1
|
van Oort J, Tendolkar I, Vrijsen JN, Collard R, Gardner G, Duyser FA, Fernández G, Bachi K, van Eijndhoven PFP. Transdiagnostic relationships between childhood adversity and cortical thickness of the rostral anterior cingulate cortex. J Affect Disord 2025; 381:310-320. [PMID: 40185414 DOI: 10.1016/j.jad.2025.03.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Childhood adversity (CA) is the leading preventable risk factor for mental illness. While CA can exacerbate affective symptoms across various psychiatric disorders, its impact on brain morphology, particularly the rostral anterior cingulate cortex (rACC), has mainly been studied in specific stress-related psychiatric disorders, such as depression and anxiety disorders. Therefore, we set out to disentangle the relationships between CA, psychopathology and brain structure across a broader range of psychiatric disorders. We studied 227 patients with stress-related and/or neurodevelopmental disorders and 95 healthy controls. We focused on the rACC, as this region is highly impacted by CA and has a pivotal role in affective functions across psychiatric disorders. The presence of CA was associated with decreased left rACC thickness across the whole sample, independent of psychopathology. Additionally, the contralateral right rACC was associated with psychopathology, with psychiatric patients having a thinner rACC compared to healthy controls, which was most pronounced in the stress-related disorders group. While left rACC thickness negatively correlated with social anxiety-related concerns, right rACC thickness negatively correlated with various core symptoms of stress-related and neurodevelopmental disorders. Finally, our exploratory analyses across cortical regions did not reveal any robust effects that survived multiple comparison correction. Taken together, our results suggest that within the stress-related disorders group, the CA-related thinning of the left rACC may compound the effects of the affected right rACC. This 'double hit' in stress-related disorders may contribute to the well-established phenomenon that CA leads to a worse illness trajectory in these disorders.
Collapse
Affiliation(s)
- Jasper van Oort
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands; Addiction Institute of Mount Sinai, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, USA.
| | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Janna N Vrijsen
- Pro Persona Mental Health Care, , Depression Expertise Center, Nijmegen, Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University and Radboud University Medical Center, Nijmegen, Netherlands
| | - Rose Collard
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, Netherlands
| | - George Gardner
- Addiction Institute of Mount Sinai, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Fleur A Duyser
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, Netherlands
| | - Guillén Fernández
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University and Radboud University Medical Center, Nijmegen, Netherlands
| | - Keren Bachi
- Addiction Institute of Mount Sinai, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Philip F P van Eijndhoven
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
2
|
Barretto-de-Souza L, Joseph SA, Lynch FM, Ng AJ, Crestani CC, Christianson JP. Melanin-concentrating hormone and orexin shape social affective behavior via action in the insular cortex of rat. Psychopharmacology (Berl) 2025; 242:929-943. [PMID: 37369782 DOI: 10.1007/s00213-023-06408-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
RATIONALE In a social context, individuals are able to detect external information from others and coordinate behavioral responses according to the situation, a phenomenon called social decision-making. Social decision-making is multifaceted, influenced by emotional and motivational factors like stress, sickness, and hunger. However, the neurobiological basis for motivational state competition and interaction is not well known. OBJECTIVE We investigated possible neural mechanisms through which internal states could shape social behavior in a social affective preference (SAP) test. In the SAP test, experimental rats given a choice to interact with naïve or stressed conspecifics exhibit an age-dependent preference to interact with stressed juvenile conspecifics, but avoid stressed adult conspecifics. First, we assessed the effect of food and water deprivation on SAP behavior. Behavior in the SAP test requires the insular cortex, which receives input from the ingestion-related peptides melanin-concentrating hormone (MCH) and orexin neurons of the lateral hypothalamus (LH). This study aimed to evaluate the role of LH and insular MCH and orexin in SAP test. METHODS SAP tests were conducted in rats that were sated, food and water deprived or allowed 1 h of access to food and water after 14 h of deprivation (relieved condition). Separate cohorts of sated rats received cannula implants for microinjection of drugs to inhibit the LH or to block or stimulate MCH or orexin receptors in the insula prior to SAP tests or social interaction tests. RESULTS Food and water deprivation prior to SAP tests with juvenile rats caused a shift in preference away from the stressed rat toward the naïve juveniles. Pharmacological inhibition of LH with muscimol (100 ng/side) abolished the preference for the juvenile-stressed conspecific, as well as the preference for the adult naïve conspecific. The blockade of MCH receptor 1or orexin receptors in the insular cortex with SNAP94847 (50 μM) or TCS1102 (1 μM), respectively, also abolished the preference for the stressed juvenile conspecific, but only the antagonism of orexin receptors was able to abolish the preference for the adult naïve conspecific. Microinjection of increasing doses (50 or 500 nM) of MCH or orexin-A in the insular cortex increased the interaction time in the one-on-one social interaction test with juvenile conspecifics; however, only the microinjection of orexin-A increased the interaction time with adult naïve conspecifics. CONCLUSIONS Taken together, these results suggest that lateral hypothalamus peptides shape the direction of social approach or avoidance via actions MCH and orexin neurotransmission in the insular cortex.
Collapse
Affiliation(s)
- Lucas Barretto-de-Souza
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Shemar A Joseph
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Francesca M Lynch
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Alexandra J Ng
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Carlos C Crestani
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - John P Christianson
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
3
|
Weinreich L, Moll K, Sperl MFJ, Schulte-Körne G, Timmermans B. Experimental investigations of social exclusion among adolescents with psychiatric disorders: a systematic review. Eur Child Adolesc Psychiatry 2025:10.1007/s00787-025-02687-9. [PMID: 40304771 DOI: 10.1007/s00787-025-02687-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/24/2025] [Indexed: 05/02/2025]
Abstract
Social exclusion is a form of bullying that can lead to various negative consequences, and even extreme forms of violence. Certain groups, such as people with poor mental health and adolescents, are particularly vulnerable. This paper features a systematic review of experiments that investigated the impact of social exclusion on adolescents with psychiatric disorders. Experiments were searched via: PubMed, Web of Science, PsycInfo, ERIC, Cochrane, and a manual search. The search yielded 174 experiments, and 12 remained after screening. These met the inclusion criteria, which included: having an empirical design, participants aged 10-19, and a clinical sample with at least one psychiatric disorder. Among the clinical samples, the most common disorder was depression, featured in seven experiments. The most common paradigm was Cyberball. Results showed that social exclusion impacts adolescents with psychiatric disorders differently than inclusion (e.g., leading to a more negative mood). However, the difference in the impact of social exclusion on adolescents with vs. without psychiatric disorders was only conclusive via fMRI measurements. Compared to healthy controls, adolescents with psychiatric disorders seem to display altered neural reactivity during social exclusion. Based on identified research gaps, future studies are needed to explore the impact of social exclusion on adolescents with a wider range of psychiatric disorders. Other recommendations are included, such as a brain region checklist for future experiments using fMRI.
Collapse
Affiliation(s)
- Lior Weinreich
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Nussbaumstrasse 5, Munich, 80336, Germany.
| | - Kristina Moll
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Nussbaumstrasse 5, Munich, 80336, Germany
| | - Matthias F J Sperl
- Department of Clinical Psychology and Psychotherapy, University of Siegen, Siegen, Germany
- Department of Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| | - Gerd Schulte-Körne
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Nussbaumstrasse 5, Munich, 80336, Germany
| | - Bert Timmermans
- School of Psychology, University of Aberdeen, Aberdeen, Scotland
| |
Collapse
|
4
|
Zhang QY, Su CW, Luo Q, Grebogi C, Huang ZG, Jiang J. Adaptive Whole-Brain Dynamics Predictive Method: Relevancy to Mental Disorders. RESEARCH (WASHINGTON, D.C.) 2025; 8:0648. [PMID: 40190349 PMCID: PMC11971527 DOI: 10.34133/research.0648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/26/2025] [Accepted: 03/08/2025] [Indexed: 04/09/2025]
Abstract
The Hopf whole-brain model, based on structural connectivity, overcomes limitations of traditional structural or functional connectivity-focused methods by incorporating heterogeneity parameters, quantifying dynamic brain characteristics in healthy and diseased states. Traditional parameter fitting techniques lack precision, restricting broader use. To address this, we validated parameter fitting methods using simulated networks and synthetic models, introducing improvements such as individual-specific initialization and optimized gradient descent, which reduced individual data loss. We also developed an approximate loss function and gradient adjustment mechanism, enhancing parameter fitting accuracy and stability. Applying this refined method to datasets for major depressive disorder (MDD) and autism spectrum disorder (ASD), we identified differences in brain regions between patients and healthy controls, explaining related anomalies. This rigorous validation is crucial for clinical application, paving the way for precise neuropathological identification and novel treatments in neuropsychiatric research, demonstrating substantial potential in clinical neurology.
Collapse
Affiliation(s)
- Qian-Yun Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, China
- Research Center for Brain-inspired Intelligence,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Chun-Wang Su
- Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, China
- Research Center for Brain-inspired Intelligence,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital,
Fudan University, Shanghai 200433, China
- Institutes of Brain Science and Human Phenome Institute,
Fudan University, Shanghai 200032, China
- School of Psychology and Cognitive Science,
East China Normal University, Shanghai 200241, China
| | - Celso Grebogi
- Institute for Complex Systems and Mathematical Biology,
University of Aberdeen, Aberdeen AB24 3UE, UK
- School of Automation and Information Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China
| | - Zi-Gang Huang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, China
- Research Center for Brain-inspired Intelligence,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Junjie Jiang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, China
- Research Center for Brain-inspired Intelligence,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| |
Collapse
|
5
|
Persichetti AS, Shao J, Gotts SJ, Martin A. A functional parcellation of the whole brain in high-functioning individuals with autism spectrum disorder reveals atypical patterns of network organization. Mol Psychiatry 2025; 30:1518-1528. [PMID: 39349967 PMCID: PMC11919759 DOI: 10.1038/s41380-024-02764-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Researchers studying autism spectrum disorder (ASD) lack a comprehensive map of the functional network topography in the ASD brain. We used high-quality resting state functional MRI (rs-fMRI) connectivity data and a robust parcellation routine to provide a whole-brain map of functional networks in a group of seventy high-functioning individuals with ASD and a group of seventy typically developing (TD) individuals. The rs-fMRI data were collected using an imaging sequence optimized to achieve high temporal signal-to-noise ratio (tSNR) across the whole-brain. We identified functional networks using a parcellation routine that intrinsically incorporates internal consistency and repeatability of the networks by keeping only network distinctions that agree across halves of the data over multiple random iterations in each group. The groups were tightly matched on tSNR, in-scanner motion, age, and IQ. We compared the maps from each group and found that functional networks in the ASD group are atypical in three seemingly related ways: (1) whole-brain connectivity patterns are less stable across voxels within multiple functional networks, (2) the cerebellum, subcortex, and hippocampus show weaker differentiation of functional subnetworks, and (3) subcortical structures and the hippocampus are atypically integrated with the neocortex. These results were statistically robust and suggest that patterns of network connectivity between the neocortex and the cerebellum, subcortical structures, and hippocampus are atypical in ASD individuals.
Collapse
Affiliation(s)
- Andrew S Persichetti
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Jiayu Shao
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Stephen J Gotts
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Alex Martin
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Sassarini J, Skorupskaite K, McLean J, Lumsden MA, Anderson RA. NK3 receptor antagonist alters the centrally controlled perception of menopausal flushing - a pilot study. Climacteric 2025:1-8. [PMID: 40085748 DOI: 10.1080/13697137.2025.2470462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/29/2025] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVE Kisspeptin/neurokinin/dynorphin (KNDy) signaling links reproductive and thermoregulatory systems, and improvements in menopausal flushing are reported with neurokinin 3 receptor (NK3R) antagonists. A rise in brainstem activity preceding a flush has been proposed as its functional origin, with subsequent activity in the insula and prefrontal cortices reflecting individual perception. Using functional magnetic resonance imaging (fMRI), this study investigated the central effect of the NK3R antagonist MLE4901 during a flush, particularly functional connectivity changes in the salience network. METHOD Five postmenopausal women with flushes completed a 1-week flush diary prior to baseline fMRI, during which hot flushes were triggered by heating. Diaries were continued during 7 days of treatment with the NK3R antagonist MLE4901, with repeat fMRI on day 7. Sternal monitors recorded objective flushing before each fMRI. Connectivity changes in the salience network post flush were assessed. RESULTS Treatment with MLE4901 reduced the subjective flush frequency (from median 6.9 to 1.1 per day; p = 0.02) without changes in objective flushes. Treatment decreased right anterior insula connectivity, which correlated significantly with decreased subjective flushing. CONCLUSION This pilot study demonstrates decreased connectivity in the salience network during NK3R antagonist treatment. This may indicate areas of interest for further targeted fMRI studies and mechanistic investigation of this novel treatment for flushing.
Collapse
Affiliation(s)
- Jenifer Sassarini
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - John McLean
- Department of Clinical Physics and Bioengineering (DCPB), NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Mary Ann Lumsden
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
7
|
Wen G, Cao P, Liu L, Hao M, Liu S, Zheng J, Yang J, Zaiane OR, Wang F. Heterogeneous Graph Representation Learning Framework for Resting-State Functional Connectivity Analysis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:1581-1595. [PMID: 40030455 DOI: 10.1109/tmi.2024.3512603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Brain functional connectivity analysis is important for understanding brain development and brain disorders. Recent studies have suggested that the variations of functional connectivity among multiple subnetworks are closely related to the development of diseases. However, the existing works failed to sufficiently capture the complex correlation patterns among the subnetworks and ignored the learning of heterogeneous structural information across the subnetworks. To address these issues, we formulate a new paradigm for constructing and analyzing high-order heterogeneous functional brain networks via meta-paths and propose a Heterogeneous Graph representation Learning framework (BrainHGL). Our framework consists of three key aspects: 1) Meta-path encoding for capturing rich heterogeneous topological information, 2) Meta-path interaction for exploiting complex association patterns among subnetworks and 3) Meta-path aggregation for better meta-path fusion. To the best of our knowledge, we are the first to formulate the heterogeneous brain networks for better exploiting the relationship between the subnetwork interactions and the mental disease We evaluate BrainHGL on the private center Nanjing Medical University dataset (center NMU) and the public Autism Brain Imaging Data Exchange (ABIDE) dataset. We demonstrate the effectiveness of the proposed model across various disease classification tasks, including major depression disorder (MDD), bipolar disorder (BD) and autism spectrum disorder (ASD) diagnoses. In addition, our model provides deeper insights into disease interpretability, including the critical brain subnetwork connectivities, brain regions and functional pathways. We also identified disease subtypes consistent with previous neuroscientific studies by our model, which benefits the disease identification performance. The code is available at https://github.com/IntelliDAL/Graph/BrainHGL.
Collapse
|
8
|
James D, Lam VT, Jo B, Fung LK. Sex Differences in the Relationship Between Cortical Thickness and Sensory Motor Symptoms in Adults on the Autism Spectrum. Behav Neurol 2025; 2025:2951294. [PMID: 40041925 PMCID: PMC11879536 DOI: 10.1155/bn/2951294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 05/12/2025] Open
Abstract
Background: Autism spectrum disorder (ASD) involves alterations in both cortical morphology and sensory processing. These structural and perceptual changes may lie on a continuum with typically developing (TD) individuals. However, investigations on possible links between these two factors are lacking, and it remains to be seen if their relationship differs by sex. We hypothesized that cortical thickness in the postcentral gyrus (a somatosensory processing hub) would correlate with sensory processing symptoms in a combined cohort of autistic and TD individuals. We also hypothesized that these correlations would differ based on sex. Methods: We studied 23 autistic adults and 27 TD adults using magnetic resonance imaging to measure the cortical thickness of the postcentral gyrus and the Ritvo Autism Asperger Diagnostic Scale-Revised (RAADS-R) to measure autism characteristics, with a particular focus on the sensory motor subscale. Results: The left postcentral gyrus (PCG) was found to be thicker in the autism group than in the TD group (d = 0.946, p = 0.003), particularly in autistic males compared to TD males and TD females. The RAADS-R sensory motor subscale and bilateral PCG cortical thickness were positively correlated across both autistic and TD males (Spearman's rho = 0.481, p = 0.008) but not females. These correlations were specific to the sensory motor subscale, as no correlations were found for RAADS-R total score or any of the other subscales. Conclusions: These results demonstrate sex-specific differences in the relationship between cortical thickness at the PCG and sensory processing in autistic individuals and that these differences exist along a continuum that extends into the TD population. Our findings contribute to furthering our understanding of sex-specific neuroanatomical differences in people on the autism spectrum. The left PCG thickness could be a potential sex-specific biomarker for sensorimotor function that is generally applicable in both neurotypical and autism populations. With further validations, this biomarker could be used to track responses to interventions targeting sensorimotor challenges in people on the autism spectrum.
Collapse
Affiliation(s)
- David James
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| | - Vicky T. Lam
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| | - Booil Jo
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| | - Lawrence K. Fung
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| |
Collapse
|
9
|
Silvanto J, Nagai Y. How Interoception and the Insula Shape Mental Imagery and Aphantasia. Brain Topogr 2025; 38:27. [PMID: 39912831 DOI: 10.1007/s10548-025-01101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/16/2025] [Indexed: 02/07/2025]
Abstract
A major question in cognitive neuroscience is understanding the neural basis of mental imagery, particularly in cases of its absence, known as aphantasia. While research in this field has focused on the role of sensory domains, we propose that the key to understanding imagery lies in the intertwining of sensory processing and autonomic responses. Interoception plays a crucial role in mental imagery by anchoring experiences in first-person physiological signals, providing a self-referential perspective, and grounding the imagery in the body while also enabling its emotional aspects. Moreover, interoception contributes to the sense of agency and volitional control, as well as body schema-hallmarks of voluntary mental imagery. Therefore, imagery should be approached as an integrated phenomenon that combines sensory-specific information with interoceptive signals. At the neural level, this process engages the insula and anterior cingulate cortex (ACC), regions vital for synthesizing information across cognitive, emotional, and physical domains, as well as for supporting self-awareness. From this perspective, aphantasia may reflect a suboptimal functioning of the insula/ACC, which can account for its associations with deficits in autobiographical memory, emotion perception, and conditions such as autism and dyspraxia.
Collapse
Affiliation(s)
- Juha Silvanto
- Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China.
- School of Psychology, University of Surrey, Stag Hill, University Campus, Guildford, UK.
| | - Yoko Nagai
- School of Psychology, University of Surrey, Stag Hill, University Campus, Guildford, UK.
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9 RY, UK.
| |
Collapse
|
10
|
Kamikawa K, Yamamuro K, Mizui R, Kashida N, Ishida R, Okada T, Iwata N, Makinodan M. Reduced prefrontal hemodynamic responses measured using near-infrared spectroscopy in adults with autism spectrum disorder. Front Psychiatry 2025; 15:1507890. [PMID: 39834576 PMCID: PMC11743530 DOI: 10.3389/fpsyt.2024.1507890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Aim Functional neuroimaging studies have suggested that prefrontal cortex dysfunction occurs in individuals with autism spectrum disorder (ASD). Near-infrared spectroscopy (NIRS) is a noninvasive optical tool used to investigate oxygenation and hemodynamic responses in the cerebral cortex by measuring changes in oxygenated hemoglobin. Previous studies using NIRS have suggested that male children with ASD exhibit reduced hemodynamic responses in the dorsolateral prefrontal cortex; however, only a few studies examined this response in adults with ASD. Methods We examined the characteristics of prefrontal hemodynamic responses in 114 adults with ASD and 84 typically developing controls. Relative concentrations of oxygenated hemoglobin were measured with frontal probes every 0.1 s during the Stroop color-word task, using 24-channel NIRS. Results Our findings demonstrated that the oxygenated hemoglobin changes in the ASD group were significantly smaller than those in the control group at channels 19, 20, 23, and 24- located over the orbitofrontal cortex and frontal pole (p <0.05 for all three channels). The differences in oxygenated hemoglobin changes at Ch 20 were significantly correlated with the Autism-Spectrum Quotient Japanese version (AQ-J) total score and attention switching score, which is a symptom cluster of AQ-J (p = 0.043 and p = 0.009, respectively). Conclusion Adults with ASD have reduced prefrontal hemodynamic responses as measured using near-infrared spectroscopy and the reduced activity of the frontal pole in particular is related to reduced attentional function.
Collapse
Affiliation(s)
- Kohei Kamikawa
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Kazuhiko Yamamuro
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
- Center for Health Control, Nara Medical University School of Medicine, Kashihara, Japan
| | - Ryo Mizui
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Natsuko Kashida
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Rio Ishida
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
- Division of Transformative Psychiatry and Synergistic Research, International Center for Brain Science, Fujita Health University, Toyoake, Japan
| | - Takashi Okada
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
- Division of Transformative Psychiatry and Synergistic Research, International Center for Brain Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
11
|
Pan W, Ling G, Liu F. mGNN-bw: Multi-Scale Graph Neural Network Based on Biased Random Walk Path Aggregation for ASD Diagnosis. IEEE Trans Neural Syst Rehabil Eng 2025; 33:900-910. [PMID: 40031443 PMCID: PMC12023043 DOI: 10.1109/tnsre.2025.3543177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
In recent years, computationally assisted diagnosis for classifying autism spectrum disorder (ASD) and typically developing (TD) individuals based on neuroimaging data, such as functional magnetic resonance imaging (fMRI), has garnered significant attention. Studies have shown that long-range functional connectivity patterns in ASD patients exhibit significant abnormalities, and individual brain networks display considerable heterogeneity. However, current graph neural networks (GNNs) used in ASD research have failed to adequately capture long-range connectivity and have overlooked individual differences. To address these limitations, this study proposes a novel multi-scale graph neural network based on biased random walks (mGNN-bw). The model introduces a co-optimization strategy between sub-models and the main model, leveraging node pooling scores from sub-models to guide biased random walks, effectively capturing long-range connectivity. By constructing high-order brain networks through path encoding and aggregation, and integrating them with low-order brain networks based on Pearson correlation, the model achieves a robust multi-scale feature representation. Experimental results on the publicly available ABIDE I dataset demonstrate the superior performance of our approach, achieving accuracy rates of 74.8% and 73.2% using CC200 and AAL atlases, respectively, outperforming existing methods. Additionally, the model identifies key ASD-associated brain regions, including the frontal lobe, insula, cingulate, and calcarine, supported by existing research. The proposed method significantly contributes to the clinical diagnosis of ASD.
Collapse
|
12
|
Moerkerke M, Daniels N, Van der Donck S, Tang T, Prinsen J, Yargholi E, Steyaert J, Alaerts K, Boets B. Impact of chronic intranasal oxytocin administration on face expression processing in autistic children: a randomized controlled trial using fMRI. Mol Autism 2024; 15:53. [PMID: 39709442 DOI: 10.1186/s13229-024-00635-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Difficulties with (non-verbal) social communication, including facial expression processing, constitute a hallmark of autism. Intranasal administration of oxytocin has been considered a potential therapeutic option for improving social difficulties in autism, either by enhancing the salience of social cues or by reducing the social stress and anxiety experienced in social encounters. METHODS We recorded fMRI brain activity while presenting neutral, fearful and scrambled faces, to compare the neural face processing signature of autistic children (n = 58) with that of matched non-autistic controls (n = 38). Next, in the autistic children group, we implemented this fMRI face processing task in a double-blind, placebo-controlled, multiple-dose oxytocin clinical trial, to evaluate the impact of four-week repeated oxytocin administration (24 IU daily dose) on brain activity in face processing regions. RESULTS No significant diagnostic-group differences were identified between autistic versus non-autistic children with regard to neural face processing. Furthermore, no significant treatment effects were found in the oxytocin clinical trial. However, exploratory analyses (uncorrected for multiple comparisons) demonstrated decreases in brain activity in the left superior temporal sulcus (STS) and inferior frontal region in the oxytocin compared to the placebo group, and change-from-baseline analyses in the oxytocin group revealed significantly reduced neural activity in the core face-processing network (STS, inferior occipital, and posterior fusiform), as well as in amygdala and inferior frontal region. CONCLUSION These findings suggest an attenuating effect of multiple-dose oxytocin administration on neural face processing, potentially supporting the anxiolytic account of oxytocin.
Collapse
Affiliation(s)
- Matthijs Moerkerke
- Department of Neurosciences, Center for Developmental Psychiatry, KU Leuven, Leuven, Belgium.
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium.
| | - Nicky Daniels
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
- Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, KU Leuven, Leuven, Belgium
| | - Stephanie Van der Donck
- Department of Neurosciences, Center for Developmental Psychiatry, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Tiffany Tang
- Department of Neurosciences, Center for Developmental Psychiatry, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Jellina Prinsen
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
- Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, KU Leuven, Leuven, Belgium
| | - Elahe' Yargholi
- Department of Brain and Cognition, Faculty of Psychology & Educational Sciences, KU Leuven, Leuven, Belgium
| | - Jean Steyaert
- Department of Neurosciences, Center for Developmental Psychiatry, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Kaat Alaerts
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
- Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, KU Leuven, Leuven, Belgium
| | - Bart Boets
- Department of Neurosciences, Center for Developmental Psychiatry, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Attanasio M, Mazza M, Le Donne I, Nigri A, Valenti M. Salience Network in Autism: preliminary results on functional connectivity analysis in resting state. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01949-y. [PMID: 39673625 DOI: 10.1007/s00406-024-01949-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/20/2024] [Indexed: 12/16/2024]
Abstract
The literature suggests that alterations in functional connectivity (FC) of the Salience Network (SN) may contribute to the manifestation of some clinical features of Autism Spectrum Disorder (ASD). The SN plays a key role in integrating external sensory information with internal emotional and bodily information. An atypical FC of this network could explain some symptomatic features of ASD such as difficulties in self-awareness and emotion processing and provide new insights into the neurobiological basis of autism. Using the Autism Brain Imaging Data Exchange II we investigated the resting-state FC of core regions of SN and its association with autism symptomatology in 29 individuals with ASD compared with 29 typically developing (TD) individuals. In ASD compared to TD individuals, seed-based connectivity analysis showed a reduced FC between the rostral prefrontal cortex and left cerebellum and an increased FC between the right supramarginal gyrus and the regions of the middle temporal gyrus and angular gyrus. Finally, we found that the clinical features of ASD are mainly associated with an atypical FC of the anterior insula and the involvement of dysfunctional mechanisms for emotional and social information processing. These findings expand the knowledge about the differences in the FC of SN between ASD and TD, highlighting atypical FC between structures that play key roles in social cognition and complex cognitive processes. Such anomalies could explain difficulties in processing salient stimuli, especially those of a socio-affective nature, with an impact on emotional and behavioral regulation.
Collapse
Affiliation(s)
- Margherita Attanasio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Monica Mazza
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Reference Regional Centre for Autism, Abruzzo Region, Local Health Unit ASL 1, L'Aquila, Italy
| | - Ilenia Le Donne
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Anna Nigri
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Valenti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Reference Regional Centre for Autism, Abruzzo Region, Local Health Unit ASL 1, L'Aquila, Italy
| |
Collapse
|
14
|
Jin F, Wang Z. Mapping the structure of biomarkers in autism spectrum disorder: a review of the most influential studies. Front Neurosci 2024; 18:1514678. [PMID: 39734494 PMCID: PMC11671500 DOI: 10.3389/fnins.2024.1514678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND Autism spectrum disorder is a distinctive developmental condition which is caused by an interaction between genetic vulnerability and environmental factors. Biomarkers play a crucial role in understanding disease characteristics for diagnosis, prognosis, and treatment. This study employs bibliometric analysis to identify and review the 100 top-cited articles' characteristics, current research hotspots and future directions of autism biomarkers. METHODS A comprehensive search of autism biomarkers studies was retrieved from the Web of Science Core Collection database with a combined keyword search strategy. A comprehensive analysis of the top 100 articles was conducted with CiteSpace, VOSviewer, and Excel, including citations, countries, authors, and keywords. RESULTS The top 100 cited studies were published between 1988 and 2021, with the United States led in productivity. Core biomarkers such as genetics, children, oxidative stress, and mitochondrial dysfunction are well-established. Potential trends for future research may include brain studies, metabolomics, and associations with other psychiatric disorders. CONCLUSION This pioneering bibliometric analysis provides a comprehensive compilation of the 100 most-cited studies on autism, which not only offers a valuable resource for doctors, and researchers but shedding insights into current shortcomings and future endeavors. Future research should prioritize the application of emerging technologies for biomarkers, longitudinal study of biomarkers, and specificity of autism biomarkers to advance the precision of ASD diagnosis and treatment.
Collapse
Affiliation(s)
| | - Zhidan Wang
- School of Education Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
15
|
Tawata S, Sakaguchi K, Saito A. Androgyny and atypical sensory sensitivity associated with savant ability: a comparison between Klinefelter syndrome and sexual minorities assigned male at birth. FRONTIERS IN CHILD AND ADOLESCENT PSYCHIATRY 2024; 3:1356802. [PMID: 39816580 PMCID: PMC11732014 DOI: 10.3389/frcha.2024.1356802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/21/2024] [Indexed: 01/18/2025]
Abstract
Introduction The extreme male brain (EMB) theory, a major causal hypothesis of autism (ASD: autism spectrum disorder), attributes excess androgens during early development as one of the causes. While studies have generally followed the EMB theory in females at birth, the co-occurrence of ASD in males at birth has been observed in conditions that are assumed to be associated with reduced androgen action during early development, including Klinefelter syndrome (KS) and sexual minorities. ASD is also associated with atypical sensory sensitivity, synesthesia, and savant syndrome. Methods In the present study, we examined adult KS individuals (n = 22), sexual minorities assigned male at birth (n = 66), and control males matched for age and educational background to those with KS [Exploratory analysis (control 1st): n = 36; Reanalysis (control 2nd): n = 583]. Participants completed a self-report questionnaire assessing sensory hypersensitivity/hyposensitivity, savant tendency (developed for the present study), synesthesia, and sexual aspects, including gender identity and sexual orientation. Results The results of the exploratory analysis suggested that individuals with KS exhibited a higher tendency toward sensory hypersensitivity/hyposensitivity than the tendency exhibited by the controls. In the Reanalysis, sexual minorities were more likely to be synesthetes, and in both analyses sexual minorities exhibited a higher savant tendency and sensory hypersensitivity/hyposensitivity than the controls. Moreover, the gender dysphoric state was associated with phenotypes observed in individuals with ASD, such as synesthesia, savant tendency, and sensory hypersensitivity/hyposensitivity. Discussion These results suggest a common physiological background among gender dysphoria, synesthesia, savant tendency, and atypical sensory sensitivity. Thus, androgynous features (reduced effects of sex steroids during early development) in males at birth may be partially related to the phenotype commonly observed in individuals with ASD. Based on the present results, we propose that the reduction of sex steroids during early development may lead to atypical neurodevelopment and be involved in the atypicality of external and internal sensory perception, and thus in the atypicality of self-concept integration, through the disruption of oxytocin and the gamma-aminobutyric acid system modulating the neural excitation/inhibition balance.
Collapse
Affiliation(s)
- Shintaro Tawata
- Graduate School of Human Sciences, Sophia University, Chiyoda-ku, Tokyo, Japan
| | - Kikue Sakaguchi
- Research Department, National Institution for Academic Degrees and Quality Enhancement of Higher Education (NIAD-QE), Kodaira-shi, Tokyo, Japan
| | - Atsuko Saito
- Faculty of Human Sciences, Sophia University, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
16
|
Grumbach P, Kasper J, Hipp JF, Forsyth A, Valk SL, Muthukumaraswamy S, Eickhoff SB, Schilbach L, Dukart J. Local activity alterations in autism spectrum disorder correlate with neurotransmitter properties and ketamine induced brain changes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.20.24315801. [PMID: 39502665 PMCID: PMC11537324 DOI: 10.1101/2024.10.20.24315801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition associated with altered resting-state brain function. An increased excitation-inhibition (E/I) ratio is discussed as a potential pathomechanism but in-vivo evidence of disturbed neurotransmission underlying these functional alterations remains scarce. We compared rs-fMRI local activity (LCOR) between ASD (N=405, N=395) and neurotypical controls (N=473, N=474) in two independent cohorts (ABIDE1 and ABIDE2). We then tested how these LCOR alterations co-localize with specific neurotransmitter systems derived from nuclear imaging and compared them with E/I changes induced by GABAergic (midazolam) and glutamatergic medication (ketamine). Across both cohorts, ASD subjects consistently exhibited reduced LCOR, particularly in higher-order default mode network nodes, alongside increases in bilateral temporal regions, the cerebellum, and brainstem. These LCOR alterations negatively co-localized with dopaminergic (D1, D2, DAT), glutamatergic (NMDA, mGluR5), GABAergic (GABAa) and cholinergic neurotransmission (VAChT). The NMDA-antagonist ketamine, but not GABAa-potentiator midazolam, induced LCOR changes which co-localize with D1, NMDA and GABAa receptors, thereby resembling alterations observed in ASD. We find consistent local activity alterations in ASD to be spatially associated with several major neurotransmitter systems. NMDA-antagonist ketamine induced neurochemical changes similar to ASD-related alterations, supporting the notion that pharmacological modulation of the E/I balance in healthy individuals can induce ASD-like functional brain changes. These findings provide novel insights into neurophysiological mechanisms underlying ASD.
Collapse
Affiliation(s)
- Pascal Grumbach
- Institute of Neurosciences and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich; Wilhelm-Johnen-Straße 1, 52425 Juelich, Germany
- Department of Psychiatry and Psychotherapy, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf; Bergische Landstraße 2, 40629 Duesseldorf, Germany
| | - Jan Kasper
- Institute of Neurosciences and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich; Wilhelm-Johnen-Straße 1, 52425 Juelich, Germany
- Institute of Systems Neuroscience, Medical Faculty & University Hospital Duesseldorf, Heinrich Heine University Duesseldorf; Moorenstraße 5, 40225 Duesseldorf, Germany
| | - Joerg F. Hipp
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann–La Roche Ltd.; Basel, Switzerland
| | - Anna Forsyth
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland; 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Sofie L. Valk
- Institute of Neurosciences and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich; Wilhelm-Johnen-Straße 1, 52425 Juelich, Germany
- Institute of Systems Neuroscience, Medical Faculty & University Hospital Duesseldorf, Heinrich Heine University Duesseldorf; Moorenstraße 5, 40225 Duesseldorf, Germany
- Max Planck School of Cognition; Stephanstraße 1A, 04103 Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences; Stephanstraße 1A, 04103 Leipzig, Germany
| | - Suresh Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland; 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Simon B. Eickhoff
- Institute of Neurosciences and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich; Wilhelm-Johnen-Straße 1, 52425 Juelich, Germany
- Institute of Systems Neuroscience, Medical Faculty & University Hospital Duesseldorf, Heinrich Heine University Duesseldorf; Moorenstraße 5, 40225 Duesseldorf, Germany
| | - Leonhard Schilbach
- Department of General Psychiatry 2, LVR-Klinikum Duesseldorf; Bergische Landstraße 2, 40629 Duesseldorf, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilians University Munich; Nußbaumstraße 7, 80336 München
| | - Juergen Dukart
- Institute of Neurosciences and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich; Wilhelm-Johnen-Straße 1, 52425 Juelich, Germany
- Institute of Systems Neuroscience, Medical Faculty & University Hospital Duesseldorf, Heinrich Heine University Duesseldorf; Moorenstraße 5, 40225 Duesseldorf, Germany
| |
Collapse
|
17
|
Wang L, Li T, Gu R, Feng C. Large-scale meta-analyses and network analyses of neural substrates underlying human escalated aggression. Neuroimage 2024; 299:120824. [PMID: 39214437 DOI: 10.1016/j.neuroimage.2024.120824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/01/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Escalated aggression represents a frequent and severe form of violence, sometimes manifesting as antisocial behavior. Driven by the pressures of modern life, escalated aggression is of particular concern due to its rising prevalence and its destructive impact on both individual well-being and socioeconomic stability. However, a consistent neural circuitry underpinning it remains to be definitively identified. Here, we addressed this issue by comparing brain alterations between individuals with escalated aggression and those without such behavioral manifestations. We first conducted a meta-analysis to synthesize previous neuroimaging studies on functional and structural alterations of escalated aggression (325 experiments, 2997 foci, 16,529 subjects). Following-up network and functional decoding analyses were conducted to provide quantitative characterizations of the identified brain regions. Our results revealed that brain regions constantly involved in escalated aggression were localized in the subcortical network (amygdala and lateral orbitofrontal cortex) associated with emotion processing, the default mode network (dorsal medial prefrontal cortex and middle temporal gyrus) associated with mentalizing, and the salience network (anterior cingulate cortex and anterior insula) associated with cognitive control. These findings were further supported by additional meta-analyses on emotion processing, mentalizing, and cognitive control, all of which showed conjunction with the brain regions identified in the escalated aggression. Together, these findings advance the understanding of the risk biomarkers of escalated aggressive populations and refine theoretical models of human aggression.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China; Normal College, Hubei Center for Brain and Mental Health Research, Jingchu University of Technology, Jingmen, China
| | - Ting Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Ruolei Gu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Chunliang Feng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
18
|
Ronde M, van der Zee EA, Kas MJH. Default mode network dynamics: An integrated neurocircuitry perspective on social dysfunction in human brain disorders. Neurosci Biobehav Rev 2024; 164:105839. [PMID: 39097251 DOI: 10.1016/j.neubiorev.2024.105839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Our intricate social brain is implicated in a range of brain disorders, where social dysfunction emerges as a common neuropsychiatric feature cutting across diagnostic boundaries. Understanding the neurocircuitry underlying social dysfunction and exploring avenues for its restoration could present a transformative and transdiagnostic approach to overcoming therapeutic challenges in these disorders. The brain's default mode network (DMN) plays a crucial role in social functioning and is implicated in various neuropsychiatric conditions. By thoroughly examining the current understanding of DMN functionality, we propose that the DMN integrates diverse social processes, and disruptions in brain communication at regional and network levels due to disease hinder the seamless integration of these social functionalities. Consequently, this leads to an altered balance between self-referential and attentional processes, alongside a compromised ability to adapt to social contexts and anticipate future social interactions. Looking ahead, we explore how adopting an integrated neurocircuitry perspective on social dysfunction could pave the way for innovative therapeutic approaches to address brain disorders.
Collapse
Affiliation(s)
- Mirthe Ronde
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Eddy A van der Zee
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands.
| |
Collapse
|
19
|
Wei L, Xu X, Su Y, Lan M, Wang S, Zhong S. Abnormal multimodal neuroimaging patterns associated with social deficits in male autism spectrum disorder. Hum Brain Mapp 2024; 45:e70017. [PMID: 39230055 PMCID: PMC11372822 DOI: 10.1002/hbm.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/24/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Atypical social impairments (i.e., impaired social cognition and social communication) are vital manifestations of autism spectrum disorder (ASD) patients, and the incidence rate of ASD is significantly higher in males than in females. Characterizing the atypical brain patterns underlying social deficits of ASD is significant for understanding the pathogenesis. However, there are no robust imaging biomarkers that are specific to ASD, which may be due to neurobiological complexity and limitations of single-modality research. To describe the multimodal brain patterns related to social deficits in ASD, we highlighted the potential functional role of white matter (WM) and incorporated WM functional activity and gray matter structure into multimodal fusion. Gray matter volume (GMV) and fractional amplitude of low-frequency fluctuations of WM (WM-fALFF) were combined by fusion analysis model adopting the social behavior. Our results revealed multimodal spatial patterns associated with Social Responsiveness Scale multiple scores in ASD. Specifically, GMV exhibited a consistent brain pattern, in which salience network and limbic system were commonly identified associated with all multiple social impairments. More divergent brain patterns in WM-fALFF were explored, suggesting that WM functional activity is more sensitive to ASD's complex social impairments. Moreover, brain regions related to social impairment may be potentially interconnected across modalities. Cross-site validation established the repeatability of our results. Our research findings contribute to understanding the neural mechanisms underlying social disorders in ASD and affirm the feasibility of identifying biomarkers from functional activity in WM.
Collapse
Affiliation(s)
- Long Wei
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, People's Republic of China
| | - Xin Xu
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, People's Republic of China
| | - Yuwei Su
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, People's Republic of China
| | - Min Lan
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, People's Republic of China
| | - Sifeng Wang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, People's Republic of China
| | - Suyu Zhong
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, People's Republic of China
| |
Collapse
|
20
|
Zhang H, Song C, Zhao X, Wang F, Qiu Y, Li H, Guo H. STDCformer: Spatial-temporal dual-path cross-attention model for fMRI-based autism spectrum disorder identification. Heliyon 2024; 10:e34245. [PMID: 39816341 PMCID: PMC11734066 DOI: 10.1016/j.heliyon.2024.e34245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/05/2024] [Accepted: 07/05/2024] [Indexed: 01/18/2025] Open
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive neuroimaging technique widely utilized in the research of Autism Spectrum Disorder (ASD), providing preliminary insights into the potential biological mechanisms underlying ASD. Deep learning techniques have demonstrated significant potential in the analysis of rs-fMRI. However, accurately distinguishing between healthy control group and ASD has been a longstanding challenge. In this regard, this work proposes a model featuring a dual-path cross-attention framework for spatial and temporal patterns, named STDCformer, aiming to enhance the accuracy of ASD identification. STDCformer can preserve both temporal-specific patterns and spatial-specific patterns while explicitly interacting spatiotemporal information in depth. The embedding layer of the STDCformer embeds temporal and spatial patterns in dual paths. For the temporal path, we introduce a perturbation positional encoding to improve the issue of signal misalignment caused by individual differences. For the spatial path, we propose a correlation metric based on Gramian angular field similarity to establish a more specific whole-brain functional network. Subsequently, we interleave the query and key vectors of dual paths to interact spatial and temporal information. We further propose integrating the dual-path attention into a tensor that retains spatiotemporal dimensions and utilizing 2D convolution for feed-forward processing. Our attention layer allows the model to represent spatiotemporal correlations of signals at multiple scales to alleviate issues of information distortion and loss. Our STDCformer demonstrates competitive results compared to state-of-the-art methods on the ABIDE dataset. Additionally, we conducted interpretative analyses of the model to preliminarily discuss the potential physiological mechanisms of ASD. This work once again demonstrates the potential of deep learning technology in identifying ASD and developing neuroimaging biomarkers for ASD.
Collapse
Affiliation(s)
- Haifeng Zhang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
- Division of Psychology, Nanyang Technological University, Singapore S639798, Singapore
| | - Chonghui Song
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Xiaolong Zhao
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Fei Wang
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yunlong Qiu
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Hao Li
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Hongyi Guo
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
21
|
Than A, Patterson G, Cummings KK, Jung J, Cakar ME, Abbas L, Bookheimer SY, Dapretto M, Green SA. Sensory over-responsivity and atypical neural responses to socially relevant stimuli in autism. Autism Res 2024; 17:1328-1343. [PMID: 38949436 PMCID: PMC11272439 DOI: 10.1002/aur.3179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/13/2024] [Indexed: 07/02/2024]
Abstract
Although aversive responses to sensory stimuli are common in autism spectrum disorder (ASD), it remains unknown whether the social relevance of aversive sensory inputs affects their processing. We used functional magnetic resonance imaging (fMRI) to investigate neural responses to mildly aversive nonsocial and social sensory stimuli as well as how sensory over-responsivity (SOR) severity relates to these responses. Participants included 21 ASD and 25 typically-developing (TD) youth, aged 8.6-18.0 years. Results showed that TD youth exhibited significant neural discrimination of socially relevant versus irrelevant aversive sensory stimuli, particularly in the amygdala and orbitofrontal cortex (OFC), regions that are crucial for sensory and social processing. In contrast, ASD youth showed reduced neural discrimination of social versus nonsocial stimuli in the amygdala and OFC, as well as overall greater neural responses to nonsocial compared with social stimuli. Moreover, higher SOR in ASD was associated with heightened responses in sensory-motor regions to socially-relevant stimuli. These findings further our understanding of the relationship between sensory and social processing in ASD, suggesting limited attention to the social relevance compared with aversiveness level of sensory input in ASD versus TD youth, particularly in ASD youth with higher SOR.
Collapse
Affiliation(s)
- A Than
- Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, California, USA
| | - G Patterson
- Department of Psychology, University of Denver, Denver, Colorado, USA
| | - K K Cummings
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J Jung
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - M E Cakar
- Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, California, USA
| | - L Abbas
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - S Y Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, USA
| | - M Dapretto
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, USA
| | - S A Green
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
22
|
Rippon G. Differently different?: A commentary on the emerging social cognitive neuroscience of female autism. Biol Sex Differ 2024; 15:49. [PMID: 38872228 PMCID: PMC11177439 DOI: 10.1186/s13293-024-00621-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
Autism is a neurodevelopmental condition, behaviourally identified, which is generally characterised by social communication differences, and restrictive and repetitive patterns of behaviour and interests. It has long been claimed that it is more common in males. This observed preponderance of males in autistic populations has served as a focussing framework in all spheres of autism-related issues, from recognition and diagnosis through to theoretical models and research agendas. One related issue is the near total absence of females in key research areas. For example, this paper reports a review of over 120 brain-imaging studies of social brain processes in autism that reveals that nearly 70% only included male participants or minimal numbers (just one or two) of females. Authors of such studies very rarely report that their cohorts are virtually female-free and discuss their findings as though applicable to all autistic individuals. The absence of females can be linked to exclusionary consequences of autism diagnostic procedures, which have mainly been developed on male-only cohorts. There is clear evidence that disproportionately large numbers of females do not meet diagnostic criteria and are then excluded from ongoing autism research. Another issue is a long-standing assumption that the female autism phenotype is broadly equivalent to that of the male autism phenotype. Thus, models derived from male-based studies could be applicable to females. However, it is now emerging that certain patterns of social behaviour may be very different in females. This includes a specific type of social behaviour called camouflaging or masking, linked to attempts to disguise autistic characteristics. With respect to research in the field of sex/gender cognitive neuroscience, there is emerging evidence of female differences in patterns of connectivity and/or activation in the social brain that are at odds with those reported in previous, male-only studies. Decades of research have excluded or overlooked females on the autistic spectrum, resulting in the construction of inaccurate and misleading cognitive neuroscience models, and missed opportunities to explore the brain bases of this highly complex condition. A note of warning needs to be sounded about inferences drawn from past research, but if future research addresses this problem of male bias, then a deeper understanding of autism as a whole, as well as in previously overlooked females, will start to emerge.
Collapse
Affiliation(s)
- Gina Rippon
- Emeritus of Cognitive NeuroImaging, Institute of Health and Neurodevelopment, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
23
|
Tamon H, Fujino J, Itahashi T, Frahm L, Parlatini V, Aoki YY, Castellanos FX, Eickhoff SB, Cortese S. Shared and Specific Neural Correlates of Attention Deficit Hyperactivity Disorder and Autism Spectrum Disorder: A Meta-Analysis of 243 Task-Based Functional MRI Studies. Am J Psychiatry 2024; 181:541-552. [PMID: 38685858 DOI: 10.1176/appi.ajp.20230270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
OBJECTIVE To investigate shared and specific neural correlates of cognitive functions in attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD), the authors performed a comprehensive meta-analysis and considered a balanced set of neuropsychological tasks across the two disorders. METHODS A broad set of electronic databases was searched up to December 4, 2022, for task-based functional MRI studies investigating differences between individuals with ADHD or ASD and typically developing control subjects. Spatial coordinates of brain loci differing significantly between case and control subjects were extracted. To avoid potential diagnosis-driven selection bias of cognitive tasks, the tasks were grouped according to the Research Domain Criteria framework, and stratified sampling was used to match cognitive component profiles. Activation likelihood estimation was used for the meta-analysis. RESULTS After screening 20,756 potentially relevant references, a meta-analysis of 243 studies was performed, which included 3,084 participants with ADHD (676 females), 2,654 participants with ASD (292 females), and 6,795 control subjects (1,909 females). ASD and ADHD showed shared greater activations in the lingual and rectal gyri and shared lower activations in regions including the middle frontal gyrus, the parahippocampal gyrus, and the insula. By contrast, there were ASD-specific greater and lower activations in regions including the left middle temporal gyrus and the left middle frontal gyrus, respectively, and ADHD-specific greater and lower activations in the amygdala and the global pallidus, respectively. CONCLUSIONS Although ASD and ADHD showed both shared and disorder-specific standardized neural activations, disorder-specific activations were more prominent than shared ones. Functional brain differences between ADHD and ASD are more likely to reflect diagnosis-related pathophysiology than bias from the selection of specific neuropsychological tasks.
Collapse
Affiliation(s)
- Hiroki Tamon
- Division of Infant and Toddler Mental Health, Department of Psychosocial Medicine, National Center for Child Health and Development, Tokyo (Tamon); Graduate School of Medicine and Department of Functional Brain Imaging, Institute of Development, Aging, and Cancer, Tohoku University, Miyagi, Japan (Tamon); Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Fujino); Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena (Fujino); Medical Institute of Developmental Disabilities Research, Showa University, Tokyo (Itahashi, Aoki); Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany (Frahm, Eickhoff); Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany (Eickhoff); Department of Child and Adolescent Psychiatry, King's College London (Parlatini); Aoki Clinic, Tokyo (Aoki); Department of Child and Adolescent Psychiatry, New York University (NYU) Grossman School of Medicine, New York, and Nathan Kline Institute for Psychiatric Research, Orangeburg, N.Y. (Castellanos); Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, and Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, U.K. (Cortese); Solent National Health System Trust, Southampton, U.K. (Cortese); Hassenfeld Children's Hospital at NYU Langone, NYU Child Study Center, New York (Cortese); Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, U.K. (Cortese); Department of Precision and Regenerative Medicine-Jonic Area, University of Bari Aldo Moro, Bari, Italy (Cortese)
| | - Junya Fujino
- Division of Infant and Toddler Mental Health, Department of Psychosocial Medicine, National Center for Child Health and Development, Tokyo (Tamon); Graduate School of Medicine and Department of Functional Brain Imaging, Institute of Development, Aging, and Cancer, Tohoku University, Miyagi, Japan (Tamon); Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Fujino); Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena (Fujino); Medical Institute of Developmental Disabilities Research, Showa University, Tokyo (Itahashi, Aoki); Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany (Frahm, Eickhoff); Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany (Eickhoff); Department of Child and Adolescent Psychiatry, King's College London (Parlatini); Aoki Clinic, Tokyo (Aoki); Department of Child and Adolescent Psychiatry, New York University (NYU) Grossman School of Medicine, New York, and Nathan Kline Institute for Psychiatric Research, Orangeburg, N.Y. (Castellanos); Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, and Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, U.K. (Cortese); Solent National Health System Trust, Southampton, U.K. (Cortese); Hassenfeld Children's Hospital at NYU Langone, NYU Child Study Center, New York (Cortese); Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, U.K. (Cortese); Department of Precision and Regenerative Medicine-Jonic Area, University of Bari Aldo Moro, Bari, Italy (Cortese)
| | - Takashi Itahashi
- Division of Infant and Toddler Mental Health, Department of Psychosocial Medicine, National Center for Child Health and Development, Tokyo (Tamon); Graduate School of Medicine and Department of Functional Brain Imaging, Institute of Development, Aging, and Cancer, Tohoku University, Miyagi, Japan (Tamon); Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Fujino); Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena (Fujino); Medical Institute of Developmental Disabilities Research, Showa University, Tokyo (Itahashi, Aoki); Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany (Frahm, Eickhoff); Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany (Eickhoff); Department of Child and Adolescent Psychiatry, King's College London (Parlatini); Aoki Clinic, Tokyo (Aoki); Department of Child and Adolescent Psychiatry, New York University (NYU) Grossman School of Medicine, New York, and Nathan Kline Institute for Psychiatric Research, Orangeburg, N.Y. (Castellanos); Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, and Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, U.K. (Cortese); Solent National Health System Trust, Southampton, U.K. (Cortese); Hassenfeld Children's Hospital at NYU Langone, NYU Child Study Center, New York (Cortese); Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, U.K. (Cortese); Department of Precision and Regenerative Medicine-Jonic Area, University of Bari Aldo Moro, Bari, Italy (Cortese)
| | - Lennart Frahm
- Division of Infant and Toddler Mental Health, Department of Psychosocial Medicine, National Center for Child Health and Development, Tokyo (Tamon); Graduate School of Medicine and Department of Functional Brain Imaging, Institute of Development, Aging, and Cancer, Tohoku University, Miyagi, Japan (Tamon); Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Fujino); Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena (Fujino); Medical Institute of Developmental Disabilities Research, Showa University, Tokyo (Itahashi, Aoki); Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany (Frahm, Eickhoff); Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany (Eickhoff); Department of Child and Adolescent Psychiatry, King's College London (Parlatini); Aoki Clinic, Tokyo (Aoki); Department of Child and Adolescent Psychiatry, New York University (NYU) Grossman School of Medicine, New York, and Nathan Kline Institute for Psychiatric Research, Orangeburg, N.Y. (Castellanos); Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, and Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, U.K. (Cortese); Solent National Health System Trust, Southampton, U.K. (Cortese); Hassenfeld Children's Hospital at NYU Langone, NYU Child Study Center, New York (Cortese); Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, U.K. (Cortese); Department of Precision and Regenerative Medicine-Jonic Area, University of Bari Aldo Moro, Bari, Italy (Cortese)
| | - Valeria Parlatini
- Division of Infant and Toddler Mental Health, Department of Psychosocial Medicine, National Center for Child Health and Development, Tokyo (Tamon); Graduate School of Medicine and Department of Functional Brain Imaging, Institute of Development, Aging, and Cancer, Tohoku University, Miyagi, Japan (Tamon); Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Fujino); Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena (Fujino); Medical Institute of Developmental Disabilities Research, Showa University, Tokyo (Itahashi, Aoki); Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany (Frahm, Eickhoff); Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany (Eickhoff); Department of Child and Adolescent Psychiatry, King's College London (Parlatini); Aoki Clinic, Tokyo (Aoki); Department of Child and Adolescent Psychiatry, New York University (NYU) Grossman School of Medicine, New York, and Nathan Kline Institute for Psychiatric Research, Orangeburg, N.Y. (Castellanos); Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, and Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, U.K. (Cortese); Solent National Health System Trust, Southampton, U.K. (Cortese); Hassenfeld Children's Hospital at NYU Langone, NYU Child Study Center, New York (Cortese); Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, U.K. (Cortese); Department of Precision and Regenerative Medicine-Jonic Area, University of Bari Aldo Moro, Bari, Italy (Cortese)
| | - Yuta Y Aoki
- Division of Infant and Toddler Mental Health, Department of Psychosocial Medicine, National Center for Child Health and Development, Tokyo (Tamon); Graduate School of Medicine and Department of Functional Brain Imaging, Institute of Development, Aging, and Cancer, Tohoku University, Miyagi, Japan (Tamon); Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Fujino); Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena (Fujino); Medical Institute of Developmental Disabilities Research, Showa University, Tokyo (Itahashi, Aoki); Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany (Frahm, Eickhoff); Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany (Eickhoff); Department of Child and Adolescent Psychiatry, King's College London (Parlatini); Aoki Clinic, Tokyo (Aoki); Department of Child and Adolescent Psychiatry, New York University (NYU) Grossman School of Medicine, New York, and Nathan Kline Institute for Psychiatric Research, Orangeburg, N.Y. (Castellanos); Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, and Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, U.K. (Cortese); Solent National Health System Trust, Southampton, U.K. (Cortese); Hassenfeld Children's Hospital at NYU Langone, NYU Child Study Center, New York (Cortese); Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, U.K. (Cortese); Department of Precision and Regenerative Medicine-Jonic Area, University of Bari Aldo Moro, Bari, Italy (Cortese)
| | - Francisco Xavier Castellanos
- Division of Infant and Toddler Mental Health, Department of Psychosocial Medicine, National Center for Child Health and Development, Tokyo (Tamon); Graduate School of Medicine and Department of Functional Brain Imaging, Institute of Development, Aging, and Cancer, Tohoku University, Miyagi, Japan (Tamon); Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Fujino); Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena (Fujino); Medical Institute of Developmental Disabilities Research, Showa University, Tokyo (Itahashi, Aoki); Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany (Frahm, Eickhoff); Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany (Eickhoff); Department of Child and Adolescent Psychiatry, King's College London (Parlatini); Aoki Clinic, Tokyo (Aoki); Department of Child and Adolescent Psychiatry, New York University (NYU) Grossman School of Medicine, New York, and Nathan Kline Institute for Psychiatric Research, Orangeburg, N.Y. (Castellanos); Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, and Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, U.K. (Cortese); Solent National Health System Trust, Southampton, U.K. (Cortese); Hassenfeld Children's Hospital at NYU Langone, NYU Child Study Center, New York (Cortese); Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, U.K. (Cortese); Department of Precision and Regenerative Medicine-Jonic Area, University of Bari Aldo Moro, Bari, Italy (Cortese)
| | - Simon B Eickhoff
- Division of Infant and Toddler Mental Health, Department of Psychosocial Medicine, National Center for Child Health and Development, Tokyo (Tamon); Graduate School of Medicine and Department of Functional Brain Imaging, Institute of Development, Aging, and Cancer, Tohoku University, Miyagi, Japan (Tamon); Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Fujino); Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena (Fujino); Medical Institute of Developmental Disabilities Research, Showa University, Tokyo (Itahashi, Aoki); Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany (Frahm, Eickhoff); Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany (Eickhoff); Department of Child and Adolescent Psychiatry, King's College London (Parlatini); Aoki Clinic, Tokyo (Aoki); Department of Child and Adolescent Psychiatry, New York University (NYU) Grossman School of Medicine, New York, and Nathan Kline Institute for Psychiatric Research, Orangeburg, N.Y. (Castellanos); Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, and Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, U.K. (Cortese); Solent National Health System Trust, Southampton, U.K. (Cortese); Hassenfeld Children's Hospital at NYU Langone, NYU Child Study Center, New York (Cortese); Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, U.K. (Cortese); Department of Precision and Regenerative Medicine-Jonic Area, University of Bari Aldo Moro, Bari, Italy (Cortese)
| | - Samuele Cortese
- Division of Infant and Toddler Mental Health, Department of Psychosocial Medicine, National Center for Child Health and Development, Tokyo (Tamon); Graduate School of Medicine and Department of Functional Brain Imaging, Institute of Development, Aging, and Cancer, Tohoku University, Miyagi, Japan (Tamon); Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Fujino); Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena (Fujino); Medical Institute of Developmental Disabilities Research, Showa University, Tokyo (Itahashi, Aoki); Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany (Frahm, Eickhoff); Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany (Eickhoff); Department of Child and Adolescent Psychiatry, King's College London (Parlatini); Aoki Clinic, Tokyo (Aoki); Department of Child and Adolescent Psychiatry, New York University (NYU) Grossman School of Medicine, New York, and Nathan Kline Institute for Psychiatric Research, Orangeburg, N.Y. (Castellanos); Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, and Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, U.K. (Cortese); Solent National Health System Trust, Southampton, U.K. (Cortese); Hassenfeld Children's Hospital at NYU Langone, NYU Child Study Center, New York (Cortese); Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, U.K. (Cortese); Department of Precision and Regenerative Medicine-Jonic Area, University of Bari Aldo Moro, Bari, Italy (Cortese)
| |
Collapse
|
24
|
Nagai Y, Kirino E, Tanaka S, Usui C, Inami R, Inoue R, Hattori A, Uchida W, Kamagata K, Aoki S. Functional connectivity in autism spectrum disorder evaluated using rs-fMRI and DKI. Cereb Cortex 2024; 34:129-145. [PMID: 38012112 PMCID: PMC11065111 DOI: 10.1093/cercor/bhad451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
We evaluated functional connectivity (FC) in patients with adult autism spectrum disorder (ASD) using resting-state functional MRI (rs-fMRI) and diffusion kurtosis imaging (DKI). We acquired rs-fMRI data from 33 individuals with ASD and 33 healthy controls (HC) and DKI data from 18 individuals with ASD and 17 HC. ASD showed attenuated FC between the right frontal pole (FP) and the bilateral temporal fusiform cortex (TFusC) and enhanced FC between the right thalamus and the bilateral inferior division of lateral occipital cortex, and between the cerebellar vermis and the right occipital fusiform gyrus (OFusG) and the right lingual gyrus, compared with HC. ASD demonstrated increased axial kurtosis (AK) and mean kurtosis (MK) in white matter (WM) tracts, including the right anterior corona radiata (ACR), forceps minor (FM), and right superior longitudinal fasciculus (SLF). In ASD, there was also a significant negative correlation between MK and FC between the cerebellar vermis and the right OFusG in the corpus callosum, FM, right SLF and right ACR. Increased DKI metrics might represent neuroinflammation, increased complexity, or disrupted WM tissue integrity that alters long-distance connectivity. Nonetheless, protective or compensating adaptations of inflammation might lead to more abundant glial cells and cytokine activation effectively alleviating the degeneration of neurons, resulting in increased complexity. FC abnormality in ASD observed in rs-fMRI may be attributed to microstructural alterations of the commissural and long-range association tracts in WM as indicated by DKI.
Collapse
Affiliation(s)
- Yasuhito Nagai
- Department of Psychiatry, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Eiji Kirino
- Department of Psychiatry, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
- Department of Psychiatry, Juntendo University Shizuoka Hospital, 1129 Nagaoka Izunokuni-shi Shizuoka 410-2295, Japan
- Juntendo Institute of Mental Health, 700-1 Fukuroyama Koshigaya-shi Saitama 343-0032, Japan
| | - Shoji Tanaka
- Department of Information and Communication Sciences, Sophia University, 7-1 Kioi-cho Chiyoda-ku Tokyo 102-8554, Japan
| | - Chie Usui
- Department of Psychiatry, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Rie Inami
- Department of Psychiatry, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Reiichi Inoue
- Juntendo Institute of Mental Health, 700-1 Fukuroyama Koshigaya-shi Saitama 343-0032, Japan
| | - Aki Hattori
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
- Faculty of Health Data Science, Juntendo University, 6-8-1 Hinode Urayasu-shi Chiba 279-0013, Japan
| |
Collapse
|
25
|
Guo Z, Tang X, Xiao S, Yan H, Sun S, Yang Z, Huang L, Chen Z, Wang Y. Systematic review and meta-analysis: multimodal functional and anatomical neural alterations in autism spectrum disorder. Mol Autism 2024; 15:16. [PMID: 38576034 PMCID: PMC10996269 DOI: 10.1186/s13229-024-00593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND This meta-analysis aimed to explore the most robust findings across numerous existing resting-state functional imaging and voxel-based morphometry (VBM) studies on the functional and structural brain alterations in individuals with autism spectrum disorder (ASD). METHODS A whole-brain voxel-wise meta-analysis was conducted to compare the differences in the intrinsic functional activity and gray matter volume (GMV) between individuals with ASD and typically developing individuals (TDs) using Seed-based d Mapping software. RESULTS A total of 23 functional imaging studies (786 ASD, 710 TDs) and 52 VBM studies (1728 ASD, 1747 TDs) were included. Compared with TDs, individuals with ASD displayed resting-state functional decreases in the left insula (extending to left superior temporal gyrus [STG]), bilateral anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC), left angular gyrus and right inferior temporal gyrus, as well as increases in the right supplementary motor area and precuneus. For VBM meta-analysis, individuals with ASD displayed decreased GMV in the ACC/mPFC and left cerebellum, and increased GMV in the left middle temporal gyrus (extending to the left insula and STG), bilateral olfactory cortex, and right precentral gyrus. Further, individuals with ASD displayed decreased resting-state functional activity and increased GMV in the left insula after overlapping the functional and structural differences. CONCLUSIONS The present multimodal meta-analysis demonstrated that ASD exhibited similar alterations in both function and structure of the insula and ACC/mPFC, and functional or structural alterations in the default mode network (DMN), primary motor and sensory regions. These findings contribute to further understanding of the pathophysiology of ASD.
Collapse
Affiliation(s)
- Zixuan Guo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinyue Tang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shu Xiao
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hong Yan
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shilin Sun
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zibin Yang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li Huang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhuoming Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Ying Wang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
26
|
Ortug A, Guo Y, Feldman HA, Ou Y, Warren JLA, Dieuveuil H, Baumer NT, Faja SK, Takahashi E. Autism-associated brain differences can be observed in utero using MRI. Cereb Cortex 2024; 34:bhae117. [PMID: 38602735 PMCID: PMC11008691 DOI: 10.1093/cercor/bhae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 04/12/2024] Open
Abstract
Developmental changes that occur before birth are thought to be associated with the development of autism spectrum disorders. Identifying anatomical predictors of early brain development may contribute to our understanding of the neurobiology of autism spectrum disorders and allow for earlier and more effective identification and treatment of autism spectrum disorders. In this study, we used retrospective clinical brain magnetic resonance imaging data from fetuses who were diagnosed with autism spectrum disorders later in life (prospective autism spectrum disorders) in order to identify the earliest magnetic resonance imaging-based regional volumetric biomarkers. Our results showed that magnetic resonance imaging-based autism spectrum disorder biomarkers can be found as early as in the fetal period and suggested that the increased volume of the insular cortex may be the most promising magnetic resonance imaging-based fetal biomarker for the future emergence of autism spectrum disorders, along with some additional, potentially useful changes in regional volumes and hemispheric asymmetries.
Collapse
Affiliation(s)
- Alpen Ortug
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| | - Yurui Guo
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Henry A Feldman
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Yangming Ou
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| | - Jose Luis Alatorre Warren
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| | - Harrison Dieuveuil
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Nicole T Baumer
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Susan K Faja
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Division of Developmental Medicine, Laboratories of Cognitive Neuroscience, Boston Children's Hospital, Harvard Medical School, Brookline, MA 02115, United States
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
27
|
Tosti B, Corrado S, Mancone S, Di Libero T, Rodio A, Andrade A, Diotaiuti P. Integrated use of biofeedback and neurofeedback techniques in treating pathological conditions and improving performance: a narrative review. Front Neurosci 2024; 18:1358481. [PMID: 38567285 PMCID: PMC10985214 DOI: 10.3389/fnins.2024.1358481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
In recent years, the scientific community has begun tо explore the efficacy оf an integrated neurofeedback + biofeedback approach іn various conditions, both pathological and non-pathological. Although several studies have contributed valuable insights into its potential benefits, this review aims tо further investigate its effectiveness by synthesizing current findings and identifying areas for future research. Our goal іs tо provide a comprehensive overview that may highlight gaps іn the existing literature and propose directions for subsequent studies. The search for articles was conducted on the digital databases PubMed, Scopus, and Web of Science. Studies to have used the integrated neurofeedback + biofeedback approach published between 2014 and 2023 and reviews to have analyzed the efficacy of neurofeedback and biofeedback, separately, related to the same time interval and topics were selected. The search identified five studies compatible with the objectives of the review, related to several conditions: nicotine addiction, sports performance, Autism Spectrum Disorder (ASD), and Attention Deficit Hyperactivity Disorder (ADHD). The integrated neurofeedback + biofeedback approach has been shown to be effective in improving several aspects of these conditions, such as a reduction in the presence of psychiatric symptoms, anxiety, depression, and withdrawal symptoms and an increase in self-esteem in smokers; improvements in communication, imitation, social/cognitive awareness, and social behavior in ASD subjects; improvements in attention, alertness, and reaction time in sports champions; and improvements in attention and inhibitory control in ADHD subjects. Further research, characterized by greater methodological rigor, is therefore needed to determine the effectiveness of this method and the superiority, if any, of this type of training over the single administration of either. This review іs intended tо serve as a catalyst for future research, signaling promising directions for the advancement оf biofeedback and neurofeedback methodologies.
Collapse
Affiliation(s)
- Beatrice Tosti
- Department of Human Sciences, Society and Health, University of Cassino, Cassino, Lazio, Italy
| | - Stefano Corrado
- Department of Human Sciences, Society and Health, University of Cassino, Cassino, Lazio, Italy
| | - Stefania Mancone
- Department of Human Sciences, Society and Health, University of Cassino, Cassino, Lazio, Italy
| | - Tommaso Di Libero
- Department of Human Sciences, Society and Health, University of Cassino, Cassino, Lazio, Italy
| | - Angelo Rodio
- Department of Human Sciences, Society and Health, University of Cassino, Cassino, Lazio, Italy
| | - Alexandro Andrade
- Department of Physical Education, CEFID, Santa Catarina State University, Florianopolis, Santa Catarina, Brazil
| | - Pierluigi Diotaiuti
- Department of Human Sciences, Society and Health, University of Cassino, Cassino, Lazio, Italy
| |
Collapse
|
28
|
Araújo A, Duarte IC, Sousa T, Oliveira J, Pereira AT, Macedo A, Castelo-Branco M. Neural inhibition as implemented by an actor-critic model involves the human dorsal striatum and ventral tegmental area. Sci Rep 2024; 14:6363. [PMID: 38493169 PMCID: PMC10944470 DOI: 10.1038/s41598-024-56161-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/02/2024] [Indexed: 03/18/2024] Open
Abstract
Inhibition is implicated across virtually all human experiences. As a trade-off of being very efficient, this executive function is also prone to many errors. Rodent and computational studies show that midbrain regions play crucial roles during errors by sending dopaminergic learning signals to the basal ganglia for behavioural adjustment. However, the parallels between animal and human neural anatomy and function are not determined. We scanned human adults while they performed an fMRI inhibitory task requiring trial-and-error learning. Guided by an actor-critic model, our results implicate the dorsal striatum and the ventral tegmental area as the actor and the critic, respectively. Using a multilevel and dimensional approach, we also demonstrate a link between midbrain and striatum circuit activity, inhibitory performance, and self-reported autistic and obsessive-compulsive subclinical traits.
Collapse
Affiliation(s)
- Ana Araújo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Institute of Psychological Medicine, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Department of Psychiatry, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Isabel Catarina Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Teresa Sousa
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Joana Oliveira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Ana Telma Pereira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Institute of Psychological Medicine, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - António Macedo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Institute of Psychological Medicine, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Department of Psychiatry, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
29
|
Tang X, Ma Z, SiuChing K, Xu L, Liu Q, Yang L, Wang Y, Cao Q, Li X, Liu J. Altered Intrinsic Brain Spontaneous Activities in Children With Autism Spectrum Disorder Comorbid ADHD. J Atten Disord 2024; 28:834-846. [PMID: 38379197 DOI: 10.1177/10870547241233207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
OBJECTIVE The study involved 17 children with Autism Spectrum Disorder (ASD), 21 with ADHD, 30 with both (ASD + ADHD), and 28 typically developing children (TD). METHODS The amplitude of low-frequency fluctuations (ALFF) was measured as a regional brain function index. Intrinsic functional connectivity (iFC) was also analyzed using the region of interest (ROI) identified in ALFF analysis. Statistical analysis was done via one-way ANCOVA, Gaussian random field (GRF) theory, and post-hoc pair-wise comparisons. RESULTS The ASD + ADHD group showed increased ALFF in the left middle frontal gyrus (MFG.L) compared to the TD group. In terms of global brain function, the ASD group displayed underconnectivity in specific regions compared to the ASD + ADHD and TD groups. CONCLUSION The findings contribute to understanding the neural mechanisms underlying ASD + ADHD.
Collapse
Affiliation(s)
- Xinzhou Tang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- China National Children's Health Center (Beijing), China
| | - Zenghui Ma
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Kat SiuChing
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Lingzi Xu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Qinyi Liu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Li Yang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yufeng Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Qingjiu Cao
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xue Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jing Liu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
30
|
Karjalainen S, Aro T, Parviainen T. Coactivation of Autonomic and Central Nervous Systems During Processing of Socially Relevant Information in Autism Spectrum Disorder: A Systematic Review. Neuropsychol Rev 2024; 34:214-231. [PMID: 36849624 PMCID: PMC10920494 DOI: 10.1007/s11065-023-09579-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/29/2022] [Indexed: 03/01/2023]
Abstract
Body-brain interaction provides a novel approach to understand neurodevelopmental conditions such as autism spectrum disorder (ASD). In this systematic review, we analyse the empirical evidence regarding coexisting differences in autonomic (ANS) and central nervous system (CNS) responses to social stimuli between individuals with ASD and typically developing individuals. Moreover, we review evidence of deviations in body-brain interaction during processing of socially relevant information in ASD. We conducted systematic literature searches in PubMed, Medline, PsychInfo, PsychArticles, and Cinahl databases (until 12.1.2022). Studies were included if individuals with ASD were compared with typically developing individuals, study design included processing of social information, and ANS and CNS activity were measured simultaneously. Out of 1892 studies identified based on the titles and abstracts, only six fulfilled the eligibility criteria to be included in synthesis. The quality of these studies was assessed using a quality assessment checklist. The results indicated that individuals with ASD demonstrate atypicalities in ANS and CNS signalling which, however, are context dependent. There were also indications for altered contribution of ANS-CNS interaction in processing of social information in ASD. However, the findings must be considered in the context of several limitations, such as small sample sizes and high variability in (neuro)physiological measures. Indeed, the methodological choices varied considerably, calling for a need for unified guidelines to improve the interpretability of results. We summarize the current experimentally supported understanding of the role of socially relevant body-brain interaction in ASD. Furthermore, we propose developments for future studies to improve incremental knowledge building across studies of ANS-CNS interaction involving individuals with ASD.
Collapse
Affiliation(s)
- Suvi Karjalainen
- Department of Psychology, University of Jyväskylä, PO Box 35, FI-40014, Jyväskylä, Finland.
- Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland.
| | - Tuija Aro
- Department of Psychology, University of Jyväskylä, PO Box 35, FI-40014, Jyväskylä, Finland
| | - Tiina Parviainen
- Department of Psychology, University of Jyväskylä, PO Box 35, FI-40014, Jyväskylä, Finland
- Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
31
|
Corina DP, Coffey-Corina S, Pierotti E, Mankel K, Miller LM. Electrophysiological study of visual processing in children with cochlear implants. Neuropsychologia 2024; 194:108774. [PMID: 38145800 DOI: 10.1016/j.neuropsychologia.2023.108774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Electrophysiological studies of congenitally deaf children and adults have reported atypical visual evoked potentials (VEPs) which have been associated with both behavioral enhancements of visual attention as well as poorer performance and outcomes in tests of spoken language speech processing. This pattern has often been interpreted as a maladaptive consequence of early auditory deprivation, whereby a remapping of auditory cortex by the visual system ultimately reduces resources necessary for optimal rehabilitative outcomes of spoken language acquisition and use. Making use of a novel electrophysiological paradigm, we compare VEPs in children with severe to profound congenital deafness who received a cochlear implant(s) prior to 31 months (n = 28) and typically developing age matched controls (n = 28). We observe amplitude enhancements and in some cases latency differences in occipitally expressed P1 and N1 VEP components in CI-using children as well as an early frontal negativity, N1a. We relate these findings to developmental factors such as chronological age and spoken language understanding. We further evaluate whether VEPs are additionally modulated by auditory stimulation. Collectively, these data provide a means to examine the extent to which atypical VEPs are consistent with prior accounts of maladaptive cross-modal plasticity. Our results support a view that VEP changes reflect alterations to visual-sensory attention and saliency mechanisms rather than a re-mapping of auditory cortex. The present data suggests that early auditory deprivation may have temporally prolonged effects on visual system processing even after activation and use of cochlear implant.
Collapse
Affiliation(s)
- David P Corina
- Center for Mind and Brain, University of California, Davis, USA; Department of Linguistics, University of California, Davis, USA; Department of Psychology, University of California, Davis, USA.
| | - S Coffey-Corina
- Center for Mind and Brain, University of California, Davis, USA
| | - E Pierotti
- Center for Mind and Brain, University of California, Davis, USA; Department of Psychology, University of California, Davis, USA
| | - Kelsey Mankel
- Center for Mind and Brain, University of California, Davis, USA
| | - Lee M Miller
- Center for Mind and Brain, University of California, Davis, USA; Department of Neurobiology, Physiology and Behavior, University of California, Davis, USA; Department of Otolaryngology / Head and Neck Surgery, University of California, Davis, USA
| |
Collapse
|
32
|
Reis SL, Monteiro P. From synaptic dysfunction to atypical emotional processing in autism. FEBS Lett 2024; 598:269-282. [PMID: 38233224 DOI: 10.1002/1873-3468.14801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition mainly characterized by social impairments and repetitive behaviors. Among these core symptoms, a notable aspect of ASD is the presence of emotional complexities, including high rates of anxiety disorders. The inherent heterogeneity of ASD poses a unique challenge in understanding its etiological origins, yet the utilization of diverse animal models replicating ASD traits has enabled researchers to dissect the intricate relationship between autism and atypical emotional processing. In this review, we delve into the general findings about the neural circuits underpinning one of the most extensively researched and evolutionarily conserved emotional states: fear and anxiety. Additionally, we explore how distinct ASD animal models exhibit various anxiety phenotypes, making them a crucial tool for dissecting ASD's multifaceted nature. Overall, to a proper display of fear response, it is crucial to properly process and integrate sensorial and visceral cues to the fear-induced stimuli. ASD individuals exhibit altered sensory processing, possibly contributing to the emergence of atypical phobias, a prevailing anxiety disorder manifested in this population. Moreover, these individuals display distinctive alterations in a pivotal fear and anxiety processing hub, the amygdala. By examining the neurobiological mechanisms underlying fear and anxiety regulation, we can gain insights into the factors contributing to the distinctive emotional profile observed in individuals with ASD. Such insights hold the potential to pave the way for more targeted interventions and therapies that address the emotional challenges faced by individuals within the autism spectrum.
Collapse
Affiliation(s)
- Sara L Reis
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Portugal
| | - Patricia Monteiro
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto, Portugal
| |
Collapse
|
33
|
Ibrahim K, Iturmendi-Sabater I, Vasishth M, Barron DS, Guardavaccaro M, Funaro MC, Holmes A, McCarthy G, Eickhoff SB, Sukhodolsky DG. Neural circuit disruptions of eye gaze processing in autism spectrum disorder and schizophrenia: An activation likelihood estimation meta-analysis. Schizophr Res 2024; 264:298-313. [PMID: 38215566 PMCID: PMC10922721 DOI: 10.1016/j.schres.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND Impairment in social cognition, particularly eye gaze processing, is a shared feature common to autism spectrum disorder (ASD) and schizophrenia. However, it is unclear if a convergent neural mechanism also underlies gaze dysfunction in these conditions. The present study examined whether this shared eye gaze phenotype is reflected in a profile of convergent neurobiological dysfunction in ASD and schizophrenia. METHODS Activation likelihood estimation (ALE) meta-analyses were conducted on peak voxel coordinates across the whole brain to identify spatial convergence. Functional coactivation with regions emerging as significant was assessed using meta-analytic connectivity modeling. Functional decoding was also conducted. RESULTS Fifty-six experiments (n = 30 with schizophrenia and n = 26 with ASD) from 36 articles met inclusion criteria, which comprised 354 participants with ASD, 275 with schizophrenia and 613 healthy controls (1242 participants in total). In ASD, aberrant activation was found in the left amygdala relative to unaffected controls during gaze processing. In schizophrenia, aberrant activation was found in the right inferior frontal gyrus and supplementary motor area. Across ASD and schizophrenia, aberrant activation was found in the right inferior frontal gyrus and right fusiform gyrus during gaze processing. Functional decoding mapped the left amygdala to domains related to emotion processing and cognition, the right inferior frontal gyrus to cognition and perception, and the right fusiform gyrus to visual perception, spatial cognition, and emotion perception. These regions also showed meta-analytic connectivity to frontoparietal and frontotemporal circuitry. CONCLUSION Alterations in frontoparietal and frontotemporal circuitry emerged as neural markers of gaze impairments in ASD and schizophrenia. These findings have implications for advancing transdiagnostic biomarkers to inform targeted treatments for ASD and schizophrenia.
Collapse
Affiliation(s)
- Karim Ibrahim
- Yale University School of Medicine, Child Study Center, United States of America.
| | | | - Maya Vasishth
- Yale University School of Medicine, Child Study Center, United States of America
| | - Daniel S Barron
- Brigham and Women's Hospital, Department of Psychiatry, Anesthesiology and Pain Medicine, United States of America; Harvard Medical School, Department of Psychiatry, United States of America
| | | | - Melissa C Funaro
- Yale University, Harvey Cushing/John Hay Whitney Medical Library, United States of America
| | - Avram Holmes
- Yale University, Department of Psychology, United States of America; Yale University, Department of Psychiatry, United States of America; Yale University, Wu Tsai Institute, United States of America
| | - Gregory McCarthy
- Yale University, Department of Psychology, United States of America; Yale University, Wu Tsai Institute, United States of America
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Denis G Sukhodolsky
- Yale University School of Medicine, Child Study Center, United States of America
| |
Collapse
|
34
|
Dionísio A, Espírito A, Pereira AC, Mouga S, d'Almeida OC, Oliveira G, Castelo-Branco M. Neurochemical differences in core regions of the autistic brain: a multivoxel 1H-MRS study in children. Sci Rep 2024; 14:2374. [PMID: 38287121 PMCID: PMC10824733 DOI: 10.1038/s41598-024-52279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition which compromises various cognitive and behavioural domains. The understanding of the pathophysiology and molecular neurobiology of ASD is still an open critical research question. Here, we aimed to address ASD neurochemistry in the same time point at key regions that have been associated with its pathophysiology: the insula, hippocampus, putamen and thalamus. We conducted a multivoxel proton magnetic resonance spectroscopy (1H-MRS) study to non-invasively estimate the concentrations of total choline (GPC + PCh, tCho), total N-acetyl-aspartate (NAA + NAAG, tNAA) and Glx (Glu + Gln), presenting the results as ratios to total creatine while investigating replication for ratios to total choline as a secondary analysis. Twenty-two male children aged between 10 and 18 years diagnosed with ASD (none with intellectual disability, in spite of the expected lower IQ) and 22 age- and gender-matched typically developing (TD) controls were included. Aspartate ratios were significantly lower in the insula (tNAA/tCr: p = 0.010; tNAA/tCho: p = 0.012) and putamen (tNAA/tCr: p = 0.015) of ASD individuals in comparison with TD controls. The Glx ratios were significantly higher in the hippocampus of the ASD group (Glx/tCr: p = 0.027; Glx/tCho: p = 0.011). Differences in tNAA and Glx indices suggest that these metabolites might be neurochemical markers of region-specific atypical metabolism in ASD children, with a potential contribution for future advances in clinical monitoring and treatment.
Collapse
Affiliation(s)
- Ana Dionísio
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Ana Espírito
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Andreia C Pereira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Susana Mouga
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Centro de Desenvolvimento da Criança, Unidade de Neurodesenvolvimento e Autismo, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Otília C d'Almeida
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Guiomar Oliveira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Centro de Desenvolvimento da Criança, Unidade de Neurodesenvolvimento e Autismo, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University Clinic of Pediatrics, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| |
Collapse
|
35
|
Moccia L, di Luzio M, Conte E, Modica M, Ambrosecchia M, Ardizzi M, Lanzotti P, Kotzalidis GD, Janiri D, Di Nicola M, Janiri L, Gallese V, Sani G. Sense of agency and its disturbances: A systematic review targeting the intentional binding effect in neuropsychiatric disorders. Psychiatry Clin Neurosci 2024; 78:3-18. [PMID: 37755315 PMCID: PMC11488622 DOI: 10.1111/pcn.13601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/12/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
Sense of agency (SoA) indicates a person's ability to perceive her/his own motor acts as actually being her/his and, through them, to exert control over the course of external events. Disruptions in SoA may profoundly affect the individual's functioning, as observed in several neuropsychiatric disorders. This is the first article to systematically review studies that investigated intentional binding (IB), a quantitative proxy for SoA measurement, in neurological and psychiatric patients. Eligible were studies of IB involving patients with neurological and/or psychiatric disorders. We included 15 studies involving 692 individuals. Risk of bias was low throughout studies. Abnormally increased action-outcome binding was found in schizophrenia and in patients with Parkinson's disease taking dopaminergic medications or reporting impulsive-compulsive behaviors. A decreased IB effect was observed in Tourette's disorder and functional movement disorders, whereas increased action-outcome binding was found in patients with the cortico-basal syndrome. The extent of IB deviation from healthy control values correlated with the severity of symptoms in several disorders. Inconsistent effects were found for autism spectrum disorders, anorexia nervosa, and borderline personality disorder. Findings pave the way for treatments specifically targeting SoA in neuropsychiatric disorders where IB is altered.
Collapse
Affiliation(s)
- Lorenzo Moccia
- Department of Neuroscience, Section of PsychiatryUniversità Cattolica del Sacro CuoreRomeItaly
- Department of PsychiatryFondazione Policlinico Universitario Agostino Gemelli IRCCSRomeItaly
| | - Michelangelo di Luzio
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital IRCCSRomeItaly
| | - Eliana Conte
- Department of Neuroscience, Section of PsychiatryUniversità Cattolica del Sacro CuoreRomeItaly
| | - Marco Modica
- Department of Neuroscience, Section of PsychiatryUniversità Cattolica del Sacro CuoreRomeItaly
| | - Marianna Ambrosecchia
- Department of Medicine and Surgery, Unit of NeuroscienceUniversity of ParmaParmaItaly
| | - Martina Ardizzi
- Department of Medicine and Surgery, Unit of NeuroscienceUniversity of ParmaParmaItaly
| | - Pierluigi Lanzotti
- Department of Neuroscience, Section of PsychiatryUniversità Cattolica del Sacro CuoreRomeItaly
| | - Georgios D. Kotzalidis
- Department of Neuroscience, Section of PsychiatryUniversità Cattolica del Sacro CuoreRomeItaly
- NESMOS DepartmentUniversity of Rome La Sapienza, Faculty of Medicine and Psychology, Sant'Andrea University HospitalRomeItaly
| | - Delfina Janiri
- Department of Neuroscience, Section of PsychiatryUniversità Cattolica del Sacro CuoreRomeItaly
- Department of PsychiatryFondazione Policlinico Universitario Agostino Gemelli IRCCSRomeItaly
| | - Marco Di Nicola
- Department of Neuroscience, Section of PsychiatryUniversità Cattolica del Sacro CuoreRomeItaly
- Department of PsychiatryFondazione Policlinico Universitario Agostino Gemelli IRCCSRomeItaly
| | - Luigi Janiri
- Department of Neuroscience, Section of PsychiatryUniversità Cattolica del Sacro CuoreRomeItaly
- Department of PsychiatryFondazione Policlinico Universitario Agostino Gemelli IRCCSRomeItaly
| | - Vittorio Gallese
- Department of Medicine and Surgery, Unit of NeuroscienceUniversity of ParmaParmaItaly
- Italian Academy for Advanced Studies in America at Columbia UniversityNew YorkNew YorkUSA
| | - Gabriele Sani
- Department of Neuroscience, Section of PsychiatryUniversità Cattolica del Sacro CuoreRomeItaly
- Department of PsychiatryFondazione Policlinico Universitario Agostino Gemelli IRCCSRomeItaly
| |
Collapse
|
36
|
Park S, Thomson P, Kiar G, Castellanos FX, Milham MP, Bernhardt B, Di Martino A. Delineating a Pathway for the Discovery of Functional Connectome Biomarkers of Autism. ADVANCES IN NEUROBIOLOGY 2024; 40:511-544. [PMID: 39562456 DOI: 10.1007/978-3-031-69491-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The promise of individually tailored care for autism has driven efforts to establish biomarkers. This chapter appraises the state of precision-medicine research focused on biomarkers based on the functional brain connectome. This work is grounded on abundant evidence supporting the brain dysconnection model of autism and the advantages of resting-state functional MRI (R-fMRI) for studying the brain in vivo. After considering biomarker requirements of consistency and clinical relevance, we provide a scoping review of R-fMRI studies of individual prediction in autism. In the past 10 years, responding to the availability of open data through the Autism Brain Imaging Data Exchange, machine learning studies have surged. Nearly all have focused on diagnostic label classification. These efforts have shown that autism prediction is feasible using functional connectome markers, with accuracy reported well above chance. In parallel, emerging approaches more directly addressing autism heterogeneity are paving the way for much-needed biomarkers of longitudinal outcome and treatment response. We conclude with key challenges to be addressed by the next generation of studies.
Collapse
Affiliation(s)
- Shinwon Park
- Child Mind Institute, Autism Center, New York, NY, USA
| | | | - Gregory Kiar
- Child Mind Institute, Center for Data Analytics, Innovation, and Rigor, New York, NY, USA
| | - F Xavier Castellanos
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Michael P Milham
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Child Mind Institute, Center for the Developing Brain, New York, NY, USA
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
37
|
Del Río M, Racey C, Ren Z, Qiu J, Wang HT, Ward J. Higher Sensory Sensitivity is Linked to Greater Expansion Amongst Functional Connectivity Gradients. J Autism Dev Disord 2024; 54:56-74. [PMID: 36227443 DOI: 10.1007/s10803-022-05772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
Abstract
Insofar as the autistic-like phenotype presents in the general population, it consists of partially dissociable traits, such as social and sensory issues. Here, we investigate individual differences in cortical organisation related to autistic-like traits. Connectome gradient decomposition based on resting state fMRI data reliably reveals a principal gradient spanning from unimodal to transmodal regions, reflecting the transition from perception to abstract cognition. In our non-clinical sample, this gradient's expansion, indicating less integration between visual and default mode networks, correlates with subjective sensory sensitivity (measured using the Glasgow Sensory Questionnaire, GSQ), but not other autistic-like traits (measured using the Autism Spectrum Quotient, AQ). This novel brain-based correlate of the GSQ demonstrates sensory issues can be disentangled from the wider autistic-like phenotype.
Collapse
Affiliation(s)
| | - Chris Racey
- School of Psychology, University of Sussex, Brighton, UK
- Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Zhiting Ren
- School of Psychology, Southwest University, Chongqing, China
| | - Jiang Qiu
- School of Psychology, Southwest University, Chongqing, China
| | - Hao-Ting Wang
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK
- Laboratory for Brain Simulation and Exploration (SIMEXP), Montreal Geriatrics Institute (CRIUGM), University of Montreal, Montreal, Canada
| | - Jamie Ward
- School of Psychology, University of Sussex, Brighton, UK
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK
- Sussex Neuroscience, University of Sussex, Brighton, UK
| |
Collapse
|
38
|
Parrella NF, Hill AT, Dipnall LM, Loke YJ, Enticott PG, Ford TC. Inhibitory dysfunction and social processing difficulties in autism: A comprehensive narrative review. J Psychiatr Res 2024; 169:113-125. [PMID: 38016393 DOI: 10.1016/j.jpsychires.2023.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/04/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
The primary inhibitory neurotransmitter γ-aminobutyric acid (GABA) has a prominent role in regulating neural development and function, with disruption to GABAergic signalling linked to behavioural phenotypes associated with neurodevelopmental disorders, particularly autism. Such neurochemical disruption, likely resulting from diverse genetic and molecular mechanisms, particularly during early development, can subsequently affect the cellular balance of excitation and inhibition in neuronal circuits, which may account for the social processing difficulties observed in autism and related conditions. This comprehensive narrative review integrates diverse streams of research from several disciplines, including molecular neurobiology, genetics, epigenetics, and systems neuroscience. In so doing it aims to elucidate the relevance of inhibitory dysfunction to autism, with specific focus on social processing difficulties that represent a core feature of this disorder. Many of the social processing difficulties experienced in autism have been linked to higher levels of the excitatory neurotransmitter glutamate and/or lower levels of inhibitory GABA. While current therapeutic options for social difficulties in autism are largely limited to behavioural interventions, this review highlights the psychopharmacological studies that explore the utility of GABA modulation in alleviating such difficulties.
Collapse
Affiliation(s)
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Department of Psychiatry, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lillian M Dipnall
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Early Life Epigenetics Group, Deakin University, Geelong, Australia
| | - Yuk Jing Loke
- Epigenetics Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Talitha C Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Centre for Human Psychopharmacology, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
39
|
Persichetti AS, Shao J, Gotts SJ, Martin A. A functional parcellation of the whole brain in individuals with autism spectrum disorder reveals atypical patterns of network organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571854. [PMID: 38168156 PMCID: PMC10760210 DOI: 10.1101/2023.12.15.571854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
BACKGROUND Researchers studying autism spectrum disorder (ASD) lack a comprehensive map of the functional network topography in the ASD brain. We used high-quality resting state functional MRI (rs-fMRI) connectivity data and a robust parcellation routine to provide a whole-brain map of functional networks in a group of seventy individuals with ASD and a group of seventy typically developing (TD) individuals. METHODS The rs-fMRI data were collected using an imaging sequence optimized to achieve high temporal signal-to-noise ratio (tSNR) across the whole-brain. We identified functional networks using a parcellation routine that intrinsically incorporates stability and replicability of the networks by keeping only network distinctions that agree across halves of the data over multiple random iterations in each group. The groups were tightly matched on tSNR, in-scanner motion, age, and IQ. RESULTS We compared the maps from each group and found that functional networks in the ASD group are atypical in three seemingly related ways: 1) whole-brain connectivity patterns are less stable across voxels within multiple functional networks, 2) the cerebellum, subcortex, and hippocampus show weaker differentiation of functional subnetworks, and 3) subcortical structures and the hippocampus are atypically integrated with the neocortex. CONCLUSIONS These results were statistically robust and suggest that patterns of network connectivity between the neocortex and the cerebellum, subcortical structures, and hippocampus are atypical in ASD individuals.
Collapse
Affiliation(s)
- Andrew S Persichetti
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Jiayu Shao
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Stephen J Gotts
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Alex Martin
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
40
|
Chen K, Zhuang W, Zhang Y, Yin S, Liu Y, Chen Y, Kang X, Ma H, Zhang T. Alteration of the large-scale white-matter functional networks in autism spectrum disorder. Cereb Cortex 2023; 33:11582-11593. [PMID: 37851712 DOI: 10.1093/cercor/bhad392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023] Open
Abstract
Autism spectrum disorder is a neurodevelopmental disorder whose core deficit is social dysfunction. Previous studies have indicated that structural changes in white matter are associated with autism spectrum disorder. However, few studies have explored the alteration of the large-scale white-matter functional networks in autism spectrum disorder. Here, we identified ten white-matter functional networks on resting-state functional magnetic resonance imaging data using the K-means clustering algorithm. Compared with the white matter and white-matter functional network connectivity of the healthy controls group, we found significantly decreased white matter and white-matter functional network connectivity mainly located within the Occipital network, Middle temporo-frontal network, and Deep network in autism spectrum disorder. Compared with healthy controls, findings from white-matter gray-matter functional network connectivity showed the decreased white-matter gray-matter functional network connectivity mainly distributing in the Occipital network and Deep network. Moreover, we compared the spontaneous activity of white-matter functional networks between the two groups. We found that the spontaneous activity of Middle temporo-frontal and Deep network was significantly decreased in autism spectrum disorder. Finally, the correlation analysis showed that the white matter and white-matter functional network connectivity between the Middle temporo-frontal network and others networks and the spontaneous activity of the Deep network were significantly correlated with the Social Responsiveness Scale scores of autism spectrum disorder. Together, our findings indicate that changes in the white-matter functional networks are associated behavioral deficits in autism spectrum disorder.
Collapse
Affiliation(s)
- Kai Chen
- Mental Health Education Center and School of Big Health Management, Xihua University, Jinniu District, Chengdu, Sichuan, China
| | - Wenwen Zhuang
- Mental Health Education Center and School of Big Health Management, Xihua University, Jinniu District, Chengdu, Sichuan, China
| | - Yanfang Zhang
- Department of Ultrasonic Medicine, Baiyun Branch, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun District, Guangzhou City, Guangdong Province, China
| | - Shunjie Yin
- Mental Health Education Center and School of Big Health Management, Xihua University, Jinniu District, Chengdu, Sichuan, China
| | - Yinghua Liu
- Mental Health Education Center and School of Big Health Management, Xihua University, Jinniu District, Chengdu, Sichuan, China
| | - Yuan Chen
- Mental Health Education Center and School of Big Health Management, Xihua University, Jinniu District, Chengdu, Sichuan, China
| | - Xiaodong Kang
- The Department of Sichuan 81 Rehabilitation Center, Chengdu University of TCM, No. 81 Bayi Road, Yongning Street, Wenjiang District, Chengdu City 610075, China
| | - Hailin Ma
- Plateau Brain Science Research Center, Tibet University, 10 Zangda East Road, Lhasa City 510631, China
| | - Tao Zhang
- Mental Health Education Center and School of Big Health Management, Xihua University, Jinniu District, Chengdu, Sichuan, China
| |
Collapse
|
41
|
Fateh AA, Huang W, Hassan M, Zhuang Y, Lin J, Luo Y, Yang B, Zeng H. Default mode network connectivity and social dysfunction in children with Attention Deficit/Hyperactivity Disorder. Int J Clin Health Psychol 2023; 23:100393. [PMID: 37829190 PMCID: PMC10564936 DOI: 10.1016/j.ijchp.2023.100393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/23/2023] [Indexed: 10/14/2023] Open
Abstract
Objective Attention Deficit/Hyperactivity Disorder (ADHD) negatively affects social functioning; however, its neurological underpinnings remain unclear. Altered Default Mode Network (DMN) connectivity may contribute to social dysfunction in ADHD. We investigated whether DMN's dynamic functional connectivity (dFC) alterations were associated with social dysfunction in individuals with ADHD. Methods Resting-state fMRI was used to examine DMN subsystems (dorsal medial prefrontal cortex (dMPFC), medial temporal lobe (MTL)) and the midline core in 40 male ADHD patients (7-10 years) and 45 healthy controls (HCs). Connectivity correlations with symptoms and demographic data were assessed. Group-based analyses compared rsFC between groups with two-sample t-tests and post-hoc analyses. Results Social dysfunction in ADHD patients was related to reduced DMN connectivity, specifically in the MTL subsystem and the midline core. ADHD patients showed decreased dFC between parahippocampal cortex (PHC) and left superior frontal gyrus, and between ventral medial prefrontal cortex (vMPFC) and right middle frontal gyrus compared to HCs (MTL subsystem). Additionally, decreased dFC between posterior cingulate cortex (PCC), anterior medial prefrontal cortex (aMPFC), and right angular gyrus (midline core) was observed in ADHD patients relative to HCs. No abnormal connectivity was found within the dMPFC. Conclusion Preliminary findings suggest that DMN connectional abnormalities may contribute to social dysfunction in ADHD, providing insights into the disorder's neurobiology and pathophysiology.
Collapse
Affiliation(s)
- Ahmed Ameen Fateh
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Wenxian Huang
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Muhammad Hassan
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Yijiang Zhuang
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Jieqiong Lin
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Yi Luo
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Binrang Yang
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Hongwu Zeng
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen 518038, China
| |
Collapse
|
42
|
Ong LT, Fan SWD. Morphological and Functional Changes of Cerebral Cortex in Autism Spectrum Disorder. INNOVATIONS IN CLINICAL NEUROSCIENCE 2023; 20:40-47. [PMID: 38193097 PMCID: PMC10773605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by early-onset impairments in socialization, communication, repetitive behaviors, and restricted interests. ASD exhibits considerable heterogeneity, with clinical presentations varying across individuals and age groups. The pathophysiology of ASD is hypothesized to be due to abnormal brain development influenced by a combination of genetic and environmental factors. One of the most consistent morphological parameters for assessing the abnormal brain structures in patients with ASD is cortical thickness. Studies have shown changes in the cortical thickness within the frontal, temporal, parietal, and occipital lobes of individuals with ASD. These changes in cortical thickness often correspond to specific clinical features observed in individuals with ASD. Furthermore, the aberrant brain anatomical features and cortical thickness alterations may lead to abnormal brain connectivity and synaptic structure. Additionally, ASD is associated with cortical hyperplasia in early childhood, followed by a cortical plateau and subsequent decline in later stages of development. However, research in this area has yielded contradictory findings regarding the cortical thickness across various brain regions in ASD.
Collapse
Affiliation(s)
- Leong Tung Ong
- Both authors are with Faculty of Medicine, University of Malaya in Kuala Lumpur, Malaysia
| | - Si Wei David Fan
- Both authors are with Faculty of Medicine, University of Malaya in Kuala Lumpur, Malaysia
| |
Collapse
|
43
|
Jayashankar A, Bynum B, Butera C, Kilroy E, Harrison L, Aziz-Zadeh L. Connectivity differences between inferior frontal gyrus and mentalizing network in autism as compared to developmental coordination disorder and non-autistic youth. Cortex 2023; 167:115-131. [PMID: 37549452 PMCID: PMC10543516 DOI: 10.1016/j.cortex.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 08/09/2023]
Abstract
Prior studies have compared neural connectivity during mentalizing tasks in autism (ASD) to non-autistic individuals and found reduced connectivity between the inferior frontal gyrus (IFG) and mentalizing regions. However, given that the IFG is involved in motor processing, and about 80% of autistic individuals have motor-related difficulties, it is necessary to explore if these differences are specific to ASD or instead similar across other developmental motor disorders, such as developmental coordination disorder (DCD). Participants (29 ASD, 20 DCD, 31 typically developing [TD]; ages 8-17) completed a mentalizing task in the fMRI scanner, where they were asked to think about why someone was performing an action. Results indicated that the ASD group, as compared to both TD and DCD groups, showed significant functional connectivity differences when mentalizing about other's actions. The left IFG seed revealed ASD connectivity differences with the: bilateral temporoparietal junction (TPJ), left insular cortex, and bilateral dorsolateral prefrontal cortex (DLPFC). Connectivity differences using the right IFG seed revealed ASD differences in the: left insula, and right DLPFC. These results indicate that connectivity differences between the IFG, mentalizing regions, emotion and motor processing regions are specific to ASD and not a result of potentially co-occurring motor differences.
Collapse
Affiliation(s)
- Aditya Jayashankar
- Center for Neuroscience of Embodied Cognition (CeNEC), Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA; USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
| | - Brittany Bynum
- Center for Neuroscience of Embodied Cognition (CeNEC), Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA; USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Christiana Butera
- Center for Neuroscience of Embodied Cognition (CeNEC), Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA; USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
| | - Emily Kilroy
- Center for Neuroscience of Embodied Cognition (CeNEC), Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA; USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
| | - Laura Harrison
- Center for Neuroscience of Embodied Cognition (CeNEC), Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA; USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
| | - Lisa Aziz-Zadeh
- Center for Neuroscience of Embodied Cognition (CeNEC), Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA; USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
44
|
Lian X, Hong WCH, Gao F, Kolletar-Zhu K, Wang J, Cai C, Yang F, Chen X, Wang Z, Gao H. The effect of background elements of pictures on the visual attention among ASD children with intellectual disabilities, children with intellectual disabilities and typical development: Evidence from eye-tracking and fMRI. RESEARCH IN DEVELOPMENTAL DISABILITIES 2023; 141:104602. [PMID: 37757565 DOI: 10.1016/j.ridd.2023.104602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 08/20/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Traditional picture books for children come with colourful images and a multitude of elements to attract attention and increase the reading interest of typical-developing (TD) children. However, children with Autism Spectrum Disorder (ASD) are less capable of filtering out unimportant elements in pictures and focusing on social items (e.g., human faces). This study proposed that the removal of background and less important elements in the pictures of children's storybooks could facilitate better attention and enhance children with ASD's focus on the main object and thus the intended meaning of the storybook. We adopted pictures from a well-known children's book and modified them by removing the inessential background elements. Then, ASD children with intellectual disabilities (ASD+ID) (n = 40), children with ID (n = 38) and TD (n = 40) were asked to view the original and modified pictures in an eye-tracking experiment, respectively. Additionally, brain activation of ASD+ID participants (n = 10) was recorded as they were viewing those pictures in an fMRI scan. Eye-tracking found that ASD+ID children viewed the modified pictures with significantly longer average fixations, fewer fixations, fewer saccades, and higher fixation/saccade duration ratio. Contrary to the original pictures, no significant differences were found among ASD+ID, ID only and TD. Especially, ASD+ID group showed highly similar visual patterns to the TD participants when viewing the modified pictures and particularly focusing on the main character in the pictures. Additional fMRI evidence on ASD+ID group also revealed that modified pictures were associated with enhanced activation in bilateral fusiform gyri as compared to those from original pictures, which might suggest increased visual attention. Theoretical and practical implications were discussed in light of our findings.
Collapse
Affiliation(s)
- Xiang Lian
- Quanzhou Preschool Education College, Quanzhou, Fujian, China
| | - Wilson Cheong Hin Hong
- Centre for Teaching and Learning Enhancement, Macao Institute for Tourism Studies, Macao Special Administrative Region of China
| | - Fei Gao
- Institute of Modern Languages and Linguistics, Fudan University, Shanghai, China
| | | | - Jiayin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Chi Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Fuxing Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Xiangrong Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Zhi Wang
- Faculty of Education, University of Malaya, Kuala Lumpur, Malaysia
| | - Hongzhi Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Fujian, China.
| |
Collapse
|
45
|
Hormovas J, Dadario NB, Tang SJ, Nicholas P, Dhanaraj V, Young I, Doyen S, Sughrue ME. Parcellation-Based Connectivity Model of the Judgement Core. J Pers Med 2023; 13:1384. [PMID: 37763153 PMCID: PMC10532823 DOI: 10.3390/jpm13091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Judgement is a higher-order brain function utilized in the evaluation process of problem solving. However, heterogeneity in the task methodology based on the many definitions of judgement and its expansive and nuanced applications have prevented the identification of a unified cortical model at a level of granularity necessary for clinical translation. Forty-six task-based fMRI studies were used to generate activation-likelihood estimations (ALE) across moral, social, risky, and interpersonal judgement paradigms. Cortical parcellations overlapping these ALEs were used to delineate patterns in neurocognitive network engagement for the four judgement tasks. Moral judgement involved the bilateral superior frontal gyri, right temporal gyri, and left parietal lobe. Social judgement demonstrated a left-dominant frontoparietal network with engagement of right-sided temporal limbic regions. Moral and social judgement tasks evoked mutual engagement of the bilateral DMN. Both interpersonal and risk judgement were shown to involve a right-sided frontoparietal network with accompanying engagement of the left insular cortex, converging at the right-sided CEN. Cortical activation in normophysiological judgement function followed two separable patterns involving the large-scale neurocognitive networks. Specifically, the DMN was found to subserve judgement centered around social inferences and moral cognition, while the CEN subserved tasks involving probabilistic reasoning, risk estimation, and strategic contemplation.
Collapse
Affiliation(s)
- Jorge Hormovas
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Level 7 Prince of Wales Private Hospital, Randwick, NSW 2031, Australia; (J.H.); (V.D.)
| | - Nicholas B. Dadario
- Robert Wood Johnson Medical School, Rutgers University, 125 Paterson St., New Brunswick, NJ 08901, USA;
| | - Si Jie Tang
- School of Medicine, 21772 University of California Davis Medical Center, 2315 Stockton Blvd., Sacramento, CA 95817, USA
| | - Peter Nicholas
- Omniscient Neurotechnology, Level 10/580 George Street, Haymarket, NSW 2000, Australia; (P.N.); (I.Y.); (S.D.)
| | - Vukshitha Dhanaraj
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Level 7 Prince of Wales Private Hospital, Randwick, NSW 2031, Australia; (J.H.); (V.D.)
| | - Isabella Young
- Omniscient Neurotechnology, Level 10/580 George Street, Haymarket, NSW 2000, Australia; (P.N.); (I.Y.); (S.D.)
| | - Stephane Doyen
- Omniscient Neurotechnology, Level 10/580 George Street, Haymarket, NSW 2000, Australia; (P.N.); (I.Y.); (S.D.)
| | - Michael E. Sughrue
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Level 7 Prince of Wales Private Hospital, Randwick, NSW 2031, Australia; (J.H.); (V.D.)
- Omniscient Neurotechnology, Level 10/580 George Street, Haymarket, NSW 2000, Australia; (P.N.); (I.Y.); (S.D.)
| |
Collapse
|
46
|
Soylu F, May K, Kana R. White and gray matter correlates of theory of mind in autism: a voxel-based morphometry study. Brain Struct Funct 2023; 228:1671-1689. [PMID: 37452864 DOI: 10.1007/s00429-023-02680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
Autism spectrum disorder (ASD) is characterized by difficulties in theory of mind (ToM) and social communication. Studying structural and functional correlates of ToM in the brain and how autistic and nonautistic groups differ in terms of these correlates can help with diagnosis and understanding the biological mechanisms of ASD. In this study, we investigated white matter volume (WMV) and gray matter volume (GMV) differences between matching autistic and nonautistic samples, and how these structural features relate to age and ToM skills, indexed by the Reading the Mind in the Eyes (RMIE) measure. The results showed widespread GMV and WMV differences between the two groups in regions crucial for social processes. The autistic group did not express the typically observed negative GMV and positive WMV correlations with age at the same level as the nonautistic group, pointing to abnormalities in developmental structural changes. In addition, we found differences between the two groups in how GMV relates to ToM, particularly in the left frontal regions, and how WMV relates to ToM, mostly in the cingulate and corpus callosum. Finally, GMV in the left insula, a region that is part of the salience network, was found to be crucial in distinguishing ToM performance between the two groups.
Collapse
Affiliation(s)
- Firat Soylu
- Educational Psychology Program, The University of Alabama, Tuscaloosa, USA.
| | - Kaitlyn May
- Educational Psychology Program, The University of Alabama, Tuscaloosa, USA
| | - Rajesh Kana
- Department of Psychology, & the Center for Innovative Research in Autism, University of Alabama, Tuscaloosa, USA
| |
Collapse
|
47
|
Möde L, Borgolte A, Ghaneirad E, Roy M, Sinke C, Szycik GR, Bleich S, Wiswede D. Cognitive control in adults with high-functioning autism spectrum disorder: a study with event-related potentials. Front Psychiatry 2023; 14:1180827. [PMID: 37599885 PMCID: PMC10436303 DOI: 10.3389/fpsyt.2023.1180827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Little is known about cognitive control in adults with high-functioning forms of autism spectrum disorder because previous research focused on children and adolescents. Cognitive control is crucial to monitor and readjust behavior after errors to select contextually appropriate reactions. The congruency effect and conflict adaptation are measures of cognitive control. Post-error slowing, error-related negativity and error positivity provide insight into behavioral and electrophysiological correlates of error processing. In children and adolescent with autism spectrum disorder deficits in cognitive control and error processing have been shown by changes in post-error slowing, error-related negativity and error positivity in the flanker task. Methods We performed a modified Eriksen flanker task in 17 adults with high-functioning autism spectrum disorder and 17 healthy controls. As behavioral measures of cognitive control and error processing, we included reaction times and error rates to calculate congruency effects, conflict adaptation, and post-error slowing. Event-related potentials namely error-related negativity and error positivity were measured to assess error-related brain activity. Results Both groups of participants showed the expected congruency effects demonstrated by faster and more accurate responses in congruent compared to incongruent trials. Healthy controls exhibited conflict adaptation as they obtained performance benefits after incongruent trials whereas patients with autism spectrum disorder did not. The expected slowing in reaction times after errors was observed in both groups of participants. Individuals with autism spectrum disorder demonstrated enhanced electrophysiological error-processing compared to healthy controls indicated by increased error-related negativity and error positivity difference amplitudes. Discussion Our findings show that adults with high-functioning autism spectrum disorder do not show the expected upregulation of cognitive control in response to conflicts. This finding implies that previous experiences may have a reduced influence on current behavior in these patients which possibly contributes to less flexible behavior. Nevertheless, we observed intact behavioral reactions after errors indicating that adults with high-functioning autism spectrum disorder can flexibly adjust behavior in response to changed environmental demands when necessary. The enhancement of electrophysiological error-processing indicates that adults with high-functioning autism spectrum disorder demonstrate an extraordinary reactivity toward errors reflecting increased performance monitoring in this subpopulation of autism spectrum disorder patients.
Collapse
Affiliation(s)
- Laura Möde
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Anna Borgolte
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Erfan Ghaneirad
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Mandy Roy
- Asklepios, Psychiatric Hospital Ochsenzoll, Hamburg, Germany
| | - Christopher Sinke
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Gregor R. Szycik
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
- Center of Systems Neuroscience, Hannover, Germany
| | - Daniel Wiswede
- Department of Neurology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
48
|
Faraji J, Metz GAS. Toward reframing brain-social dynamics: current assumptions and future challenges. Front Psychiatry 2023; 14:1211442. [PMID: 37484686 PMCID: PMC10359502 DOI: 10.3389/fpsyt.2023.1211442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Evolutionary analyses suggest that the human social brain and sociality appeared together. The two fundamental tools that accelerated the concurrent emergence of the social brain and sociality include learning and plasticity. The prevailing core idea is that the primate brain and the cortex in particular became reorganised over the course of evolution to facilitate dynamic adaptation to ongoing changes in physical and social environments. Encouraged by computational or survival demands or even by instinctual drives for living in social groups, the brain eventually learned how to learn from social experience via its massive plastic capacity. A fundamental framework for modeling these orchestrated dynamic responses is that social plasticity relies upon neuroplasticity. In the present article, we first provide a glimpse into the concepts of plasticity, experience, with emphasis on social experience. We then acknowledge and integrate the current theoretical concepts to highlight five key intertwined assumptions within social neuroscience that underlie empirical approaches for explaining the brain-social dynamics. We suggest that this epistemological view provides key insights into the ontology of current conceptual frameworks driving future research to successfully deal with new challenges and possible caveats in favour of the formulation of novel assumptions. In the light of contemporary societal challenges, such as global pandemics, natural disasters, violent conflict, and other human tragedies, discovering the mechanisms of social brain plasticity will provide new approaches to support adaptive brain plasticity and social resilience.
Collapse
|
49
|
Min JY, Park S, Cho J, Huh Y. The anterior insular cortex processes social recognition memory. Sci Rep 2023; 13:10853. [PMID: 37407809 DOI: 10.1038/s41598-023-38044-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023] Open
Abstract
Impaired social abilities are characteristics of a variety of psychiatric disorders such as schizophrenia, autism spectrum disorder, and bipolar disorder. Studies consistently implicated the relationship between the anterior insular cortex (aIC) and social ability, however, how the aIC involves in processing specific subtypes of social ability was uninvestigated. We, therefore, investigated whether the absence or presence of the aIC affects the social behaviors of mice. We found that electrolytic lesions of the aIC specifically impaired mice's ability to recognize a novel stranger mouse, while the sociability of the aIC-lesioned mice was intact. Interestingly, the aIC-lesioned mice were still distinguished between a mouse that had been housed together before the aIC lesion and a novel mouse, supporting that retrieval of social recognition memory may not involve the aIC. Additional behavioral tests revealed that this specific social ability impairment induced by the aIC lesion was not due to impairment in olfaction, learning and memory, locomotion, or anxiety levels. Together our data suggest that the aIC is specifically involved in processing social recognition memory, but not necessarily involved in retrieving it.
Collapse
Affiliation(s)
- Ji-You Min
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sanggeon Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
- Brain Disease Research Institute, Ewha Brain Institute, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jeiwon Cho
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea.
- Brain Disease Research Institute, Ewha Brain Institute, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - Yeowool Huh
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung‑si, 25601, Republic of Korea.
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, 22711, Republic of Korea.
| |
Collapse
|
50
|
Chen J, Wei Z, Xu C, Peng Z, Yang J, Wan G, Chen B, Gong J, Zhou K. Social visual preference mediates the effect of cortical thickness on symptom severity in children with autism spectrum disorder. Front Psychiatry 2023; 14:1132284. [PMID: 37398604 PMCID: PMC10311909 DOI: 10.3389/fpsyt.2023.1132284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/29/2023] [Indexed: 07/04/2023] Open
Abstract
Background Evidence suggests that there is a robust relationship between altered neuroanatomy and autistic symptoms in individuals with autism spectrum disorder (ASD). Social visual preference, which is regulated by specific brain regions, is also related to symptom severity. However, there were a few studies explored the potential relationships among brain structure, symptom severity, and social visual preference. Methods The current study investigated relationships among brain structure, social visual preference, and symptom severity in 43 children with ASD and 26 typically developing (TD) children (aged 2-6 years). Results Significant differences were found in social visual preference and cortical morphometry between the two groups. Decreased percentage of fixation time in digital social images (%DSI) was negatively related to not only the thickness of the left fusiform gyrus (FG) and right insula, but also the Calibrated Severity Scores for the Autism Diagnostic Observation Schedule-Social Affect (ADOS-SA-CSS). Mediation analysis showed that %DSI partially mediated the relationship between neuroanatomical alterations (specifically, thickness of the left FG and right insula) and symptom severity. Conclusion These findings offer initial evidence that atypical neuroanatomical alterations may not only result in direct effects on symptom severity but also lead to indirect effects on symptom severity through social visual preference. This finding enhances our understanding of the multiple neural mechanisms implicated in ASD.
Collapse
Affiliation(s)
- Jierong Chen
- Department of Child Psychiatry and Rehabilitation, Affliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Zhen Wei
- Department of Child Psychiatry and Rehabilitation, Affliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Ministry of Education, Guangzhou, China
| | - Chuangyong Xu
- Department of Child Psychiatry and Rehabilitation, Affliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Ziwen Peng
- Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Junjie Yang
- Department of Child Health Care, Luohu District Maternal and Child Health Care Hospital, Shenzhen, China
| | - Guobin Wan
- Department of Child Psychiatry and Rehabilitation, Affliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Bin Chen
- Department of Child Psychiatry and Rehabilitation, Affliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jianhua Gong
- Department of Child Health Care, Luohu District Maternal and Child Health Care Hospital, Shenzhen, China
| | - Keying Zhou
- Department of Pediatrics, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|