1
|
Reduction of stress responses in honey bees by synthetic ligands targeting an allatostatin receptor. Sci Rep 2022; 12:16760. [PMID: 36202961 PMCID: PMC9537510 DOI: 10.1038/s41598-022-20978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/21/2022] [Indexed: 11/08/2022] Open
Abstract
Honey bees are of great economic and ecological importance, but are facing multiple stressors that can jeopardize their pollination efficiency and survival. Therefore, understanding the physiological bases of their stress response may help defining treatments to improve their resilience. We took an original approach to design molecules with this objective. We took advantage of the previous identified neuropeptide allatostatin A (ASTA) and its receptor (ASTA-R) as likely mediators of the honey bee response to a biologically relevant stressor, exposure to an alarm pheromone compound. A first series of ASTA-R ligands were identified through in silico screening using a homology 3D model of the receptor and in vitro binding experiments. One of these (A8) proved also efficient in vivo, as it could counteract two behavioral effects of pheromone exposure, albeit only in the millimolar range. This putative antagonist was used as a template for the chemical synthesis of a second generation of potential ligands. Among these, two compounds showed improved efficiency in vivo (in the micromolar range) as compared to A8 despite no major improvement in their affinity for the receptor in vitro. These new ligands are thus promising candidates for alleviating stress in honey bees.
Collapse
|
2
|
Mohd Zahir I, Ogawa S, Dominic NA, Soga T, Parhar IS. Spexin and Galanin in Metabolic Functions and Social Behaviors With a Focus on Non-Mammalian Vertebrates. Front Endocrinol (Lausanne) 2022; 13:882772. [PMID: 35692389 PMCID: PMC9174643 DOI: 10.3389/fendo.2022.882772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/19/2022] [Indexed: 01/31/2023] Open
Abstract
Spexin (SPX) and galanin (GAL) are two neuropeptides that are phylogenetically related and have descended from a common ancestral gene. Considerable attention has been given to these two multifunctional neuropeptides because they share GAL receptors 1,2, and 3. Since GAL and SPX-synthesizing neurons have been detected in several brain areas, therefore, it can be speculated that SPX and GAL are involved in various neurophysiological functions. Several studies have shown the functions of these two neuropeptides in energy regulation, reproduction, and response to stress. SPX acts as a satiety factor to suppress food intake, while GAL has the opposite effect as an orexigenic factor. There is evidence that SPX acts as an inhibitor of reproductive functions by suppressing gonadotropin release, while GAL modulates the activity of gonadotropin-releasing hormone (GnRH) neurons in the brain and gonadotropic cells in the pituitary. SPX and GAL are responsive to stress. Furthermore, SPX can act as an anxiolytic factor, while GAL exerts anti-depressant and pro-depressive effects depending on the receptor it binds. This review describes evidence supporting the central roles of SPX and GAL neuropeptides in energy balance, reproduction, stress, and social behaviors, with a particular focus on non-mammalian vertebrate systems.
Collapse
Affiliation(s)
- Izzati Mohd Zahir
- Brain Research Institute Monash Sunway, School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute Monash Sunway, School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | | | - Tomoko Soga
- Brain Research Institute Monash Sunway, School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Ishwar S. Parhar
- Brain Research Institute Monash Sunway, School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
- *Correspondence: Ishwar S. Parhar,
| |
Collapse
|
3
|
Abdel-Bakky MS, Amin E, Faris TM, Abdellatif AA. Mental depression: Relation to different disease status, newer treatments and its association with COVID-19 pandemic (Review). Mol Med Rep 2021; 24:839. [PMID: 34633054 PMCID: PMC8524409 DOI: 10.3892/mmr.2021.12479] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/10/2021] [Indexed: 12/22/2022] Open
Abstract
The present study aimed to review major depression, including its types, epidemiology, association with different diseases status and treatments, as well as its correlation with the current COVID-19 pandemic. Mental depression is a common disorder that affects most individuals at one time or another. During depression, there are changes in mood and behavior, accompanied by feelings of defeat, hopelessness, or even suicidal thoughts. Depression has a direct or indirect relation with a number of other diseases including Alzheimer's disease, stroke, epilepsy, diabetes, cardiovascular disease and cancer. In addition, antidepressant drugs have several side effects including sedation, increased weight, indigestion, sexual dysfunction, or a decrease in blood pressure. Stopping medication may cause a relapse of the symptoms of depression and pose a risk of attempted suicide. The pandemic of COVID-19 has affected the mental health of individuals, including patients, individuals contacting patients and medical staff with a number of mental disorders that may adversely affect the immune ability of their bodies. Some of the drugs currently included in the protocols for treating COVID-19 may negatively affect the mental health of patients. Evidence accumulated over the years indicates that serotonin (5HT) deficiencies and norepinephrine (NE) in the brain can lead to mental depression. Drugs that increase levels of NE and 5HT are commonly used in the treatment of depression. The common reason for mood disorders, including mania and bipolar disease are not clearly understood. It is assumed that hyperactivity in specific parts of the brain and excessive activity of neurotransmitters may be involved. Early diagnosis and developing new treatment strategies are essential for the prevention of the severe consequences of depression. In addition, extensive research should be directed towards the investigation of the mental health disturbances occurring during and/or after COVID-19 infection. This may lead to the incorporation of a suitable antidepressant into the current treatment protocols.
Collapse
Affiliation(s)
- Mohamed S. Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Qassim 51452, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Elham Amin
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Qassim 52471, Saudi Arabia
| | - Tarek M. Faris
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed A.H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Qassim 51452, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
4
|
Foster SL, Galaj E, Karne SL, Ferré S, Weinshenker D. Cell-type specific expression and behavioral impact of galanin and GalR1 in the locus coeruleus during opioid withdrawal. Addict Biol 2021; 26:e13037. [PMID: 33768673 PMCID: PMC8376771 DOI: 10.1111/adb.13037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
The neuropeptide galanin is reported to attenuate opioid withdrawal symptoms, potentially by reducing neuronal hyperactivity in the noradrenergic locus coeruleus (LC) via galanin receptor 1 (GalR1). We evaluated this mechanism by using RNAscope in situ hybridization to characterize GalR1 mRNA distribution in the dorsal pons and to compare galanin and GalR1 mRNA expression in tyrosine hydroxylase-positive (TH+) LC cells at baseline and following chronic morphine or precipitated withdrawal. We then used genetically altered mouse lines and pharmacology to test whether noradrenergic galanin (NE-Gal) modulates withdrawal symptoms. RNAscope revealed that, while GalR1 signal was evident in the dorsal pons, 80.7% of the signal was attributable to TH- neurons outside the LC. Galanin and TH mRNA were abundant in LC cells at baseline and were further increased by withdrawal, whereas low basal GalR1 mRNA expression was unaltered by chronic morphine or withdrawal. Naloxone-precipitated withdrawal symptoms in mice lacking NE-Gal (GalcKO-Dbh ) were largely similar to WT littermates, indicating that loss of NE-Gal does not exacerbate withdrawal. Complementary experiments using NE-Gal overexpressor mice (NE-Gal OX) and systemic administration of the galanin receptor agonist galnon revealed that increasing galanin signaling also failed to alter behavioral withdrawal, while suppressing noradrenergic transmission with the alpha-2 adrenergic receptor agonist clonidine attenuated multiple symptoms. These results indicate that galanin does not acutely attenuate precipitated opioid withdrawal via an LC-specific mechanism, which has important implications for the general role of galanin in regulation of somatic and affective opioid responses and LC activity.
Collapse
Affiliation(s)
- Stephanie L. Foster
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ewa Galaj
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland, USA
| | - Saumya L. Karne
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA,Correspondence: David Weinshenker, PhD, Department of Human Genetics, 615 Michael St, Whitehead 301, Atlanta, GA 30322, , Fax: (404) 727-3949
| |
Collapse
|
5
|
Ullrich D, Mac Gillavry DW. Mini-review: A possible role for galanin in post-traumatic stress disorder. Neurosci Lett 2021; 756:135980. [PMID: 34023414 DOI: 10.1016/j.neulet.2021.135980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/02/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
Several neuroendocrine systems have been implicated in post-traumatic stress disorder, including the mesocortical and mesolimbic dopamine, the norepinephrine, the β-endorphin, the serotonin, and the oxytocin systems. The interaction between these different systems remains, however, largely unknown and a generally accepted unifying theory is thus far lacking. In this review, we suggest that galanergic suppression of dopaminergic neurons in the ventral tegmental may constitute the missing link in a post-traumatic feedback loop. In addition, we address the literature on the negative cross-antagonism in this brain region between the galanin 1 and μ-opioid receptors, which suggests that behavioural patterns which stimulate β-endorphin, a natural μ-opioid receptors ligand, secretion may provide novel avenues for the treatment and prevention of PTSD, as well as for recruitment, training, and leadership processes in high-stress/high-risk professions such as the military, first responders and the police.
Collapse
Affiliation(s)
- David Ullrich
- Department of Military Leadership, University of Defence, Brno, Czech Republic
| | | |
Collapse
|
6
|
Volumetric trajectories of hippocampal subfields and amygdala nuclei influenced by adolescent alcohol use and lifetime trauma. Transl Psychiatry 2021; 11:154. [PMID: 33654086 PMCID: PMC7925562 DOI: 10.1038/s41398-021-01275-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Abstract
Alcohol use and exposure to psychological trauma frequently co-occur in adolescence and share many risk factors. Both exposures have deleterious effects on the brain during this sensitive developmental period, particularly on the hippocampus and amygdala. However, very little is known about the individual and interactive effects of trauma and alcohol exposure and their specific effects on functionally distinct substructures within the adolescent hippocampus and amygdala. Adolescents from a large longitudinal sample (N = 803, 2684 scans, 51% female, and 75% White/Caucasian) ranging in age from 12 to 21 years were interviewed about exposure to traumatic events at their baseline evaluation. Assessments for alcohol use and structural magnetic resonance imaging scans were completed at baseline and repeated annually to examine neurodevelopmental trajectories. Hippocampal and amygdala subregions were segmented using Freesurfer v6.0 tools, followed by volumetric analysis with generalized additive mixed models. Longitudinal statistical models examined the effects of cumulative lifetime trauma measured at baseline and alcohol use measured annually on trajectories of hippocampal and amygdala subregions, while controlling for covariates known to impact brain development. Greater alcohol use, quantified using the Cahalan scale and measured annually, was associated with smaller whole hippocampus (β = -12.0, pFDR = 0.009) and left hippocampus tail volumes (β = -1.2, pFDR = 0.048), and larger right CA3 head (β = 0.4, pFDR = 0.027) and left subiculum (β = 0.7, pFDR = 0.046) volumes of the hippocampus. In the amygdala, greater alcohol use was associated with larger right basal nucleus volume (β = 1.3, pFDR = 0.040). The effect of traumatic life events measured at baseline was associated with larger right CA3 head volume (β = 1.3, pFDR = 0.041) in the hippocampus. We observed an interaction between baseline trauma and within-person age change where younger adolescents with greater trauma exposure at baseline had smaller left hippocampal subfield volumes in the subiculum (β = 0.3, pFDR = 0.029) and molecular layer HP head (β = 0.3, pFDR = 0.041). The interaction also revealed that older adolescents with greater trauma exposure at baseline had larger right amygdala nucleus volume in the paralaminar nucleus (β = 0.1, pFDR = 0.045), yet smaller whole amygdala volume overall (β = -3.7, pFDR = 0.003). Lastly, we observed an interaction between alcohol use and baseline trauma such that adolescents who reported greater alcohol use with greater baseline trauma showed smaller right hippocampal subfield volumes in the CA1 head (β = -1.1, pFDR = 0.011) and hippocampal head (β = -2.6, pFDR = 0.025), yet larger whole hippocampus volume overall (β = 10.0, pFDR = 0.032). Cumulative lifetime trauma measured at baseline and alcohol use measured annually interact to affect the volume and trajectory of hippocampal and amygdala substructures (measured via structural MRI annually), regions that are essential for emotion regulation and memory. Our findings demonstrate the value of examining these substructures and support the hypothesis that the amygdala and hippocampus are not homogeneous brain regions.
Collapse
|
7
|
Belda X, Fuentes S, Labad J, Nadal R, Armario A. Acute exposure of rats to a severe stressor alters the circadian pattern of corticosterone and sensitizes to a novel stressor: Relationship to pre-stress individual differences in resting corticosterone levels. Horm Behav 2020; 126:104865. [PMID: 32991887 DOI: 10.1016/j.yhbeh.2020.104865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/03/2020] [Accepted: 09/15/2020] [Indexed: 11/17/2022]
Abstract
Traumatic events have been proposed to be associated with hypo-activity of the hypothalamic-pituitary-adrenal (HPA) axis, but data in animal models exposed to severe stressors are controversial and have important methodological concerns. Individual differences in resting or stress levels of corticosterone might explain some of the inconsistencies. We then studied this issue in male rats exposed to 2 h immobilization on boards (IMO), a severe stressor. Thirty-six rats were blood sampled under resting conditions four times a day on three non-consecutive days. Then, they were assigned to control (n = 14) or IMO (n = 22) to study the HPA response to IMO, the stressor-induced alterations in the circadian pattern of corticosterone (CPCORT), and the behavioral and HPA responsiveness to an open-field. Individual differences in pre-IMO resting corticosterone were inconsistent, but averaging data markedly improved consistency. The CPCORT was markedly altered on day 1 post-IMO (higher trough and lower peak levels), less altered on day 3 and apparently normal on day 7. Importantly, when rats were classified in low and high resting corticosterone groups (LCORT and HCORT, respectively), on the basis of the area under the curve (AUC) of the averaged pre-IMO data, AUC differences between LCORT and HCORT groups were maintained in controls but disappeared in IMO rats during the post-IMO week. Open-field hypo-activity and corticosterone sensitization were similar in LCORT and HCORT groups nine days after IMO. A single IMO exposure causes long-lasting HPA alterations, some of them dependent on pre-stress resting corticosterone levels, with no evidence for post-IMO resting corticosterone hypo-activity.
Collapse
MESH Headings
- Adrenocorticotropic Hormone/blood
- Animals
- Circadian Rhythm/physiology
- Conditioning, Classical/physiology
- Corticosterone/blood
- Corticosterone/metabolism
- Hypothalamo-Hypophyseal System/metabolism
- Individuality
- Male
- Pituitary-Adrenal System/metabolism
- Rats
- Rats, Sprague-Dawley
- Rest/physiology
- Rest/psychology
- Restraint, Physical/physiology
- Restraint, Physical/psychology
- Stress Disorders, Post-Traumatic/blood
- Stress Disorders, Post-Traumatic/etiology
- Stress Disorders, Post-Traumatic/metabolism
- Stress Disorders, Post-Traumatic/psychology
- Stress, Psychological/blood
- Stress, Psychological/metabolism
Collapse
Affiliation(s)
- Xavier Belda
- Institut de Neurociències, Spain; Animal Physiology Unit (Department of Cellular Biology, Physiology and Immunology), Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Silvia Fuentes
- Institut de Neurociències, Spain; Psychobiology Unit, Faculty of Psychology, Universitat Autònoma de Barcelona, Spain
| | - Javier Labad
- Department of Mental Health, Parc Taulí Hospital Universitari, I3PT, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Spain
| | - Roser Nadal
- Institut de Neurociències, Spain; Psychobiology Unit, Faculty of Psychology, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Spain
| | - Antonio Armario
- Institut de Neurociències, Spain; Animal Physiology Unit (Department of Cellular Biology, Physiology and Immunology), Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Spain.
| |
Collapse
|
8
|
Kalinichenko LS, Kornhuber J, Müller CP. Individual differences in inflammatory and oxidative mechanisms of stress-related mood disorders. Front Neuroendocrinol 2019; 55:100783. [PMID: 31415777 DOI: 10.1016/j.yfrne.2019.100783] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022]
Abstract
Emotional stress leads to the development of peripheral disorders and is recognized as a modifiable risk factor for psychiatric disorders, particularly depression and anxiety. However, not all individuals develop the negative consequences of emotional stress due to different stress coping strategies and resilience to stressful stimuli. In this review, we discuss individual differences in coping styles and the potential mechanisms that contribute to individual vulnerability to stress, such as parameters of the immune system and oxidative state. Initial differences in inflammatory and oxidative processes determine resistance to stress and stress-related disorders via the alteration of neurotransmitter content in the brain and biological fluids. Differences in coping styles may serve as possible predictors of resistance to stress and stress-related disorders, even before stressful conditions. The investigation of natural variabilities in stress resilience may allow the development of new methods for preventive medicine and the personalized treatment of stress-related conditions.
Collapse
Affiliation(s)
- L S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | - J Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - C P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| |
Collapse
|
9
|
Alzoubi KH, Al Subeh ZY, Khabour OF. Molecular targets for the interactive effect of etazolate during post-traumatic stress disorder: Role of oxidative stress, BDNF and histones. Behav Brain Res 2019; 369:111930. [PMID: 31047921 DOI: 10.1016/j.bbr.2019.111930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/19/2019] [Accepted: 04/28/2019] [Indexed: 12/19/2022]
Abstract
Post-traumatic stress disorder (PTSD) develops in individuals after exposure to severe, life-threatening traumatic event. Etazolate is a selective phosphodiesterase IV inhibitor that is highly specific for cAMP, which has anxiolytic and antidepressant effects. We have previously shown that PTSD induced-memory impairment, anxiety and depression were prevented via the administration of etazolate. In the current study, the effect of etazolate on oxidative stress parameters, BDNF, and histone acetylation in the hippocampus were evaluated in a rat model of PTSD. The PTSD was induced by single prolonged stress (SPS) model. Etazolate was administered orally at a dose of 1 mg/kg/day for one month. At the end of the treatment period, the hippocampus was dissected and oxidative stress biomarkers (GSH, GSSG, GPx and TBARS), BDNF protein level, and histone acetylation were assessed. Results revealed that PTSD potentiated oxidative stress in the hippocampus and induced significant reductions in BDNF level and histones acetylation (P < 0.05). Etazolate treatment, on the other hand, led to prevention of changes in these oxidative stress biomarkers (GSH, GSSG, GPx and TBARS), BDNF levels, and histones acetylation. In conclusion, oxidative stress and modulation of BDNF and histones acetylation induced by PTSD can be prevented by treatment with etazolate.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Zeinab Y Al Subeh
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
10
|
Hökfelt T, Barde S, Xu ZQD, Kuteeva E, Rüegg J, Le Maitre E, Risling M, Kehr J, Ihnatko R, Theodorsson E, Palkovits M, Deakin W, Bagdy G, Juhasz G, Prud’homme HJ, Mechawar N, Diaz-Heijtz R, Ögren SO. Neuropeptide and Small Transmitter Coexistence: Fundamental Studies and Relevance to Mental Illness. Front Neural Circuits 2018; 12:106. [PMID: 30627087 PMCID: PMC6309708 DOI: 10.3389/fncir.2018.00106] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Neuropeptides are auxiliary messenger molecules that always co-exist in nerve cells with one or more small molecule (classic) neurotransmitters. Neuropeptides act both as transmitters and trophic factors, and play a role particularly when the nervous system is challenged, as by injury, pain or stress. Here neuropeptides and coexistence in mammals are reviewed, but with special focus on the 29/30 amino acid galanin and its three receptors GalR1, -R2 and -R3. In particular, galanin's role as a co-transmitter in both rodent and human noradrenergic locus coeruleus (LC) neurons is addressed. Extensive experimental animal data strongly suggest a role for the galanin system in depression-like behavior. The translational potential of these results was tested by studying the galanin system in postmortem human brains, first in normal brains, and then in a comparison of five regions of brains obtained from depressed people who committed suicide, and from matched controls. The distribution of galanin and the four galanin system transcripts in the normal human brain was determined, and selective and parallel changes in levels of transcripts and DNA methylation for galanin and its three receptors were assessed in depressed patients who committed suicide: upregulation of transcripts, e.g., for galanin and GalR3 in LC, paralleled by a decrease in DNA methylation, suggesting involvement of epigenetic mechanisms. It is hypothesized that, when exposed to severe stress, the noradrenergic LC neurons fire in bursts and release galanin from their soma/dendrites. Galanin then acts on somato-dendritic, inhibitory galanin autoreceptors, opening potassium channels and inhibiting firing. The purpose of these autoreceptors is to act as a 'brake' to prevent overexcitation, a brake that is also part of resilience to stress that protects against depression. Depression then arises when the inhibition is too strong and long lasting - a maladaption, allostatic load, leading to depletion of NA levels in the forebrain. It is suggested that disinhibition by a galanin antagonist may have antidepressant activity by restoring forebrain NA levels. A role of galanin in depression is also supported by a recent candidate gene study, showing that variants in genes for galanin and its three receptors confer increased risk of depression and anxiety in people who experienced childhood adversity or recent negative life events. In summary, galanin, a neuropeptide coexisting in LC neurons, may participate in the mechanism underlying resilience against a serious and common disorder, MDD. Existing and further results may lead to an increased understanding of how this illness develops, which in turn could provide a basis for its treatment.
Collapse
Affiliation(s)
- Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Zhi-Qing David Xu
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Eugenia Kuteeva
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Joelle Rüegg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- The Center for Molecular Medicine, Stockholm, Sweden
- Swedish Toxicology Sciences Research Center, Swetox, Södertälje, Sweden
| | - Erwan Le Maitre
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Kehr
- Pronexus Analytical AB, Solna, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Ihnatko
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Elvar Theodorsson
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Miklos Palkovits
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - William Deakin
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- NAP 2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | | | - Naguib Mechawar
- Douglas Hospital Research Centre, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Sven Ove Ögren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Lee B, Shim I, Lee H, Hahm DH. Tetramethylpyrazine reverses anxiety-like behaviors in a rat model of post-traumatic stress disorder. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:525-538. [PMID: 30181699 PMCID: PMC6115350 DOI: 10.4196/kjpp.2018.22.5.525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a trauma-induced psychiatric disorder characterized by impaired fear extermination, hyperarousal, and anxiety that may involve the release of monoamines in the fear circuit. The reported pharmacological properties of tetramethylpyrazine (TMP) include anti-cancer, anti-diabetic, anti-atherosclerotic, and neuropsychiatric activities. However, the anxiolytic-like effects of TMP and its mechanism of action in PTSD are unclear. This study measured several anxiety-related behavioral responses to examine the effects of TMP on symptoms of anxiety in rats after single prolonged stress (SPS) exposure by reversing the serotonin (5-HT) and hypothalamic-pituitary-adrenal (HPA) axis dysfunction. Rats were given TMP (10, 20, or 40 mg/kg, i.p.) for 14 days after SPS exposure. Administration of TMP significantly reduced grooming behavior, increased the time spent and number of visits to the open arm in the elevated plus maze test, and significantly increased the number of central zone crossings in the open field test. TMP administration significantly reduced the freezing response to contextual fear conditioning and significantly restored the neurochemical abnormalities and the SPS-induced decrease in 5-HT tissue levels in the prefrontal cortex and hippocampus. The increased 5-HT concentration during TMP treatment might be partially attribute to the tryptophan and 5-hydroxyindoleacetic acid mRNA level expression in the hippocampus of rats with PTSD. These findings support a role for reducing the altered serotonergic transmission in rats with PTSD. TMP simultaneously attenuated the HPA axis dysfunction. Therefore, TMP may be useful for developing an agent for treating psychiatric disorders, such those observed in patients with PTSD.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea.,Center for Converging Humanities, Kyung Hee University, Seoul 02447, Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea
| | - Dae-Hyun Hahm
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
12
|
Lee B, Lee H. Systemic Administration of Curcumin Affect Anxiety-Related Behaviors in a Rat Model of Posttraumatic Stress Disorder via Activation of Serotonergic Systems. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:9041309. [PMID: 30018659 PMCID: PMC6029466 DOI: 10.1155/2018/9041309] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/19/2018] [Accepted: 04/10/2018] [Indexed: 12/02/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a trauma-induced psychiatric disease characterized by impaired hyperarousal, fear extermination, depression, anxiety, and amnesic symptoms that may include the release of monoamines in the dread circuit. Curcumin (CUR), a major diarylheptanoid and polyphenolic component of Curcuma longa, reportedly possesses several pharmacological features, including antidiabetic, antiatherosclerotic, anticancer, and neuropsychiatric actions. But the anxiolytic-like effects of CUR and its mechanism of action in PTSD are unclear. The current research measured some anxiety-related behavioral responses to examine the effects of CUR on symptoms of anxiety in rats after single prolonged stress (SPS) exposure by reversing the serotonin (5-HT) dysfunction. Rats received CUR (20, 50, or 100 mg/kg, i.p., once daily) for 14 days after SPS exposure. Administration of CUR significantly increased the number of central zone crossings in the open field test and reduced grooming behavior in the elevated plus maze (EPM) test and increased the number of open-arm visits on the EPM test. CUR administration significantly reduced freezing response to contextual fear conditioning. CUR recovered neurochemical abnormalities and SPS-induced decreased 5-HT tissue levels in the hippocampus, amygdala, and striatum. These results suggested that CUR has anxiolytic-like effects on biochemical and behavioral symptoms associated with anxiety. Thus, CUR may be a useful agent to alleviate or treat psychiatric disorders similar to those observed in patients with PTSD.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
13
|
Pratt R, Stapelberg NJC. Early warning biomarkers in major depressive disorder: a strategic approach to a testing question. Biomarkers 2018; 23:563-572. [DOI: 10.1080/1354750x.2018.1463563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- R. Pratt
- Consultation Liaison Psychiatry, Nepean Hospital, Penrith, Australia
| | - N. J. C. Stapelberg
- Faculty of Health Sciences and Medicine, Bond University and Gold Coast Hospital and Health Service, Southport, Australia
| |
Collapse
|
14
|
Lee B, Shim I, Lee H, Hahm DH. Oleuropein reduces anxiety-like responses by activating of serotonergic and neuropeptide Y (NPY)-ergic systems in a rat model of post-traumatic stress disorder. Anim Cells Syst (Seoul) 2018; 22:109-117. [PMID: 30460087 PMCID: PMC6138302 DOI: 10.1080/19768354.2018.1426699] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a stress-related mental disorder caused by traumatic experiences. This psychopathological response to traumatic stressors induces anxiety in rats. Oleuropein (OLE), a major compound in olive leaves, reportedly possesses several pharmacological properties, including anti-cancer, anti-diabetic, and anti-atherosclerotic and neuropsychiatric activities. However, the anxiolytic-like effects of OLE and its mechanism of action in PTSD are unclear. The present study used several behavioral tests to examine the effects of OLE on symptoms of anxiety in rats after a single prolonged stress (SPS) exposure by inhibiting the hypothalamic-pituitary-adrenal axis. Male Sprague Dawley rats received OLE (10, 50 and 70 mg/kg, i.p., once daily) for 14 days after SPS exposure. Daily OLE (70 mg/kg) administration significantly increased the number and duration of open arm visits in the elevated plus maze (EPM) test, reduced the anxiety index and grooming behavior in the EPM test, and increased the time spent and number of central zone crossings in the open field test. OLE also blocked the SPS-induced decrease in hippocampal serotonin and neuropeptide Y expression in hippocampus. These findings suggest that OLE has anxiolytic-like effects on behavioral and biochemical symptoms similar to those observed in patients with PTSD.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Insop Shim
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Dae-Hyun Hahm
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Alzoubi KH, Al Subeh ZY, Khabour OF. Evaluating the protective effect of etazolate on memory impairment, anxiety- and depression-like behaviors induced by post traumatic stress disorder. Brain Res Bull 2017; 135:185-192. [DOI: 10.1016/j.brainresbull.2017.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 12/29/2022]
|
16
|
Kramáriková I, Šípková J, Šída P, Hynie S, Klenerová V. The Effect of Stress on the Galaninergic System in the Rat Adenohypophysis: mRNA Expression and Immunohistochemistry of Galanin Receptors. Folia Biol (Praha) 2017; 63:197-201. [PMID: 29687773 DOI: 10.14712/fb2017063050197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The neuropeptide galanin is a widely distributed neurotransmitter/neuromodulator that regulates a variety of physiological processes and also participates in the regulation of stress responses. The effect of stress is dependent on the activity of the hypothalamic-adenohypophyseal-adrenal axis. Although the adenohypophysis is a crucial part of this axis, galanin peptides and their receptors have not yet been identified in this part of the pituitary after activation of the stress response. Since there are many controversies about the occurrence of individual galanin receptor subtypes in the adenohypophysis under basal conditions, we decided to verify their presence immunohistochemically, and we clearly demonstrated that the adenohypophysis expresses neuropeptides galanin, galanin-like peptide, and subtypes of galanin receptors GalR1, GalR2 and GalR3. The specificity of the reactions was confirmed by Western blots for galanin receptors. Using real-time qPCR we also demonstrated the presence of three GalR subtypes, with the highest expression of GalR2. In addition, we tested the effect of stress. We found that acute stress did not induce any changes in the GalR2 expression, but increased expression of GalR1 and decreased that of GalR3. We confirmed the involvement of the galanin system in the stress regulation in the adenohypophysis.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Galanin/metabolism
- Immunohistochemistry
- Pituitary Gland, Anterior/metabolism
- RNA, Messenger/metabolism
- Rats
- Receptor, Galanin, Type 1/metabolism
- Receptor, Galanin, Type 2/metabolism
- Receptor, Galanin, Type 3/metabolism
- Receptors, Galanin/metabolism
Collapse
Affiliation(s)
- I Kramáriková
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - J Šípková
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - P Šída
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - S Hynie
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - V Klenerová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
17
|
Šípková J, Šída P, Kaspříková N, Kramáriková I, Hynie S, Klenerová V. Effect of Stress on the Expression of Galanin Receptors in Rat Heart. Folia Biol (Praha) 2017; 63:98-104. [PMID: 28805559 DOI: 10.14712/fb2017063030098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Neuropeptide galanin, galanin-like peptide and galanin receptors 1, 2 and 3 are a crucial part of the so-called galaninergic system. Our previous studies have shown the possible role of this system in mood modulation, especially regarding stress. So far, the galanin receptors have been found in different tissues including brain and heart. Our study deals with changes in expression of galanin receptor subtypes in the heart of Wistar rats exposed to three different types of stress. Galanin receptor subtypes were determined in fluorescently labelled samples using specific primary antibodies, and all sections were analysed in an immunofluorescent microscope and microphotographs. Image analyses were subsequently performed by software ImageJ, using the threshold method with calculation of the DAPI/galanin receptor signal ratio. We found all three types of receptors in the right and left atria and left and right ventricles. Changes in the density of galanin receptors after application of the stressor depended on the observed heart compartment. We found a significant decrease of galanin receptor 1 in all compartments after all types of stress. For GalR2 and GalR3, the increase/decrease of density was dependent on the tested compartment. These results show that galanin receptors could be involved in the function of heart during the cardiac cycle.
Collapse
Affiliation(s)
- J Šípková
- Institute of Medical Biochemistry and Laboratory Diagnostics of Charles University - the First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - P Šída
- Institute of Medical Biochemistry and Laboratory Diagnostics of Charles University - the First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - N Kaspříková
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - I Kramáriková
- Institute of Medical Biochemistry and Laboratory Diagnostics of Charles University - the First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - S Hynie
- Institute of Medical Biochemistry and Laboratory Diagnostics of Charles University - the First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - V Klenerová
- Institute of Medical Biochemistry and Laboratory Diagnostics of Charles University - the First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| |
Collapse
|
18
|
Barnabas K, Zhang L, Wang H, Kirouac G, Vrontakis M. Changes in Galanin Systems in a Rat Model of Post-Traumatic Stress Disorder (PTSD). PLoS One 2016; 11:e0167569. [PMID: 27907151 PMCID: PMC5131984 DOI: 10.1371/journal.pone.0167569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 11/16/2016] [Indexed: 12/23/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a chronic syndrome triggered by exposure to trauma and a failure to recover from a normal negative emotional reaction to traumatic stress. The neurobiology of PTSD and the participation of neuropeptides in the neural systems and circuits that control fear and anxiety are not fully understood. The long-term dysregulation of neuropeptide systems contributes to the development of anxiety disorders, including PTSD. The neuropeptide galanin (Gal) and its receptors participate in anxiety-like and depression-related behaviors via the modulation of neuroendocrine and monoaminergic systems. The objective of this research was to investigate how Gal expression changes in the brain of rats 2 weeks after exposure to footshock. Rats exposed to footshocks were subdivided into high responders (HR; immobility>60%) and low responders (LR; immobility<40%) based on immobility elicited by a novel tone one day after exposure. On day 14, rats were anesthetized, and the amygdala, hypothalamus, pituitary and adrenal glands were removed for analysis using real-time polymerase chain reaction (RT-PCR). Gal mRNA levels were increased in the amygdala and hypothalamus of HR compared with the control and LR. In contrast, Gal mRNA levels were decreased in the adrenal and pituitary glands of HR compared with the control and LR. Thus, the differential regulation (dysregulation) of the neuropeptide Gal in these tissues may contribute to anxiety and PTSD development.
Collapse
MESH Headings
- Adrenal Glands/metabolism
- Adrenal Glands/physiopathology
- Amygdala/metabolism
- Amygdala/physiopathology
- Animals
- Anxiety/genetics
- Anxiety/metabolism
- Anxiety/physiopathology
- Disease Models, Animal
- Electroshock
- Fear/psychology
- Galanin/genetics
- Galanin/metabolism
- Gene Expression Regulation
- Humans
- Hypothalamus/metabolism
- Hypothalamus/physiopathology
- Immobility Response, Tonic
- Male
- Organ Specificity
- Pituitary Gland/metabolism
- Pituitary Gland/physiopathology
- Protein Precursors/genetics
- Protein Precursors/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Signal Transduction
- Stress Disorders, Post-Traumatic/genetics
- Stress Disorders, Post-Traumatic/metabolism
- Stress Disorders, Post-Traumatic/physiopathology
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
Collapse
Affiliation(s)
- Karen Barnabas
- Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lin Zhang
- Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Huiying Wang
- Faculty of Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gilbert Kirouac
- Faculty of Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maria Vrontakis
- Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
19
|
Kawa L, Barde S, Arborelius UP, Theodorsson E, Agoston D, Risling M, Hökfelt T. Expression of galanin and its receptors are perturbed in a rodent model of mild, blast-induced traumatic brain injury. Exp Neurol 2016; 279:159-167. [PMID: 26928087 DOI: 10.1016/j.expneurol.2016.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 01/05/2023]
Abstract
The symptomatology, mood and cognitive disturbances seen in post-traumatic stress disorder (PTSD) and mild blast-induced traumatic brain injury (mbTBI) overlap considerably. However the pathological mechanisms underlying the two conditions are currently unknown. The neuropeptide galanin has been suggested to play a role in the development of stress and mood disorders. Here we applied bio- and histochemical methods with the aim to elucidate the nature of any changes in the expression of galanin and its receptors in a rodent model of mbTBI. In situ hybridization and quantitative polymerase chain reaction studies revealed significant, injury-induced changes, in some cases lasting at least for one week, in the mRNA levels of galanin and/or its three receptors, galanin receptor 1-3 (GalR1-3). Such changes were seen in several forebrain regions, and the locus coeruleus. In the ventral periaqueductal gray GalR1 mRNA levels were increased, while GalR2 were decreased. Analysis of galanin peptide levels using radioimmunoassay demonstrated an increase in several brain regions including the locus coeruleus, dorsal hippocampal formation and amygdala. These findings suggest a role for the galanin system in the endogenous response to mbTBI, and that pharmacological studies of the effects of activation or inhibition of different galanin receptors in combination with functional assays of behavioral recovery may reveal promising targets for new therapeutic strategies in mbTBI.
Collapse
Affiliation(s)
- Lizan Kawa
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE 171 77 Stockholm, Sweden.
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE 171 77 Stockholm, Sweden
| | - Ulf P Arborelius
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE 171 77 Stockholm, Sweden
| | - Elvar Theodorsson
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
| | - Denes Agoston
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE 171 77 Stockholm, Sweden; Department of Anatomy, Physiology and Genetics, The Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE 171 77 Stockholm, Sweden.
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE 171 77 Stockholm, Sweden
| |
Collapse
|
20
|
Soares FRC, Silote GP, Almeida-Santos AF, Aguiar DC, Schenberg LC, Beijamini V. Galanin microinjection into the dorsal periaqueductal gray matter produces paradigm-dependent anxiolytic effects. Brain Res Bull 2016; 121:42-7. [PMID: 26751815 DOI: 10.1016/j.brainresbull.2015.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/09/2015] [Accepted: 12/28/2015] [Indexed: 01/07/2023]
Abstract
Galanin is a peptide that is present in the central nervous system in mammals, including rodents and humans. The actions of galanin are mediated by three types of metabotropic receptors: GAL1, GAL2, and GAL3. GAL1 and GAL3 increase K(+) efflux, and GAL2 increases intracellular Ca(2+) levels. The distribution of galanin and its receptors suggests its involvement in fear and/or anxiety. The periaqueductal gray matter (PAG) is a key mediator of defensive behaviors that is both targeted by galaninergic projections and supplied with GAL1 receptors and, less markedly, GAL2 receptors. We examined the effects of galanin microinjections in the dorsal PAG (dPAG) on the performance of rats in different models of anxiety. Male Wistar rats (n=7-12) were implanted with guide cannulae in the dPAG. They received microinjections of either galanin (0.3, 1.0, and 3.0 nmol) or vehicle and were tested in the Vogel conflict test (VCT), elevated plus maze (EPM), and elevated T-maze (ETM). Rats that were tested in the ETM were further evaluated for exploratory activity in the open field test (OFT). Galanin microinjections had no effects on anxiety-like behavior in the EPM or VCT or exploratory activity in the EPM or OFT. In the ETM, however, microinjections of 3 nmol galanin impaired learned anxiety (i.e., avoidance of the open arms) without changing unconditioned fear (i.e., escape from the open arms). The present data suggest that galanin transmission in the dPAG inhibits the acquisition of anxiety-like responses in the ETM.
Collapse
Affiliation(s)
- F R C Soares
- Biochemistry and Pharmacology Postgraduate Program, Health Science Center, Federal University of Espirito Santo, Vitoria, ES 29043-900, Brazil
| | - G P Silote
- Biochemistry and Pharmacology Postgraduate Program, Health Science Center, Federal University of Espirito Santo, Vitoria, ES 29043-900, Brazil
| | - A F Almeida-Santos
- Department of Pharmacology, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - D C Aguiar
- Department of Pharmacology, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - L C Schenberg
- Biochemistry and Pharmacology Postgraduate Program, Health Science Center, Federal University of Espirito Santo, Vitoria, ES 29043-900, Brazil
| | - V Beijamini
- Biochemistry and Pharmacology Postgraduate Program, Health Science Center, Federal University of Espirito Santo, Vitoria, ES 29043-900, Brazil.
| |
Collapse
|
21
|
Weinshenker D, Holmes PV. Regulation of neurological and neuropsychiatric phenotypes by locus coeruleus-derived galanin. Brain Res 2015; 1641:320-37. [PMID: 26607256 DOI: 10.1016/j.brainres.2015.11.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/27/2015] [Accepted: 11/12/2015] [Indexed: 12/28/2022]
Abstract
Decades of research confirm that noradrenergic locus coeruleus (LC) neurons are essential for arousal, attention, motivation, and stress responses. While most studies on LC transmission focused unsurprisingly on norepinephrine (NE), adrenergic signaling cannot account for all the consequences of LC activation. Galanin coexists with NE in the vast majority of LC neurons, yet the precise function of this neuropeptide has proved to be surprisingly elusive given our solid understanding of the LC system. To elucidate the contribution of galanin to LC physiology, here we briefly summarize the nature of stimuli that drive LC activity from a neuroanatomical perspective. We go on to describe the LC pathways in which galanin most likely exerts its effects on behavior, with a focus on addiction, depression, epilepsy, stress, and Alzheimer׳s disease. We propose a model in which LC-derived galanin has two distinct functions: as a neuromodulator, primarily acting via the galanin 1 receptor (GAL1), and as a trophic factor, primarily acting via galanin receptor 2 (GAL2). Finally, we discuss how the recent advances in neuropeptide detection, optogenetics and chemical genetics, and galanin receptor pharmacology can be harnessed to identify the roles of LC-derived galanin definitively. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
Affiliation(s)
- David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA 30322, USA.
| | - Philip V Holmes
- Neuroscience Program, Biomedical and Health Sciences Institute and Psychology Department, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
22
|
Lyudyno VI, Tsikunov SG, Abdurasulova IN, Kusov AG, Klimenko VM. Modification of Anxious Behavior after Psychogenic Trauma and Treatment with Galanin Receptor Antagonist. Bull Exp Biol Med 2015. [PMID: 26201907 DOI: 10.1007/s10517-015-2958-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Effects of blockage of central galanin receptors on anxiety manifestations were studied in rats with psychogenic trauma. Psychogenic trauma was modeled by exposure of a group of rats to the situation when the partner was killed by a predator. Antagonist of galanin receptors was intranasally administered before stress exposure. Animal behavior was evaluated using the elevated-plus maze test, free exploratory paradigm, and open-field test. Psychogenic trauma was followed by an increase in anxiety level and appearance of agitated behavior. Blockage of galanin receptors aggravated behavioral impairment, which manifested in the pathological anxious reactions - manifestations of hypervigilance and hyperawareness. The results suggest that endogenous pool of galanin is involved into prevention of excessive CNS response to stressful stimuli typical of posttraumatic stress disorder.
Collapse
Affiliation(s)
- V I Lyudyno
- Research Institute of Experimental Medicine, the North-Western Division of Russian Academy of Medical sciences, St. Petersburg, Russia,
| | | | | | | | | |
Collapse
|
23
|
Alteration of behavioral changes and hippocampus galanin expression in chronic unpredictable mild stress-induced depression rats and effect of electroacupuncture treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:179796. [PMID: 25530777 PMCID: PMC4233667 DOI: 10.1155/2014/179796] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 11/26/2022]
Abstract
To explore new noninvasive treatment options for depression, this study investigated the effects of electric acupuncture (EA) for depression rat models. Depression in rats was induced by unpredictable chronic mild stress (UCMS) combined with isolation for 21 days. Eighteen male Sprague-Dawley rats were randomly assigned into three groups: control, model, and EA groups. Rats were treated by EA once daily for 21 days. The results showed that body weight and sucrose consumption were significantly increased in EA group than in the model group. The crossing numbers and rearing numbers in the open field test significantly decreased in the model group but not in the EA group. And EA treatments upregulated levels of hippocampus galanin (Gal) in UCMS rats back to relative normal levels. The present study suggested that EA had antidepressant effects on UCMS model rats. The potential antidepressant effect may be related to upregulating Gal expression in hippocampus.
Collapse
|
24
|
Lee B, Sur B, Yeom M, Shim I, Lee H, Hahm DH. L-tetrahydropalmatine ameliorates development of anxiety and depression-related symptoms induced by single prolonged stress in rats. Biomol Ther (Seoul) 2014; 22:213-22. [PMID: 25009702 PMCID: PMC4060081 DOI: 10.4062/biomolther.2014.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/14/2014] [Accepted: 05/07/2014] [Indexed: 11/07/2022] Open
Abstract
Abnormal adaptation of the stress-response system following traumatic stress can lead to alterations in the hypothalamic-pituitary-adrenal (HPA) axis that may contribute to the development of post-traumatic stress disorder (PTSD). The present study used several behavioral tests to investigate the anxiolytic-like and antidepressant activity of L-tetrahydropalmatine (L-THP) in an experimental rat model of anxiety and depression induced by single prolonged stress (SPS), an animal model of PTSD. Male rats were treated intraperitoneally (i.p.) with vehicle or varied doses of THP 30 min prior to SPS for 8 consecutive days. Daily THP (50 mg/kg) administration significantly increased the number and duration of open arm visits in the elevated plus maze (EPM) test, reduced the anxiety index, increased the risk assessment, and increased the number of head dips over the borders of the open arms after SPS. THP was also associated with increased time spent at the center of the open field, reduced grooming behaviors in the EPM test, and reduced time spent immobile in the forced swimming test (FST). It also blocked the decrease in neuropeptide Y (NPY) and the increase in corticotrophin-releasing factor (CRF) expression in the hypothalamus. This is the first study to determine that THP exerts pronounced anxiolytic-like and antidepressant effects on the development of the behavioral and biochemical symptoms associated with PTSD, indicating its prophylactic potential. Thus, THP reversed several behavioral impairments triggered by the traumatic stress of SPS and is a potential non-invasive therapeutic intervention for PTSD.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Bongjun Sur
- The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Mijung Yeom
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Insop Shim
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea ; The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea ; The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Dae-Hyun Hahm
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea ; The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| |
Collapse
|
25
|
Griffiths FE, Boardman FK, Chondros P, Dowrick CF, Densley K, Hegarty KL, Gunn J. The effect of strategies of personal resilience on depression recovery in an Australian cohort: A mixed methods study. Health (London) 2014; 19:86-106. [DOI: 10.1177/1363459314539774] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Strategies of personal resilience enable successful adaptation in adversity. Among patients experiencing depression symptoms, we explored which personal resilience strategies they find most helpful and tested the hypothesis that use of these strategies improves depression recovery. We used interview and survey data from the Diagnosis, Management and Outcomes of Depression in Primary Care 2005 cohort of patients experiencing depression symptoms in Victoria, Australia. A total of 564 participants answered a computer-assisted telephone interview question at 12 months follow-up, about what they found most helpful for their depression, stress or worries. Depressive disorder and severity were measured at annual follow-up using the Composite International Diagnostic Interview and the Patient Health Questionnaire self-rating questionnaire. Using interview responses, we categorised participants as users or not of strategies of personal resilience, specifically, drawing primarily on expanding their own inner resources or pre-existing relationships: 316 (56%) were categorised as primarily users of personal resilience strategies. Of these, 193 (61%) reported expanding inner resources, 79 (25%) drawing on relationships and 44 (14%) reported both. There was no association between drawing on relationships and depression outcome. There was evidence supporting an association between expanding inner resources and depression outcome: 25 per cent of users having major depressive disorder 1 year later compared to 38 per cent of non-users (adjusted odds ratio: 0.59, confidence interval: 0.36–0.97). This is the first study to show improved outcome for depression for those who identify as most helpful the use of personal resilience strategies. The difference in outcome is important as expanding inner resources includes a range of low intensity, yet commonly available strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jane Gunn
- The University of Melbourne, Australia
| |
Collapse
|
26
|
Brain galanin system genes interact with life stresses in depression-related phenotypes. Proc Natl Acad Sci U S A 2014; 111:E1666-73. [PMID: 24706871 DOI: 10.1073/pnas.1403649111] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Galanin is a stress-inducible neuropeptide and cotransmitter in serotonin and norepinephrine neurons with a possible role in stress-related disorders. Here we report that variants in genes for galanin (GAL) and its receptors (GALR1, GALR2, GALR3), despite their disparate genomic loci, conferred increased risk of depression and anxiety in people who experienced childhood adversity or recent negative life events in a European white population cohort totaling 2,361 from Manchester, United Kingdom and Budapest, Hungary. Bayesian multivariate analysis revealed a greater relevance of galanin system genes in highly stressed subjects compared with subjects with moderate or low life stress. Using the same method, the effect of the galanin system genes was stronger than the effect of the well-studied 5-HTTLPR polymorphism in the serotonin transporter gene (SLC6A4). Conventional multivariate analysis using general linear models demonstrated that interaction of galanin system genes with life stressors explained more variance (1.7%, P = 0.005) than the life stress-only model. This effect replicated in independent analysis of the Manchester and Budapest subpopulations, and in males and females. The results suggest that the galanin pathway plays an important role in the pathogenesis of depression in humans by increasing the vulnerability to early and recent psychosocial stress. Correcting abnormal galanin function in depression could prove to be a novel target for drug development. The findings further emphasize the importance of modeling environmental interaction in finding new genes for depression.
Collapse
|
27
|
Lioudyno VI, Aksenova TS, Abdurasulova IN, Klimenko VM. Allelic variants of the galanin gene in Wistar rats. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Daskalakis NP, Yehuda R, Diamond DM. Animal models in translational studies of PTSD. Psychoneuroendocrinology 2013; 38:1895-911. [PMID: 23845512 DOI: 10.1016/j.psyneuen.2013.06.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 06/05/2013] [Accepted: 06/05/2013] [Indexed: 01/29/2023]
Abstract
Understanding the neurobiological mechanisms of post-traumatic stress disorder (PTSD) is of vital importance for developing biomarkers and more effective pharmacotherapy for this disorder. The design of bidirectional translational studies addressing all facets of PTSD is needed. Animal models of PTSD are needed not only to capture the complexity of PTSD behavioral characteristics, but also to address experimentally the influence of variety of factors which might determine an individual's vulnerability or resilience to trauma, e.g., genetic predisposition, early-life experience and social support. The current review covers recent translational approaches to bridge the gap between human and animal PTSD research and to create a framework for discovery of biomarkers and novel therapeutics.
Collapse
Affiliation(s)
- Nikolaos P Daskalakis
- Traumatic Stress Studies Division & Laboratory of Molecular Neuropsychiatry, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; Mental Health Care Center, PTSD Clinical Research Program & Laboratory of Clinical Neuroendocrinology and Neurochemistry, James J. Peters Veterans Affairs Medical Center, Bronx, USA
| | | | | |
Collapse
|
29
|
Cohen H, Matar MA, Joseph Z. Animal Models of Post‐Traumatic Stress Disorder. ACTA ACUST UNITED AC 2013; Chapter 9:Unit 9.45. [DOI: 10.1002/0471142301.ns0945s64] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hagit Cohen
- Israel Ministry of Health Mental Health Center, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben‐Gurion University of the Negev Beer‐Sheva Israel
| | - Michael A. Matar
- Israel Ministry of Health Mental Health Center, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben‐Gurion University of the Negev Beer‐Sheva Israel
| | - Zohar Joseph
- The Chaim Sheba Medical Center, Sackler Medical School, Tel‐Aviv University Tel Hashomer Israel
| |
Collapse
|
30
|
Cohen S, Kozlovsky N, Matar MA, Kaplan Z, Zohar J, Cohen H. Post-exposure sleep deprivation facilitates correctly timed interactions between glucocorticoid and adrenergic systems, which attenuate traumatic stress responses. Neuropsychopharmacology 2012; 37:2388-404. [PMID: 22713910 PMCID: PMC3442354 DOI: 10.1038/npp.2012.94] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Reliable evidence supports the role of sleep in learning and memory processes. In rodents, sleep deprivation (SD) negatively affects consolidation of hippocampus-dependent memories. As memory is integral to post-traumatic stress symptoms, the effects of post-exposure SD on various aspect of the response to stress in a controlled, prospective animal model of post-traumatic stress disorder (PTSD) were evaluated. Rats were deprived of sleep for 6 h throughout the first resting phase after predator scent stress exposure. Behaviors in the elevated plus-maze and acoustic startle response tests were assessed 7 days later, and served for classification into behavioral response groups. Freezing response to a trauma reminder was assessed on day 8. Urine samples were collected daily for corticosterone levels, and heart rate (HR) was also measured. Finally, the impact of manipulating the hypothalamus-pituitary-adrenal axis and adrenergic activity before SD was assessed. Mifepristone (MIFE) and epinephrine (EPI) were administered systemically 10-min post-stress exposure and behavioral responses and response to trauma reminder were measured on days 7-8. Hippocampal expression of glucocorticoid receptors (GRs) and morphological assessment of arborization and dendritic spines were subsequently evaluated. Post-exposure SD effectively ameliorated long-term, stress-induced, PTSD-like behavioral disruptions, reduced trauma reminder freezing responses, and decreased hippocampal expression of GR compared with exposed-untreated controls. Although urine corticosterone levels were significantly elevated 1 h after SD and the HR was attenuated, antagonizing GRs with MIFE or stimulation of adrenergic activity with EPI effectively abolished the effect of SD. MIFE- and EPI-treated animals clearly demonstrated significantly lower total dendritic length, fewer branches and lower spine density along dentate gyrus dendrites with increased levels of GR expression 8 days after exposure, as compared with exposed-SD animals. Intentional prevention of sleep in the early aftermath of stress exposure may well be beneficial in attenuating traumatic stress-related sequelae. Post-exposure SD may disrupt the consolidation of aversive or fearful memories by facilitating correctly timed interactions between glucocorticoid and adrenergic systems.
Collapse
Affiliation(s)
- Shlomi Cohen
- Department of Psychology, Ben-Gurion University of the Negev, Beer Sheva, Israel,Anxiety and Stress Research Unit, Ministry of Health Mental Health Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Nitsan Kozlovsky
- Anxiety and Stress Research Unit, Ministry of Health Mental Health Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michael A Matar
- Anxiety and Stress Research Unit, Ministry of Health Mental Health Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Zeev Kaplan
- Anxiety and Stress Research Unit, Ministry of Health Mental Health Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Joseph Zohar
- Division of Psychiatry, Department of Psychiatry, The Chaim Sheba Medical Center, Sackler Medical School, Tel-Aviv University, Tel-Hashomer, Israel
| | - Hagit Cohen
- Department of Psychology, Ben-Gurion University of the Negev, Beer Sheva, Israel,Anxiety and Stress Research Unit, Ministry of Health Mental Health Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel,Anxiety and Stress Research Unit, Ministry of Health Mental Health Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, PO Box 4600, Beer-Sheva 84170, Israel, Tel: +972 8 6401743, Fax: +972 8 6401742, E-mail:
| |
Collapse
|
31
|
Klenerova V, Flegel M, Skopek P, Sida P, Hynie S. Galanin modulating effect on restraint stress-induced short- and long-term behavioral changes in Wistar rats. Neurosci Lett 2011; 502:147-51. [DOI: 10.1016/j.neulet.2011.06.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/14/2011] [Accepted: 06/27/2011] [Indexed: 11/30/2022]
|
32
|
Neumann ID, Wegener G, Homberg JR, Cohen H, Slattery DA, Zohar J, Olivier JDA, Mathé AA. Animal models of depression and anxiety: What do they tell us about human condition? Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1357-75. [PMID: 21129431 DOI: 10.1016/j.pnpbp.2010.11.028] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/24/2010] [Accepted: 11/19/2010] [Indexed: 01/07/2023]
Abstract
While modern neurobiology methods are necessary they are not sufficient to elucidate etiology and pathophysiology of affective disorders and develop new treatments. Achievement of these goals is contingent on applying cutting edge methods on appropriate disease models. In this review, the authors present four rodent models with good face-, construct-, and predictive-validity: the Flinders Sensitive rat line (FSL); the genetically "anxious" High Anxiety-like Behavior (HAB) line; the serotonin transporter knockout 5-HTT(-/-) rat and mouse lines; and the post-traumatic stress disorder (PTSD) model induced by exposure to predator scent, that they have employed to investigate the nature of depression and anxiety.
Collapse
Affiliation(s)
- I D Neumann
- Dept of Behavioural Neuroendocrinology, Faculty of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kwako LE, Glass N, Campbell J, Melvin KC, Barr T, Gill JM. Traumatic brain injury in intimate partner violence: a critical review of outcomes and mechanisms. TRAUMA, VIOLENCE & ABUSE 2011; 12:115-126. [PMID: 21511686 DOI: 10.1177/1524838011404251] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The prevalence of intimate partner violence (IPV) is striking, as are its consequences to the lives of women. The IPV often includes physical assault, which can include injuries to the head and attempted strangulation injuries. Both types of injuries can result in traumatic brain injury (TBI). The TBI sustained during IPV often occurs over time, which can increase the risk for health declines and postconcussive syndrome (PCS). Current studies have identified sequelae of cognitive dysfunction, posttraumatic stress disorder, and depression in women experiencing IPV, yet, most fail to determine the role of TBI in the onset and propagation of these disorders. Although imaging studies indicate functional differences in neuronal activation in IPV, they also have not considered the possibility of TBI contributing to these outcomes. This review highlights the significant gaps in current findings related to neuropsychological complications and medical and psychosocial symptoms that likely result in greater morbidity, as well as the societal costs of failing to acknowledge the association of IPV and TBI in women.
Collapse
Affiliation(s)
- Laura E Kwako
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Abbosh C, Lawkowski A, Zaben M, Gray W. GalR2/3 mediates proliferative and trophic effects of galanin on postnatal hippocampal precursors. J Neurochem 2011; 117:425-36. [PMID: 21281311 DOI: 10.1111/j.1471-4159.2011.07204.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Understanding how neural activity is functionally linked to the stem cell niche, is assuming ever increasing importance as hippocampal neurogenesis is shown to be important for modulating the behavioural responses to stress and for certain forms of learning and memory. Neuropeptides such as neuropeptide Y and vasoactive intestinal peptide have emerged as important mediators for signalling local interneuron activity to subgranular zone precursors, however, little is known regarding the effects of neuropeptides that are extrinsic modulators of hippocampal information processing. Here, we show that the galanin GalR2/3 agonist Gal2-11 is both trophic and proliferative for postnatal subgranular precursors and proliferating neuroblasts at 10 nM and is purely trophic at doses as low as 100 pM. We found no effect mediated via GalR1. As galanin is co-released from noradrenergic and serotonergic projection neurons to the dentate gyrus, these findings support a direct effect of galanin on hippocampal neurogenesis, which may partly mediate its antidepressant effect via GalR2/3 receptors.
Collapse
Affiliation(s)
- Christopher Abbosh
- Division of Clinical Neurosciences, University of Southampton, Southampton, UK
| | | | | | | |
Collapse
|
35
|
Mapping the brain pathways of traumatic memory: inactivation of protein kinase M zeta in different brain regions disrupts traumatic memory processes and attenuates traumatic stress responses in rats. Eur Neuropsychopharmacol 2010; 20:253-71. [PMID: 20129764 DOI: 10.1016/j.euroneuro.2009.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/15/2009] [Accepted: 12/24/2009] [Indexed: 02/04/2023]
Abstract
BACKGROUND Protein kinase M zeta (PKMzeta), a constitutively active isoform of protein kinase C, has been implicated in protein synthesis-dependent maintenance of long-term potentiation and memory storage in the brain. Recent studies reported that local application of ZIP, a membrane-permeant PKMzeta inhibitor, into the insular cortex (IC) of behaving rats abolished long-term memory of taste associations. METHOD This study assessed the long-term effects of local applications of ZIP microinjected immediately (1 h) or 10 days after predator scent stress exposure, in a controlled prospectively designed animal model for PTSD. Four brain structures known to be involved in memory processes and in anxiety were investigated: lateral ventricle (LV), dorsal hippocampus (DH), basolateral amygdala and IC. The outcome measures included behavior in an elevated plus maze and acoustic startle response 7 days after microinjection, and freezing behavior upon exposure to trauma-related cue 8 days after microinjection. Previously acquired/encoded memories associated with the IC were also assessed. RESULTS Inactivation of PKMzeta in the LV or DH within 1h of exposure effectively reduced PTSD-like behavioral disruption and trauma cue response 8 days later. Inactivation of PKMzeta 10 days after exposure had equivalent effects only when administered in the IC. The effect was demonstrated to be specific for trauma memories, whereas previously acquired data were unaffected by the procedure. CONCLUSION Predator scent related memories are located in different brain areas at different times beginning with an initial hippocampus-dependent consolidation process, and are eventually stored in the IC. These bring the IC to the forefront as a potential region of significance in processes related to traumatic stress-induced disorders.
Collapse
|
36
|
Galanin, galanin receptor subtypes and depression-like behaviour. EXPERIENTIA SUPPLEMENTUM (2012) 2010; 102:163-81. [PMID: 21299068 DOI: 10.1007/978-3-0346-0228-0_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathophysiology of depression remains unclear, but involves disturbances in brain monoaminergic transmission. Current antidepressant drugs, which act by enhancing this type of neurotransmission, have limited therapeutic efficacy in a number of patients, and also cause serious side-effects, which limits their compliance. Increasing evidence suggests that neuropeptides, including galanin, can be of relevance in mood disorders. Galanin is co-expressed with and modulates noradrenaline and serotonin transmission, both implicated in depression. Pharmacological and genetic studies suggest a role for galanin in depression-like behaviour in rodents, involving specific receptor subtypes. Thus, stimulation of GalR1 and/or GalR3 receptors results in depression-like phenotype, while activation of the GalR2 receptor reduces depression-like behaviour in the rat. These findings suggest that galanin receptor subtypes may represent novel targets for the development of antidepressant drugs.
Collapse
|