097; 95% CI = 0.018 to 0.175; P = 0.016) in children with ASD were significantly higher than that of healthy controls, whereas blood neurotrophin-3 (Hedges’ g = − 0.795; 95% CI = − 1.723 to 0.134; P = 0.093) and neurotrophin-4 (Hedges’ g = 0.182; 95% CI = − 0.285 to 0.650; P = 0.445) levels did not show significant differences between cases and controls. Taken together, these results clarified circulating neurotrophic factor profile in children with ASD, strengthening clinical evidence of neurotrophic factor aberrations in children with ASD.
Collapse
Affiliation(s)
- Shu-Han Liu
- Center On Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Zhongguancun South St, Haidian District, Beijing, 100081, China
| | - Xiao-Jie Shi
- Center On Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Zhongguancun South St, Haidian District, Beijing, 100081, China
| | - Fang-Cheng Fan
- Center On Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Zhongguancun South St, Haidian District, Beijing, 100081, China
| | - Yong Cheng
- Center On Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Zhongguancun South St, Haidian District, Beijing, 100081, China.
| |
Collapse
|
15
|
Kern JK, Geier DA, Mehta JA, Homme KG, Geier MR. Mercury as a hapten: A review of the role of toxicant-induced brain autoantibodies in autism and possible treatment considerations. J Trace Elem Med Biol 2020; 62:126504. [PMID: 32534375 DOI: 10.1016/j.jtemb.2020.126504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/28/2020] [Accepted: 03/18/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Mercury has many direct and well-recognized neurotoxic effects. However, its immune effects causing secondary neurotoxicity are less well-recognized. Mercury exposure can induce immunologic changes in the brain indicative of autoimmune dysfunction, including the production of highly specific brain autoantibodies. Mercury, and in particular, Thimerosal, can combine with a larger carrier, such as an endogenous protein, thereby acting as a hapten, and this new molecule can then elicit the production of antibodies. METHODS A comprehensive search using PubMed and Google Scholar for original studies and reviews related to autism, mercury, autoantibodies, autoimmune dysfunction, and haptens was undertaken. All articles providing relevant information from 1985 to date were examined. Twenty-three studies were identified showing autoantibodies in the brains of individuals diagnosed with autism and all were included and discussed in this review. RESULTS Research shows mercury exposure can result in an autoimmune reaction that may be causal or contributory to autism, especially in children with a family history of autoimmunity. The autoimmune pathogenesis in autism is demonstrated by the presence of brain autoantibodies (neuroantibodies), which include autoantibodies to: (1) human neuronal progenitor cells; (2) myelin basic protein (MBP); (3) neuron-axon filament protein (NAFP); (4) brain endothelial cells; (5) serotonin receptors; (6) glial fibrillary acidic protein (GFAP); (7) brain derived neurotrophic factor (BDNF); (8) myelin associated glycoprotein (MAG); and (9) various brain proteins in the cerebellum, hypothalamus, prefrontal cortex, cingulate gyrus, caudate putamen, cerebral cortex and caudate nucleus. CONCLUSION Recent evidence suggests a relationship between mercury exposure and brain autoantibodies in individuals diagnosed with autism. Moreover, brain autoantibody levels in autism are found to correlate with both autism severity and blood mercury levels. Treatments to reduce mercury levels and/or brain autoantibody formation should be considered in autism.
Collapse
Affiliation(s)
- Janet K Kern
- Institute of Chronic Illnesses, Inc., Silver Spring, MD, USA; CoMeD, Inc., Silver Spring, MD, USA; CONEM US Autism Research Group, Allen, TX, USA.
| | - David A Geier
- Institute of Chronic Illnesses, Inc., Silver Spring, MD, USA; CoMeD, Inc., Silver Spring, MD, USA
| | - Jyutika A Mehta
- Texas Woman's University, Department of Communication Sciences and Disorders, Denton, TX, USA
| | - Kristin G Homme
- CoMeD, Inc., Silver Spring, MD, USA; International Academy of Oral Medicine and Toxicology, Champions Gate, FL, USA
| | - Mark R Geier
- Institute of Chronic Illnesses, Inc., Silver Spring, MD, USA; CoMeD, Inc., Silver Spring, MD, USA
| |
Collapse
|
16
|
Barbosa AG, Pratesi R, Paz GSC, Dos Santos MAAL, Uenishi RH, Nakano EY, Gandolfi L, Pratesi CB. Assessment of BDNF serum levels as a diagnostic marker in children with autism spectrum disorder. Sci Rep 2020; 10:17348. [PMID: 33060610 PMCID: PMC7566481 DOI: 10.1038/s41598-020-74239-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022] Open
Abstract
There has been a significant increase in autism spectrum disorder (ASD) in the last decades that cannot be exclusively attributed to better diagnosis and an increase in the communication of new cases. Patients with ASD often show dysregulation of proteins associated with synaptic plasticity, notably brain-derived neurotrophic factor (BDNF). The objective of the present study was to analyze BDNF serum concentration levels in children with classic forms autism and a healthy control group to determine if there is a correlation between ASD and BDNF serum levels. Forty-nine children with severe classic form of autism, and 37 healthy children were enrolled in the study. Blood samples, from both patients and controls, were collected and BNDF levels from both groups were analyzed. The average BDNF serum concentration level was statistically higher for children with ASD (P < 0.000) compared to the control group. There is little doubt that BDNF plays a role in the pathophysiology of ASD development and evolution, but its brain levels may fluctuate depending on several known and unknown factors. The critical question is not if BDNF levels can be considered a prognostic or diagnostic marker of ASD, but to determine its role in the onset and progression of this disorder.
Collapse
Affiliation(s)
- Alexandre Garcia Barbosa
- Interdisciplinary Laboratory of Biosciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil
- School of Health Sciences, Post-Graduate Program in Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Riccardo Pratesi
- Interdisciplinary Laboratory of Biosciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil
- School of Health Sciences, Post-Graduate Program in Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Geysa Stefanne Cutrim Paz
- Interdisciplinary Laboratory of Biosciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil
- School of Health Sciences, Post-Graduate Program in Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Maria Aparecida Alves Leite Dos Santos
- Interdisciplinary Laboratory of Biosciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil
- School of Health Sciences, Post-Graduate Program in Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Rosa Harumi Uenishi
- Interdisciplinary Laboratory of Biosciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil
- School of Health Sciences, Post-Graduate Program in Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Eduardo Y Nakano
- Department of Statistics, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Lenora Gandolfi
- Interdisciplinary Laboratory of Biosciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil
- School of Health Sciences, Post-Graduate Program in Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Claudia B Pratesi
- Interdisciplinary Laboratory of Biosciences, School of Medicine, University of Brasilia, Brasilia, DF, Brazil.
- School of Health Sciences, Post-Graduate Program in Health Sciences, University of Brasilia, Brasilia, DF, Brazil.
| |
Collapse
|
17
|
Wu X, Li W, Zheng Y. Recent Progress on Relevant microRNAs in Autism Spectrum Disorders. Int J Mol Sci 2020; 21:ijms21165904. [PMID: 32824515 PMCID: PMC7460584 DOI: 10.3390/ijms21165904] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 01/10/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose pathogenesis is unclear and is affected by both genetic and environmental factors. The microRNAs (miRNAs) are a kind of single-stranded non-coding RNA with 20-22 nucleotides, which normally inhibit their target mRNAs at a post-transcriptional level. miRNAs are involved in almost all biological processes and are closely related to ASD and many other diseases. In this review, we summarize relevant miRNAs in ASD, and analyze dysregulated miRNAs in brain tissues and body fluids of ASD patients, which may contribute to the pathogenesis and diagnosis of ASD.
Collapse
|
18
|
Alolaby RR, Jiraanont P, Durbin-Johnson B, Jasoliya M, Tang HT, Hagerman R, Tassone F. Molecular Biomarkers Predictive of Sertraline Treatment Response in Young Children With Autism Spectrum Disorder. Front Genet 2020; 11:308. [PMID: 32346385 PMCID: PMC7174723 DOI: 10.3389/fgene.2020.00308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/16/2020] [Indexed: 11/29/2022] Open
Abstract
Sertraline is one among several selective serotonin reuptake inhibitors (SSRIs) that exhibited improvement of language development in Autism Spectrum Disorder (ASD); however, the molecular mechanism has not been elucidated. A double blind, randomized, 6-month, placebo-controlled, clinical trial of low-dose sertraline in children ages (3-6 years) with ASD was conducted at the UC Davis MIND Institute. It aimed at evaluating the efficacy and benefit with respect to early expressive language development and global clinical improvement. This study aimed to identify molecular biomarkers that might be key players in the serotonin pathway and might be predictive of a clinical response to sertraline. Fifty eight subjects with the diagnosis of ASD were randomized to sertraline or placebo. Eight subjects from the sertraline arm and five from the placebo arm discontinued from the study. Furthermore, four subjects did not have a successful blood draw. Hence, genotypes for 41 subjects (20 on placebo and 21 on sertraline) were determined for several genes involved in the serotonin pathway including the serotonin transporter-linked polymorphic region (5-HTTLPR), the tryptophan hydroxylase 2 (TPH2), and the Brain-Derived Neurotrophic Factor (BDNF). In addition, plasma levels of BDNF, Matrix metallopeptidase 9 (MMP-9) and a selected panel of cytokines were determined at baseline and post-treatment. Intent-to-treat analysis revealed several primary significant correlations between molecular changes and the Mullen Scales of Early Learning (MSEL) and Clinical Global Impression Scale - Improvement (CGI-I) of treatment and control groups but they were not significant after adjustment for multiple testing. Thus, sertraline showed no benefit for treatment of young children with ASD in language development or changes in molecular markers in this study. These results indicate that sertraline may not be beneficial for the treatment of children with ASD; however, further investigation of larger groups as well as longer term follow-up studies are warranted.
Collapse
Affiliation(s)
- Reem Rafik Alolaby
- College of Health Sciences, California Northstate University, Rancho Cordova, CA, United States
| | - Poonnada Jiraanont
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Blythe Durbin-Johnson
- Division of Biostatistics, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Mittal Jasoliya
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Hiu-Tung Tang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Randi Hagerman
- MIND Institute, University of California Davis Medical Center, Davis, Davis, CA, United States
- Department of Pediatrics, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
- MIND Institute, University of California Davis Medical Center, Davis, Davis, CA, United States
| |
Collapse
|
19
|
Vendrik KEW, Ooijevaar RE, de Jong PRC, Laman JD, van Oosten BW, van Hilten JJ, Ducarmon QR, Keller JJ, Kuijper EJ, Contarino MF. Fecal Microbiota Transplantation in Neurological Disorders. Front Cell Infect Microbiol 2020; 10:98. [PMID: 32266160 PMCID: PMC7105733 DOI: 10.3389/fcimb.2020.00098] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Several studies suggested an important role of the gut microbiota in the pathophysiology of neurological disorders, implying that alteration of the gut microbiota might serve as a treatment strategy. Fecal microbiota transplantation (FMT) is currently the most effective gut microbiota intervention and an accepted treatment for recurrent Clostridioides difficile infections. To evaluate indications of FMT for patients with neurological disorders, we summarized the available literature on FMT. In addition, we provide suggestions for future directions. Methods: In July 2019, five main databases were searched for studies and case descriptions on FMT in neurological disorders in humans or animal models. In addition, the ClinicalTrials.gov website was consulted for registered planned and ongoing trials. Results: Of 541 identified studies, 34 were included in the analysis. Clinical trials with FMT have been performed in patients with autism spectrum disorder and showed beneficial effects on neurological symptoms. For multiple sclerosis and Parkinson's disease, several animal studies suggested a positive effect of FMT, supported by some human case reports. For epilepsy, Tourette syndrome, and diabetic neuropathy some studies suggested a beneficial effect of FMT, but evidence was restricted to case reports and limited numbers of animal studies. For stroke, Alzheimer's disease and Guillain-Barré syndrome only studies with animal models were identified. These studies suggested a potential beneficial effect of healthy donor FMT. In contrast, one study with an animal model for stroke showed increased mortality after FMT. For Guillain-Barré only one study was identified. Whether positive findings from animal studies can be confirmed in the treatment of human diseases awaits to be seen. Several trials with FMT as treatment for the above mentioned neurological disorders are planned or ongoing, as well as for amyotrophic lateral sclerosis. Conclusions: Preliminary literature suggests that FMT may be a promising treatment option for several neurological disorders. However, available evidence is still scanty and some contrasting results were observed. A limited number of studies in humans have been performed or are ongoing, while for some disorders only animal experiments have been conducted. Large double-blinded randomized controlled trials are needed to further elucidate the effect of FMT in neurological disorders.
Collapse
Affiliation(s)
- Karuna E W Vendrik
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands.,Netherlands Donor Feces Bank, Leiden University Medical Center, Leiden, Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (Rijksinstituut voor Volksgezondheid en Milieu, RIVM), Bilthoven, Netherlands
| | - Rogier E Ooijevaar
- Netherlands Donor Feces Bank, Leiden University Medical Center, Leiden, Netherlands.,Department of Gastroenterology, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, Netherlands
| | - Pieter R C de Jong
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Jon D Laman
- Department Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, Netherlands
| | - Bob W van Oosten
- Department of Neurology, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, Netherlands
| | | | - Quinten R Ducarmon
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands.,Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands
| | - Josbert J Keller
- Netherlands Donor Feces Bank, Leiden University Medical Center, Leiden, Netherlands.,Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, Netherlands.,Department of Gastroenterology, Haaglanden Medical Center, The Hague, Netherlands
| | - Eduard J Kuijper
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands.,Netherlands Donor Feces Bank, Leiden University Medical Center, Leiden, Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (Rijksinstituut voor Volksgezondheid en Milieu, RIVM), Bilthoven, Netherlands.,Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands
| | - Maria Fiorella Contarino
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands.,Department of Neurology, Haga Teaching Hospital, The Hague, Netherlands
| |
Collapse
|
20
|
Cioana M, Michalski B, Fahnestock M. Insulin‐Like Growth Factor and Insulin‐Like Growth Factor Receptor Expression in Human Idiopathic Autism Fusiform Gyrus Tissue. Autism Res 2020; 13:897-907. [DOI: 10.1002/aur.2291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/04/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Milena Cioana
- Department of Psychiatry and Behavioural Neurosciences McMaster University Hamilton Ontario L8S 4K1 Canada
| | - Bernadeta Michalski
- Department of Psychiatry and Behavioural Neurosciences McMaster University Hamilton Ontario L8S 4K1 Canada
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences McMaster University Hamilton Ontario L8S 4K1 Canada
| |
Collapse
|
21
|
Dietary Phytochemicals as Neurotherapeutics for Autism Spectrum Disorder: Plausible Mechanism and Evidence. ADVANCES IN NEUROBIOLOGY 2020; 24:615-646. [DOI: 10.1007/978-3-030-30402-7_23] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Olsen I, Hicks SD. Oral microbiota and autism spectrum disorder (ASD). J Oral Microbiol 2019; 12:1702806. [PMID: 31893019 PMCID: PMC6913665 DOI: 10.1080/20002297.2019.1702806] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/14/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is associated with several oropharyngeal abnormalities, including dysbiosis in the oral microbiota. Since the oral cavity is the start of the gastrointestinal tract, this strengthens and extends the notion of a microbial gut-brain axis in ASD and even raises the question whether a microbial oral-brain axis exists. It is clear that oral bacteria can find their way to the brain through a number of pathways following routine dental procedures. A connection between the oral microbiota and a number of other brain disorders has been reported. As the evidence so far for an association between the oral microbiota and ASDs rests on a few reports only, further studies in this field are necessary. The current review discusses a possible relationship between oral bacteria and the biologic and symptomologic aspects of ASD, focusing on the clinical implications for diagnostic and therapeutic development.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Steven D. Hicks
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
23
|
Fuentealba CR, Fiedler JL, Peralta FA, Avalos AM, Aguayo FI, Morgado-Gallardo KP, Aliaga EE. Region-Specific Reduction of BDNF Protein and Transcripts in the Hippocampus of Juvenile Rats Prenatally Treated With Sodium Valproate. Front Mol Neurosci 2019; 12:261. [PMID: 31787877 PMCID: PMC6853897 DOI: 10.3389/fnmol.2019.00261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/14/2019] [Indexed: 11/18/2022] Open
Abstract
Autism is a neurodevelopmental disorder characterized by a deep deficit in language and social interaction, accompanied by restricted, stereotyped and repetitive behaviors. The use of genetic autism animal models has revealed that the alteration of the mechanisms controlling the formation and maturation of neural circuits are points of convergence for the physiopathological pathways in several types of autism. Brain Derived Neurotrophic Factor (BDNF), a key multifunctional regulator of brain development, has been related to autism in several ways. However, its precise role is still elusive, in part, due to its extremely complex posttranscriptional regulation. In order to contribute to this topic, we treated prenatal rats with Valproate, a well-validated model of autism, to analyze BDNF levels in the hippocampus of juvenile rats. Valproate-treated rats exhibited an autism-like behavioral profile, characterized by a deficit in social interaction, anxiety-like behavior and repetitive behavior. In situ hybridization (ISH) experiments revealed that Valproate reduced BDNF mRNA, especially long-3′UTR-containing transcripts, in specific areas of the dentate gyrus (DG) and CA3 regions. At the same time, Valproate reduced BDNF immunoreactivity in the suprapyramidal and lucidum layers of CA3, but improved hippocampus-dependent spatial learning. The molecular changes reported here may help to explain the cognitive and behavioral signs of autism and reinforce BDNF as a potential molecular target for this neurodevelopmental disorder.
Collapse
Affiliation(s)
- Constanza R Fuentealba
- Department of Kinesiology, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| | - Jenny L Fiedler
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Francisco A Peralta
- Department of Kinesiology, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Felipe I Aguayo
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Katherine P Morgado-Gallardo
- Department of Psychology, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile.,The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI-Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| | - Esteban E Aliaga
- Department of Kinesiology, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile.,The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI-Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
24
|
Bawari S, Tewari D, Argüelles S, Sah AN, Nabavi SF, Xu S, Vacca RA, Nabavi SM, Shirooie S. Targeting BDNF signaling by natural products: Novel synaptic repair therapeutics for neurodegeneration and behavior disorders. Pharmacol Res 2019; 148:104458. [DOI: 10.1016/j.phrs.2019.104458] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 12/12/2022]
|
25
|
Mazón-Cabrera R, Vandormael P, Somers V. Antigenic Targets of Patient and Maternal Autoantibodies in Autism Spectrum Disorder. Front Immunol 2019; 10:1474. [PMID: 31379804 PMCID: PMC6659315 DOI: 10.3389/fimmu.2019.01474] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose behavioral symptoms become apparent in early childhood. The underlying pathophysiological mechanisms are only partially understood and the clinical manifestations are heterogeneous in nature, which poses a major challenge for diagnosis, prognosis and intervention. In the last years, an important role of a dysregulated immune system in ASD has emerged, but the mechanisms connecting this to a disruption of brain development are still largely unknown. Although ASD is not considered as a typical autoimmune disease, self-reactive antibodies or autoantibodies against a wide variety of targets have been found in a subset of ASD patients. In addition, autoantibodies reactive to fetal brain proteins have also been described in the prenatal stage of neurodevelopment, where they can be transferred from the mother to the fetus by transplacental transport. In this review, we give an extensive overview of the antibodies described in ASD according to their target antigens, their different origins, and timing of exposure during neurodevelopment.
Collapse
Affiliation(s)
| | | | - Veerle Somers
- Biomedical Research Institute, Faculty of Medicine and Life Science, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
26
|
Elhawary NA, Tayeb MT, Sindi IA, Qutub N, Rashad M, Mufti A, Arab AH, Khogeer A, Elhawary EN, Dannoun A, Bogari N. Genetic biomarkers predict susceptibility to autism spectrum disorder through interactive models of inheritance in a Saudi community. COGENT BIOLOGY 2019. [DOI: 10.1080/23312025.2019.1606555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nasser A. Elhawary
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Mecca 21955, Saudi Arabia
- Department of Molecular Genetics, Medical Genetics Center, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Mohammed T. Tayeb
- Department of Molecular Genetics, Medical Genetics Center, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Ikhlas A. Sindi
- Department of Biotechnology, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nermeen Qutub
- Department of Psychology, Faculty of Education, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Mona Rashad
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Ahmad Mufti
- Department of Molecular Genetics, Medical Genetics Center, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Arwa H. Arab
- Department of Psychology, Faculty of Arts and Humanities, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Asim Khogeer
- Department of Plan and Research, General Directorate of Health Affairs, Mecca Region, Ministry of Health, Mecca, Saudi Arabia
| | - Ezzeldin N. Elhawary
- Faculty of Biotechnology, Modern Sciences and Arts University, 6th October City, Giza, Egypt
| | - Anas Dannoun
- Department of Molecular Genetics, Medical Genetics Center, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Neda Bogari
- Department of Molecular Genetics, Medical Genetics Center, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
27
|
Mehra C, Sil A, Hedderly T, Kyriakopoulos M, Lim M, Turnbull J, Happe F, Baird G, Absoud M. Childhood disintegrative disorder and autism spectrum disorder: a systematic review. Dev Med Child Neurol 2019; 61:523-534. [PMID: 30548847 DOI: 10.1111/dmcn.14126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2018] [Indexed: 12/01/2022]
Abstract
AIM In an attempt to clarify the debate surrounding the diagnostic validity of childhood disintegrative disorder (CDD), we systematically reviewed its characteristics and compared it with autism spectrum disorder (ASD). METHOD Four databases were searched (PubMed, PsycINFO, Embase, and Web of Science). Included articles had participants with CDD, as defined by symptoms present in the criteria of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision and the International Classification of Diseases, 10th Revision. Comparison groups were those with ASD and ASD with regression. Case studies were excluded. RESULTS Twenty articles, comprising 96 participants with CDD (80 males, 16 females), were included. Most studies were cross-sectional. The prevalence of CDD was 1.1 to 9.2 per 100 000, with a mean age at regression of 3 years 2 months (SD 1y 1mo), with a range of 2 years to 7 years. In addition to core CDD symptoms, most had intellectual impairment, anxiety, challenging behaviours, and regressed in toileting skills. Participants with CDD and ASD shared core diagnostic and extra-diagnostic features. However, participants with CDD seemed to have more severe symptoms and a different symptom profile, including apparently typical development before regression, faster regression, more affective symptoms, and more global developmental deficit. Possible genetic and autoimmune neurobiological mechanisms were identified. INTERPRETATION There is limited high-quality evidence describing the aetiology and outcomes of CDD. However, given the qualitative and prognostic differences between ASD and CDD, we recommend that future diagnostic criteria should distinguish late-onset regression.
Collapse
Affiliation(s)
- Chirag Mehra
- Children's Neurosciences, Evelina London Children's Hospital, St Thomas' Hospital, King's Health Partners Academic Health Science Centre, London, UK
| | - Annesha Sil
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Tammy Hedderly
- Children's Neurosciences, Evelina London Children's Hospital, St Thomas' Hospital, King's Health Partners Academic Health Science Centre, London, UK
| | - Marinos Kyriakopoulos
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National and Specialist Acorn Lodge Inpatient Children's Unit, Child and Adolescent Mental Health Clinical Academic Group, South London and the Maudsley NHS Foundation Trust, London, UK
| | - Ming Lim
- Children's Neurosciences, Evelina London Children's Hospital, St Thomas' Hospital, King's Health Partners Academic Health Science Centre, London, UK
| | - Jessica Turnbull
- Evelina London Community Children's Services, Sunshine House Children and Young People's Development Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Francesca Happe
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Gillian Baird
- Children's Neurosciences, Evelina London Children's Hospital, St Thomas' Hospital, King's Health Partners Academic Health Science Centre, London, UK
| | - Michael Absoud
- Children's Neurosciences, Evelina London Children's Hospital, St Thomas' Hospital, King's Health Partners Academic Health Science Centre, London, UK
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
28
|
Sokol DK, Maloney B, Westmark CJ, Lahiri DK. Novel Contribution of Secreted Amyloid-β Precursor Protein to White Matter Brain Enlargement in Autism Spectrum Disorder. Front Psychiatry 2019; 10:165. [PMID: 31024350 PMCID: PMC6469489 DOI: 10.3389/fpsyt.2019.00165] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/06/2019] [Indexed: 12/27/2022] Open
Abstract
The most replicated neuroanatomical finding in autism is the tendency toward brain overgrowth, especially in younger children. Research shows that both gray and white matter are enlarged. Proposed mechanisms underlying brain enlargement include abnormal inflammatory and neurotrophic signals that lead to excessive, aberrant dendritic connectivity via disrupted pruning and cell adhesion, and enlargement of white matter due to excessive gliogenesis and increased myelination. Amyloid-β protein precursor (βAPP) and its metabolites, more commonly associated with Alzheimer's disease (AD), are also dysregulated in autism plasma and brain tissue samples. This review highlights findings that demonstrate how one βAPP metabolite, secreted APPα, and the ADAM family α-secretases, may lead to increased brain matter, with emphasis on increased white matter as seen in autism. sAPPα and the ADAM family α-secretases contribute to the anabolic, non-amyloidogenic pathway, which is in contrast to the amyloid (catabolic) pathway known to contribute to Alzheimer disease. The non-amyloidogenic pathway could produce brain enlargement via genetic mechanisms affecting mRNA translation and polygenic factors that converge on molecular pathways (mitogen-activated protein kinase/MAPK and mechanistic target of rapamycin/mTOR), promoting neuroinflammation. A novel mechanism linking the non-amyloidogenic pathway to white matter enlargement is proposed: α-secretase and/or sAPPα, activated by ERK receptor signaling activates P13K/AKt/mTOR and then Rho GTPases favoring myelination via oligodendrocyte progenitor cell (OPC) activation of cofilin. Applying known pathways in AD to autism should allow further understanding and provide options for new drug targets.
Collapse
Affiliation(s)
- Deborah K. Sokol
- Pediatrics Section, Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bryan Maloney
- Indiana Alzheimers Disease Center, Department of Psychiatry, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI, United States
| | - Debomoy K. Lahiri
- Indiana Alzheimers Disease Center, Department of Psychiatry, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
29
|
Telias M. Molecular Mechanisms of Synaptic Dysregulation in Fragile X Syndrome and Autism Spectrum Disorders. Front Mol Neurosci 2019; 12:51. [PMID: 30899214 PMCID: PMC6417395 DOI: 10.3389/fnmol.2019.00051] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common form of monogenic hereditary cognitive impairment. FXS patient exhibit a high comorbidity rate with autism spectrum disorders (ASDs). This makes FXS a model disease for understanding how synaptic dysregulation alters neuronal excitability, learning and memory, social behavior, and more. Since 1991, with the discovery of fragile X mental retardation 1 (FMR1) as the sole gene that is mutated in FXS, thousands of studies into the function of the gene and its encoded protein FMR1 protein (FMRP), have been conducted, yielding important information regarding the pathophysiology of the disease, as well as insight into basic synaptic mechanisms that control neuronal networking and circuitry. Among the most important, are molecular mechanisms directly involved in plasticity, including glutamate and γ-aminobutyric acid (GABA) receptors, which can control synaptic transmission and signal transduction, including short- and long-term plasticity. More recently, several novel mechanisms involving growth factors, enzymatic cascades and transcription factors (TFs), have been proposed to have the potential of explaining some of the synaptic dysregulation in FXS. In this review article, I summarize the main mechanisms proposed to underlie synaptic disruption in FXS and ASDs. I focus on studies conducted on the Fmr1 knock-out (KO) mouse model and on FXS-human pluripotent stem cells (hPSCs), emphasizing the differences and even contradictions between mouse and human, whenever possible. As FXS and ASDs are both neurodevelopmental disorders that follow a specific time-course of disease progression, I highlight those studies focusing on the differential developmental regulation of synaptic abnormalities in these diseases.
Collapse
Affiliation(s)
- Michael Telias
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
30
|
Camfield P, Camfield C. Regression in children with epilepsy. Neurosci Biobehav Rev 2019; 96:210-218. [DOI: 10.1016/j.neubiorev.2018.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/26/2018] [Accepted: 12/06/2018] [Indexed: 10/27/2022]
|
31
|
Skalny AV, Simashkova NV, Skalnaya AA, Klyushnik TP, Zhegalova IV, Grabeklis AR, Skalnaya MG, Tinkov AA. Trace element levels are associated with neuroinflammatory markers in children with autistic spectrum disorder. J Trace Elem Med Biol 2018; 50:622-628. [PMID: 29731309 DOI: 10.1016/j.jtemb.2018.04.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 12/27/2022]
Abstract
The objective of the present study was to estimate the association between brain inflammatory markers and serum trace element levels as assessed by inductively coupled plasma mass spectrometry at NexION 300D. Leukocyte elastase (LE), α1-proteinase inhibitor (α1-PI) activity, anti-nerve growth factor-antibodies (anti-NGF-Ab), and anti-myelin basic protein-antibodies (anti-MBP-Ab) levels were assessed as inflammatory markers. The obtained data demonstrate that the increase in LE and α1-PI activity is associated with higher serum Cr and Cu levels, respectively. The increase in Anti-NGF-Ab levels was associated with a nearly significant 16% increase in serum Mn levels. Autistic children with high MBP-Ab levels were characterized by 28% higher serum Mn and lower Mg concentration. The results of correlation analysis were generally in agreement with the outcome of group comparisons. Regression analysis demonstrated that serum Mg was significantly negatively associated with LE activity, whereas both serum Fe and V concentrations were characterized by a positive influence on the parameter. In turn, serum Cu was a significant predictor of α1-PI, as well as Cr levels. At the same time, the serum concentrations of Cd and Fe were found to be inversely associated with α1-PI levels. Serum Cd and Mn levels were significant positive predictors of anti-MBP-Ab levels, whereas Mg levels had a negative impact on anti-MBP-Ab values. Generally, the obtained data demonstrate the interrelationship between trace element homeostasis and neuroinflammation in autism. Hypothetically, modulation of trace element status may be used for reduction of neuroinflammatory response, although further studies are required to reveal the underlying mechanisms of the observed associations.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl, 150000, Russia; Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow, 105064, Russia; Orenburg State University, Pobedy Ave., 13, Orenburg, 460352, Russia
| | - Natalia V Simashkova
- Scientific Center for Mental Health, Russian Academy of Medical Sciences, Moscow, Russia
| | | | - Tatiana P Klyushnik
- Scientific Center for Mental Health, Russian Academy of Medical Sciences, Moscow, Russia
| | - Irina V Zhegalova
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl, 150000, Russia; I.M. Sechenov First Moscow State Medical University, Malaya Trubetskaya St., 8, Moscow, 119992, Russia
| | - Andrei R Grabeklis
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl, 150000, Russia; Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow, 105064, Russia
| | | | - Alexey A Tinkov
- Yaroslavl State University, Sovetskaya St., 14, Yaroslavl, 150000, Russia; Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow, 105064, Russia.
| |
Collapse
|
32
|
Hughes HK, Mills Ko E, Rose D, Ashwood P. Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders. Front Cell Neurosci 2018; 12:405. [PMID: 30483058 PMCID: PMC6242891 DOI: 10.3389/fncel.2018.00405] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of heterogeneous neurological disorders that are highly variable and are clinically characterized by deficits in social interactions, communication, and stereotypical behaviors. Prevalence has risen from 1 in 10,000 in 1972 to 1 in 59 children in the United States in 2014. This rise in prevalence could be due in part to better diagnoses and awareness, however, these together cannot solely account for such a significant rise. While causative connections have not been proven in the majority of cases, many current studies focus on the combined effects of genetics and environment. Strikingly, a distinct picture of immune dysfunction has emerged and been supported by many independent studies over the past decade. Many players in the immune-ASD puzzle may be mechanistically contributing to pathogenesis of these disorders, including skewed cytokine responses, differences in total numbers and frequencies of immune cells and their subsets, neuroinflammation, and adaptive and innate immune dysfunction, as well as altered levels of immunoglobulin and the presence of autoantibodies which have been found in a substantial number of individuals with ASD. This review summarizes the latest research linking ASD, autoimmunity and immune dysfunction, and discusses evidence of a potential autoimmune component of ASD.
Collapse
Affiliation(s)
- Heather K. Hughes
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Emily Mills Ko
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Destanie Rose
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|
33
|
Hicks SD, Rajan AT, Wagner KE, Barns S, Carpenter RL, Middleton FA. Validation of a Salivary RNA Test for Childhood Autism Spectrum Disorder. Front Genet 2018; 9:534. [PMID: 30473705 PMCID: PMC6237842 DOI: 10.3389/fgene.2018.00534] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/22/2018] [Indexed: 11/25/2022] Open
Abstract
Background: The diagnosis of autism spectrum disorder (ASD) relies on behavioral assessment. Efforts to define biomarkers of ASD have not resulted in an objective, reliable test. Studies of RNA levels in ASD have demonstrated potential utility, but have been limited by a focus on single RNA types, small sample sizes, and lack of developmental delay controls. We hypothesized that a saliva-based poly-“omic” RNA panel could objectively distinguish children with ASD from their neurotypical peers and children with non-ASD developmental delay. Methods: This multi-center cross-sectional study included 456 children, ages 19–83 months. Children were either neurotypical (n = 134) or had a diagnosis of ASD (n = 238), or non-ASD developmental delay (n = 84). Comprehensive human and microbial RNA abundance was measured in the saliva of all participants using unbiased next generation sequencing. Prior to analysis, the sample was randomly divided into a training set (82% of subjects) and an independent validation test set (18% of subjects). The training set was used to develop an RNA-based algorithm that distinguished ASD and non-ASD children. The validation set was not used in model development (feature selection or training) but served only to validate empirical accuracy. Results: In the training set (n = 372; mean age 51 months; 75% male; 51% ASD), a set of 32 RNA features (controlled for demographic and medical characteristics), identified ASD status with a cross-validated area under the curve (AUC) of 0.87 (95% CI: 0.86–0.88). In the completely separate validation test set (n = 84; mean age 50 months; 85% male; 60% ASD), the algorithm maintained an AUC of 0.88 (82% sensitivity and 88% specificity). Notably, the RNA features were implicated in physiologic processes related to ASD (axon guidance, neurotrophic signaling). Conclusion: Salivary poly-omic RNA measurement represents a novel, non-invasive approach that can accurately identify children with ASD. This technology could improve the specificity of referrals for ASD evaluation or provide objective support for ASD diagnoses.
Collapse
Affiliation(s)
- Steven D Hicks
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, United States
| | | | - Kayla E Wagner
- Quadrant Biosciences, Inc., Syracuse, NY, United States.,Departments of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, United States.,Departments of Psychiatry, Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, United States.,Department of Pediatrics, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Sarah Barns
- Quadrant Biosciences, Inc., Syracuse, NY, United States.,Departments of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, United States.,Departments of Psychiatry, Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, United States.,Department of Pediatrics, State University of New York Upstate Medical University, Syracuse, NY, United States
| | | | - Frank A Middleton
- Departments of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, United States.,Departments of Psychiatry, Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, United States.,Department of Pediatrics, State University of New York Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
34
|
Ko HM, Jin Y, Park HH, Lee JH, Jung SH, Choi SY, Lee SH, Shin CY. Dual mechanisms for the regulation of brain-derived neurotrophic factor by valproic acid in neural progenitor cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:679-688. [PMID: 30402028 PMCID: PMC6205935 DOI: 10.4196/kjpp.2018.22.6.679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/15/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental disorders that share behavioral features, the results of numerous studies have suggested that the underlying causes of ASDs are multifactorial. Behavioral and/or neurobiological analyses of ASDs have been performed extensively using a valid model of prenatal exposure to valproic acid (VPA). Abnormal synapse formation resulting from altered neurite outgrowth in neural progenitor cells (NPCs) during embryonic brain development has been observed in both the VPA model and ASD subjects. Although several mechanisms have been suggested, the actual mechanism underlying enhanced neurite outgrowth remains unclear. In this study, we found that VPA enhanced the expression of brain-derived neurotrophic factor (BDNF), particularly mature BDNF (mBDNF), through dual mechanisms. VPA increased the mRNA and protein expression of BDNF by suppressing the nuclear expression of methyl-CpG-binding protein 2 (MeCP2), which is a transcriptional repressor of BDNF. In addition, VPA promoted the expression and activity of the tissue plasminogen activator (tPA), which induces BDNF maturation through proteolytic cleavage. Trichostatin A and sodium butyrate also enhanced tPA activity, but tPA activity was not induced by valpromide, which is a VPA analog that does not induce histone acetylation, indicating that histone acetylation activity was required for tPA regulation. VPA-mediated regulation of BDNF, MeCP2, and tPA was not observed in astrocytes or neurons. Therefore, these results suggested that VPA-induced mBDNF upregulation was associated with the dysregulation of MeCP2 and tPA in developing cortical NPCs.
Collapse
Affiliation(s)
- Hyun Myung Ko
- Department of Life Science, College of Science and Technology, Woosuk University, Jincheon 27841, Korea
| | - Yeonsun Jin
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Jong Hyuk Lee
- Department of Pharmaceutical Engineering, College of Life and Health Science, Hoseo University, Asan 31499, Korea
| | - Seung Hyo Jung
- Department of Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Korea
| | - So Young Choi
- Department of Biomedical Science & Technology, Konkuk University, Seoul 05029, Korea
| | - Sung Hoon Lee
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Chan Young Shin
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
35
|
Gładysz D, Krzywdzińska A, Hozyasz KK. Immune Abnormalities in Autism Spectrum Disorder-Could They Hold Promise for Causative Treatment? Mol Neurobiol 2018; 55:6387-6435. [PMID: 29307081 PMCID: PMC6061181 DOI: 10.1007/s12035-017-0822-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/05/2017] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorders (ASD) are characterized by impairments in language and communication development, social behavior, and the occurrence of stereotypic patterns of behavior and interests. Despite substantial speculation about causes of ASD, its exact etiology remains unknown. Recent studies highlight a link between immune dysfunction and behavioral traits. Various immune anomalies, including humoral and cellular immunity along with abnormalities at the molecular level, have been reported. There is evidence of altered immune function both in cerebrospinal fluid and peripheral blood. Several studies hypothesize a role for neuroinflammation in ASD and are supported by brain tissue and cerebrospinal fluid analysis, as well as evidence of microglial activation. It has been shown that immune abnormalities occur in a substantial number of individuals with ASD. Identifying subgroups with immune system dysregulation and linking specific cellular immunophenotypes to different symptoms would be key to defining a group of patients with immune abnormalities as a major etiology underlying behavioral symptoms. These determinations would provide the opportunity to investigate causative treatments for a defined patient group that may specifically benefit from such an approach. This review summarizes recent insights into immune system dysfunction in individuals with ASD and discusses the potential implications for future therapies.
Collapse
Affiliation(s)
- Dominika Gładysz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland
| | | | - Kamil K Hozyasz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland.
| |
Collapse
|
36
|
Bhandari R, Paliwal JK, Kuhad A. Naringenin and its nanocarriers as potential phytotherapy for autism spectrum disorders. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
37
|
Korzeniewski SJ, Allred EN, O'Shea TM, Leviton A, Kuban KCK. Elevated protein concentrations in newborn blood and the risks of autism spectrum disorder, and of social impairment, at age 10 years among infants born before the 28th week of gestation. Transl Psychiatry 2018; 8:115. [PMID: 29884819 PMCID: PMC5993745 DOI: 10.1038/s41398-018-0156-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/01/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023] Open
Abstract
Among the 1 of 10 children who are born preterm annually in the United States, 6% are born before the third trimester. Among children who survive birth before the 28th week of gestation, the risks of autism spectrum disorder (ASD) and non-autistic social impairment are severalfold higher than in the general population. We examined the relationship between top quartile inflammation-related protein concentrations among children born extremely preterm and ASD or, separately, a high score on the Social Responsiveness Scale (SRS total score ≥65) among those who did not meet ASD criteria, using information only from the subset of children whose DAS-II verbal or non-verbal IQ was ≥70, who were assessed for ASD, and who had proteins measured in blood collected on ≥2 days (N = 763). ASD (N = 36) assessed at age 10 years is associated with recurrent top quartile concentrations of inflammation-related proteins during the first post-natal month (e.g., SAA odds ratio (OR); 95% confidence interval (CI): 2.5; 1.2-5.3) and IL-6 (OR; 95% CI: 2.6; 1.03-6.4)). Top quartile concentrations of neurotrophic proteins appear to moderate the increased risk of ASD associated with repeated top quartile concentrations of inflammation-related proteins. High (top quartile) concentrations of SAA are associated with elevated risk of ASD (2.8; 1.2-6.7) when Ang-1 concentrations are below the top quartile, but not when Ang-1 concentrations are high (1.3; 0.3-5.8). Similarly, high concentrations of TNF-α are associated with heightened risk of SRS-defined social impairment (N = 130) (2.0; 1.1-3.8) when ANG-1 concentrations are not high, but not when ANG-1 concentrations are elevated (0.5; 0.1-4.2).
Collapse
Affiliation(s)
- Steven J Korzeniewski
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Elizabeth N Allred
- Departments of Neurology, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - T Michael O'Shea
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | - Alan Leviton
- Departments of Neurology, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Karl C K Kuban
- Departments of Pediatrics, Boston Medical Center and Boston University, Boston, MA, USA
| |
Collapse
|
38
|
Francis K, Dougali A, Sideri K, Kroupis C, Vasdekis V, Dima K, Douzenis A. Brain-derived neurotrophic factor (BDNF) in children with ASD and their parents: a 3-year follow-up. Acta Psychiatr Scand 2018. [PMID: 29532458 DOI: 10.1111/acps.12872] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Several lines of evidence point to a probable relationship between brain-derived neurotrophic factor (BDNF) and autism spectrum disorder (ASD), but studies have yielded inconsistent findings on the BDNF serum level in ASD. The study aimed to assess those levels in children with ASD and their families. METHOD BDNF serum levels were measured in 45 ASD children without intellectual disability (ID) and allergies, age 30-42 months and age-matched normal controls. BDNF serum levels in the parents of the ASD subjects were compared to normal controls. BDNF serum levels in the ASD subjects were followed up for 3 years and correlated with adaptive functioning changes. RESULTS BDNF serum levels were measured to be lower in children with ASD and independent of all the major baseline characteristics of the subjects. Having a child with ASD raises the BDNF levels in parents comparing to controls. Prospectively, no correlation between the change of BDNF variables in time and the change of the Vineland scores was found. CONCLUSIONS Our results contradict those from recent published meta-analyses with the age, the presence of ID and allergies being possible contributing factors. The parents' data indeed point to a role of BDNF in the pathophysiology of ASD.
Collapse
Affiliation(s)
- K Francis
- 2nd Department of Psychiatry, Athens University Medical School, 'Attikon' General Hospital, Athens, Greece.,Child and Adolescent Psychiatric Unit, Kuwait Centre for Mental Health, Kuwait, Kuwait
| | - A Dougali
- 2nd Department of Psychiatry, Athens University Medical School, 'Attikon' General Hospital, Athens, Greece
| | - K Sideri
- Allergy Research Center, Attikon General Hospital, University of Athens Medical School, Athens, Greece
| | - C Kroupis
- Laboratory of Clinical Biochemistry, Attikon University Hospital, Medical School, University of Athens, Athens, Greece
| | - V Vasdekis
- Department of Statistics, Athens University of Economic and Business, Athens, Greece
| | - K Dima
- Laboratory of Clinical Biochemistry, Attikon University Hospital, Medical School, University of Athens, Athens, Greece
| | - A Douzenis
- 2nd Department of Psychiatry, Athens University Medical School, 'Attikon' General Hospital, Athens, Greece
| |
Collapse
|
39
|
Ohja K, Gozal E, Fahnestock M, Cai L, Cai J, Freedman JH, Switala A, El-Baz A, Barnes GN. Neuroimmunologic and Neurotrophic Interactions in Autism Spectrum Disorders: Relationship to Neuroinflammation. Neuromolecular Med 2018; 20:161-173. [PMID: 29691724 PMCID: PMC5942347 DOI: 10.1007/s12017-018-8488-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 03/28/2018] [Indexed: 12/30/2022]
Abstract
Autism spectrum disorders (ASD) are the most prevalent set of pediatric neurobiological disorders. The etiology of ASD has both genetic and environmental components including possible dysfunction of the immune system. The relationship of the immune system to aberrant neural circuitry output in the form of altered behaviors and communication characterized by ASD is unknown. Dysregulation of neurotrophins such as BDNF and their signaling pathways have been implicated in ASD. While abnormal cortical formation and autistic behaviors in mouse models of immune activation have been described, no one theory has been described to link activation of the immune system to specific brain signaling pathways aberrant in ASD. In this paper we explore the relationship between neurotrophin signaling, the immune system and ASD. To this effect we hypothesize that an interplay of dysregulated immune system, synaptogenic growth factors and their signaling pathways contribute to the development of ASD phenotypes.
Collapse
Affiliation(s)
- Kshama Ohja
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, USA.,Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Evelyne Gozal
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Lu Cai
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jun Cai
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jonathan H Freedman
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Andy Switala
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Ayman El-Baz
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Gregory Neal Barnes
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, USA. .,Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA. .,Spafford Ackerly Chair in Child and Adolescent Psychiatry, University of Louisville Autism Center, 1405 East Burnett Avenue, Louisville, KY, 40217, USA.
| |
Collapse
|
40
|
Casanova EL, Sharp JL, Edelson SM, Kelly DP, Casanova MF. A Cohort Study Comparing Women with Autism Spectrum Disorder with and without Generalized Joint Hypermobility. Behav Sci (Basel) 2018; 8:bs8030035. [PMID: 29562607 PMCID: PMC5867488 DOI: 10.3390/bs8030035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/26/2018] [Accepted: 03/15/2018] [Indexed: 01/22/2023] Open
Abstract
Reports suggest comorbidity between autism spectrum disorder (ASD) and the connective tissue disorder, Ehlers-Danlos syndrome (EDS). People with EDS and the broader spectrum of Generalized Joint Hypermobility (GJH) often present with immune- and endocrine-mediated conditions. Meanwhile, immune/endocrine dysregulation is a popular theme in autism research. We surveyed a group of ASD women with/without GJH to determine differences in immune/endocrine exophenotypes. ASD women 25 years or older were invited to participate in an online survey. Respondents completed a questionnaire concerning diagnoses, immune/endocrine symptom history, experiences with pain, and seizure history. ASD women with GJH (ASD/GJH) reported more immune- and endocrine-mediated conditions than their non-GJH counterparts (p = 0.001). Autoimmune conditions were especially prominent in the ASD/GJH group (p = 0.027). Presence of immune-mediated symptoms often co-occurred with one another (p < 0.001–0.020), as did endocrine-mediated symptoms (p < 0.001–0.045), irrespective of the group. Finally, the numbers of immune- and endocrine-mediated symptoms shared a strong inter-relationship (p < 0.001), suggesting potential system crosstalk. While our results cannot estimate comorbidity, they reinforce concepts of an etiological relationship between ASD and GJH. Meanwhile, women with ASD/GJH have complex immune/endocrine exophenotypes compared to their non-GJH counterparts. Further, we discuss how connective tissue regulates the immune system and how the immune/endocrine systems in turn may modulate collagen synthesis, potentially leading to higher rates of GJH in this subpopulation.
Collapse
Affiliation(s)
- Emily L Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA.
- Department of Pediatrics, Greenville Health System Children's Hospital, Greenville, SC 29605, USA.
| | - Julia L Sharp
- Department of Statistics, Colorado State University, Fort Collins, CO 80523, USA.
| | | | - Desmond P Kelly
- Department of Pediatrics, Greenville Health System Children's Hospital, Greenville, SC 29605, USA.
| | - Manuel F Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA.
- Department of Pediatrics, Greenville Health System Children's Hospital, Greenville, SC 29605, USA.
| |
Collapse
|
41
|
Nicolini C, Fahnestock M. The valproic acid-induced rodent model of autism. Exp Neurol 2018; 299:217-227. [DOI: 10.1016/j.expneurol.2017.04.017] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 01/12/2023]
|
42
|
Ghassabian A, Sundaram R, Chahal N, McLain AC, Bell E, Lawrence DA, Yeung EH. Determinants of neonatal brain-derived neurotrophic factor and association with child development. Dev Psychopathol 2017; 29:1499-1511. [PMID: 28462726 PMCID: PMC6201316 DOI: 10.1017/s0954579417000414] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Using a population-based birth cohort in upstate New York (2008-2010), we examined the determinants of brain-derived neurotrophic factor (BDNF) measured in newborn dried blood spots (n = 2,637). We also examined the association between neonatal BDNF and children's development. The cohort was initially designed to examine the influence of infertility treatment on child development but found no impact. Mothers rated children's development in five domains repeatedly through age 3 years. Socioeconomic and maternal lifestyle determinants of BDNF were examined using multivariable linear regression models. Generalized linear mixed models estimated odds ratios for neonatal BDNF in relation to failing a developmental domain. Smoking and drinking in pregnancy, nulliparity, non-White ethnicity/race, and prepregnancy obesity were associated with lower neonatal BDNF. Neonatal BDNF was not associated with failure for developmental domains; however, there was an interaction between BDNF and preterm birth. In preterm infants, a higher BDNF was associated with lower odds of failing any developmental domains, after adjusting for confounders and infertility treatment. This result was particularly significant for failure in communication. Our findings suggest that BDNF levels in neonates may be impacted by maternal lifestyle characteristics. More specifically, lower neonatal BDNF might be an early marker of aberrant neurodevelopment in preterm infants.
Collapse
|
43
|
Sungur AÖ, Schwarting RKW, Wöhr M. Behavioral phenotypes and neurobiological mechanisms in the Shank1 mouse model for autism spectrum disorder: A translational perspective. Behav Brain Res 2017; 352:46-61. [PMID: 28963042 DOI: 10.1016/j.bbr.2017.09.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/11/2017] [Accepted: 09/25/2017] [Indexed: 11/27/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders, characterized by early-onset deficits in social behavior and communication across multiple contexts, together with restricted, repetitive patterns of behavior, interests, or activities. ASD is among the most heritable neuropsychiatric conditions with heritability estimates higher than 80%, and while available evidence points to a complex set of genetic factors, the SHANK (also known as ProSAP) gene family has emerged as one of the most promising candidates. Several genetic Shank mouse models for ASD were generated, including Shank1 knockout mice. Behavioral studies focusing on the Shank1 knockout mouse model for ASD included assays for detecting ASD-relevant behavioral phenotypes in the following domains: (I) social behavior, (II) communication, and (III) repetitive and stereotyped patterns of behavior. In addition, assays for detecting behavioral phenotypes with relevance to comorbidities in ASD were performed, including but not limited to (IV) cognitive functioning. Here, we summarize and discuss behavioral and neuronal findings obtained in the Shank1 knockout mouse model for ASD. We identify open research questions by comparing such findings with the symptoms present in humans diagnosed with ASD and carrying SHANK1 deletions. We conclude by discussing the implications of the behavioral and neuronal phenotypes displayed by the Shank1 knockout mouse model for the development of future pharmacological interventions in ASD.
Collapse
Affiliation(s)
- A Özge Sungur
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany.
| |
Collapse
|
44
|
The Putative Role of Environmental Mercury in the Pathogenesis and Pathophysiology of Autism Spectrum Disorders and Subtypes. Mol Neurobiol 2017; 55:4834-4856. [DOI: 10.1007/s12035-017-0692-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 07/13/2017] [Indexed: 01/28/2023]
|
45
|
Armeanu R, Mokkonen M, Crespi B. Meta-Analysis of BDNF Levels in Autism. Cell Mol Neurobiol 2017; 37:949-954. [PMID: 27501933 DOI: 10.1007/s10571-016-0415-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/03/2016] [Indexed: 11/24/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) centrally mediates growth, differentiation and survival of neurons, and the synaptic plasticity that underlies learning and memory. Recent meta-analyses have reported significantly lower peripheral BDNF among individuals with schizophrenia, bipolar disorder, and depression, compared with controls. To evaluate the role of BDNF in autism, and to compare autism to psychotic-affective disorders with regard to BDNF, we conducted a meta-analysis of BDNF levels in autism. Inclusion criteria were met by 15 studies, which included 1242 participants. The meta-analysis estimated a significant summary effect size of 0.33 (95 % CI 0.21-0.45, P < 0.001), suggesting higher BDNF in autism than in controls. The studies showed notable heterogeneity, but no evidence of publication biases. Higher peripheral BDNF in autism is concordant with several neurological and psychological theories on the causes and symptoms of this condition, and it contrasts notably with the lower levels of BDNF found in schizophrenia, bipolar disorder, and depression.
Collapse
Affiliation(s)
- Raluca Armeanu
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Mikael Mokkonen
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Bernard Crespi
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
46
|
Sungur AÖ, Jochner MCE, Harb H, Kılıç A, Garn H, Schwarting RKW, Wöhr M. Aberrant cognitive phenotypes and altered hippocampal BDNF expression related to epigenetic modifications in mice lacking the post-synaptic scaffolding protein SHANK1: Implications for autism spectrum disorder. Hippocampus 2017; 27:906-919. [PMID: 28500650 DOI: 10.1002/hipo.22741] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/05/2017] [Accepted: 05/03/2017] [Indexed: 12/29/2022]
Abstract
Autism spectrum disorder (ASD) is a class of neurodevelopmental disorders characterized by persistent deficits in social communication/interaction, together with restricted/repetitive patterns of behavior. ASD is among the most heritable neuropsychiatric conditions, and while available evidence points to a complex set of genetic factors, the SHANK gene family has emerged as one of the most promising candidates. Here, we assessed ASD-related phenotypes with particular emphasis on social behavior and cognition in Shank1 mouse mutants in comparison to heterozygous and wildtype littermate controls across development in both sexes. While social approach behavior was evident in all experimental conditions and social recognition was only mildly affected by genotype, Shank1-/- null mutant mice were severely impaired in object recognition memory. This effect was particularly prominent in juveniles, not due to impairments in object discrimination, and replicated in independent mouse cohorts. At the neurobiological level, object recognition deficits were paralleled by increased brain-derived neurotrophic factor (BDNF) protein expression in the hippocampus of Shank1-/- mice; yet BDNF levels did not differ under baseline conditions. We therefore investigated changes in the epigenetic regulation of hippocampal BDNF expression and detected an enrichment of histone H3 acetylation at the Bdnf promoter1 in Shank1-/- mice, consistent with increased learning-associated BDNF. Together, our findings indicate that Shank1 deletions lead to an aberrant cognitive phenotype characterized by severe impairments in object recognition memory and increased hippocampal BDNF levels, possibly due to epigenetic modifications. This result supports the link between ASD and intellectual disability, and suggests epigenetic regulation as a potential therapeutic target.
Collapse
Affiliation(s)
- A Özge Sungur
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Magdalena C E Jochner
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Hani Harb
- Institute of Laboratory Medicine and Pathobiochemistry-Molecular Diagnostics, Philipps-University of Marburg, Marburg, Germany
| | - Ayşe Kılıç
- Institute of Laboratory Medicine and Pathobiochemistry-Molecular Diagnostics, Philipps-University of Marburg, Marburg, Germany
| | - Holger Garn
- Institute of Laboratory Medicine and Pathobiochemistry-Molecular Diagnostics, Philipps-University of Marburg, Marburg, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
47
|
Careaga M, Rogers S, Hansen RL, Amaral DG, Van de Water J, Ashwood P. Immune Endophenotypes in Children With Autism Spectrum Disorder. Biol Psychiatry 2017; 81:434-441. [PMID: 26493496 PMCID: PMC4788581 DOI: 10.1016/j.biopsych.2015.08.036] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/11/2015] [Accepted: 08/25/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is characterized by social communication deficits and restricted, repetitive patterns of behavior. Varied immunological findings have been reported in children with ASD. To address the question of heterogeneity in immune responses, we sought to examine the diversity of immune profiles within a representative cohort of boys with ASD. METHODS Peripheral blood mononuclear cells from male children with ASD (n = 50) and from typically developing age-matched male control subjects (n = 16) were stimulated with either lipopolysaccharide or phytohemagglutinin. Cytokine production was assessed after stimulation. The ASD study population was clustered into subgroups based on immune responses and assessed for behavioral outcomes. RESULTS Children with ASD who had a proinflammatory profile based on lipopolysaccharide stimulation were more developmentally impaired as assessed by the Mullen Scales of Early Learning. They also had greater impairments in social affect as measured by the Autism Diagnostic Observation Schedule. These children also displayed more frequent sleep disturbances and episodes of aggression. Similarly, children with ASD and a more activated T cell cytokine profile after phytohemagglutinin stimulation were more developmentally impaired as measured by the Mullen Scales of Early Learning. CONCLUSIONS Children with ASD may be phenotypically characterized based upon their immune profile. Those showing either an innate proinflammatory response or increased T cell activation/skewing display a more impaired behavioral profile than children with noninflamed or non-T cell activated immune profiles. These data suggest that there may be several possible immune subphenotypes within the ASD population that correlate with more severe behavioral impairments.
Collapse
Affiliation(s)
- Milo Careaga
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California
| | - Sally Rogers
- MIND Institute, University of California, Davis, Davis, California; Departments of Psychiatry, University of California, Davis, Davis, California
| | - Robin L Hansen
- MIND Institute, University of California, Davis, Davis, California; Pediatrics, University of California, Davis, Davis, California
| | - David G Amaral
- MIND Institute, University of California, Davis, Davis, California; Departments of Psychiatry, University of California, Davis, Davis, California
| | - Judy Van de Water
- MIND Institute, University of California, Davis, Davis, California; Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, California
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California.
| |
Collapse
|
48
|
Vuong HE, Hsiao EY. Emerging Roles for the Gut Microbiome in Autism Spectrum Disorder. Biol Psychiatry 2017; 81:411-423. [PMID: 27773355 PMCID: PMC5285286 DOI: 10.1016/j.biopsych.2016.08.024] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/28/2016] [Accepted: 08/18/2016] [Indexed: 01/16/2023]
Abstract
Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder that affects one in 45 children in the United States, with a similarly striking prevalence in countries around the world. However, mechanisms underlying its etiology and manifestations remain poorly understood. Although ASD is diagnosed based on the presence and severity of impaired social communication and repetitive behavior, immune dysregulation and gastrointestinal issues are common comorbidities. The microbiome is an integral part of human physiology; recent studies show that changes in the gut microbiota can modulate gastrointestinal physiology, immune function, and even behavior. Links between particular bacteria from the indigenous gut microbiota and phenotypes relevant to ASD raise the important question of whether microbial dysbiosis plays a role in the development or presentation of ASD symptoms. Here we review reports of microbial dysbiosis in ASD. We further discuss potential effects of the microbiota on ASD-associated symptoms, drawing on signaling mechanisms for reciprocal interactions among the microbiota, immunity, gut function, and behavior. In addition, we discuss recent findings supporting a role for the microbiome as an interface between environmental and genetic risk factors that are associated with ASD. These studies highlight the integration of pathways across multiple body systems that together can impact brain and behavior and suggest that changes in the microbiome may contribute to symptoms of neurodevelopmental disease.
Collapse
Affiliation(s)
- Helen E. Vuong
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elaine Y. Hsiao
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA,Correspondence to: ; 610 Charles E. Young Drive MSB 3825A; Los Angeles CA 90095; 310-825-0228
| |
Collapse
|
49
|
Abstract
Pediatric autoimmune epileptic encephalopathies are predominantly characterized by the presence of autoantibodies to the surface of neuronal proteins, for example, N-methyl-d-aspartate (NMDA) receptor antibodies, but also include diseases with non-cell surface antibodies (eg, anti-Hu, glutamic-acid decarboxylase antibodies). In some cases with distinct clinical and para-clinical features, an autoimmune epileptic encephalopathy can be diagnosed without the presence of an antibody and will also respond favorably to immunotherapy. In this review, we summarize the common presentations of pediatric autoimmune epileptic encephalopathies, treatments, and outcomes, and report recent findings in the field of epilepsy, encephalopathy, and the immune system.
Collapse
Affiliation(s)
- Sukhvir Wright
- 1 Department of Pediatric Neurology, Birmingham Children's Hospital, Birmingham, United Kingdom
| | - Angela Vincent
- 2 Nuffield Department of Clinical Neurosciences, John Radcliffe University Hospital, Oxford, United Kingdom
| |
Collapse
|
50
|
Bhandari R, Kuhad A. Resveratrol suppresses neuroinflammation in the experimental paradigm of autism spectrum disorders. Neurochem Int 2017; 103:8-23. [DOI: 10.1016/j.neuint.2016.12.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 11/27/2016] [Accepted: 12/20/2016] [Indexed: 01/08/2023]
|