1
|
Torres DB, Lopes A, Rodrigues AJ, Ventura-Silva AP, Sousa N, Gontijo JAR, Boer PA, Lopes MG. Early morphological and neurochemical changes of the bed nucleus of stria terminalis (BNST) in gestational protein-restricted male offspring. Nutr Neurosci 2024; 27:1250-1268. [PMID: 38576309 DOI: 10.1080/1028415x.2024.2320498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
BACKGROUND The bed nucleus of the stria terminalis (BNST) is a structure with a peculiar neurochemical composition involved in modulating anxietylike behavior and fear. AIM The present study investigated the effects on the BNST neurochemical composition and neuronal structure in critical moments of the postnatal period in gestational protein-restricted male rats' offspring. METHODS Dams were maintained during the pregnancy on isocaloric rodent laboratory chow with standard protein content [NP, 17%] or low protein content [LP, 6%]. BNST from male NP and age-matched LP offspring was studied using the isotropic fractionator method, Neuronal 3D reconstruction, dendritic-tree analysis, blotting analysis, and high-performance liquid chromatography. RESULTS Serum corticosterone levels were higher in male LP offspring than NP rats in 14-day-old offspring, without any difference in 7-day-old progeny. The BNST total cell number and anterodorsal BNST division volume in LP progeny were significantly reduced on the 14th postnatal day compared with NP offspring. The BNST HPLC analysis from 7 days-old LP revealed increased norepinephrine levels compared to NP progeny. The BNST blot analysis from 7-day-old LP revealed reduced levels of GR and BDNF associated with enhanced CRF1 expression compared to NP offspring. 14-day-old LP offspring showed reduced expression of MR and 5HT1A associated with decreased DOPAC and DOPA turnover levels relative to NP rats. In Conclusion, the BNST cellular and neurochemical changes may represent adaptation during development in response to elevated fetal exposure to maternal corticosteroid levels. In this way, gestational malnutrition alters the BNST content and structure and contributes to already-known behavioral changes.
Collapse
Affiliation(s)
- D B Torres
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Internal Medicine Department, School of Medicine, State University of Campinas, Campinas, Brazil
| | - A Lopes
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Internal Medicine Department, School of Medicine, State University of Campinas, Campinas, Brazil
| | - A J Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - A P Ventura-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - N Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J A R Gontijo
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Internal Medicine Department, School of Medicine, State University of Campinas, Campinas, Brazil
| | - P A Boer
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Internal Medicine Department, School of Medicine, State University of Campinas, Campinas, Brazil
| | | |
Collapse
|
2
|
Dósa Z, Nieto-Gonzalez JL, Elfving B, Hougaard KS, Holm MM, Wegener G, Jensen K. Reduction in hippocampal GABAergic transmission in a low birth weight rat model of depression. Acta Neuropsychiatr 2023; 35:315-327. [PMID: 36896595 DOI: 10.1017/neu.2023.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Prenatal stress is believed to increase the risk of developing neuropsychiatric disorders, including major depression. Adverse genetic and environmental impacts during early development, such as glucocorticoid hyper-exposure, can lead to changes in the foetal brain, linked to mental illnesses developed in later life. Dysfunction in the GABAergic inhibitory system is associated with depressive disorders. However, the pathophysiology of GABAergic signalling is poorly understood in mood disorders. Here, we investigated GABAergic neurotransmission in the low birth weight (LBW) rat model of depression. Pregnant rats, exposed to dexamethasone, a synthetic glucocorticoid, during the last week of gestation, yielded LBW offspring showing anxiety- and depressive-like behaviour in adulthood. Patch-clamp recordings from dentate gyrus granule cells in brain slices were used to examine phasic and tonic GABAA receptor-mediated currents. The transcriptional levels of selected genes associated with synaptic vesicle proteins and GABAergic neurotransmission were investigated. The frequency of spontaneous inhibitory postsynaptic currents (sIPSC) was similar in control and LBW rats. Using a paired-pulse protocol to stimulate GABAergic fibres impinging onto granule cells, we found indications of decreased probability of GABA release in LBW rats. However, tonic GABAergic currents and miniature IPSCs, reflecting quantal vesicle release, appeared normal. Additionally, we found elevated expression levels of two presynaptic proteins, Snap-25 and Scamp2, components of the vesicle release machinery. The results suggest that altered GABA release may be an essential feature in the depressive-like phenotype of LBW rats.
Collapse
Affiliation(s)
- Zita Dósa
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Mai Marie Holm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Pharmaceutical Research Center of Excellence, North-West University, Potchefstroom, South Africa
| | - Kimmo Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
3
|
Neurological implications of antenatal corticosteroids on late preterm and term infants: a scoping review. Pediatr Res 2022; 92:1225-1239. [PMID: 35681094 DOI: 10.1038/s41390-022-02135-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/27/2022] [Accepted: 05/17/2022] [Indexed: 11/08/2022]
Abstract
The objective of this study was to synthesize the body of knowledge on the association between ACS exposure for risk of preterm birth and brain development in infants ultimately born late preterm and term. Three databases and eight conference proceedings were systematically searched (1972-2021). Selection criteria included ACS administration for risk of preterm delivery, cohort of late preterm and term infants, and assessment of brain development. Data on study characteristics, ACS administration, and neurological outcomes were extracted and qualitatively synthesized according to themes. Neurological outcomes of the included studies (n = 27) were grouped into four themes. The most common adverse outcomes were reduced neonatal head circumference, structural cortical differences on MRI, increased prevalence of psychiatric problems, and increased risk of neurodevelopmental delays in ACS-exposed late preterm and term infants. Our scoping review demonstrated that ACS exposure for risk of preterm delivery may have important neurological implications in infants ultimately born late preterm and term. Given that the existing research is at serious risk for bias, further research that accounts for confounders such as preterm labor, maternal stress, and the number of ACS courses is needed to better establish the long-term neurological effects of ACS on late preterm and term infants. IMPACT: Due to the difficulty in predicting preterm birth, approximately 40% of fetuses exposed to antenatal corticosteroids (ACS) are born at term (≥37 weeks' gestation). This scoping review summarizes the knowledge on the association between ACS exposure for risk of preterm birth and brain development in late preterm and term infants. The majority of studies reported that ACS exposure was associated with adverse brain development outcomes across various domains, such as reduced neonatal head circumference, cortical differences on MRI, and increased prevalence of psychiatric problems and neurodevelopmental delays in late preterm and term infants.
Collapse
|
4
|
Cellular Senescence in Adrenocortical Biology and Its Disorders. Cells 2021; 10:cells10123474. [PMID: 34943980 PMCID: PMC8699888 DOI: 10.3390/cells10123474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is considered a physiological process along with aging and has recently been reported to be involved in the pathogenesis of many age-related disorders. Cellular senescence was first found in human fibroblasts and gradually explored in many other organs, including endocrine organs. The adrenal cortex is essential for the maintenance of blood volume, carbohydrate metabolism, reaction to stress and the development of sexual characteristics. Recently, the adrenal cortex was reported to harbor some obvious age-dependent features. For instance, the circulating levels of aldosterone and adrenal androgen gradually descend, whereas those of cortisol increase with aging. The detailed mechanisms have remained unknown, but cellular senescence was considered to play an essential role in age-related changes of the adrenal cortex. Recent studies have demonstrated that the senescent phenotype of zona glomerulosa (ZG) acts in association with reduced aldosterone production in both physiological and pathological aldosterone-producing cells, whereas senescent cortical-producing cells seemed not to have a suppressed cortisol-producing ability. In addition, accumulated lipofuscin formation, telomere shortening and cellular atrophy in zona reticularis cells during aging may account for the age-dependent decline in adrenal androgen levels. In adrenocortical disorders, including both aldosterone-producing adenoma (APA) and cortisol-producing adenoma (CPA), different cellular subtypes of tumor cells presented divergent senescent phenotypes, whereby compact cells in both APA and CPA harbored more senescent phenotypes than clear cells. Autonomous cortisol production from CPA reinforced a local cellular senescence that was more severe than that in APA. Adrenocortical carcinoma (ACC) was also reported to harbor oncogene-induced senescence, which compensatorily follows carcinogenesis and tumor progress. Adrenocortical steroids can induce not only a local senescence but also a periphery senescence in many other tissues. Therefore, herein, we systemically review the recent advances related to cellular senescence in adrenocortical biology and its associated disorders.
Collapse
|
5
|
Kataja EL, Rodrigues AJ, Scheinin NM, Nolvi S, Korja R, Häikiö T, Ekholm E, Sousa N, Karlsson L, Karlsson H. Prenatal Glucocorticoid-Exposed Infants Do Not Show an Age-Typical Fear Bias at 8 Months of Age - Preliminary Findings From the FinnBrain Birth Cohort Study. Front Psychol 2021; 12:655654. [PMID: 34393896 PMCID: PMC8356796 DOI: 10.3389/fpsyg.2021.655654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
Synthetic glucocorticoids (sGC) are frequently administered to pregnant women at risk for preterm delivery to promote fetal lung maturation. Despite their undeniable beneficial effects in lung maturation, the impact of these hormones on developing brain is less clear. Recent human studies suggest that emotional and behavioral disorders are more common among sGC-exposed vs. non-exposed children, but the literature is sparse and controversial. We investigated if prenatal sGC exposure altered fear bias, a well-established infant attention phenotype, at 8-months. We used eye tracking and an overlap paradigm with control, neutral, happy, and fearful faces, and salient distractors, to evaluate infants’ attention disengagement from faces, and specifically from fearful vs. neutral and happy faces (i.e., a fear bias) in a sample (N = 363) of general population from the FinnBrain Birth Cohort Study. sGC exposed infants (N = 12) did not differ from non-exposed infants (N = 351) in their overall probability of disengagement in any single stimulus condition. However, in comparison with non-exposed infants, they did not show the age-typical fear bias and this association remained after controlling for confounding factors such as prematurity, gestational age at birth, birth weight, sex, and maternal postnatal depressive symptoms. Prenatal sGC exposure may alter emotional processing in infants. The atypical emotion processing in turn may be a predictor of emotional problems later in development. Future longitudinal studies are needed in order to evaluate the long-term consequences of sGC exposure for the developing brain.
Collapse
Affiliation(s)
- Eeva-Leena Kataja
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Noora M Scheinin
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Saara Nolvi
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychology and Speech-Language Pathology, Turku Institute for Advanced Studies, University of Turku, Turku, Finland.,Department of Medical Psychology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health (BIH), Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Riikka Korja
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland
| | - Tuomo Häikiö
- Department of Psychology and Speech-Language Pathology, University of Turku, Turku, Finland
| | - Eeva Ekholm
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland.,Department of Obstetrics and Gynecology, Turku University Hospital, University of Turku, Turku, Finland
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Linnea Karlsson
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland.,Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
| | - Hasse Karlsson
- The FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland.,Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland.,Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Gaspar R, Soares-Cunha C, Domingues AV, Coimbra B, Baptista FI, Pinto L, Ambrósio AF, Rodrigues AJ, Gomes CA. Resilience to stress and sex-specific remodeling of microglia and neuronal morphology in a rat model of anxiety and anhedonia. Neurobiol Stress 2021; 14:100302. [PMID: 33614864 PMCID: PMC7879043 DOI: 10.1016/j.ynstr.2021.100302] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/08/2023] Open
Abstract
Prenatal exposure to stress or glucocorticoids (GC) is associated with the appearance of psychiatric diseases later in life. Microglia, the immune cells of the brain, are altered in stress-related disorders. Synthetic GC such as dexamethasone (DEX) are commonly prescribed in case of preterm risk labour in order to promote fetal lung maturation. Recently, we reported long-lasting differences in microglia morphology in a model of in utero exposure to DEX (iuDEX), that presents an anxious phenotype. However, it is still unclear if stress differentially affects iuDEX males and females. In this work, we evaluated how iuDEX animals of both sexes cope with chronic mild stress for 2 weeks. We evaluated emotional behavior and microglia and neuronal morphology in the dorsal hippocampus (dHIP) and nucleus accumbens (NAc), two brain regions involved in emotion-related disorders. We report that males and females prenatally exposed to DEX have better performance in anxiety- and depression-related behavioral tests after chronic stress exposure in adulthood than non-exposed animals. Interestingly, iuDEX animals present sex-dependent changes in microglia morphology in the dHIP (hypertrophy in females) and in the NAc (atrophy in females and hypertrophy in males). After chronic stress, these cells undergo sex-specific morphological remodeling. Paralleled to these alterations in cytoarchitecture of microglia, we report inter-regional differences in dendritic morphology in a sex-specific manner. iuDEX females present fewer complex neurons in the NAc, whereas iuDEX males presented less complex neuronal morphology in the dHIP. Interestingly, these alterations were modified by stress exposure. Our work shows that stressful events during pregnancy can exert a preserved sex-specific effect in adulthood. Although the role of the observed cellular remodeling is still unknown, sex-specific differences in microglia plasticity induced by long-term stress exposure may anticipate differences in drug efficacy in the context of stress-induced anxiety- or depression-related behaviors. iuDEX induces anxiety- and depression-related behavioral in both sexes. iuDEX induces sex dependent fine structural alterations in neurons and microglia morphology in the dHIP and in the NAc. uCMS in combination to iuDEX normalize the behavior as well the morphology of neurons in the NAc. Stressful events during pregnancy can exert a preserved sex-specific effect in adulthood.
Collapse
Affiliation(s)
- Rita Gaspar
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Filipa I Baptista
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António F Ambrósio
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Catarina A Gomes
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| |
Collapse
|
7
|
van der Merwe JL, Sacco A, Toelen J, Deprest J. Long-term neuropathological and/or neurobehavioral effects of antenatal corticosteroid therapy in animal models: a systematic review. Pediatr Res 2020; 87:1157-1170. [PMID: 31822018 DOI: 10.1038/s41390-019-0712-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/12/2019] [Accepted: 11/23/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Antenatal corticosteroids (ACSs) are recommended to all women at risk for preterm delivery; currently, there is controversy about the subsequent long-term neurocognitive sequelae. This systematic review summarizes the long-term neurodevelopmental outcomes after ACS therapy in animal models. METHODS An electronic search strategy incorporating MeSH and keywords was performed using all known literature databases and in accordance with PRISMA guidance (PROSPERO CRD42019119663). RESULTS Of the 669 studies identified, eventually 64 were included. The majority of studies utilized dexamethasone at relative high dosages and primarily involved rodents. There was a high risk of bias, mostly due to lack of randomization, allocation concealment, and blinding. The main outcomes reported on was neuropathological, particularly glucocorticoid receptor expression and neuron densities, and neurobehavior. Overall there was an upregulation of glucocorticoid receptors with lower neuron densities and a dysregulation of the dopaminergic and serotonergic systems. This coincided with various adverse neurobehavioral outcomes. CONCLUSIONS In animal models, ACSs consistently lead to deleterious long-term neurocognitive effects. This may be due to the specific agents, i.e., dexamethasone, or the repetitive/higher total dosing used. ACS administration varied significantly between studies and there was a high risk of bias. Future research should be standardized in well-characterized models.
Collapse
Affiliation(s)
- Johannes L van der Merwe
- Department of Development and Regeneration, Cluster Woman and Child, Faculty of Medicine, KU Leuven, Leuven, Belgium. .,Department of Obstetrics and Gynaecology, Fetal Medicine Unit, UZ Leuven, Leuven, Belgium.
| | - Adalina Sacco
- Institute for Women's Health, University College London, London, UK
| | - Jaan Toelen
- Department of Development and Regeneration, Cluster Woman and Child, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Pediatrics, Division Woman and Child, University Hospitals Leuven, Leuven, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Cluster Woman and Child, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Obstetrics and Gynaecology, Fetal Medicine Unit, UZ Leuven, Leuven, Belgium.,Institute for Women's Health, University College London, London, UK
| |
Collapse
|
8
|
Castelli V, Lavanco G, Brancato A, Plescia F. Targeting the Stress System During Gestation: Is Early Handling a Protective Strategy for the Offspring? Front Behav Neurosci 2020; 14:9. [PMID: 32082129 PMCID: PMC7006220 DOI: 10.3389/fnbeh.2020.00009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/15/2020] [Indexed: 12/28/2022] Open
Abstract
The perinatal window is a critical developmental time when abnormal gestational stimuli may alter the development of the stress system that, in turn, influences behavioral and physiological responses in the newborns. Individual differences in stress reactivity are also determined by variations in maternal care, resulting from environmental manipulations. Despite glucocorticoids are the primary programming factor for the offspring's stress response, therapeutic corticosteroids are commonly used during late gestation to prevent preterm negative outcomes, exposing the offspring to potentially aberrant stress reactivity later in life. Thus, in this study, we investigated the consequences of one daily s.c. injection of corticosterone (25 mg/kg), from gestational day (GD) 14-16, and its interaction with offspring early handling, consisting in a brief 15-min maternal separation until weaning, on: (i) maternal behavior; and (ii) behavioral reactivity, emotional state and depressive-like behavior in the adolescent offspring. Corticosterone plasma levels, under non-shock- and shock-induced conditions, were also assessed. Our results show that gestational exposure to corticosterone was associated with diminished maternal care, impaired behavioral reactivity, increased emotional state and depressive-like behavior in the offspring, associated with an aberrant corticosterone response. The early handling procedure, which resulted in increased maternal care, was able to counteract the detrimental effects induced by gestational corticosterone exposure both in the behavioral- and neurochemical parameters examined. These findings highlight the potentially detrimental consequences of targeting the stress system during pregnancy as a vulnerability factor for the occurrence of emotional and affective distress in the adolescent offspring. Maternal extra-care proves to be a protective strategy that confers resiliency and restores homeostasis.
Collapse
Affiliation(s)
- Valentina Castelli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- INSERM U1215, Neuro Centre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France.,Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Anna Brancato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Fulvio Plescia
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
9
|
Swales DA, Grande LA, Wing DA, Edelmann M, Glynn LM, Sandman C, Smith R, Bowman M, Davis EP. Can Placental Corticotropin-Releasing Hormone Inform Timing of Antenatal Corticosteroid Administration? J Clin Endocrinol Metab 2019; 104:443-450. [PMID: 30215731 PMCID: PMC6304068 DOI: 10.1210/jc.2018-00956] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/06/2018] [Indexed: 11/19/2022]
Abstract
CONTEXT Antenatal corticosteroids are commonly administered to pregnant women at risk for delivering between 23 and 34 gestational weeks; they provide crucial benefits to fetal lung maturation and reduce risk for neonatal morbidity and mortality. Corticosteroids are maximally efficacious for lung maturation when administered within 2 to 7 days of delivery. Accurately identifying the timing of preterm delivery is thus critical to ensure that antenatal corticosteroids are administered within a week of delivery and to avoid unnecessary administration to women who will deliver at term. A plausible biomarker for predicting time of delivery is placental corticotropin-releasing hormone (pCRH). OBJECTIVE To assess whether pCRH concentrations predict time to delivery and specifically which women will deliver within a week of treatment. DESIGN pCRH concentrations were evaluated before administration of the corticosteroid betamethasone, and timing of delivery was recorded. PARTICIPANTS A total of 121 women with singleton pregnancies who were prescribed betamethasone. RESULTS Elevated pCRH concentrations were associated with a shorter time from treatment to delivery. Receiver-operating characteristic curves revealed that pCRH may improve the precision of predicting preterm delivery. CONCLUSIONS In the current sample, pCRH concentrations predicted the likelihood of delivering within 1 week of corticosteroid treatment. Current findings suggest that pCRH may be a diagnostic indicator of impending preterm delivery. Increasing the precision in predicting time to delivery could inform when to administer antenatal corticosteroids, thus maximizing benefits and reducing the likelihood of exposing fetuses who will be delivered at term.
Collapse
Affiliation(s)
- Danielle A Swales
- Department of Psychology, University of Denver, Denver, Colorado
- Correspondence and Reprint Requests: Danielle A. Swales, MA, Department of Psychology, University of Denver, Frontier Hall, 2155 South Race Street, Denver, Colorado 80206. E-mail:
| | - Leah A Grande
- Department of Psychology, University of Denver, Denver, Colorado
| | - Deborah A Wing
- Obstetrics and Gynecology, University of California, Irvine, Orange, California
| | | | - Laura M Glynn
- Department of Psychology, Chapman University, Orange, California
| | - Curt Sandman
- Department of Psychiatry, University of California, Irvine, Irvine, California
| | - Roger Smith
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Maria Bowman
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Elysia Poggi Davis
- Department of Psychology, University of Denver, Denver, Colorado
- Department of Psychiatry, University of California, Irvine, Irvine, California
| |
Collapse
|
10
|
Duarte JM, Gaspar R, Caetano L, Patrício P, Soares-Cunha C, Mateus-Pinheiro A, Alves ND, Santos AR, Ferreira SG, Sardinha V, Oliveira JF, Fontes-Ribeiro C, Sousa N, Cunha RA, Ambrósio AF, Pinto L, Rodrigues AJ, Gomes CA. Region-specific control of microglia by adenosine A 2A receptors: uncoupling anxiety and associated cognitive deficits in female rats. Glia 2019; 67:182-192. [PMID: 30461068 DOI: 10.1002/glia.23476] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 01/24/2023]
Abstract
Epidemiologic studies have provided compelling evidence that prenatal stress, through excessive maternal glucocorticoids exposure, is associated with psychiatric disorders later in life. We have recently reported that anxiety associated with prenatal exposure to dexamethasone (DEX, a synthetic glucocorticoid) correlates with a gender-specific remodeling of microglia in the medial prefrontal cortex (mPFC), a core brain region in anxiety-related disorders. Gender differences in microglia morphology, the higher prevalence of anxiety in women and the negative impact of anxiety in cognition, led us to specifically evaluate cognitive behavior and associated circuits (namely mPFC-dorsal hippocampus, dHIP), as well as microglia morphology in female rats prenatally exposed to dexamethasone (in utero DEX, iuDEX). We report that iuDEX impaired recognition memory and deteriorated neuronal synchronization between mPFC and dHIP. These functional deficits are paralleled by microglia hyper-ramification in the dHIP and decreased ramification in the mPFC, showing a heterogeneous remodeling of microglia morphology, both postnatally and at adulthood in different brain regions, that differently affect mood and cognition. The chronic blockade of adenosine A2A receptors (A2A R), which are core regulators of microglia morphology and physiology, ameliorated the cognitive deficits, but not the anxiety-like behavior. Notably, A2A R blockade rectified both microglia morphology in the dHIP and the lack of mPFC-dHIP synchronization, further heralding their role in cognitive function.
Collapse
Affiliation(s)
- Joana Mendes Duarte
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Rita Gaspar
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Liliana Caetano
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Dinis Alves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Rita Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Samira G Ferreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Vanessa Sardinha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carlos Fontes-Ribeiro
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rodrigo A Cunha
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - António F Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Catarina A Gomes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
11
|
Osborne S, Biaggi A, Chua TE, Du Preez A, Hazelgrove K, Nikkheslat N, Previti G, Zunszain PA, Conroy S, Pariante CM. Antenatal depression programs cortisol stress reactivity in offspring through increased maternal inflammation and cortisol in pregnancy: The Psychiatry Research and Motherhood - Depression (PRAM-D) Study. Psychoneuroendocrinology 2018; 98:211-221. [PMID: 30033161 PMCID: PMC6215770 DOI: 10.1016/j.psyneuen.2018.06.017] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Antenatal depression is associated with a broad range of suboptimal outcomes in offspring, although the underlying mechanisms are not yet understood. Animal studies propose inflammation and glucocorticoids as mediators of the developmental programming effect of prenatal stress on offspring stress responses, but studies in humans are not yet at this stage. Indeed, to date no single study has examined the effects of a rigorously defined, clinically significant Major Depressive Disorder (MDD) in pregnancy on maternal antenatal inflammatory biomarkers and hypothalamic-pituitary (HPA) axis, as well as on offspring HPA axis, behavior and developmental outcomes in the first postnatal year. METHODS A prospective longitudinal design was used in 106 women (49 cases vs. 57 healthy controls) to study the effect of MDD in pregnancy and associated antenatal biology (inflammatory and cortisol biomarkers), on offspring stress response (cortisol response to immunization, at 8 weeks and 12 months), early neurobehavior (Neonatal Behavioral Assessment Scale, NBAS, at day 6), and cognitive, language and motor development (Bayley Scales of Infant and Toddler Development at 12 months). RESULTS Compared with healthy controls, women with MDD in pregnancy had raised interleukin (IL) IL-6 (effect size (δ) = 0.53, p = 0.031), IL-10 (δ = 0.53, p = 0.043), tumor necrosis factor alpha (δ = 0.90, p = 0.003) and vascular endothelial growth factor (δ = 0.56, p = 0.008), together with raised diurnal cortisol secretion (δ = 0.89, p = 0.006), raised evening cortisol (δ = 0.64, p = 0.004), and blunted cortisol awakening response (δ = 0.70, p = 0.020), and an 8-day shorter length of gestation (δ = 0.70, p = 0.005). Furthermore, they had neonates with suboptimal neurobehavioral function in four out of five NBAS clusters measured (range of δ = 0.45-1.22 and p = 0.049-<0.001) and increased cortisol response to stress at one year of age (δ = 0.87, p < 0.001). Lastly, maternal inflammatory biomarkers and cortisol levels were correlated with infant stress response, suggesting a mechanistic link. CONCLUSION This study confirms and extends the notion that depression in pregnancy is associated with altered offspring behavior and biological stress response, and demonstrates that changes in maternal antenatal stress-related biology are associated with these infant outcomes.
Collapse
Affiliation(s)
- S Osborne
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Section of Perinatal Psychiatry & Stress, Psychiatry and Immunology, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London, SE5 9RX, UK.
| | - A Biaggi
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Section of Perinatal Psychiatry & Stress, Psychiatry and Immunology, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London, SE5 9RX, UK; King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Section of Psychosis Studies, London, SE5 9AF, UK
| | - T E Chua
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Section of Perinatal Psychiatry & Stress, Psychiatry and Immunology, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London, SE5 9RX, UK; Department of Psychological Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| | - A Du Preez
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Section of Perinatal Psychiatry & Stress, Psychiatry and Immunology, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London, SE5 9RX, UK; King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London, SE5 9RX, UK
| | - K Hazelgrove
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Section of Perinatal Psychiatry & Stress, Psychiatry and Immunology, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London, SE5 9RX, UK; King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Section of Psychosis Studies, London, SE5 9AF, UK
| | - N Nikkheslat
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Section of Perinatal Psychiatry & Stress, Psychiatry and Immunology, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London, SE5 9RX, UK
| | - G Previti
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Section of Perinatal Psychiatry & Stress, Psychiatry and Immunology, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London, SE5 9RX, UK; Department of Mental Health and Addiction, Via Risorgimento 57 42123, Reggio Emilia, Italy
| | - P A Zunszain
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Section of Perinatal Psychiatry & Stress, Psychiatry and Immunology, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London, SE5 9RX, UK
| | - S Conroy
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Section of Perinatal Psychiatry & Stress, Psychiatry and Immunology, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London, SE5 9RX, UK
| | - C M Pariante
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Section of Perinatal Psychiatry & Stress, Psychiatry and Immunology, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London, SE5 9RX, UK
| |
Collapse
|
12
|
Abul M, Al-Bader MD, Mouihate A. Exposure to synthetic glucocorticoids during pregnancy alters the expression of p73 gene variants in fetal brains in a sex-specific manner. Brain Res 2018; 1707:117-123. [PMID: 30476470 DOI: 10.1016/j.brainres.2018.11.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/31/2022]
Abstract
Fetal exposure to dexamethasone (DEX) alters brain plasticity and cognitive functions during adulthood in a sex-dependent manner. The mechanisms underlying such long-lasting sex-dependent change of prenatal DEX is not well understood. The p73 gene plays an important role in brain development. It encodes for two protein variants; the neural cell death protein (TAp73) and the anti-neural cell death protein (ΔNp73). Therefore, we sought to determine how prenatal exposure to DEX alters the expression of these p73 gene variants in the brain of male and female fetuses. Pregnant dams received daily injections of either DEX (0.4 mg/kg, i.p.) or saline from gestation day (GD) 14 until GD21. On GD21, body and brain weights were monitored and mRNA and protein levels of TAp73 and ΔNp73 were measured in male and female fetal brains using RT-PCR, Western blot, and immunohistochemistry. Prenatal exposure to DEX significantly reduced the body and brain weights of both male and female fetuses, although reduction in brain weight was less severe than that of the body weight. Administration of DEX to pregnant dams led to enhanced expression of both TAp73 and ΔNp73 gene/protein variants in the brain of male but not in that of female fetuses. Dexamethasone induced a sex-dependent effect on the expression of p73 gene variants. DEX-induced growth restriction in the brain of female fetuses is independent of p73 gene. This study strongly suggests that survival/death programs operate differently during the development of male and female brains.
Collapse
Affiliation(s)
- Mai Abul
- Department of Physiology, Health Sciences Centre, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Maie D Al-Bader
- Department of Physiology, Health Sciences Centre, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Abdeslam Mouihate
- Department of Physiology, Health Sciences Centre, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
| |
Collapse
|
13
|
Soares-Cunha C, Coimbra B, Borges S, Domingues AV, Silva D, Sousa N, Rodrigues AJ. Mild Prenatal Stress Causes Emotional and Brain Structural Modifications in Rats of Both Sexes. Front Behav Neurosci 2018; 12:129. [PMID: 30034328 PMCID: PMC6043801 DOI: 10.3389/fnbeh.2018.00129] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022] Open
Abstract
Stress or high levels of glucocorticoids (GCs) during developmental periods is known to induce persistent effects in the neuroendocrine circuits that control stress response, which may underlie individuals’ increased risk for developing neuropsychiatric conditions later in life, such as anxiety or depression. We developed a rat model (Wistar han) of mild exposure to unpredictable prenatal stress (PS), which consists in a 4-h stressor administered three times per week on a random basis; stressors include strobe lights, noise and restrain. Pregnant dams subjected to this protocol present disrupted circadian corticosterone secretion and increased corticosterone secretion upon acute stress exposure. Regarding progeny, both young adult (2 months old) male and female rats present increased levels of circulating corticosterone and hyperactivity of the hypothalamus-pituitary-adrenal axis to acute stress exposure. Both sexes present anxious- and depressive-like behaviors, shown by the decreased time spent in the open arms of the elevated plus maze (EPM) and in the light side of the light-dark box (LDB), and by increased immobility time in the forced swim test, respectively. Interestingly, these results were accompanied by structural modifications of the bed nucleus of stria terminalis (BNST) and hippocampus, as well as decreased norepinephrine and dopamine levels in the BNST, and serotonin levels in the hippocampus. In summary, we characterize a new model of mild PS, and show that stressful events during pregnancy can lead to long-lasting structural and neurochemical effects in the offspring, which affect behavior in adulthood.
Collapse
Affiliation(s)
- Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sónia Borges
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Deolinda Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
14
|
Pinheiro H, Gaspar R, Baptista FI, Fontes-Ribeiro CA, Ambrósio AF, Gomes CA. Adenosine A 2A Receptor Blockade Modulates Glucocorticoid-Induced Morphological Alterations in Axons, But Not in Dendrites, of Hippocampal Neurons. Front Pharmacol 2018; 9:219. [PMID: 29615903 PMCID: PMC5868516 DOI: 10.3389/fphar.2018.00219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
The exposure to supra-physiological levels of glucocorticoids in prenatal life can lead to a long-term impact in brain cytoarchitecture, increasing the susceptibility to neuropsychiatric disorders. Dexamethasone, an exogenous glucocorticoid widely used in pregnant women in risk of preterm delivery, is associated with higher rates of neuropsychiatric conditions throughout life of the descendants. In animal models, prenatal dexamethasone exposure leads to anxious-like behavior and increased susceptibility to depressive-like behavior in adulthood, concomitant with alterations in neuronal morphology in brain regions implicated in the control of emotions and mood. The pharmacologic blockade of the purinergic adenosine A2A receptor, which was previously described as anxiolytic, is also able to modulate neuronal morphology, namely in the hippocampus. Additionally, recent observations point to an interaction between glucocorticoid receptors (GRs) and adenosine A2A receptors. In this work, we explored the impact of dexamethasone on neuronal morphology, and the putative implication of adenosine A2A receptor in the mediation of dexamethasone effects. We report that in vitro hippocampal neurons exposed to dexamethasone (250 nM), in the early phases of development, exhibit a polarized morphology alteration: dendritic atrophy and axonal hypertrophy. While the effect of dexamethasone in the axon is dependent on the activation of adenosine A2A receptor, the effect in the dendrites relies on the activation of GRs, regardless of the activation of adenosine A2A receptor. These results support the hypothesis of the interaction between GRs and adenosine A2A receptors and the potential therapeutic value of modulating adenosine A2A receptors activation in order to prevent glucocorticoid-induced alterations in developing neurons.
Collapse
Affiliation(s)
- Helena Pinheiro
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Rita Gaspar
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Filipa I Baptista
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Carlos A Fontes-Ribeiro
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - António F Ambrósio
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Catarina A Gomes
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
15
|
Miranda A, Sousa N. Maternal hormonal milieu influence on fetal brain development. Brain Behav 2018; 8:e00920. [PMID: 29484271 PMCID: PMC5822586 DOI: 10.1002/brb3.920] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/15/2017] [Accepted: 12/06/2017] [Indexed: 12/23/2022] Open
Abstract
An adverse maternal hormonal environment during pregnancy can be associated with abnormal brain growth. Subtle changes in fetal brain development have been observed even for maternal hormone levels within the currently accepted physiologic ranges. In this review, we provide an update of the research data on maternal hormonal impact on fetal neurodevelopment, giving particular emphasis to thyroid hormones and glucocorticoids. Thyroid hormones are required for normal brain development. Despite serum TSH appearing to be the most accurate indicator of thyroid function in pregnancy, maternal serum free T4 levels in the first trimester of pregnancy are the major determinant of postnatal psychomotor development. Even a transient period of maternal hypothyroxinemia at the beginning of neurogenesis can confer a higher risk of expressive language and nonverbal cognitive delays in offspring. Nevertheless, most recent clinical guidelines advocate for targeted high-risk case finding during first trimester of pregnancy despite universal thyroid function screening. Corticosteroids are determinant in suppressing cell proliferation and stimulating terminal differentiation, a fundamental switch for the maturation of fetal organs. Not surprisingly, intrauterine exposure to stress or high levels of glucocorticoids, endogenous or synthetic, has a molecular and structural impact on brain development and appears to impair cognition and increase anxiety and reactivity to stress. Limbic regions, such as hippocampus and amygdala, are particularly sensitive. Repeated doses of prenatal corticosteroids seem to have short-term benefits of less respiratory distress and fewer serious health problems in offspring. Nevertheless, neurodevelopmental growth in later childhood and adulthood needs further clarification. Future studies should address the relevance of monitoring the level of thyroid hormones and corticosteroids during pregnancy in the risk stratification for impaired postnatal neurodevelopment.
Collapse
Affiliation(s)
- Alexandra Miranda
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Department of Obstetrics and GynecologyHospital de BragaBragaPortugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Clinic Academic Center ‐ 2CABragaPortugal
| |
Collapse
|
16
|
Green A, Esser MJ, Perrot TS. Developmental expression of anxiety and depressive behaviours after prenatal predator exposure and early life homecage enhancement. Behav Brain Res 2017; 346:122-136. [PMID: 29183765 DOI: 10.1016/j.bbr.2017.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 01/25/2023]
Abstract
Stressful events during gestation can have sex-specific effects on brain and behaviour, and may contribute to some of the differences observed in adult stress responding and psychopathology. We investigated the impact of a novel repeated prenatal psychological stress (prenatal predator exposure - PPS) during the last week of gestation in rats on offspring behaviours related to social interaction (play behaviour), open field test (OFT), forced swim test (FST) and sucrose preference test (SP) during the juvenile period and in adulthood. We further examined the role of postnatal environmental, using an enhanced housing condition (EHC), to prevent/rescue any changes. Some effects on anxiety, anhedonia, and stress-related coping behaviours (e.g., OFT, SP and OFT) did not emerge until adulthood. PPS increased OFT anxiety behaviours in adult males, and some OFT and SP behaviours in adult females. Contrary to this, EHC had few independent effects; most were apparent only when combined with PPS. In keeping with age-group differences, juvenile behaviours did not necessarily predict the same adult behaviours although juvenile OFT rearing and freezing, and juvenile FST immobility did predict adult FST immobility and sucrose preference, suggesting that some aspects of depressive behaviours may emerge early and predict adult vulnerability or coping behaviours. Together, these results suggest an important, though complex, role for early life psychological stressors and early life behaviours in creating an adult vulnerability to anxiety or depressive disorders and that environmental factors further modulate the effects of the prenatal stressors.
Collapse
Affiliation(s)
- Amanda Green
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Michael J Esser
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Tara S Perrot
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; Brain Repair Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
17
|
Coimbra B, Soares-Cunha C, Borges S, Vasconcelos NAP, Sousa N, Rodrigues AJ. Impairments in laterodorsal tegmentum to VTA projections underlie glucocorticoid-triggered reward deficits. eLife 2017; 6:e25843. [PMID: 28837419 PMCID: PMC5576484 DOI: 10.7554/elife.25843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/26/2017] [Indexed: 01/15/2023] Open
Abstract
Ventral tegmental area (VTA) activity is critical for reward/reinforcement and is tightly modulated by the laterodorsal tegmentum (LDT). In utero exposure to glucocorticoids (iuGC) triggers prominent motivation deficits but nothing is known about the impact of this exposure in the LDT-VTA circuit. We show that iuGC-rats have long-lasting changes in cholinergic markers in the LDT, together with a decrease in LDT basal neuronal activity. Interestingly, upon LDT stimulation, iuGC animals present a decrease in the magnitude of excitation and an increase in VTA inhibition, as a result of a shift in the type of cells that respond to the stimulus. In agreement with LDT-VTA dysfunction, we show that iuGC animals present motivational deficits that are rescued by selective optogenetic activation of this pathway. Importantly, we also show that LDT-VTA optogenetic stimulation is reinforcing, and that iuGC animals are more susceptible to the reinforcing properties of LDT-VTA stimulation.
Collapse
Affiliation(s)
- Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Sónia Borges
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Nivaldo AP Vasconcelos
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| |
Collapse
|
18
|
Caetano L, Pinheiro H, Patrício P, Mateus-Pinheiro A, Alves ND, Coimbra B, Baptista FI, Henriques SN, Cunha C, Santos AR, Ferreira SG, Sardinha VM, Oliveira JF, Ambrósio AF, Sousa N, Cunha RA, Rodrigues AJ, Pinto L, Gomes CA. Adenosine A 2A receptor regulation of microglia morphological remodeling-gender bias in physiology and in a model of chronic anxiety. Mol Psychiatry 2017; 22:1035-1043. [PMID: 27725661 DOI: 10.1038/mp.2016.173] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/01/2016] [Accepted: 08/18/2016] [Indexed: 12/12/2022]
Abstract
Developmental risk factors, such as the exposure to stress or high levels of glucocorticoids (GCs), may contribute to the pathogenesis of anxiety disorders. The immunomodulatory role of GCs and the immunological fingerprint found in animals prenatally exposed to GCs point towards an interplay between the immune and the nervous systems in the etiology of these disorders. Microglia are immune cells of the brain, responsive to GCs and morphologically altered in stress-related disorders. These cells are regulated by adenosine A2A receptors, which are also involved in the pathophysiology of anxiety. We now compare animal behavior and microglia morphology in males and females prenatally exposed to the GC dexamethasone. We report that prenatal exposure to dexamethasone is associated with a gender-specific remodeling of microglial cell processes in the prefrontal cortex: males show a hyper-ramification and increased length whereas females exhibit a decrease in the number and in the length of microglia processes. Microglial cells re-organization responded in a gender-specific manner to the chronic treatment with a selective adenosine A2A receptor antagonist, which was able to ameliorate microglial processes alterations and anxiety behavior in males, but not in females.
Collapse
Affiliation(s)
- L Caetano
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - H Pinheiro
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, Coimbra, Portugal
| | - P Patrício
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - A Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - N D Alves
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - B Coimbra
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - F I Baptista
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, Coimbra, Portugal
| | - S N Henriques
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - C Cunha
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - A R Santos
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - S G Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, Coimbra, Portugal
| | - V M Sardinha
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - J F Oliveira
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - A F Ambrósio
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - N Sousa
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - R A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - A J Rodrigues
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - L Pinto
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - C A Gomes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
19
|
Enduring, Sexually Dimorphic Impact of In Utero Exposure to Elevated Levels of Glucocorticoids on Midbrain Dopaminergic Populations. Brain Sci 2016; 7:brainsci7010005. [PMID: 28042822 PMCID: PMC5297294 DOI: 10.3390/brainsci7010005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 11/17/2022] Open
Abstract
Glucocorticoid hormones (GCs) released from the fetal/maternal glands during late gestation are required for normal development of mammalian organs and tissues. Accordingly, synthetic glucocorticoids have proven to be invaluable in perinatal medicine where they are widely used to accelerate fetal lung maturation when there is risk of pre-term birth and to promote infant survival. However, clinical and pre-clinical studies have demonstrated that inappropriate exposure of the developing brain to elevated levels of GCs, either as a result of clinical over-use or after stress-induced activation of the fetal/maternal adrenal cortex, is linked with significant effects on brain structure, neurological function and behaviour in later life. In order to understand the underlying neural processes, particular interest has focused on the midbrain dopaminergic systems, which are critical regulators of normal adaptive behaviours, cognitive and sensorimotor functions. Specifically, using a rodent model of GC exposure in late gestation (approximating human brain development at late second/early third trimester), we demonstrated enduring effects on the shape and volume of the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) (origins of the mesocorticolimbic and nigrostriatal dopaminergic pathways) on the topographical organisation and size of the dopaminergic neuronal populations and astrocytes within these nuclei and on target innervation density and neurochemical markers of dopaminergic transmission (receptors, transporters, basal and amphetamine-stimulated dopamine release at striatal and prefrontal cortical sites) that impact on the adult brain. The effects of antenatal GC treatment (AGT) were both profound and sexually-dimorphic, not only in terms of quantitative change but also qualitatively, with several parameters affected in the opposite direction in males and females. Although such substantial neurobiological changes might presage marked behavioural effects, in utero GC exposure had only a modest or no effect, depending on sex, on a range of conditioned and unconditioned behaviours known to depend on midbrain dopaminergic transmission. Collectively, these findings suggest that apparent behavioural normality in certain tests, but not others, arises from AGT-induced adaptations or compensatory mechanisms within the midbrain dopaminergic systems, which preserve some, but not all functions. Furthermore, the capacities for molecular adaptations to early environmental challenge are different, even opponent, in males and females, which may account for their differential resilience or failure to perform adequately in behavioural tests. Behavioural "normality" is thus achieved by the midbrain dopaminergic network operating outside its normal limits (in a state of allostasis), rendering it at greater risk to malfunction when challenged in later life. Sex-specific neurobiological programming of midbrain dopaminergic systems may, therefore, have psychopathological relevance for the sex bias commonly found in brain disorders associated with these systems, and which have a neurodevelopmental component, including schizophrenia, ADHD (attention/deficit hyperactivity disorders), autism, depression and substance abuse.
Collapse
|
20
|
How age, sex and genotype shape the stress response. Neurobiol Stress 2016; 6:44-56. [PMID: 28229108 PMCID: PMC5314441 DOI: 10.1016/j.ynstr.2016.11.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022] Open
Abstract
Exposure to chronic stress is a leading pre-disposing factor for several neuropsychiatric disorders as it often leads to maladaptive responses. The response to stressful events is heterogeneous, underpinning a wide spectrum of distinct changes amongst stress-exposed individuals'. Several factors can underlie a different perception to stressors and the setting of distinct coping strategies that will lead to individual differences on the susceptibility/resistance to stress. Beyond the factors related to the stressor itself, such as intensity, duration or predictability, there are factors intrinsic to the individuals that are relevant to shape the stress response, such as age, sex and genetics. In this review, we examine the contribution of such intrinsic factors to the modulation of the stress response based on experimental rodent models of response to stress and discuss to what extent that knowledge can be potentially translated to humans. Effect of age in the stress response. Effect of sex in the stress response. Effect of genotype in the stress response.
Collapse
|
21
|
Ramalhosa F, Soares-Cunha C, Seixal RM, Sousa N, Carvalho AF. The Impact of Prenatal Exposure to Dexamethasone on Gastrointestinal Function in Rats. PLoS One 2016; 11:e0161750. [PMID: 27584049 PMCID: PMC5008745 DOI: 10.1371/journal.pone.0161750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 08/11/2016] [Indexed: 01/23/2023] Open
Abstract
Antenatal treatment with synthetic glucocorticoids is commonly used in pregnant women at risk of preterm delivery to accelerate tissue maturation. Exposure to glucocorticoids during development has been hypothesized to underlie different functional gastrointestinal (GI) and motility disorders. Herein, we investigated the impact of in utero exposure to synthetic glucocorticoids (iuGC) on GI function of adult rats. Wistar male rats, born from pregnant dams treated with dexamethasone (DEX), were studied at different ages. Length, histologic analysis, proliferation and apoptosis assays, GI transit, permeability and serotonin (5-HT) content of GI tract were measured. iuGC treatment decreased small intestine size and decreased gut transit. However, iuGC had no impact on intestinal permeability. iuGC differentially impacts the structure and function of the GI tract, which leads to long-lasting alterations in the small intestine that may predispose subjects prone to disorders of the GI tract.
Collapse
Affiliation(s)
- Fátima Ramalhosa
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biometrics Associate Laboratory, Braga/Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biometrics Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui Miguel Seixal
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biometrics Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biometrics Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Franky Carvalho
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biometrics Associate Laboratory, Braga/Guimarães, Portugal
- General Surgery Department, Hospital of Braga, Braga, Portugal
| |
Collapse
|
22
|
Postnatal high-fat diet leads to spatial deficit, obesity, and central and peripheral inflammation in prenatal dexamethasone adult offspring rats. Neuroreport 2016; 27:818-25. [DOI: 10.1097/wnr.0000000000000620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Hiroi R, Carbone DL, Zuloaga DG, Bimonte-Nelson HA, Handa RJ. Sex-dependent programming effects of prenatal glucocorticoid treatment on the developing serotonin system and stress-related behaviors in adulthood. Neuroscience 2016; 320:43-56. [PMID: 26844389 PMCID: PMC4840233 DOI: 10.1016/j.neuroscience.2016.01.055] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/12/2016] [Accepted: 01/26/2016] [Indexed: 12/25/2022]
Abstract
Prenatal stress and overexposure to glucocorticoids (GC) during development may be associated with an increased susceptibility to a number of diseases in adulthood including neuropsychiatric disorders, such as depression and anxiety. In animal models, prenatal overexposure to GC results in hyper-responsiveness to stress in adulthood, and females appear to be more susceptible than males. Here, we tested the hypothesis that overexposure to GC during fetal development has sex-specific programming effects on the brain, resulting in altered behaviors in adulthood. We examined the effects of dexamethasone (DEX; a synthetic GC) during prenatal life on stress-related behaviors in adulthood and on the tryptophan hydroxylase-2 (TpH2) gene expression in the adult dorsal raphe nucleus (DRN). TpH2 is the rate-limiting enzyme for serotonin (5-HT) synthesis and has been implicated in the etiology of human affective disorders. Timed-pregnant rats were treated with DEX from gestational days 18-22. Male and female offspring were sacrificed on the day of birth (postnatal day 0; P0), P7, and in adulthood (P80-84) and brains were examined for changes in TpH2 mRNA expression. Adult animals were also tested for anxiety- and depressive- like behaviors. In adulthood, prenatal DEX increased anxiety- and depressive- like behaviors selectively in females, as measured by decreased time spent in the center of the open field and increased time spent immobile in the forced swim test, respectively. Prenatal DEX increased TpH2 mRNA selectively in the female caudal DRN at P7, whereas it decreased TpH2 mRNA selectively in the female caudal DRN in adulthood. In animals challenged with restraint stress in adulthood, TpH2 mRNA was significantly lower in rostral DRN of prenatal DEX-treated females compared to vehicle-treated females. These data demonstrated that prenatal overexposure to GC alters the development of TpH2 gene expression and these alterations correlated with lasting behavioral changes found in adult female offspring.
Collapse
Affiliation(s)
- R Hiroi
- Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ 85004, USA; Department of Psychology, Arizona State University, 950 S. McAllister Avenue, Tempe, AZ 85287, USA.
| | - D L Carbone
- Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ 85004, USA.
| | - D G Zuloaga
- Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ 85004, USA.
| | - H A Bimonte-Nelson
- Department of Psychology, Arizona State University, 950 S. McAllister Avenue, Tempe, AZ 85287, USA.
| | - R J Handa
- Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, 550 E. Van Buren Street, Phoenix, AZ 85004, USA.
| |
Collapse
|
24
|
Cartier J, Zeng Y, Drake AJ. Glucocorticoids and the prenatal programming of neurodevelopmental disorders. Curr Opin Behav Sci 2016. [DOI: 10.1016/j.cobeha.2015.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Nguyen P, Khurana S, Peltsch H, Grandbois J, Eibl J, Crispo J, Ansell D, Tai TC. Prenatal glucocorticoid exposure programs adrenal PNMT expression and adult hypertension. J Endocrinol 2015; 227:117-27. [PMID: 26475702 DOI: 10.1530/joe-15-0244] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prenatal exposure to glucocorticoids (GCs) programs for hypertension later in life. The aim of the current study was to examine the impact of prenatal GC exposure on the postnatal regulation of the gene encoding for phenylethanolamine N-methyltransferase (PNMT), the enzyme involved in the biosynthesis of the catecholamine, epinephrine. PNMT has been linked to hypertension and is elevated in animal models of hypertension. Male offspring of Wistar-Kyoto dams treated with dexamethasone (DEX) developed elevated systolic, diastolic and mean arterial blood pressure compared to saline-treated controls. Plasma epinephrine levels were also elevated in adult rats exposed to DEX in utero. RT-PCR analysis revealed adrenal PNMT mRNA was higher in DEX exposed adult rats. This was associated with increased mRNA levels of transcriptional regulators of the PNMT gene: Egr-1, AP-2, and GR. Western blot analyses showed increased expression of PNMT protein, along with increased Egr-1 and GR in adult rats exposed to DEX in utero. Furthermore, gel mobility shift assays showed increased binding of Egr-1 and GR to DNA. These results suggest that increased PNMT gene expression via altered transcriptional activity is a possible mechanism by which prenatal exposure to elevated levels of GCs may program for hypertension later in life.
Collapse
Affiliation(s)
- P Nguyen
- Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada
| | - S Khurana
- Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada
| | - H Peltsch
- Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada
| | - J Grandbois
- Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada
| | - J Eibl
- Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada
| | - J Crispo
- Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada
| | - D Ansell
- Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada
| | - T C Tai
- Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada Medical Sciences DivisionNorthern Ontario School of Medicine, Sudbury, Ontario, CanadaDepartments of BiologyChemistry and BiochemistryBiomolecular Sciences ProgramLaurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
26
|
Lui CC, Hsu MH, Kuo HC, Chen CC, Sheen JM, Yu HR, Tiao MM, Tain YL, Chang KA, Huang LT. Effects of melatonin on prenatal dexamethasone-induced epigenetic alterations in hippocampal morphology and reelin and glutamic acid decarboxylase 67 levels. Dev Neurosci 2015; 37:105-14. [PMID: 25720733 DOI: 10.1159/000368768] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 10/01/2014] [Indexed: 11/19/2022] Open
Abstract
Prenatal glucocorticoid exposure causes brain damage in adult offspring; however, the underlying mechanisms remain unclear. Melatonin has been shown to have beneficial effects in compromised pregnancies. Pregnant Sprague-Dawley rats were administered vehicle (VEH) or dexamethasone between gestation days 14 and 21. The programming effects of prenatal dexamethasone exposure on the brain were assessed at postnatal days (PND) 7, 42, and ∼120. Melatonin was administered from PND21 to the rats exposed to dexamethasone, and the outcome was assessed at ∼PND120. In total, there were four groups: VEH, vehicle plus melatonin (VEHM), prenatal dexamethasone-exposure (DEX), and prenatal dexamethasone exposure plus melatonin (DEXM). Spatial memory, gross hippocampal morphology, and hippocampal biochemistry were examined. Spatial memory assessed by the Morris water maze showed no significant differences among the four groups. Brain magnetic resonance imaging showed that all rats with prenatal dexamethasone exposure (DEX + DEXM) exhibited increased T2-weighted signals in the hippocampus. There were no significant differences in the levels of mRNA expression of hippocampal reln, which encodes reelin, and GAD1, which encodes glutamic acid decarboxylase 67, at PND7. At both PND42 and ∼PND120, reln and GAD1 mRNA expression levels were decreased. At ∼PND120, melatonin restored the reduced levels of hippocampal reln and GAD1 mRNA expression in the DEXM group. In addition, melatonin restored the reln mRNA expression levels by (1) reducing DNA methyltransferase 1 (DNMT1) mRNA expression and (2) reducing the binding of DNMT1 and the methyl-CpG binding protein 2 (MeCP2) to the reln promoter. The present study showed that prenatal dexamethasone exposure induced gross alterations in hippocampal morphology and reduced the levels of hippocampal mRNA expression of reln and GAD1. Spatial memory was unimpaired. Thus, melatonin had a beneficial effect in restoring hippocampal reln mRNA expression by reducing DNMT1 and MeCP2 binding to the reln promoter.
Collapse
Affiliation(s)
- Chun-Chung Lui
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gillies G, Virdee K, McArthur S, Dalley J. Sex-dependent diversity in ventral tegmental dopaminergic neurons and developmental programing: A molecular, cellular and behavioral analysis. Neuroscience 2014; 282:69-85. [PMID: 24943715 PMCID: PMC4245713 DOI: 10.1016/j.neuroscience.2014.05.033] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/12/2014] [Accepted: 05/18/2014] [Indexed: 02/02/2023]
Abstract
The knowledge that diverse populations of dopaminergic neurons within the ventral tegmental area (VTA) can be distinguished in terms of their molecular, electrophysiological and functional properties, as well as their differential projections to cortical and subcortical regions has significance for key brain functions, such as the regulation of motivation, working memory and sensorimotor control. Almost without exception, this understanding has evolved from landmark studies performed in the male sex. However, converging evidence from both clinical and pre-clinical studies illustrates that the structure and functioning of the VTA dopaminergic systems are intrinsically different in males and females. This may be driven by sex differences in the hormonal environment during adulthood ('activational' effects) and development (perinatal and/or pubertal 'organizational' effects), as well as genetic factors, especially the SRY gene on the Y chromosome in males, which is expressed in a sub-population of adult midbrain dopaminergic neurons. Stress and stress hormones, especially glucocorticoids, are important factors which interact with the VTA dopaminergic systems in order to achieve behavioral adaptation and enable the individual to cope with environmental change. Here, also, there is male/female diversity not only during adulthood, but also in early life when neurobiological programing by stress or glucocorticoid exposure differentially impacts dopaminergic developmental trajectories in male and female brains. This may have enduring consequences for individual resilience or susceptibility to pathophysiological change induced by stressors in later life, with potential translational significance for sex bias commonly found in disorders involving dysfunction of the mesocorticolimbic dopaminergic systems. These findings highlight the urgent need for a better understanding of the sexual dimorphism in the VTA if we are to improve strategies for the prevention and treatment of debilitating conditions which differentially affect men and women in their prevalence and nature, including schizophrenia, attention/deficit hyperactivity disorder, autism spectrum disorders, anxiety, depression and addiction.
Collapse
Affiliation(s)
- G.E. Gillies
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK,Corresponding author. Address: Division of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK. Tel: +44-(0)-20-7594-7050.
| | - K. Virdee
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK,Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| | - S. McArthur
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London EC1 6BQ, UK
| | - J.W. Dalley
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK,Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK,Department of Psychiatry, University of Cambridge, Addenbrooke’s Hospital, Hill’s Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
28
|
Chronic high-fat diet increases acute neuroendocrine stress response independently of prenatal dexamethasone treatment in male rats. Acta Neuropsychiatr 2014; 26:8-18. [PMID: 25142095 DOI: 10.1017/neu.2013.28] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Intrauterine growth restriction (IUGR) has been associated with metabolic disorders later in life such as obesity and diabetes as well as psychiatric disorders such as depression and schizophrenia. Therefore, we wanted to investigate whether behavioural, metabolic or neuroendocrine abnormalities could be provoked or exacerbated by a high-fat diet (HFD) in an experimental model of IUGR. METHODS Pregnant dams were exposed to dexamethasone (DEX) in the third gestational week to induce IUGR. Late adolescent male offspring of DEX- and vehicle-treated dams were then fed a HFD or standard chow for 8 weeks and subjected to a variety of assessments. RESULTS Only diet affected the hypothalamus-pituitary-adrenal (HPA) axis stress response, as HFD doubled the observed corticosterone levels following acute restraint. HFD and prenatal DEX exposure concomitantly exacerbated depressive-like behaviour in the forced swim test, even though no interaction was seen. Prenatal DEX treatment tended to increase the basal acoustic startle response (ASR), while an interaction between HFD and DEX was present in the ASR pre-pulse inhibition suggestive of fundamental changes in neuronal gating mechanisms. Metabolic parameters were only affected by diet, as HFD increased fasting glucose and insulin levels. CONCLUSION We conclude that chronic HFD may be more important in programming of the HPA axis stress responsiveness than an adverse foetal environment and therefore potentially implies an increased risk for developing psychiatric and metabolic disease.
Collapse
|
29
|
Patchev AV, Rodrigues AJ, Sousa N, Spengler D, Almeida OFX. The future is now: early life events preset adult behaviour. Acta Physiol (Oxf) 2014; 210:46-57. [PMID: 23790203 DOI: 10.1111/apha.12140] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 06/03/2013] [Accepted: 06/13/2013] [Indexed: 12/26/2022]
Abstract
To consider the evidence that human and animal behaviours are epigenetically programmed by lifetime experiences. Extensive PubMed searches were carried out to gain a broad view of the topic, in particular from the perspective of human psychopathologies such as mood and anxiety disorders. The selected literature cited is complemented by previously unpublished data from the authors' laboratories. Evidence that physiological and behavioural functions are particularly sensitive to the programming effects of environmental factors such as stress and nutrition during early life, and perhaps at later stages of life, is reviewed and extended. Definition of stimulus- and function-specific critical periods of programmability together with deeper understanding of the molecular basis of epigenetic regulation will deliver greater appreciation of the full potential of the brain's plasticity while providing evidence-based social, psychological and pharmacological interventions to promote lifetime well-being.
Collapse
Affiliation(s)
| | - A. J. Rodrigues
- Life and Health Sciences Research Institute; University of Minho; Braga Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - N. Sousa
- Life and Health Sciences Research Institute; University of Minho; Braga Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - D. Spengler
- Max Planck Institute of Psychiatry; Munich Germany
| | | |
Collapse
|
30
|
Virdee K, McArthur S, Brischoux F, Caprioli D, Ungless MA, Robbins TW, Dalley JW, Gillies GE. Antenatal glucocorticoid treatment induces adaptations in adult midbrain dopamine neurons, which underpin sexually dimorphic behavioral resilience. Neuropsychopharmacology 2014; 39:339-50. [PMID: 23929547 PMCID: PMC3870772 DOI: 10.1038/npp.2013.196] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/11/2013] [Accepted: 08/01/2013] [Indexed: 01/22/2023]
Abstract
We demonstrated previously that antenatal glucocorticoid treatment (AGT, gestational days 16-19) altered the size and organization of the adult rat midbrain dopaminergic (DA) populations. Here we investigated the consequences of these AGT-induced cytoarchitectural disturbances on indices of DA function in adult rats. We show that in adulthood, enrichment of striatal DA fiber density paralleled AGT-induced increases in the numbers of midbrain DA neurons, which retained normal basal electrophysiological properties. This was co-incident with changes in (i) striatal D2-type receptor levels (increased, both sexes); (ii) D1-type receptor levels (males decreased; females increased); (iii) DA transporter levels (males increased; females decreased) in striatal regions; and (iv) amphetamine-induced mesolimbic DA release (males increased; females decreased). However, despite these profound, sexually dimorphic changes in markers of DA neurotransmission, in-utero glucocorticoid overexposure had a modest or no effect on a range of conditioned and unconditioned appetitive behaviors known to depend on mesolimbic DA activity. These findings provide empirical evidence for enduring AGT-induced adaptive mechanisms within the midbrain DA circuitry, which preserve some, but not all, functions, thereby casting further light on the vulnerability of these systems to environmental perturbations. Furthermore, they demonstrate these effects are achieved by different, often opponent, adaptive mechanisms in males and females, with translational implications for sex biases commonly found in midbrain DA-associated disorders.
Collapse
Affiliation(s)
- Kanwar Virdee
- Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK,Department of Psychology, University of Cambridge, Cambridge, UK
| | - Simon McArthur
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Frédéric Brischoux
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Daniele Caprioli
- Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK,Department of Psychology, University of Cambridge, Cambridge, UK
| | - Mark A Ungless
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Trevor W Robbins
- Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK,Department of Psychology, University of Cambridge, Cambridge, UK
| | - Jeffrey W Dalley
- Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK,Department of Psychology, University of Cambridge, Cambridge, UK,Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Glenda E Gillies
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK,Division of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK, Tel: +44 (0) 20 8383 8037, Fax: +44 (0) 20 8383 8032, E-mail:
| |
Collapse
|
31
|
Duthie L, Reynolds RM. Changes in the maternal hypothalamic-pituitary-adrenal axis in pregnancy and postpartum: influences on maternal and fetal outcomes. Neuroendocrinology 2013; 98:106-15. [PMID: 23969897 DOI: 10.1159/000354702] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 07/19/2013] [Indexed: 11/19/2022]
Abstract
Overexposure of the developing fetus to glucocorticoids is hypothesised to be one of the key mechanisms linking early life development with later life disease. The maternal hypothalamic-pituitary-adrenal (HPA) axis undergoes dramatic changes during pregnancy and postpartum. Although cortisol levels rise threefold by the third trimester, the fetus is partially protected from high cortisol by activity of the enzyme 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2). Maternal HPA axis activity and activity of HSD11B2 may be modified by maternal stress and disease allowing greater transfer of glucocorticoids from mother to fetus. Here we review emerging data from human studies linking dysregulation of the maternal HPA axis to outcomes in both the mother and her offspring. For the offspring, greater glucocorticoid exposure is associated with lower birth weight and shorter gestation at delivery. In addition, evidence supports longer term consequences for the offspring including re-setting of the HPA axis and susceptibility to neurodevelopmental problems and cardiometabolic disease. For the mother, the changes in the HPA axis, particularly in the postpartum period, may increase vulnerability to mood disturbances. Further understanding of the changes in the HPA axis during pregnancy and the impact of these changes may ultimately allow early identification of those most at risk of future disease.
Collapse
Affiliation(s)
- Leanne Duthie
- Endocrinology Unit, University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
32
|
Dopaminergic modulation of affective and social deficits induced by prenatal glucocorticoid exposure. Neuropsychopharmacology 2013; 38:2068-79. [PMID: 23648781 PMCID: PMC3746691 DOI: 10.1038/npp.2013.108] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/24/2013] [Accepted: 04/26/2013] [Indexed: 12/15/2022]
Abstract
Prenatal stress or exposure to elevated levels of glucocorticoids (GCs) can impair specific neurobehavioral circuits leading to alterations in emotional processes later in life. In turn, emotional deficits may interfere with the quality and degree of social interaction. Here, by using a comprehensive behavioral approach in combination with the measurement of ultrasonic vocalizations, we show that in utero GC (iuGC)-exposed animals present increased immobility in the forced swimming test, pronounced anhedonic behavior (both anticipatory and consummatory), and an impairment in social interaction at different life stages. Importantly, we also found that social behavioral expression is highly dependent on the affective status of the partner. A profound reduction in mesolimbic dopaminergic transmission was found in iuGC animals, suggesting a key role for dopamine (DA) in the etiology of the observed behavioral deficits. Confirming this idea, we present evidence that a simple pharmacological approach-acute L-3,4-dihydroxyphenylacetic acid (L-DOPA) oral administration, is able to normalize DA levels in iuGC animals, with a concomitant amelioration of several dimensions of the emotional and social behaviors. Interestingly, L-DOPA effects in control individuals were not so straightforward; suggesting that both hypo- and hyperdopaminergia are detrimental in the context of such complex behaviors.
Collapse
|
33
|
Brossaud J, Roumes H, Moisan MP, Pallet V, Redonnet A, Corcuff JB. Retinoids and glucocorticoids target common genes in hippocampal HT22 cells. J Neurochem 2013; 125:518-31. [PMID: 23398290 DOI: 10.1111/jnc.12192] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/11/2013] [Accepted: 01/14/2013] [Indexed: 11/29/2022]
Abstract
Vitamin A metabolite retinoic acid (RA) plays a major role in the aging adult brain plasticity. Conversely, chronic excess of glucocorticoids (GC) elicits some deleterious effects in the hippocampus. We questioned here the involvement of RA and GC in the expression of target proteins in hippocampal neurons. We investigated proteins involved either in the signaling pathways [RA receptor β (RARβ) and glucocorticoid receptor (GR)] or in neuron differentiation and plasticity [tissue transglutaminase 2 (tTG) and brain-derived neurotrophic factor (BDNF)] in a hippocampal cell line, HT22. We applied RA and/or dexamethasone (Dex) as activators of the pathways and investigated mRNA and protein expression of their receptors and of tTG and BDNF as well as tTG activity and BDNF secretion. Our results confirm the involvement of RA- and GC-dependent pathways and their interaction in our neuronal cell model. First, both pathways regulate the transcription and expression of own and reciprocal receptors: RA and Dex increased RARβ and decreased GR expressions. Second, Dex reduces the expression of tTG when associated with RA despite stimulating its expression when used alone. Importantly, when they are combined, RA counteracts the deleterious effect of glucocorticoids on BDNF regulation and thus may improve neuronal plasticity under stress conditions. In conclusion, GC and RA both interact through regulations of the two receptors, RARβ and GR. Furthermore, they both act, synergistically or oppositely, on other target proteins critical for neuronal plasticity, tTG and BDNF.
Collapse
Affiliation(s)
- Julie Brossaud
- INRA, Nutrition et Neurobiologie Intégrée, UMR1286, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
34
|
Borges S, Coimbra B, Soares-Cunha C, Ventura-Silva AP, Pinto L, Carvalho MM, Pêgo JM, Rodrigues AJ, Sousa N. Glucocorticoid programing of the mesopontine cholinergic system. Front Endocrinol (Lausanne) 2013; 4:190. [PMID: 24379803 PMCID: PMC3862116 DOI: 10.3389/fendo.2013.00190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/25/2013] [Indexed: 01/09/2023] Open
Abstract
Stress perception, response, adaptation, and coping strategies are individually distinct, and the sequel of stress and/or glucocorticoids (GCs) is also distinct between subjects. In the last years, it has become clear that early life stress is a powerful modulator of neuroendocrine stress-responsive circuits, programing intrinsic susceptibility to stress, and potentiating the appearance of stress-related disorders such as depression, anxiety, and addiction. Herein we were interested in understanding how early life experiences reset the normal processing of negative stimuli, leading to emotional dysfunction. Animals prenatally exposed to GCs (in utero glucocorticoid exposure, iuGC) present hyperanxiety, increased fear behavior, and hyper-reactivity to negative stimuli. In parallel, we found a remarkable increase in the number of aversive 22 kHz ultrasonic vocalizations in response to an aversive cue. Considering the suggested role of the mesopontine tegmentum cholinergic pathway, arising from the laterodorsal tegmental nucleus (LDT) and pedunculopontine tegmental nucleus (PPT), in the initiation of 22 kHz vocalizations and hypothetically in the control of emotional arousal and tone, we decided to evaluate the condition of this circuit in iuGC animals. Notably, in a basal situation, iuGC animals present increased choline acetyltransferase (ChAT) expression in the LDT and PPT, but not in other cholinergic nuclei, namely in the nucleus basalis of Meynert. In addition, and in accordance with the amplified response to an adverse stimulus of iuGC animals, we found marked changes in the cholinergic activation pattern of LDT and PPT regions. Altogether, our results suggest a specific cholinergic pathway programing by prenatal GC, and hint that this may be of relevance in setting individual stress vulnerability threshold.
Collapse
Affiliation(s)
- Sónia Borges
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana P. Ventura-Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luisa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Miguel M. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - José-Miguel Pêgo
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- *Correspondence: Ana João Rodrigues and Nuno Sousa, Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal e-mail: ;
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- *Correspondence: Ana João Rodrigues and Nuno Sousa, Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal e-mail: ;
| |
Collapse
|
35
|
Rodrigues AJ, Leão P, Pêgo JM, Cardona D, Carvalho MM, Oliveira M, Costa BM, Carvalho AF, Morgado P, Araújo D, Palha JA, Almeida OFX, Sousa N. Mechanisms of initiation and reversal of drug-seeking behavior induced by prenatal exposure to glucocorticoids. Mol Psychiatry 2012; 17:1295-305. [PMID: 21968930 DOI: 10.1038/mp.2011.126] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stress and exposure to glucocorticoids (GC) during early life render individuals vulnerable to brain disorders by inducing structural and chemical alterations in specific neural substrates. Here we show that adult rats that had been exposed to in utero GCs (iuGC) display increased preference for opiates and ethanol, and are more responsive to the psychostimulatory actions of morphine. These animals presented prominent changes in the nucleus accumbens (NAcc), a key component of the mesolimbic reward circuitry; specifically, cell numbers and dopamine (DA) levels were significantly reduced, whereas DA receptor 2 (Drd2) mRNA expression levels were markedly upregulated in the NAcc. Interestingly, repeated morphine exposure significantly downregulated Drd2 expression in iuGC-exposed animals, in parallel with increased DNA methylation of the Drd2 gene. Administration of a therapeutic dose of L-dopa reverted the hypodopaminergic state in the NAcc of iuGC animals, normalized Drd2 expression and prevented morphine-induced hypermethylation of the Drd2 promoter. In addition, L-dopa treatment promoted dendritic and synaptic plasticity in the NAcc and, importantly, reversed drug-seeking behavior. These results reveal a new mechanism through which drug-seeking behaviors may emerge and suggest that a brief and simple pharmacological intervention can restrain these behaviors in vulnerable individuals.
Collapse
Affiliation(s)
- A J Rodrigues
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zuloaga DG, Carbone DL, Handa RJ. Prenatal dexamethasone selectively decreases calretinin expression in the adult female lateral amygdala. Neurosci Lett 2012; 521:109-14. [PMID: 22668856 DOI: 10.1016/j.neulet.2012.05.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/06/2012] [Accepted: 05/18/2012] [Indexed: 01/07/2023]
Abstract
Exposure to high levels of glucocorticoids (GCs) during early development results in lasting disturbances in emotional behavior in rodents. Inhibitory GABAergic neurons, classified by their expression of calcium binding proteins (CBPs), also contribute to stress-related behaviors and may be GC sensitive during development. Therefore, in the present study we investigated the effects of prenatal treatment with the glucocorticoid receptor agonist dexamethasone (DEX) on expression of calbindin and calretinin in brain areas critical to emotional regulation (basolateral/lateral amygdala and hippocampal CA1 and CA3 regions). Late gestational treatment with DEX (gestational days 18-22) significantly decreased the density of calretinin immunoreactive cells in the lateral amygdala of adult female offspring with no differences in the basolateral amygdala, hippocampal CA1, or CA3 regions. Moreover, there were no effects of gestational DEX treatment on calretinin expression in males. Calbindin expression in adulthood was unaltered within either amygdala or hippocampal subregion of either sex following prenatal DEX treatment. Together these findings indicate that late gestational DEX treatment causes a targeted reduction of calretinin within the lateral amygdala of females and this may be one mechanism through which developmental glucocorticoid exposure contributes to lasting alterations in emotional behavior.
Collapse
Affiliation(s)
- Damian G Zuloaga
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, United States.
| | | | | |
Collapse
|
37
|
Oliveira M, Rodrigues AJ, Leão P, Cardona D, Pêgo JM, Sousa N. The bed nucleus of stria terminalis and the amygdala as targets of antenatal glucocorticoids: implications for fear and anxiety responses. Psychopharmacology (Berl) 2012; 220:443-53. [PMID: 21935638 DOI: 10.1007/s00213-011-2494-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/05/2011] [Indexed: 02/06/2023]
Abstract
RATIONALE Several human and experimental studies have shown that early life adverse events can shape physical and mental health in adulthood. Stress or elevated levels of glucocorticoids (GCs) during critical periods of development seem to contribute for the appearance of neurospyschiatric conditions such as anxiety and depression, albeit the underlying mechanisms remain to be fully elucidated. OBJECTIVES The aim of the present study was to determine the long-term effect of prenatal exposure to dexamethasone- DEX (synthetic GC widely used in clinics) in fear and anxious behavior and identify the neurochemical, morphological and molecular correlates. RESULTS Prenatal exposure to DEX triggers a hyperanxious phenotype and altered fear behavior in adulthood. These behavioral traits were correlated with increased volume of the bed nucleus of the stria terminalis (BNST), particularly the anteromedial subdivision which presented increased dendritic length; in parallel, we found an increased expression of synapsin and NCAM in the BNST of these animals. Remarkably, DEX effects were opposite in the amygdala, as this region presented reduced volume due to significant dendritic atrophy. Albeit no differences were found in dopamine and its metabolite levels in the BNST, this neurotransmitter was substantially reduced in the amygdala, which also presented an up-regulation of dopamine receptor 2. CONCLUSIONS Altogether, our results show that in utero DEX exposure can modulate anxiety and fear behavior in parallel with significant morphological, neurochemical and molecular changes; importantly, GCs seem to differentially affect distinct brain regions involved in this type of behaviors.
Collapse
Affiliation(s)
- Mário Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | | | | | | | | | | |
Collapse
|
38
|
Oliveira M, Leão P, Rodrigues A, Pêgo J, Cerqueira J, Sousa N. Programming Effects of Antenatal Corticosteroids Exposure in Male Sexual Behavior. J Sex Med 2011; 8:1965-74. [DOI: 10.1111/j.1743-6109.2010.02170.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
39
|
Rodrigues AJ, Leão P, Carvalho M, Almeida OFX, Sousa N. Potential programming of dopaminergic circuits by early life stress. Psychopharmacology (Berl) 2011; 214:107-20. [PMID: 21088961 DOI: 10.1007/s00213-010-2085-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 10/30/2010] [Indexed: 12/29/2022]
Abstract
Stress and high levels of glucocorticoids during pre- and early postnatal life seem to alter developmental programs that assure dopaminergic transmission in the mesolimbic, mesocortical, and nigrostriatal systems. The induced changes are likely to be determined by the ontogenetic state of development of these brain regions at the time of stress exposure and their stability is associated with increased lifetime susceptibility to psychiatric disorders, including drug addiction. This article is intended to serve as a starting point for future studies aimed at the attenuation or reversal of the effects of adverse early life events on dopamine-regulated behaviors.
Collapse
Affiliation(s)
- Ana-João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057, Braga, Portugal
| | | | | | | | | |
Collapse
|
40
|
Roque S, Oliveira TG, Nobrega C, Barreira-Silva P, Nunes-Alves C, Sousa N, Palha JA, Correia-Neves M. Interplay between Depressive-Like Behavior and the Immune System in an Animal Model of Prenatal Dexamethasone Administration. Front Behav Neurosci 2011; 5:4. [PMID: 21344016 PMCID: PMC3036954 DOI: 10.3389/fnbeh.2011.00004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 01/19/2011] [Indexed: 01/29/2023] Open
Abstract
Glucocorticoids, namely dexamethasone, are prescribed during late gestation in pregnancies at risk of originating premature newborns, to promote fetal lung maturation. However, adverse early life events have been reported to induce long-lasting changes in the immune and central nervous systems. The accumulating evidence on bidirectional interactions between both systems in psychiatric disorders like depression, prompted us to further investigate the long-term impact of prenatal dexamethasone administration in depressive-like behavior, the immune system and in the ability to mount an immune response to acute infection. The adult male offspring of pregnant dams treated with dexamethasone present depressive-like behavior concomitant with a decrease in CD8(+) T lymphocytes and an increase in B and CD4(+) regulatory T cells. This is accompanied by lower levels of serum interleukin-6 (IL-6) and IL-10. Despite of these differences, when spleen cells are stimulated, in vitro, with lipopolysaccharide, those from adult rats prenatally treated with dexamethasone display a stronger pro-inflammatory cytokine response. However, this immune system profile does not hamper the ability of rats prenatally treated with dexamethasone to respond to acute infection by Listeria monocytogenes. Of notice, L. monocytogenes infection triggers depressive-like behavior in control animals but does not worsen that already present in dexamethasone-treated animals. In summary, prenatal administration of dexamethasone has long-lasting effects on the immune system and on behavior, which are not further aggravated by acute infection with L. monocytogenes.
Collapse
Affiliation(s)
- Susana Roque
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho Braga, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Salomon S, Bejar C, Schorer-Apelbaum D, Weinstock M. Corticosterone mediates some but not other behavioural changes induced by prenatal stress in rats. J Neuroendocrinol 2011; 23:118-28. [PMID: 21108672 DOI: 10.1111/j.1365-2826.2010.02097.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of daily varied stress from days 13-21 of gestation in Wistar rats was investigated by tests of learning and memory and anxiogenic behaviour in the 60-day-old offspring of both sexes. Prenatal stress decreased the anogenital distance in males at 1 day of age. Anxiogenic behaviour in the elevated plus maze was seen in prenatally-stressed rats of both genders. There was no significant gender difference in the rate of spatial learning in the Morris water maze but prenatal stress only slowed that of males. In the object recognition test with an inter-trial interval of 40 min, females but not males, discriminated between a familiar and novel object. Prenatal stress did not affect object discrimination in females but feminised that in males. Maternal adrenalectomy with replacement of basal corticosterone levels in the drinking fluid prevented all of the above effects of prenatal stress in the offspring. To mimic the peak corticosterone levels and time course of elevation in response to stress, corticosterone (3 mg/kg) was injected twice (0 and 30 min) on days 13-16 and once on days 17-20 of gestation to adrenalectomised mothers. This treatment re-instated anxiogenic behaviour similar to that induced by prenatal stress, indicating that it is mediated by exposure of the foetal brain to raised levels of corticosterone. However, steroid administration to adrenalectomised dams did not decrease anogenital distance, feminise object recognition memory or slow spatial learning in their male offspring. The findings indicate that other adrenal hormones are necessary to induce these effects of prenatal stress.
Collapse
Affiliation(s)
- S Salomon
- Department of Pharmacology, School of Pharmacy, Hebrew University Medical Centre, Ein Kerem, Jerusalem, Israel
| | | | | | | |
Collapse
|
42
|
Bramlage CP, Schlumbohm C, Pryce CR, Mirza S, Schnell C, Amann K, Amstrong VW, Eitner F, Zapf A, Feldon J, Oellerich M, Fuchs E, Müller GA, Strutz F. Prenatal Dexamethasone Exposure Does Not Alter Blood Pressure and Nephron Number in the Young Adult Marmoset Monkey. Hypertension 2009; 54:1115-22. [DOI: 10.1161/hypertensionaha.109.136580] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The influence of prenatal factors on the development of arterial hypertension has gained considerable interest in recent years. Prenatal dexamethasone exposure was found to induce hypertension and to alter nephron number and size in rodents and sheep. However, it is not clear whether these findings are applicable to nonhuman primates. Thus, we examined the effects of prenatal dexamethasone treatment on blood pressure (BP) and nephron number in marmoset monkeys. Fifty-two marmosets were allotted to 3 groups according to the gestational stage during which their mothers were exposed to oral 5-mg/kg dexamethasone for 7 days (gestation period: 20 weeks): (1) the early dexamethasone group at week 7; (2) the late dexamethasone group at week 13; and (3) the control group. BP was determined by telemetric (n=12) or cuff measurements (n=30), along with cystatin C, proteinuria, and body weight. All of the animals were euthanized at the age of 24 months, and glomerular number and volume were determined. Prenatal exposure to dexamethasone did not lead to a significant difference between the groups with regard to BP, kidney morphology and function, or body weight. BP correlated significantly with body weight, relative kidney weight, and mean glomerular volume and the body weight with the glomerular volume regardless of dexamethasone treatment. In conclusion, prenatal exposure to dexamethasone in marmosets does not, in contrast to other mammals studied, result in hypertension or changes in kidney morphology. Our data support the role of body weight as a predictor of elevated glomerular volume and BP development rather than prenatal dexamethasone exposure.
Collapse
Affiliation(s)
- Carsten Paul Bramlage
- From the Departments of Medicine, Nephrology, and Rheumatology (C.P.B., G.A.M., F.S.), Clinical Chemistry (V.W.A., M.O.), and Medical Statistics (A.Z.), Georg-August-University, Göttingen, Germany; Clinical Neurobiology Laboratory (C.Schl., E.F.), German Primate Center, Göttingen, Germany; Laboratory of Behavioural Neurobiology (C.R.P., S.M., J.F.), ETH Zurich, Schwerzenbach, Switzerland; Institute for BioMedical Research (C.Schn.), Novartis Pharma AG, Basel, Switzerland; Department of
| | - Christina Schlumbohm
- From the Departments of Medicine, Nephrology, and Rheumatology (C.P.B., G.A.M., F.S.), Clinical Chemistry (V.W.A., M.O.), and Medical Statistics (A.Z.), Georg-August-University, Göttingen, Germany; Clinical Neurobiology Laboratory (C.Schl., E.F.), German Primate Center, Göttingen, Germany; Laboratory of Behavioural Neurobiology (C.R.P., S.M., J.F.), ETH Zurich, Schwerzenbach, Switzerland; Institute for BioMedical Research (C.Schn.), Novartis Pharma AG, Basel, Switzerland; Department of
| | - Christopher Robert Pryce
- From the Departments of Medicine, Nephrology, and Rheumatology (C.P.B., G.A.M., F.S.), Clinical Chemistry (V.W.A., M.O.), and Medical Statistics (A.Z.), Georg-August-University, Göttingen, Germany; Clinical Neurobiology Laboratory (C.Schl., E.F.), German Primate Center, Göttingen, Germany; Laboratory of Behavioural Neurobiology (C.R.P., S.M., J.F.), ETH Zurich, Schwerzenbach, Switzerland; Institute for BioMedical Research (C.Schn.), Novartis Pharma AG, Basel, Switzerland; Department of
| | - Serkan Mirza
- From the Departments of Medicine, Nephrology, and Rheumatology (C.P.B., G.A.M., F.S.), Clinical Chemistry (V.W.A., M.O.), and Medical Statistics (A.Z.), Georg-August-University, Göttingen, Germany; Clinical Neurobiology Laboratory (C.Schl., E.F.), German Primate Center, Göttingen, Germany; Laboratory of Behavioural Neurobiology (C.R.P., S.M., J.F.), ETH Zurich, Schwerzenbach, Switzerland; Institute for BioMedical Research (C.Schn.), Novartis Pharma AG, Basel, Switzerland; Department of
| | - Christian Schnell
- From the Departments of Medicine, Nephrology, and Rheumatology (C.P.B., G.A.M., F.S.), Clinical Chemistry (V.W.A., M.O.), and Medical Statistics (A.Z.), Georg-August-University, Göttingen, Germany; Clinical Neurobiology Laboratory (C.Schl., E.F.), German Primate Center, Göttingen, Germany; Laboratory of Behavioural Neurobiology (C.R.P., S.M., J.F.), ETH Zurich, Schwerzenbach, Switzerland; Institute for BioMedical Research (C.Schn.), Novartis Pharma AG, Basel, Switzerland; Department of
| | - Kerstin Amann
- From the Departments of Medicine, Nephrology, and Rheumatology (C.P.B., G.A.M., F.S.), Clinical Chemistry (V.W.A., M.O.), and Medical Statistics (A.Z.), Georg-August-University, Göttingen, Germany; Clinical Neurobiology Laboratory (C.Schl., E.F.), German Primate Center, Göttingen, Germany; Laboratory of Behavioural Neurobiology (C.R.P., S.M., J.F.), ETH Zurich, Schwerzenbach, Switzerland; Institute for BioMedical Research (C.Schn.), Novartis Pharma AG, Basel, Switzerland; Department of
| | - Victor William Amstrong
- From the Departments of Medicine, Nephrology, and Rheumatology (C.P.B., G.A.M., F.S.), Clinical Chemistry (V.W.A., M.O.), and Medical Statistics (A.Z.), Georg-August-University, Göttingen, Germany; Clinical Neurobiology Laboratory (C.Schl., E.F.), German Primate Center, Göttingen, Germany; Laboratory of Behavioural Neurobiology (C.R.P., S.M., J.F.), ETH Zurich, Schwerzenbach, Switzerland; Institute for BioMedical Research (C.Schn.), Novartis Pharma AG, Basel, Switzerland; Department of
| | - Frank Eitner
- From the Departments of Medicine, Nephrology, and Rheumatology (C.P.B., G.A.M., F.S.), Clinical Chemistry (V.W.A., M.O.), and Medical Statistics (A.Z.), Georg-August-University, Göttingen, Germany; Clinical Neurobiology Laboratory (C.Schl., E.F.), German Primate Center, Göttingen, Germany; Laboratory of Behavioural Neurobiology (C.R.P., S.M., J.F.), ETH Zurich, Schwerzenbach, Switzerland; Institute for BioMedical Research (C.Schn.), Novartis Pharma AG, Basel, Switzerland; Department of
| | - Antonia Zapf
- From the Departments of Medicine, Nephrology, and Rheumatology (C.P.B., G.A.M., F.S.), Clinical Chemistry (V.W.A., M.O.), and Medical Statistics (A.Z.), Georg-August-University, Göttingen, Germany; Clinical Neurobiology Laboratory (C.Schl., E.F.), German Primate Center, Göttingen, Germany; Laboratory of Behavioural Neurobiology (C.R.P., S.M., J.F.), ETH Zurich, Schwerzenbach, Switzerland; Institute for BioMedical Research (C.Schn.), Novartis Pharma AG, Basel, Switzerland; Department of
| | - Joram Feldon
- From the Departments of Medicine, Nephrology, and Rheumatology (C.P.B., G.A.M., F.S.), Clinical Chemistry (V.W.A., M.O.), and Medical Statistics (A.Z.), Georg-August-University, Göttingen, Germany; Clinical Neurobiology Laboratory (C.Schl., E.F.), German Primate Center, Göttingen, Germany; Laboratory of Behavioural Neurobiology (C.R.P., S.M., J.F.), ETH Zurich, Schwerzenbach, Switzerland; Institute for BioMedical Research (C.Schn.), Novartis Pharma AG, Basel, Switzerland; Department of
| | - Michael Oellerich
- From the Departments of Medicine, Nephrology, and Rheumatology (C.P.B., G.A.M., F.S.), Clinical Chemistry (V.W.A., M.O.), and Medical Statistics (A.Z.), Georg-August-University, Göttingen, Germany; Clinical Neurobiology Laboratory (C.Schl., E.F.), German Primate Center, Göttingen, Germany; Laboratory of Behavioural Neurobiology (C.R.P., S.M., J.F.), ETH Zurich, Schwerzenbach, Switzerland; Institute for BioMedical Research (C.Schn.), Novartis Pharma AG, Basel, Switzerland; Department of
| | - Eberhard Fuchs
- From the Departments of Medicine, Nephrology, and Rheumatology (C.P.B., G.A.M., F.S.), Clinical Chemistry (V.W.A., M.O.), and Medical Statistics (A.Z.), Georg-August-University, Göttingen, Germany; Clinical Neurobiology Laboratory (C.Schl., E.F.), German Primate Center, Göttingen, Germany; Laboratory of Behavioural Neurobiology (C.R.P., S.M., J.F.), ETH Zurich, Schwerzenbach, Switzerland; Institute for BioMedical Research (C.Schn.), Novartis Pharma AG, Basel, Switzerland; Department of
| | - Gerhard Anton Müller
- From the Departments of Medicine, Nephrology, and Rheumatology (C.P.B., G.A.M., F.S.), Clinical Chemistry (V.W.A., M.O.), and Medical Statistics (A.Z.), Georg-August-University, Göttingen, Germany; Clinical Neurobiology Laboratory (C.Schl., E.F.), German Primate Center, Göttingen, Germany; Laboratory of Behavioural Neurobiology (C.R.P., S.M., J.F.), ETH Zurich, Schwerzenbach, Switzerland; Institute for BioMedical Research (C.Schn.), Novartis Pharma AG, Basel, Switzerland; Department of
| | - Frank Strutz
- From the Departments of Medicine, Nephrology, and Rheumatology (C.P.B., G.A.M., F.S.), Clinical Chemistry (V.W.A., M.O.), and Medical Statistics (A.Z.), Georg-August-University, Göttingen, Germany; Clinical Neurobiology Laboratory (C.Schl., E.F.), German Primate Center, Göttingen, Germany; Laboratory of Behavioural Neurobiology (C.R.P., S.M., J.F.), ETH Zurich, Schwerzenbach, Switzerland; Institute for BioMedical Research (C.Schn.), Novartis Pharma AG, Basel, Switzerland; Department of
| |
Collapse
|
43
|
Hauser J, Feldon J, Pryce CR. Direct and dam-mediated effects of prenatal dexamethasone on emotionality, cognition and HPA axis in adult Wistar rats. Horm Behav 2009; 56:364-75. [PMID: 19616002 DOI: 10.1016/j.yhbeh.2009.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 07/03/2009] [Accepted: 07/07/2009] [Indexed: 11/30/2022]
Abstract
Prenatal stress can affect foetal neurodevelopment and result in increased risk of depression in adulthood. It promotes increased maternal hypothalamo-pituitary-adrenal gland (HPA) secretion of glucocorticoid (GC), leading to increased foetal and maternal GC receptor activity. Prenatal GC receptor activity is also increased during prenatal treatment with dexamethasone (DEX), which is commonly prescribed as a prophylactic treatment of preterm delivery associated morbid symptoms. Here, we exposed pregnant Wistar rats to 0.1 mg/kg/d DEX during the last week of pregnancy and performed cross-fostering at birth. In the adult offspring we then studied the effects of prenatal DEX exposure per se and the effects of rearing by a dam exposed to prenatal DEX. Offspring were assessed in the following paradigms testing biobehavioural processes that are altered in depression: progressive ratio schedule of reinforcement (anhedonia), Porsolt forced swim test (behavioural despair), US pre-exposure active avoidance (learned helplessness), Morris water maze (spatial memory) and HPA axis activity (altered HPA function). Responsiveness to a physical stressor in terms of HPA activity was increased in male offspring exposed prenatally to DEX. Despite this increased HPA axis reactivity, we observed no alteration of the assessed behaviours in offspring exposed prenatally to DEX. We observed impairment in spatial memory in offspring reared by DEX exposed dams, independently of prenatal treatment. This study does not support the hypothesis that prenatal DEX exposure leads to depression-like symptoms in rats, despite the observed sex-specific programming effect on HPA axis. It does however emphasise the importance of rearing environment on adult cognitive performances.
Collapse
Affiliation(s)
- Jonas Hauser
- Behavioural Neurobiology Laboratory, Swiss Federal Institute of Technology Zurich, Schwerzenbach, Switzerland
| | | | | |
Collapse
|
44
|
Mesquita AR, Wegerich Y, Patchev AV, Oliveira M, Leão P, Sousa N, Almeida OFX. Glucocorticoids and neuro- and behavioural development. Semin Fetal Neonatal Med 2009; 14:130-5. [PMID: 19084485 DOI: 10.1016/j.siny.2008.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Epidemiological evidence links exposure to stress hormones during fetal or early postnatal development with lifetime prevalence of cardiac, metabolic, auto-immune, neurological and psychiatric disorders. This has led to the concept of 'developmental programming through stress'. Importantly, these effects (specifically, hypertension, hyperglycaemia and neurodevelopmental and behavioural abnormalities) can be reproduced by exposure to high glucocorticoid levels, indicating a crucial role of glucocorticoids in their causation. However, there can be important differences in outcome, depending on the exact time of exposure, as well as duration and receptor selectivity of the glucocorticoid applied. The mechanisms underlying programming by stress are still unclear but it appears that these environmental perturbations exploit epigenetic modifications of DNA and/or histones to induce stable modifications of gene expression. Programming of neuro- and behavioural development by glucocorticoids and stress are important determinants of lifetime health and should be a consideration when choosing treatments in obstetric and neonatal medicine.
Collapse
Affiliation(s)
- Ana Raquel Mesquita
- Life & Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
| | | | | | | | | | | | | |
Collapse
|
45
|
Hauser J, Knapman A, Zürcher NR, Pilloud S, Maier C, Diaz-Heijtz R, Forssberg H, Dettling A, Feldon J, Pryce CR. Effects of prenatal dexamethasone treatment on physical growth, pituitary-adrenal hormones, and performance of motor, motivational, and cognitive tasks in juvenile and adolescent common marmoset monkeys. Endocrinology 2008; 149:6343-55. [PMID: 18755792 DOI: 10.1210/en.2008-0615] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Synthetic glucocorticoids such as dexamethasone (DEX) are commonly used to prevent respiratory distress syndrome in preterm infants, but there is emerging evidence of subsequent neurobehavioral abnormalities (e.g. problems with inattention/hyperactivity). In the present study, we exposed pregnant common marmosets (Callithrix jacchus, primates) to daily repeated DEX (5 mg/kg by mouth) during either early (d 42-48) or late (d 90-96) pregnancy (gestation period of 144 days). Relative to control, and with a longitudinal design, we investigated DEX effects in offspring in terms of physical growth, plasma ACTH and cortisol titers, social and maintenance behaviors, skilled motor reaching, motivation for palatable reward, and learning between infancy and adolescence. Early DEX resulted in reduced sociability in infants and increased motivation for palatable reward in adolescents. Late DEX resulted in a mild transient increase in knee-heel length in infants and enhanced reversal learning of stimulus-reward association in adolescents. There was no effect of either early or late DEX on basal plasma ACTH or cortisol titers. Both treatments resulted in impaired skilled motor reaching in juveniles, which attenuated in early DEX but persisted in late DEX across test sessions. The increased palatable-reward motivation and decreased social motivation observed in early DEX subjects provide experimental support for the clinical reports that prenatal glucocorticoid treatment impairs social development and predisposes to metabolic syndrome. These novel primate findings indicate that fetal glucocorticoid overexposure can lead to abnormal development of motor, affective, and cognitive behaviors. Importantly, the outcome is highly dependent upon the timing of glucocorticoid overexposure.
Collapse
Affiliation(s)
- Jonas Hauser
- Behavioural Neurobiology Laboratory, Swiss Federal Institute of Technology Zurich, Schorenstrasse 16, CH-8603 Schwerzenbach, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Stress and glucocorticoid footprints in the brain-the path from depression to Alzheimer's disease. Neurosci Biobehav Rev 2008; 32:1161-73. [PMID: 18573532 DOI: 10.1016/j.neubiorev.2008.05.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 04/23/2008] [Accepted: 05/05/2008] [Indexed: 01/02/2023]
Abstract
Increasingly, stress is recognized as a trigger of depressive episodes and recent evidence suggests a causal role of stress in the onset and progression of Alzheimer's disease (AD) pathology. Besides aging, sex is an important determinant of prevalence rates for both AD and mood disorders. In light of a recent meta-analysis indicating that depressed subjects have a higher likelihood of developing AD, a key message in this article will be that both depression and AD are stress-related disorders and may represent a continuum that should receive more attention in future neurobiological studies. Accordingly, this review considers some of the cellular mechanisms that may be involved in regulating this transition threshold. In addition, it highlights the importance of addressing the question of how aging and sex interplay with stress to influence mood and cognition, with a bias towards consideration of neuroplastic events in particular brain regions, as the basis of AD and depressive disorders.
Collapse
|
47
|
Weinstock M. The long-term behavioural consequences of prenatal stress. Neurosci Biobehav Rev 2008; 32:1073-86. [PMID: 18423592 DOI: 10.1016/j.neubiorev.2008.03.002] [Citation(s) in RCA: 697] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 02/11/2008] [Accepted: 02/11/2008] [Indexed: 12/28/2022]
Abstract
UNLABELLED Maternal distress during pregnancy increases plasma levels of cortisol and corticotrophin releasing hormone in the mother and foetus. These may contribute to insulin resistance and behaviour disorders in their offspring that include attention and learning deficits, generalized anxiety and depression. The changes in behaviour, with or independent of alterations in the function of the hypothalamic pituitary adrenal (HPA) axis, can be induced by prenatal stress in laboratory rodents and non-human primates. The appearance of such changes depends on the timing of the maternal stress, its intensity and duration, gender of the offspring and is associated with structural changes in the hippocampus, frontal cortex, amygdala and nucleus accumbens. The dysregulation of the HPA axis and behaviour changes can be prevented by maternal adrenalectomy. However, only the increased anxiety and alterations in HPA axis are re-instated by maternal injection of corticosterone. CONCLUSION Excess circulating maternal stress hormones alter the programming of foetal neurons, and together with genetic factors, the postnatal environment and quality of maternal attention, determine the behaviour of the offspring.
Collapse
Affiliation(s)
- Marta Weinstock
- Department of Pharmacology, Hebrew University, Medical Centre, Ein Kerem, Jerusalem 91120, Israel.
| |
Collapse
|
48
|
Sousa N, Cerqueira JJ, Almeida OFX. Corticosteroid receptors and neuroplasticity. ACTA ACUST UNITED AC 2008; 57:561-70. [PMID: 17692926 DOI: 10.1016/j.brainresrev.2007.06.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 05/21/2007] [Accepted: 05/22/2007] [Indexed: 11/19/2022]
Abstract
The balance in actions mediated by mineralocorticoid (MR) and glucocorticoid (GR) receptors in certain regions of the brain, predominantly in the limbic system, appears critical for neuronal activity, stress responsiveness, and behavioral programming and adaptation. Alterations in the MR/GR balance appear to make nervous tissue vulnerable to damage; such damage can have adverse effects on the regulation of the stress response and may increase the risk for psychopathology. Besides the hippocampal formation, other subpopulations of neurons in extra-hippocampal brain areas have been also shown recently to be sensitive to changes in the corticosteroid milieu. From a critical analysis of the available data, the picture that emerges is that the balance (or imbalance) between MR/GR activation influences not only cell birth and death, but also other forms of neuroplasticity. MR occupation appears to promote pro-survival actions, while exclusive GR activation favors neurodegeneration. Interestingly, the sustained co-activation of both receptors, for example in chronic stress conditions, usually results in less drastic effects, restricted to dendritic atrophy and impaired synaptic plasticity. As our knowledge of the plastic changes underpinning the wide spectrum of behavior effects triggered by corticosteroids/stress growths, researchers should be able to better define new targets for therapeutic intervention in stress-related disorders.
Collapse
Affiliation(s)
- Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.
| | | | | |
Collapse
|
49
|
Rocha VM, Calil CM, Ferreira R, Moura MJCS, Marcondes FK. Influence of anabolic steroid on anxiety levels in sedentary male rats. Stress 2007; 10:326-31. [PMID: 17853074 DOI: 10.1080/10253890701281344] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The aim of this study was to evaluate the influence of nandrolone decanoate on anxiety levels in rats. Male Wistar rats were treated with nandrolone decanoate (5mg/kg, two times per week, i.m.) or vehicle (propylene glycol--0.2 ml/kg, two times per week, IM) for 6 weeks. Control rats were subject only to procedures related to their routine husbandry. By the end of 6 weeks, all groups (24-29 rats/group) were submitted to the elevated plus maze test in order to evaluate their anxiety level. Some of these animals (12-14/group) were treated with diazepam (1 mg/kg i.p.) 30 min before the elevated plus maze test. Nandrolone decanoate significantly decreased the percentage of time spent in the open arms (1.46+/-0.49%) compared with control (3.80+/-0.97%) and vehicle (3.96+/-0.85%) groups, with no difference between control and vehicle treatments. The percentage of open arm entries was also reduced in the group treated with nandrolone decanoate in comparison with the vehicle and control. No changes in the number of closed arm entries were detected. Diazepam abolished the effects of nandrolone decanoate on the percentage of time in, and entries into the open arms. The present study showed that chronic treatment with a high dose of nandrolone decanoate increased the anxiety level in male rats.
Collapse
Affiliation(s)
- V M Rocha
- Faculty of Dentistry of Piracicaba, State University of Campinas, Piracicaba, SP, Brazil
| | | | | | | | | |
Collapse
|
50
|
Mesquita AR, Pêgo JM, Summavielle T, Maciel P, Almeida OFX, Sousa N. Neurodevelopment milestone abnormalities in rats exposed to stress in early life. Neuroscience 2007; 147:1022-33. [PMID: 17587501 DOI: 10.1016/j.neuroscience.2007.04.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 04/02/2007] [Accepted: 04/02/2007] [Indexed: 12/01/2022]
Abstract
Manipulation of the corticosteroid milieu by interfering with the mother-newborn relationship has received much attention because of its potential bearing on psychopathology later in life. In the present study, infant rats that were deprived of maternal contact between the 2nd and the 15th postnatal days (MS2-15) for 6 h/day were subjected to a systematic assessment of neurodevelopmental milestones between postnatal days 2 and 21. The analyses included measurements of physical growth and maturation and evaluation of neurological reflexes. Although some somatic milestones (e.g. eye opening) were anticipated, MS2-15 animals showed retardation in the acquisition of postural reflex, air righting and surface righting reflexes, and in the wire suspension test; the latter two abnormalities were only found in males. A gender effect was also observed in negative geotaxis, with retardation being observed in females but not males. To better understand the delay of neurological maturation in MS2-15 rats, we determined the levels of various monoamines in different regions of the brain stem, including the vestibular area, the substantia nigra, ventral tegmental area and dorsal raphe nuclei. In the vestibular region of MS2-15 rats the levels of 5-HT were reduced, while 5-HT turnover was increased. There was also a significant increase of the 5-HT turnover in MS2-15 animals in the raphe nuclei, mainly due to increased 5-hydroxyindoleacetic acid (5-HIAA) levels, and an increase of 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the ventral tegmental area (VTA) of stressed females. No significant differences were found in the immunohistochemical sections for tyrosine and tryptophan hydroxylase in these regions of the brain stem. In conclusion, the present results show that postnatal stress induces signs of neurological pathology that may contribute to the genesis of behavioral abnormalities later in life.
Collapse
Affiliation(s)
- A R Mesquita
- Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | | | |
Collapse
|