1
|
Fischer M, Kukley M. Hidden in the white matter: Current views on interstitial white matter neurons. Neuroscientist 2024:10738584241282969. [PMID: 39365761 DOI: 10.1177/10738584241282969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
The mammalian brain comprises two structurally and functionally distinct compartments: the gray matter (GM) and the white matter (WM). In humans, the WM constitutes approximately half of the brain volume, yet it remains significantly less investigated than the GM. The major cellular elements of the WM are neuronal axons and glial cells. However, the WM also contains cell bodies of the interstitial neurons, estimated to number 10 to 28 million in the adult bat brain, 67 million in Lar gibbon brain, and 450 to 670 million in the adult human brain, representing as much as 1.3%, 2.25%, and 3.5% of all neurons in the cerebral cortex, respectively. Many studies investigated the interstitial WM neurons (IWMNs) using immunohistochemistry, and some information is available regarding their electrophysiological properties. However, the functional role of IWMNs in physiologic and pathologic conditions largely remains unknown. This review aims to provide a concise update regarding the distribution and properties of interstitial WM neurons, highlight possible functions of these cells as debated in the literature, and speculate about other possible functions of the IWMNs and their interactions with glial cells. We hope that our review will inspire new research on IWMNs, which represent an intriguing cell population in the brain.
Collapse
Affiliation(s)
- Maximilian Fischer
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Maria Kukley
- Achucarro Basque Centre for Neuroscience, Leioa, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
2
|
Wiesner D, Feldengut S, Woelfle S, Boeckers TM, Ludolph AC, Roselli F, Del Tredici K. Neuropeptide FF (NPFF)-positive nerve cells of the human cerebral cortex and white matter in controls, selected neurodegenerative diseases, and schizophrenia. Acta Neuropathol Commun 2024; 12:108. [PMID: 38943180 PMCID: PMC11212262 DOI: 10.1186/s40478-024-01792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/02/2024] [Indexed: 07/01/2024] Open
Abstract
We quantified and determined for the first time the distribution pattern of the neuropeptide NPFF in the human cerebral cortex and subjacent white matter. To do so, we studied n = 9 cases without neurological disorders and n = 22 cases with neurodegenerative diseases, including sporadic amyotrophic lateral sclerosis (ALS, n = 8), Alzheimer's disease (AD, n = 8), Pick's disease (PiD, n = 3), and schizophrenia (n = 3). NPFF-immunopositive cells were located chiefly, but not exclusively, in the superficial white matter and constituted there a subpopulation of white matter interstitial cells (WMIC): Pyramidal-like and multipolar somata predominated in the gyral crowns, whereas bipolar and ovoid somata predominated in the cortex surrounding the sulci. Their sparsely ramified axons were unmyelinated and exhibited NPFF-positive bead-like varicosities. We found significantly fewer NPFF-immunopositive cells in the gray matter of the frontal, cingulate, and superior temporal gyri of both sporadic ALS and late-stage AD patients than in controls, and significantly fewer NPFF-positive cells in the subjacent as well as deep white matter of the frontal gyrus of these patients compared to controls. Notably, the number of NPFF-positive cells was also significantly lower in the hippocampal formation in AD compared to controls. In PiD, NPFF-positive cells were present in significantly lower numbers in the gray and white matter of the cingulate and frontal gyrii in comparison to controls. In schizophrenic patients, lower wNPFF cell counts in the neocortex were significant and global (cingulate, frontal, superior temporal gyrus, medial, and inferior gyri). The precise functions of NPFF-positive cells and their relationship to the superficial corticocortical white matter U-fibers are currently unknown. Here, NPFF immunohistochemistry and expression characterize a previously unrecognized population of cells in the human brain, thereby providing a new entry-point for investigating their physiological and pathophysiological roles.
Collapse
Affiliation(s)
- Diana Wiesner
- Department of Neurology, Center for Biomedical Research, Ulm University, 89081, Ulm, Germany
- DZNE, Ulm Site, 89081, Ulm, Germany
| | - Simone Feldengut
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, Ulm University, 89081, Ulm, Germany
| | - Sarah Woelfle
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
| | - Tobias M Boeckers
- DZNE, Ulm Site, 89081, Ulm, Germany
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
| | | | - Francesco Roselli
- Department of Neurology, Center for Biomedical Research, Ulm University, 89081, Ulm, Germany.
- DZNE, Ulm Site, 89081, Ulm, Germany.
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, Ulm University, 89081, Ulm, Germany
| |
Collapse
|
3
|
Fessel J. Formulating treatment of major psychiatric disorders: algorithm targets the dominantly affected brain cell-types. DISCOVER MENTAL HEALTH 2023; 3:3. [PMID: 37861813 PMCID: PMC10501034 DOI: 10.1007/s44192-022-00029-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/21/2022] [Indexed: 10/21/2023]
Abstract
BACKGROUND Pharmacotherapy for most psychiatric conditions was developed from serendipitous observations of benefit from drugs prescribed for different reasons. An algorithmic approach to formulating pharmacotherapy is proposed, based upon which combination of changed activities by brain cell-types is dominant for any particular condition, because those cell-types contain and surrogate for genetic, metabolic and environmental information, that has affected their function. The algorithm performs because functions of some or all the affected cell-types benefit from several available drugs: clemastine, dantrolene, erythropoietin, fingolimod, fluoxetine, lithium, memantine, minocycline, pioglitazone, piracetam, and riluzole PROCEDURES/FINDINGS: Bipolar disorder, major depressive disorder, schizophrenia, Alzheimer's disease, and post-traumatic stress disorder, illustrate the algorithm; for them, literature reviews show that no single combination of altered cell-types accounts for all cases; but they identify, for each condition, which combination occurs most frequently, i.e., dominates, as compared with other possible combinations. Knowing the dominant combination of altered cell-types in a particular condition, permits formulation of therapy with combinations of drugs taken from the above list. The percentage of patients who might benefit from that therapy, depends upon the frequency with which the dominant combination occurs in patients with that particular condition. CONCLUSIONS Knowing the dominant combination of changed cell types in psychiatric conditions, permits an algorithmically formulated, rationally-based treatment. Different studies of the same condition often produce discrepant results; all might be correct, because identical clinical phenotypes result from different combinations of impaired cell-types, thus producing different results. Clinical trials would validate both the proposed concept and choice of drugs.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA, 94123, USA.
| |
Collapse
|
4
|
Zhu Y, Webster MJ, Murphy CE, Middleton FA, Massa PT, Liu C, Dai R, Weickert CS. Distinct Phenotypes of Inflammation Associated Macrophages and Microglia in the Prefrontal Cortex Schizophrenia Compared to Controls. Front Neurosci 2022; 16:858989. [PMID: 35844224 PMCID: PMC9279891 DOI: 10.3389/fnins.2022.858989] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/01/2022] [Indexed: 12/23/2022] Open
Abstract
Approximately 40% of people with schizophrenia are classified as having "high inflammation." This subgroup has worse neuropathology than patients with "low inflammation." Thus, one would expect the resident microglia and possibly monocyte-derived macrophages infiltrating from the periphery to be "activated" in those with schizophrenia with elevated neuroinflammation. To test whether microglia and/or macrophages are associated with increased inflammatory signaling in schizophrenia, we measured microglia- and macrophage-associated transcripts in the postmortem dorsolateral prefrontal cortex of 69 controls and 72 people with schizophrenia. Both groups were stratified by neuroinflammatory status based on cortical mRNA levels of cytokines and SERPINA3. We found microglial mRNAs levels were either unchanged (IBA1 and Hexb, p > 0.20) or decreased (CD11c, <62% p < 0.001) in high inflammation schizophrenia compared to controls. Conversely, macrophage CD163 mRNA levels were increased in patients, substantially so in the high inflammation schizophrenia subgroup compared to low inflammation subgroup (>250%, p < 0.0001). In contrast, high inflammation controls did not have elevated CD163 mRNA compared to low inflammation controls (p > 0.05). The pro-inflammatory macrophage marker (CD64 mRNA) was elevated (>160%, all p < 0.05) and more related to CD163 mRNA in the high inflammation schizophrenia subgroup compared to high inflammation controls, while anti-inflammatory macrophage and cytokine markers (CD206 and IL-10 mRNAs) were either unchanged or decreased in schizophrenia. Finally, macrophage recruitment chemokine CCL2 mRNA was increased in schizophrenia (>200%, p < 0.0001) and CCL2 mRNA levels positively correlated with CD163 mRNA (r = 0.46, p < 0.0001). Collectively, our findings support the co-existence of quiescent microglia and increased pro-inflammatory macrophages in the cortex of people with schizophrenia.
Collapse
Affiliation(s)
- Yunting Zhu
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Maree J. Webster
- Stanley Medical Research Institute, Rockville, MD, United States
| | - Caitlin E. Murphy
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
| | - Frank A. Middleton
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Paul T. Massa
- Department of Neurology and Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Rujia Dai
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Cyndi Shannon Weickert
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, NY, United States
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
5
|
Rahimian R, Wakid M, O'Leary LA, Mechawar N. The emerging tale of microglia in psychiatric disorders. Neurosci Biobehav Rev 2021; 131:1-29. [PMID: 34536460 DOI: 10.1016/j.neubiorev.2021.09.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
As the professional phagocytes of the brain, microglia orchestrate the immunological response and play an increasingly important role in maintaining homeostatic brain functions. Microglia are activated by pathological events or slight alterations in brain homeostasis. This activation is dependent on the context and type of stressor or pathology. Through secretion of cytokines, chemokines and growth factors, microglia can strongly influence the response to a stressor and can, therefore, determine the pathological outcome. Psychopathologies have repeatedly been associated with long-lasting priming and sensitization of cerebral microglia. This review focuses on the diversity of microglial phenotype and function in health and psychiatric disease. We first discuss the diverse homeostatic functions performed by microglia and then elaborate on context-specific spatial and temporal microglial heterogeneity. Subsequently, we summarize microglia involvement in psychopathologies, namely major depressive disorder, schizophrenia and bipolar disorder, with a particular focus on post-mortem studies. Finally, we postulate microglia as a promising novel therapeutic target in psychiatry through antidepressant and antipsychotic treatment.
Collapse
Affiliation(s)
- Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Marina Wakid
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Liam Anuj O'Leary
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
6
|
Zoupa E, Pitsikas N. The Nitric Oxide (NO) Donor Sodium Nitroprusside (SNP) and Its Potential for the Schizophrenia Therapy: Lights and Shadows. Molecules 2021; 26:molecules26113196. [PMID: 34073534 PMCID: PMC8199342 DOI: 10.3390/molecules26113196] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/31/2023] Open
Abstract
Schizophrenia is a severe psychiatric disorder affecting up to 1% of the worldwide population. Available therapy presents different limits comprising lack of efficiency in attenuating negative symptoms and cognitive deficits, typical features of schizophrenia and severe side effects. There is pressing requirement, therefore, to develop novel neuroleptics with higher efficacy and safety. Nitric oxide (NO), an intra- and inter-cellular messenger in the brain, appears to be implicated in the pathogenesis of schizophrenia. In particular, underproduction of this gaseous molecule is associated to this mental disease. The latter suggests that increment of nitrergic activity might be of utility for the medication of schizophrenia. Based on the above, molecules able to enhance NO production, as are NO donors, might represent a class of compounds candidates. Sodium nitroprusside (SNP) is a NO donor and is proposed as a promising novel compound for the treatment of schizophrenia. In the present review, we intended to critically assess advances in research of SNP for the therapy of schizophrenia and discuss its potential superiority over currently used neuroleptics.
Collapse
|
7
|
Snijders GJLJ, van Zuiden W, Sneeboer MAM, Berdenis van Berlekom A, van der Geest AT, Schnieder T, MacIntyre DJ, Hol EM, Kahn RS, de Witte LD. A loss of mature microglial markers without immune activation in schizophrenia. Glia 2021; 69:1251-1267. [PMID: 33410555 PMCID: PMC7986895 DOI: 10.1002/glia.23962] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/04/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
Microglia, the immune cells of the brain, are important for neurodevelopment and have been hypothesized to play a role in the pathogenesis of schizophrenia (SCZ). Although previous postmortem studies pointed toward presence of microglial activation, this view has been challenged by more recent hypothesis-driven and hypothesis-free analyses. The aim of the present study is to further understand the observed microglial changes in SCZ. We first performed a detailed meta-analysis on studies that analyzed microglial cell density, microglial morphology, and expression of microglial-specific markers. We then further explored findings from the temporal cortex by performing immunostainings and qPCRs on an additional dataset. A random effect meta-analysis showed that the density of microglial cells was unaltered in SCZ (ES: 0.144 95% CI: 0.102 to 0.390, p = .250), and clear changes in microglial morphology were also absent. The expression of several microglial specific genes, such as CX3CR1, CSF1R, IRF8, OLR1, and TMEM119 was decreased in SCZ (ES: -0.417 95% CI: -0.417 to -0.546, p < .0001), consistent with genome-wide transcriptome meta-analysis results. These results indicate a change in microglial phenotype rather than density, which was validated with the use of TMEM119/Iba1 immunostainings on temporal cortex of a separate cohort. Changes in microglial gene expression were overlapping between SCZ and other psychiatric disorders, but largely opposite from changes reported in Alzheimer's disease. This distinct microglial phenotype provides a crucial molecular hallmark for future research into the role of microglia in SCZ and other psychiatric disorders.
Collapse
Affiliation(s)
- Gijsje J. L. J. Snijders
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Brain Center Rudolf MagnusUniversity Medical Center Utrecht, Utrecht University (BCRM‐UMCU‐UU)UtrechtThe Netherlands
- Department of PsychiatryIcahn School of MedicineNew YorkNew YorkUSA
| | | | | | - Amber Berdenis van Berlekom
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Brain Center Rudolf MagnusUniversity Medical Center Utrecht, Utrecht University (BCRM‐UMCU‐UU)UtrechtThe Netherlands
- Department of Translational Neuroscience (BCRM‐UMCU‐UU)UtrechtThe Netherlands
| | | | | | - Donald J. MacIntyre
- Division of Psychiatry, Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Elly M. Hol
- Department of Translational Neuroscience (BCRM‐UMCU‐UU)UtrechtThe Netherlands
- Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and SciencesAmsterdamThe Netherlands
| | - René S. Kahn
- Department of PsychiatryIcahn School of MedicineNew YorkNew YorkUSA
- Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical CenterBronxNew YorkUSA
| | - Lot D. de Witte
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Brain Center Rudolf MagnusUniversity Medical Center Utrecht, Utrecht University (BCRM‐UMCU‐UU)UtrechtThe Netherlands
- Department of PsychiatryIcahn School of MedicineNew YorkNew YorkUSA
- Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical CenterBronxNew YorkUSA
| |
Collapse
|
8
|
DNA Methylation and Allelic Polymorphism at the Dopamine Transporter Promoter Affect Internalizing and Externalizing Symptoms in Preschoolers. Child Psychiatry Hum Dev 2021; 52:281-290. [PMID: 32462358 DOI: 10.1007/s10578-020-01009-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The role of the dopamine transporter (DAT) in the onset and maintenance of emotional-behavioral difficulties is recognized in adults, adolescents and school-age children, whereas few studies in this field have focused on preschoolers. The study recruited 2-year old children (N = 152) in the general population assessing the possible effect of DAT methylation and allelic polymorphism on internalizing and externalizing symptoms, also exploring whether epigenetic and genetic variability interact. Our results showed that DAT methylation is significantly associated with all the dimensions of children's emotional/behavioral functioning in children carrying 10/10-3/3-8/10 polymorphisms but not in children carrying 9/10-9/9 allele repeats. Understanding the influence of genetic/epigenetic factors on maladaptive emotional/behavioral outcomes in young children, can be of great help in programming effective prevention and intervention plans and can be a valid aid to alleviate psychopathological symptoms before they crystalize into more severe clinical conditions in later life.
Collapse
|
9
|
Bryant JE, Lahti AC, Briend F, Kraguljac NV. White Matter Neurometabolic Signatures Support the Deficit and Nondeficit Distinction in Antipsychotic-Naïve First-Episode Psychosis Patients. Schizophr Bull 2021; 47:1068-1076. [PMID: 33693906 PMCID: PMC8266628 DOI: 10.1093/schbul/sbab014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The deficit syndrome is thought to be a more homogenous clinical subgroup within the syndrome of schizophrenia that is characterized by enduring negative symptoms. It is hypothesized that distinct pathophysiological processes underlie the subtypes, where the deficit syndrome reflects an early onset nonprogressive developmental process, and the nondeficit form of the illness is characterized by attenuated neuroplasticity secondary to elevated glutamate levels. We used single-voxel magnetic resonance spectroscopy (PRESS; TE: 30 ms) to measure left frontal white matter neurometabolite levels in 61 antipsychotic-naïve first-episode psychosis patients (39 who did not display deficit features, 22 who did display deficit features, assessed with the Schedule for the Deficit Syndrome) and 59 healthy controls. Metabolite levels were quantified with the LCModel. We used a MANCOVA to determine neurometabolite differences between healthy controls, deficit syndrome patients, and nondeficit patients. We report a significant group difference when all metabolites were considered jointly (F[10,208] = 2.16; P = .02). Post hoc analyses showed that patients presenting without deficit features had higher glutamate levels than patients with deficit features and controls. Patients presenting without deficit features also had significantly higher myoinositol levels than controls; myoinositol levels were trend-level higher in patients presenting with deficit features compared to controls. Our data support the idea that the pathophysiology of patients presenting without deficit features may differ from those presenting with deficit features.
Collapse
Affiliation(s)
- James Edward Bryant
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC 501, Birmingham, AL, USA
| | - Adrienne Carol Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC 501, Birmingham, AL, USA
| | - Frederic Briend
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC 501, Birmingham, AL, USA,UMR1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC 501, Birmingham, AL, USA,To whom correspondence should be addressed; tel: 205-996-7171, e-mail:
| |
Collapse
|
10
|
Supernumerary neurons within the cerebral cortical subplate in autism spectrum disorders. Brain Res 2021; 1760:147350. [PMID: 33607045 DOI: 10.1016/j.brainres.2021.147350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorders (ASDs) involve alterations to cortical connectivity that manifest as reduced coordinated activity between cortical regions. The neurons of the cortical subplate are a major contributor to establishing thalamocortical, corticothalamic and corticocortical long-range connections and only a subset of this cell population survives into adulthood. Previous reports of an indistinct gray-white matter boundary in subjects with ASD suggest that the adjacent subplate may also show organizational abnormalities. Frozen human postmortem tissue samples from the parietal lobe (BA7) were used to evaluate white-matter neuron densities adjacent to layer VI with an antibody to NeuN. In addition, fixed postmortem tissue samples from frontal (BA9), parietal (BA7) and temporal lobe (BA21) locations, were stained with a Golgi-Kopsch procedure, and used to examine the morphology of these neuronal profiles. Relative to control cases, ASD subjects showed a large average density increase of NeuN-positive profiles of 44.7 percent. The morphologies of these neurons were consistent with subplate cells of the fusiform, polymorphic and pyramidal cell types. Lower ratios of fusiform to other cell types are found early in development and although adult ASD subjects showed consistently lower ratios, these differences were not significant. The increased number of retained subplate profiles, along with cell type ratios redolent of earlier developmental stages, suggests either an abnormal initial population or a partial failure of the apoptosis seen in neurotypical development. These results indicate abnormalities within a neuron population that plays multiple roles in the developing and mature cerebral cortex, including the establishment of long-range cortical connections.
Collapse
|
11
|
White Matter Interstitial Neurons in the Adult Human Brain: 3% of Cortical Neurons in Quest for Recognition. Cells 2021; 10:cells10010190. [PMID: 33477896 PMCID: PMC7833373 DOI: 10.3390/cells10010190] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 02/03/2023] Open
Abstract
White matter interstitial neurons (WMIN) are a subset of cortical neurons located in the subcortical white matter. Although they were fist described over 150 years ago, they are still largely unexplored and often considered a small, functionally insignificant neuronal population. WMIN are adult remnants of neurons located in the transient fetal subplate zone (SP). Following development, some of the SP neurons undergo apoptosis, and the remaining neurons are incorporated in the adult white matter as WMIN. In the adult human brain, WMIN are quite a large population of neurons comprising at least 3% of all cortical neurons (between 600 and 1100 million neurons). They include many of the morphological neuronal types that can be found in the overlying cerebral cortex. Furthermore, the phenotypic and molecular diversity of WMIN is similar to that of the overlying cortical neurons, expressing many glutamatergic and GABAergic biomarkers. WMIN are often considered a functionally unimportant subset of neurons. However, upon closer inspection of the scientific literature, it has been shown that WMIN are integrated in the cortical circuitry and that they exhibit diverse electrophysiological properties, send and receive axons from the cortex, and have active synaptic contacts. Based on these data, we are able to enumerate some of the potential WMIN roles, such as the control of the cerebral blood flow, sleep regulation, and the control of information flow through the cerebral cortex. Also, there is a number of studies indicating the involvement of WMIN in the pathophysiology of many brain disorders such as epilepsy, schizophrenia, Alzheimer’s disease, etc. All of these data indicate that WMIN are a large population with an important function in the adult brain. Further investigation of WMIN could provide us with novel data crucial for an improved elucidation of the pathophysiology of many brain disorders. In this review, we provide an overview of the current WMIN literature, with an emphasis on studies conducted on the human brain.
Collapse
|
12
|
Harrison PJ, Colbourne L, Harrison CH. The neuropathology of bipolar disorder: systematic review and meta-analysis. Mol Psychiatry 2020; 25:1787-1808. [PMID: 30127470 PMCID: PMC6292507 DOI: 10.1038/s41380-018-0213-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/16/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023]
Abstract
Various neuropathological findings have been reported in bipolar disorder (BD). However, it is unclear which findings are well established. To address this gap, we carried out a systematic review of the literature. We searched over 5000 publications, identifying 103 data papers, of which 81 were eligible for inclusion. Our main findings can be summarised as follows. First, most studies have relied on a limited number of brain collections, and have used relatively small sample sizes (averaging 12 BD cases and 15 controls). Second, surprisingly few studies have attempted to replicate closely a previous one, precluding substantial meta-analyses, such that the latter were all limited to two studies each, and comprising 16-36 BD cases and 16-74 controls. As such, no neuropathological findings can be considered to have been established beyond reasonable doubt. Nevertheless, there are several replicated positive findings in BD, including decreased cortical thickness and glial density in subgenual anterior cingulate cortex, reduced neuronal density in some amygdalar nuclei, and decreased calbindin-positive neuron density in prefrontal cortex. Many other positive findings have also been reported, but with limited or contradictory evidence. As an important negative result, it can be concluded that gliosis is not a feature of BD; neither is there neuropathological evidence for an inflammatory process.
Collapse
Affiliation(s)
- Paul J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| | - Lucy Colbourne
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Charlotte H Harrison
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
13
|
Ohtaka-Maruyama C. Subplate Neurons as an Organizer of Mammalian Neocortical Development. Front Neuroanat 2020; 14:8. [PMID: 32265668 PMCID: PMC7103628 DOI: 10.3389/fnana.2020.00008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/20/2020] [Indexed: 12/30/2022] Open
Abstract
Subplate neurons (SpNs) are one of the earliest born and matured neurons in the developing cerebral cortex and play an important role in the early development of the neocortex. It has been known that SpNs have an essential role in thalamocortical axon (TCA) pathfinding and the establishment of the first neural circuit from the thalamus towards cortical layer IV. In addition to this function, it has recently been revealed in mouse corticogenesis that SpNs play an important role in the regulation of radial neuronal migration during the mid-embryonic stage. Moreover, accumulating studies throw light on the possible roles of SpNs in adult brain functions and also their involvement in psychiatric or other neurological disorders. As SpNs are unique to mammals, they may have contributed to the evolution of the mammalian neocortex by efficiently organizing cortical formation during the limited embryonic period of corticogenesis. By increasing our knowledge of the functions of SpNs, we will clarify how SpNs act as an organizer of mammalian neocortical formation.
Collapse
Affiliation(s)
- Chiaki Ohtaka-Maruyama
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
14
|
Kubo KI. Increased densities of white matter neurons as a cross-disease feature of neuropsychiatric disorders. Psychiatry Clin Neurosci 2020; 74:166-175. [PMID: 31788900 DOI: 10.1111/pcn.12962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
While neurons of the human cerebral cortex are mainly distributed in the gray matter, the white matter (WM) also contains some excitatory and inhibitory neurons, so-called WM neurons. Studies on the cytoarchitectural alterations in the brains of patients with neuropsychiatric disorders have repeatedly reported increased densities of the WM neurons in a proportion of patients with schizophrenia and autism spectrum disorder. Although some studies have demonstrated increased densities of superficial WM neurons, others have demonstrated increased densities of deep WM neurons and increased WM neuron densities can be considered as one of the cross-disease features of neuropsychiatric disorders. Nevertheless, what actually causes the increase in the densities of the WM neurons still remains under debate, and several hypothetical mechanisms have been proposed. The WM neurons in normal brains are considered as remnants of the subplate neurons, which represent a transient cytoarchitectural zone present during development of the mammalian neocortex; it has been suggested that increased densities of the WM neurons could result from inappropriate apoptosis of the subplate neurons in the brains of patients with neuropsychiatric disorders. On the other hand, recent experimental studies have demonstrated that genetic and environmental factors that enhance the risk of development of neuropsychiatric disorders could cause altered distribution of neurons in the WM. To understand the pathophysiology underlying the increased densities of the WM neurons, it is important to investigate the cellular characteristics of the WM neurons in the brains of both normal subjects and patients with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ken-Ichiro Kubo
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.,Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Cai HQ, Catts VS, Webster MJ, Galletly C, Liu D, O’Donnell M, Weickert TW, Weickert CS. Increased macrophages and changed brain endothelial cell gene expression in the frontal cortex of people with schizophrenia displaying inflammation. Mol Psychiatry 2020; 25:761-775. [PMID: 30214039 PMCID: PMC7156343 DOI: 10.1038/s41380-018-0235-x] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/22/2018] [Accepted: 07/31/2018] [Indexed: 12/23/2022]
Abstract
Elevated pro-inflammatory cytokines exist in both blood and brain of people with schizophrenia but how this affects molecular indices of the blood-brain barrier (BBB) is unclear. Eight mRNAs relating to BBB function, a microglia and three immune cell markers were measured by qPCR in the prefrontal cortex from 37 people with schizophrenia/schizoaffective disorder and 37 matched controls. This cohort was previously grouped into "high inflammation" and "low inflammation" subgroups based on cortical inflammatory-related transcripts. Soluble intercellular adhesion molecule-1 (sICAM1) was measured in the plasma of 78 patients with schizophrenia/schizoaffective disorder and 73 healthy controls. We found that sICAM1 was significantly elevated in schizophrenia. An efflux transporter, ABCG2, was lower, while mRNAs encoding VE-cadherin and ICAM1 were higher in schizophrenia brain. The "high inflammation" schizophrenia subgroup had lower ABCG2 and higher ICAM1, VE-cadherin, occludin and interferon-induced transmembrane protein mRNAs compared to both "low inflammation" schizophrenia and "low inflammation" control subgroups. ICAM1 immunohistochemistry showed enrichment in brain endothelium regardless of diagnosis and was localised to astrocytes in some brains. Microglia mRNA was not altered in schizophrenia nor did it correlate with ICAM1 expression. Immune cell mRNAs were elevated in "high inflammation" schizophrenia compared to both "low inflammation" schizophrenia and controls. CD163+ perivascular macrophages were identified by immunohistochemistry in brain parenchyma in over 40% of "high inflammation" schizophrenia brains. People with high levels of cytokine expression and schizophrenia display changes consistent with greater immune cell transmigration into brain via increased ICAM1, which could contribute to other neuropathological changes found in this subgroup of people.
Collapse
Affiliation(s)
- Helen Q. Cai
- 0000 0000 8900 8842grid.250407.4Schizophrenia Research Laboratory, Neuroscience Research Australia (NeuRA), Sydney, NSW Australia ,0000 0004 4902 0432grid.1005.4School of Psychiatry, University of New South Wales, Sydney, NSW Australia
| | - Vibeke S. Catts
- 0000 0000 8900 8842grid.250407.4Schizophrenia Research Laboratory, Neuroscience Research Australia (NeuRA), Sydney, NSW Australia ,0000 0004 4902 0432grid.1005.4School of Psychiatry, University of New South Wales, Sydney, NSW Australia
| | - Maree J. Webster
- 0000 0004 0473 2858grid.453353.7Stanley Medical Research Institute, Kensington, MD USA
| | - Cherrie Galletly
- 0000 0004 1936 7304grid.1010.0Discipline of Psychiatry, School of Medicine, The University of Adelaide, Adelaide, SA Australia ,Northern Adelaide Local Health Network, Adelaide, SA Australia ,Ramsay Health Care (SA) Mental Health Services, Adelaide, SA Australia
| | - Dennis Liu
- 0000 0004 1936 7304grid.1010.0Discipline of Psychiatry, School of Medicine, The University of Adelaide, Adelaide, SA Australia ,Northern Adelaide Local Health Network, Adelaide, SA Australia
| | - Maryanne O’Donnell
- 0000 0004 4902 0432grid.1005.4School of Psychiatry, University of New South Wales, Sydney, NSW Australia
| | - Thomas W Weickert
- 0000 0000 8900 8842grid.250407.4Schizophrenia Research Laboratory, Neuroscience Research Australia (NeuRA), Sydney, NSW Australia ,0000 0004 4902 0432grid.1005.4School of Psychiatry, University of New South Wales, Sydney, NSW Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia. .,School of Psychiatry, University of New South Wales, Sydney, NSW, Australia. .,Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
16
|
Gigase FAJ, Snijders GJLJ, Boks MP, de Witte LD. Neurons and glial cells in bipolar disorder: A systematic review of postmortem brain studies of cell number and size. Neurosci Biobehav Rev 2019; 103:150-162. [PMID: 31163205 DOI: 10.1016/j.neubiorev.2019.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
Bipolar disorder (BD) is a complex neurobiological disease. It is likely that both neurons and glial cells are affected in BD, yet how these cell types are changed at the structural and functional level is still largely unknown. In this review we provide an overview of postmortem studies analyzing structural cellular changes in BD, including the density, number and size of neurons and glia. We categorize the results per cell-type and validate outcome measures per brain region. Despite variations by brain region, outcome measure and methodology, several patterns could be identified. Total neuron, total glia, and cell subtypes astrocyte, microglia and oligodendrocyte presence appears unchanged in the BD brain. Interneuron density may be decreased across various cortical areas, yet findings of interneuron subpopulations show discrepancies. This structural review brings to light issues in validation and replication. Future research should therefore prioritize the validation of existing studies in order to increasingly refine the conceptual models of BD.
Collapse
Affiliation(s)
- Frederieke A J Gigase
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG Utrecht, the Netherlands
| | - Gijsje J L J Snijders
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG Utrecht, the Netherlands
| | - Marco P Boks
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG Utrecht, the Netherlands
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA.
| |
Collapse
|
17
|
Duchatel RJ, Shannon Weickert C, Tooney PA. White matter neuron biology and neuropathology in schizophrenia. NPJ SCHIZOPHRENIA 2019; 5:10. [PMID: 31285426 PMCID: PMC6614474 DOI: 10.1038/s41537-019-0078-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022]
Abstract
Schizophrenia is considered a neurodevelopmental disorder as it often manifests before full brain maturation and is also a cerebral cortical disorder where deficits in GABAergic interneurons are prominent. Whilst most neurons are located in cortical and subcortical grey matter regions, a smaller population of neurons reside in white matter tracts of the primate and to a lesser extent, the rodent brain, subjacent to the cortex. These interstitial white matter neurons (IWMNs) have been identified with general markers for neurons [e.g., neuronal nuclear antigen (NeuN)] and with specific markers for neuronal subtypes such as GABAergic neurons. Studies of IWMNs in schizophrenia have primarily focused on their density underneath cortical areas known to be affected in schizophrenia such as the dorsolateral prefrontal cortex. Most of these studies of postmortem brains have identified increased NeuN+ and GABAergic IWMN density in people with schizophrenia compared to healthy controls. Whether IWMNs are involved in the pathogenesis of schizophrenia or if they are increased because of the cortical pathology in schizophrenia is unknown. We also do not understand how increased IWMN might contribute to brain dysfunction in the disorder. Here we review the literature on IWMN pathology in schizophrenia. We provide insight into the postulated functional significance of these neurons including how they may contribute to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Ryan J Duchatel
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
- Priority Centre for Brain and Mental Health Research and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, New York, 13210, USA
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Priority Centre for Brain and Mental Health Research and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
18
|
Sandusky-Beltran LA, Kovalenko A, Ma C, Calahatian JIT, Placides DS, Watler MD, Hunt JB, Darling AL, Baker JD, Blair LJ, Martin MD, Fontaine SN, Dickey CA, Lussier AL, Weeber EJ, Selenica MLB, Nash KR, Gordon MN, Morgan D, Lee DC. Spermidine/spermine-N 1-acetyltransferase ablation impacts tauopathy-induced polyamine stress response. Alzheimers Res Ther 2019; 11:58. [PMID: 31253191 PMCID: PMC6599347 DOI: 10.1186/s13195-019-0507-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 05/21/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Tau stabilizes microtubules; however, in Alzheimer's disease (AD) and tauopathies, tau becomes hyperphosphorylated, aggregates, and results in neuronal death. Our group recently uncovered a unique interaction between polyamine metabolism and tau fate. Polyamines exert an array of physiological effects that support neuronal function and cognitive processing. Specific stimuli can elicit a polyamine stress response (PSR), resulting in altered central polyamine homeostasis. Evidence suggests that elevations in polyamines following a short-term stressor are beneficial; however, persistent stress and subsequent PSR activation may lead to maladaptive polyamine dysregulation, which is observed in AD, and may contribute to neuropathology and disease progression. METHODS Male and female mice harboring tau P301L mutation (rTg4510) were examined for a tau-induced central polyamine stress response (tau-PSR). The direct effect of tau-PSR byproducts on tau fibrillization and oligomerization were measured using a thioflavin T assay and a N2a split superfolder GFP-Tau (N2a-ssGT) cell line, respectively. To therapeutically target the tau-PSR, we bilaterally injected caspase 3-cleaved tau truncated at aspartate 421 (AAV9 Tau ΔD421) into the hippocampus and cortex of spermidine/spermine-N1-acetyltransferase (SSAT), a key regulator of the tau-PSR, knock out (SSAT-/-), and wild type littermates, and the effects on tau neuropathology, polyamine dysregulation, and behavior were measured. Lastly, cellular models were employed to further examine how SSAT repression impacted tau biology. RESULTS Tau induced a unique tau-PSR signature in rTg4510 mice, notably in the accumulation of acetylated spermidine. In vitro, higher-order polyamines prevented tau fibrillization but acetylated spermidine failed to mimic this effect and even promoted fibrillization and oligomerization. AAV9 Tau ΔD421 also elicited a unique tau-PSR in vivo, and targeted disruption of SSAT prevented the accumulation of acetylated polyamines and impacted several tau phospho-epitopes. Interestingly, SSAT knockout mice presented with altered behavior in the rotarod task, the elevated plus maze, and marble burying task, thus highlighting the impact of polyamine homeostasis within the brain. CONCLUSION These data represent a novel paradigm linking tau pathology and polyamine dysfunction and that targeting specific arms within the polyamine pathway may serve as new targets to mitigate certain components of the tau phenotype.
Collapse
Affiliation(s)
- Leslie A. Sandusky-Beltran
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Pharmaceutical Sciences, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
- 0000 0004 1936 8753grid.137628.9Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, 1 Park Avenue, New York, NY 10016 USA
| | - Andrii Kovalenko
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Pharmaceutical Sciences, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
| | - Chao Ma
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33613 USA
| | - John Ivan T. Calahatian
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Pharmaceutical Sciences, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
| | - Devon S. Placides
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Pharmaceutical Sciences, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
| | - Mallory D. Watler
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Pharmaceutical Sciences, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
| | - Jerry B. Hunt
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Pharmaceutical Sciences, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
| | - April L. Darling
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Medicine, University of South Florida, Tampa, FL 33613 USA
| | - Jeremy D. Baker
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Medicine, University of South Florida, Tampa, FL 33613 USA
| | - Laura J. Blair
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Medicine, University of South Florida, Tampa, FL 33613 USA
| | - Mackenzie D. Martin
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Medicine, University of South Florida, Tampa, FL 33613 USA
| | - Sarah N. Fontaine
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Medicine, University of South Florida, Tampa, FL 33613 USA
| | - Chad A. Dickey
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Medicine, University of South Florida, Tampa, FL 33613 USA
| | - April L. Lussier
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33613 USA
| | - Edwin J. Weeber
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33613 USA
| | - Maj-Linda B. Selenica
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Pharmaceutical Sciences, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
| | - Kevin R. Nash
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33613 USA
| | - Marcia N. Gordon
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33613 USA
- 0000 0001 2150 1785grid.17088.36Department of Translational Science & Molecular Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI 49503 USA
| | - Dave Morgan
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33613 USA
- 0000 0001 2150 1785grid.17088.36Department of Translational Science & Molecular Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI 49503 USA
| | - Daniel C. Lee
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Pharmaceutical Sciences, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
| |
Collapse
|
19
|
Sedmak G, Judaš M. The total number of white matter interstitial neurons in the human brain. J Anat 2019; 235:626-636. [PMID: 31173356 DOI: 10.1111/joa.13018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2019] [Indexed: 02/06/2023] Open
Abstract
In the adult human brain, the interstitial neurons (WMIN) of the subcortical white matter are the surviving remnants of the fetal subplate zone. It has been suggested that they perform certain important functions and may be involved in the pathogenesis of several neurological and psychiatric disorders. However, many important features of this class of human cortical neurons remain insufficiently explored. In this study, we analyzed the total number, and regional and topological distribution of WMIN in the adult human subcortical white matter, using a combined immunocytochemical (NeuN) and stereological approaches. We found that the average number of WMIN in 1 mm3 of the subcortical white matter is 1.230 ± 549, which translates to the average total number of 593 811 183.6 ± 264 849 443.35 of WMIN in the entire subcortical telencephalic white matter. While there were no significant differences in their regional distribution, the lowest number of WMIN has been consistently observed in the limbic cortex, and the highest number in the frontal cortex. With respect to their topological distribution, the WMIN were consistently more numerous within gyral crowns, less numerous along gyral walls and least numerous at the bottom of cortical sulci (where they occupy a narrow and compact zone below the cortical-white matter border). The topological location of WMIN is also significantly correlated with their morphology: pyramidal and multipolar forms are the most numerous within gyral crowns, whereas bipolar forms predominate at the bottom of cortical sulci. Our results indicate that WMIN represent substantial neuronal population in the adult human cerebral cortex (e.g. more numerous than thalamic or basal ganglia neurons) and thus deserve more detailed morphological and functional investigations in the future.
Collapse
Affiliation(s)
- Goran Sedmak
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Center for Excellence in Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Miloš Judaš
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Center for Excellence in Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| |
Collapse
|
20
|
From the microscope to the magnet: Disconnection in schizophrenia and bipolar disorder. Neurosci Biobehav Rev 2019; 98:47-57. [PMID: 30629976 DOI: 10.1016/j.neubiorev.2019.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/22/2018] [Accepted: 01/06/2019] [Indexed: 12/15/2022]
Abstract
White matter (WM) abnormalities have implicated schizophrenia (SZ) and bipolar disorder (BD) as disconnection syndromes, yet the extent to which these abnormalities are shared versus distinct remains unclear. Diffusion tensor imaging (DTI) studies yield a putative measure of WM integrity while neuropathological studies provide more specific microstructural information. We therefore systematically reviewed all neuropathological (n = 12) and DTI (n = 11) studies directly comparing patients with SZ and BD. Most studies (18/23) reported no difference between patient groups. Changes in oligodendrocyte density, myelin staining and gene, protein and mRNA expression were found in SZ and/or BD patients as compared to healthy individuals, while DTI studies showed common alterations in thalamic radiations, uncinate fasciculus, corpus callosum, longitudinal fasciculus and corona radiata. Altogether, findings suggest shared disconnectivity in SZ and BD, which are likely related to their considerable overlap. Above all, neuroimaging findings corroborated neuropathological findings in the prefrontal cortex, demonstrating the utility of integrating multiple methodologies. Focusing on clinical dimensions over disease entities will advance our understanding of disconnectivity and help inform preventive medicine.
Collapse
|
21
|
Microglial Activation and Psychotic Disorders: Evidence from Pre-clinical and Clinical Studies. Curr Top Behav Neurosci 2019; 44:161-205. [PMID: 30828767 DOI: 10.1007/7854_2018_81] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clinical and pre-clinical studies have demonstrated an important role of neuroinflammation in the etiology of schizophrenia. While the underlying mechanisms remain poorly understood, there are some studies demonstrating an association between maternal immune activation and behavioral changes in adult offspring and identifying early life infection as a trigger for schizophrenia; in addition, inflammatory markers were found to be increased in the schizophrenic post-mortem brain. During maternal immune activation, pro-inflammatory mediators such as cytokines, chemokines, antibodies, and acute-phase proteins are released in the maternal bloodstream, thus increasing the permeability of the placental barrier and the fetal blood-brain barrier, allowing the inflammatory mediators to enter the fetal brain. In the central nervous system (CNS), these pro-inflammatory mediators are able to activate microglial cells that can release pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6. As a consequence, circulating immune cells may infiltrate the brain, increasing cytokine levels and releasing antibodies that aggravate the neuroinflammation. Neuroinflammation may affect processes that are pivotal for normal brain maturation such as myelination, synaptic pruning, and neuronal remodeling. Microglial cell activation and pro-inflammatory mediators have been extensively studied in schizophrenic post-mortem brain samples. Some results of these investigations demonstrated an increase in microglial activation markers, cytokines, and chemokines in post-mortem brain samples from individuals with schizophrenia. In contrast, there are studies that have demonstrated low levels of microglial activation makers in the schizophrenic post-mortem brain. Thus, based on the important role of neuroinflammation as a trigger in the development of schizophrenia, this chapter aims (1) to enumerate evidence of neuroinflammation and microglial activation from pre-clinical schizophrenia models, (2) to show links between schizophrenia and neuroinflammation in clinical studies, and (3) to identify mechanisms by which microglial activation may influence in the development of schizophrenia.
Collapse
|
22
|
Abstract
Contrary to the notion that neurology but not psychiatry is the domain of disorders evincing structural brain alterations, it is now clear that there are subtle but consistent neuropathological changes in schizophrenia. These range from increases in ventricular size to dystrophic changes in dendritic spines. A decrease in dendritic spine density in the prefrontal cortex (PFC) is among the most replicated of postmortem structural findings in schizophrenia. Examination of the mechanisms that account for the loss of dendritic spines has in large part focused on genes and molecules that regulate neuronal structure. But the simple question of what is the effector of spine loss, ie, where do the lost spines go, is unanswered. Recent data on glial cells suggest that microglia (MG), and perhaps astrocytes, play an important physiological role in synaptic remodeling of neurons during development. Synapses are added to the dendrites of pyramidal cells during the maturation of these neurons; excess synapses are subsequently phagocytosed by MG. In the PFC, this occurs during adolescence, when certain symptoms of schizophrenia emerge. This brief review discusses recent advances in our understanding of MG function and how these non-neuronal cells lead to structural changes in neurons in schizophrenia.
Collapse
Affiliation(s)
| | - Ariel Y Deutch
- Neuroscience Program, Vanderbilt University, Nashville, TN
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| |
Collapse
|
23
|
Abbass M, Trought K, Long D, Semechko A, Wong AHC. Automated immunohistochemical method to analyze large areas of the human cortex. J Neurosci Methods 2018; 294:81-90. [PMID: 29126813 DOI: 10.1016/j.jneumeth.2017.10.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND There have been inconsistencies in the histological abnormalities found in the cerebral cortex from patients with schizophrenia, bipolar disorder and major depression. Discrepancies in previously published reports may arise from small sample sizes, inconsistent methodology and biased cell counting. METHODS We applied automated quantification of neuron density, neuron size and cortical layer thickness in large regions of the cerebral cortex in psychiatric patients. This method accurately segments DAPI positive cells that are also stained with CUX2 and FEZF2. Cortical layer thickness, neuron density and neuron size were automatically computed for each cortical layer in numerous Brodmann areas. RESULTS We did not find pronounced cytoarchitectural abnormalities in the anterior cingulate cortex or orbitofrontal cortex in patients with schizophrenia, bipolar disorder or major depressive disorder. There were no significant differences in layer thickness measured in immunohistochemically stained slides compared with traditional Nissl stained slides. Automated cell counts were correlated, reliable and consistent with manual counts, while being much less time-consuming. CONCLUSION We demonstrate the validity of using a novel automated analysis approach to post-mortem brain tissue. We were able to analyze large cortical areas and quantify specific cell populations using immunohistochemical markers. Future analyses could benefit from efficient automated analysis.
Collapse
Affiliation(s)
- Mohamad Abbass
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Kathleen Trought
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - David Long
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
| | - Anton Semechko
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Albert H C Wong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
24
|
Thomas KT, Anderson BR, Shah N, Zimmer SE, Hawkins D, Valdez AN, Gu Q, Bassell GJ. Inhibition of the Schizophrenia-Associated MicroRNA miR-137 Disrupts Nrg1α Neurodevelopmental Signal Transduction. Cell Rep 2017; 20:1-12. [PMID: 28683304 PMCID: PMC5745041 DOI: 10.1016/j.celrep.2017.06.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 04/28/2017] [Accepted: 06/13/2017] [Indexed: 12/14/2022] Open
Abstract
Genomic studies have repeatedly associated variants in the gene encoding the microRNA miR-137 with increased schizophrenia risk. Bioinformatic predictions suggest that miR-137 regulates schizophrenia-associated signaling pathways critical to neural development, but these predictions remain largely unvalidated. In the present study, we demonstrate that miR-137 regulates neuronal levels of p55γ, PTEN, Akt2, GSK3β, mTOR, and rictor. All are key proteins within the PI3K-Akt-mTOR pathway and act downstream of neuregulin (Nrg)/ErbB and BDNF signaling. Inhibition of miR-137 ablates Nrg1α-induced increases in dendritic protein synthesis, phosphorylated S6, AMPA receptor subunits, and outgrowth. Inhibition of miR-137 also blocks mTORC1-dependent responses to BDNF, including increased mRNA translation and dendritic outgrowth, while leaving mTORC1-independent S6 phosphorylation intact. We conclude that miR-137 regulates neuronal responses to Nrg1α and BDNF through convergent mechanisms, which might contribute to schizophrenia risk by altering neural development.
Collapse
Affiliation(s)
- Kristen Therese Thomas
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Bart Russell Anderson
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Niraj Shah
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Stephanie Elaine Zimmer
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Daniel Hawkins
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Arielle Nicole Valdez
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Qiaochu Gu
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Gary Jonathan Bassell
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA.
| |
Collapse
|
25
|
Howes OD, McCutcheon R. Inflammation and the neural diathesis-stress hypothesis of schizophrenia: a reconceptualization. Transl Psychiatry 2017; 7:e1024. [PMID: 28170004 PMCID: PMC5438023 DOI: 10.1038/tp.2016.278] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/27/2016] [Indexed: 12/12/2022] Open
Abstract
An interaction between external stressors and intrinsic vulnerability is one of the longest standing pathoaetiological explanations for schizophrenia. However, novel lines of evidence from genetics, preclinical studies, epidemiology and imaging have shed new light on the mechanisms that may underlie this, implicating microglia as a key potential mediator. Microglia are the primary immune cells of the central nervous system. They have a central role in the inflammatory response, and are also involved in synaptic pruning and neuronal remodeling. In addition to immune and traumatic stimuli, microglial activation occurs in response to psychosocial stress. Activation of microglia perinatally may make them vulnerable to subsequent overactivation by stressors experienced in later life. Recent advances in genetics have shown that variations in the complement system are associated with schizophrenia, and this system has been shown to regulate microglial synaptic pruning. This suggests a mechanism via which genetic and environmental influences may act synergistically and lead to pathological microglial activation. Microglial overactivation may lead to excessive synaptic pruning and loss of cortical gray matter. Microglial mediated damage to stress-sensitive regions such as the prefrontal cortex and hippocampus may lead directly to cognitive and negative symptoms, and account for a number of the structural brain changes associated with the disorder. Loss of cortical control may also lead to disinhibition of subcortical dopamine-thereby leading to positive psychotic symptoms. We review the preclinical and in vivo evidence for this model and consider the implications this has for treatment, and future directions.
Collapse
Affiliation(s)
- O D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK,MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK,PET Imaging Group, MRC Clinical Sciences Centre, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK. E-mail:
| | - R McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK,MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
26
|
Trépanier MO, Hopperton KE, Mizrahi R, Mechawar N, Bazinet RP. Postmortem evidence of cerebral inflammation in schizophrenia: a systematic review. Mol Psychiatry 2016; 21:1009-26. [PMID: 27271499 PMCID: PMC4960446 DOI: 10.1038/mp.2016.90] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/29/2016] [Accepted: 04/20/2016] [Indexed: 12/13/2022]
Abstract
Schizophrenia is a psychiatric disorder which has a lifetime prevalence of ~1%. Multiple candidate mechanisms have been proposed in the pathogenesis of schizophrenia. One such mechanism is the involvement of neuroinflammation. Clinical studies, including neuroimaging, peripheral biomarkers and randomized control trials, have suggested the presence of neuroinflammation in schizophrenia. Many studies have also measured markers of neuroinflammation in postmortem brain samples from schizophrenia patients. The objective of this study was to conduct a systematic search of the literature on neuroinflammation in postmortem brains of schizophrenia patients indexed in MEDLINE, Embase and PsycINFO. Databases were searched up until 20th March 2016 for articles published on postmortem brains in schizophrenia evaluating microglia, astrocytes, glia, cytokines, the arachidonic cascade, substance P and other markers of neuroinflammation. Two independent reviewers extracted the data. Out of 5385 articles yielded by the search, 119 articles were identified that measured neuroinflammatory markers in schizophrenic postmortem brains. Glial fibrillary acidic protein expression was elevated, lower or unchanged in 6, 6 and 21 studies, respectively, and similar results were obtained for glial cell densities. On the other hand, microglial markers were increased, lower or unchanged in schizophrenia in 11, 3 and 8 studies, respectively. Results were variable across all other markers, but SERPINA3 and IFITM were consistently increased in 4 and 5 studies, respectively. Despite the variability, some studies evaluating neuroinflammation in postmortem brains in schizophrenia suggest an increase in microglial activity and other markers such as SERPINA3 and IFITM. Variability across studies is partially explained by multiple factors including brain region evaluated, source of the brain, diagnosis, age at time of death, age of onset and the presence of suicide victims in the cohort.
Collapse
Affiliation(s)
- M O Trépanier
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - K E Hopperton
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - R Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - N Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - R P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Duchatel RJ, Jobling P, Graham BA, Harms LR, Michie PT, Hodgson DM, Tooney PA. Increased white matter neuron density in a rat model of maternal immune activation - Implications for schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:118-26. [PMID: 26385575 DOI: 10.1016/j.pnpbp.2015.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/04/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
Abstract
Interstitial neurons are located among white matter tracts of the human and rodent brain. Post-mortem studies have identified increased interstitial white matter neuron (IWMN) density in the fibre tracts below the cortex in people with schizophrenia. The current study assesses IWMN pathology in a model of maternal immune activation (MIA); a risk factor for schizophrenia. Experimental MIA was produced by an injection of polyinosinic:polycytidylic acid (PolyI:C) into pregnant rats on gestational day (GD) 10 or GD19. A separate control group received saline injections. The density of neuronal nuclear antigen (NeuN(+)) and somatostatin (SST(+)) IWMNs was determined in the white matter of the corpus callosum in two rostrocaudally adjacent areas in the 12week old offspring of GD10 (n=10) or GD19 polyI:C dams (n=18) compared to controls (n=20). NeuN(+) IWMN density trended to be higher in offspring from dams exposed to polyI:C at GD19, but not GD10. A subpopulation of these NeuN(+) IWMNs was shown to express SST. PolyI:C treatment of dams induced a significant increase in the density of SST(+) IWMNs in the offspring when delivered at both gestational stages with more regionally widespread effects observed at GD19. A positive correlation was observed between NeuN(+) and SST(+) IWMN density in animals exposed to polyI:C at GD19, but not controls. This is the first study to show that MIA increases IWMN density in adult offspring in a similar manner to that seen in the brain in schizophrenia. This suggests the MIA model will be useful in future studies aimed at probing the relationship between IWMNs and schizophrenia.
Collapse
Affiliation(s)
- Ryan J Duchatel
- Preclinical Neurobiology Research Group, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia.
| | - Phillip Jobling
- Preclinical Neurobiology Research Group, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Brett A Graham
- Preclinical Neurobiology Research Group, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Lauren R Harms
- School of Psychology, Faculty of Science and IT, University of Newcastle, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia.
| | - Patricia T Michie
- School of Psychology, Faculty of Science and IT, University of Newcastle, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia.
| | - Deborah M Hodgson
- School of Psychology, Faculty of Science and IT, University of Newcastle, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia.
| | - Paul A Tooney
- Preclinical Neurobiology Research Group, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia.
| |
Collapse
|
28
|
Halene TB, Kozlenkov A, Jiang Y, Mitchell A, Javidfar B, Dincer A, Park R, Wiseman J, Croxson P, Giannaris EL, Hof PR, Roussos P, Dracheva S, Hemby SE, Akbarian S. NeuN+ neuronal nuclei in non-human primate prefrontal cortex and subcortical white matter after clozapine exposure. Schizophr Res 2016; 170:235-44. [PMID: 26776227 PMCID: PMC4740223 DOI: 10.1016/j.schres.2015.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 12/01/2022]
Abstract
Increased neuronal densities in subcortical white matter have been reported for some cases with schizophrenia. The underlying cellular and molecular mechanisms remain unresolved. We exposed 26 young adult macaque monkeys for 6 months to either clozapine, haloperidol or placebo and measured by structural MRI frontal gray and white matter volumes before and after treatment, followed by observer-independent, flow-cytometry-based quantification of neuronal and non-neuronal nuclei and molecular fingerprinting of cell-type specific transcripts. After clozapine exposure, the proportion of nuclei expressing the neuronal marker NeuN increased by approximately 50% in subcortical white matter, in conjunction with a more subtle and non-significant increase in overlying gray matter. Numbers and proportions of nuclei expressing the oligodendrocyte lineage marker, OLIG2, and cell-type specific RNA expression patterns, were maintained after antipsychotic drug exposure. Frontal lobe gray and white matter volumes remained indistinguishable between antipsychotic-drug-exposed and control groups. Chronic clozapine exposure increases the proportion of NeuN+ nuclei in frontal subcortical white matter, without alterations in frontal lobe volumes or cell type-specific gene expression. Further exploration of neurochemical plasticity in non-human primate brain exposed to antipsychotic drugs is warranted.
Collapse
Affiliation(s)
- Tobias B. Halene
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Corresponding author: Tobias B. Halene, MD PhD, Icahn School of Medicine at Mount Sinai, Department of Psychiatry, 1470 Madison Ave, Hess 9-105, New York, NY 10029, Tel: 646 627 5529, Fax: 646-537-9583,
| | - Alexey Kozlenkov
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yan Jiang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amanda Mitchell
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Behnam Javidfar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aslihan Dincer
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Royce Park
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer Wiseman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paula Croxson
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eustathia Lela Giannaris
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stella Dracheva
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott E. Hemby
- Department of Physiology and Pharmacology, Wake Forest University, Winston-Salem, NC, USA
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
29
|
Laskaris LE, Di Biase MA, Everall I, Chana G, Christopoulos A, Skafidas E, Cropley VL, Pantelis C. Microglial activation and progressive brain changes in schizophrenia. Br J Pharmacol 2016; 173:666-80. [PMID: 26455353 PMCID: PMC4742288 DOI: 10.1111/bph.13364] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/16/2015] [Accepted: 10/06/2015] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is a debilitating disorder that typically begins in adolescence and is characterized by perceptual abnormalities, delusions, cognitive and behavioural disturbances and functional impairments. While current treatments can be effective, they are often insufficient to alleviate the full range of symptoms. Schizophrenia is associated with structural brain abnormalities including grey and white matter volume loss and impaired connectivity. Recent findings suggest these abnormalities follow a neuroprogressive course in the earliest stages of the illness, which may be associated with episodes of acute relapse. Neuroinflammation has been proposed as a potential mechanism underlying these brain changes, with evidence of increased density and activation of microglia, immune cells resident in the brain, at various stages of the illness. We review evidence for microglial dysfunction in schizophrenia from both neuroimaging and neuropathological data, with a specific focus on studies examining microglial activation in relation to the pathology of grey and white matter. The studies available indicate that the link between microglial dysfunction and brain change in schizophrenia remains an intriguing hypothesis worthy of further examination. Future studies in schizophrenia should: (i) use multimodal imaging to clarify this association by mapping brain changes longitudinally across illness stages in relation to microglial activation; (ii) clarify the nature of microglial dysfunction with markers specific to activation states and phenotypes; (iii) examine the role of microglia and neurons with reference to their overlapping roles in neuroinflammatory pathways; and (iv) examine the impact of novel immunomodulatory treatments on brain structure in schizophrenia.
Collapse
Affiliation(s)
- L E Laskaris
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - M A Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - I Everall
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia
| | - G Chana
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - A Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - E Skafidas
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC, Australia
- Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia
| | - V L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - C Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
30
|
Dincer A, Gavin DP, Xu K, Zhang B, Dudley JT, Schadt EE, Akbarian S. Deciphering H3K4me3 broad domains associated with gene-regulatory networks and conserved epigenomic landscapes in the human brain. Transl Psychiatry 2015; 5:e679. [PMID: 26575220 PMCID: PMC5068762 DOI: 10.1038/tp.2015.169] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 09/11/2015] [Accepted: 09/19/2015] [Indexed: 12/11/2022] Open
Abstract
Regulators of the histone H3-trimethyl lysine-4 (H3K4me3) mark are significantly associated with the genetic risk architecture of common neurodevelopmental disease, including schizophrenia and autism. Typical H3K4me3 is primarily localized in the form of sharp peaks, extending in neuronal chromatin on average only across 500-1500 base pairs mostly in close proximity to annotated transcription start sites. Here, through integrative computational analysis of epigenomic and transcriptomic data based on next-generation sequencing, we investigated H3K4me3 landscapes of sorted neuronal and non-neuronal nuclei in human postmortem, non-human primate and mouse prefrontal cortex (PFC), and blood. To explore whether H3K4me3 peak signals could also extend across much broader domains, we examined broadest domain cell-type-specific H3K4me3 peaks in an unbiased manner with an innovative approach on 41+12 ChIP-seq and RNA-seq data sets. In PFC neurons, broadest H3K4me3 distribution ranged from 3.9 to 12 kb, with extremely broad peaks (~10 kb or broader) related to synaptic function and GABAergic signaling (DLX1, ELFN1, GAD1, IGSF9B and LINC00966). Broadest neuronal peaks showed distinct motif signatures and were centrally positioned in prefrontal gene-regulatory Bayesian networks and sensitive to defective neurodevelopment. Approximately 120 of the broadest H3K4me3 peaks in human PFC neurons, including many genes related to glutamatergic and dopaminergic signaling, were fully conserved in chimpanzee, macaque and mouse cortical neurons. Exploration of spread and breadth of lysine methylation markings could provide novel insights into epigenetic mechanism involved in neuropsychiatric disease and neuronal genome evolution.
Collapse
Affiliation(s)
- A Dincer
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D P Gavin
- Department of Psychiatry, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - K Xu
- Department of Genetics and Genomic Sciences, Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - B Zhang
- Department of Genetics and Genomic Sciences, Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J T Dudley
- Department of Genetics and Genomic Sciences, Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - E E Schadt
- Department of Genetics and Genomic Sciences, Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S Akbarian
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
31
|
The role of nitric oxide donors in schizophrenia: Basic studies and clinical applications. Eur J Pharmacol 2015; 766:106-13. [DOI: 10.1016/j.ejphar.2015.09.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 01/04/2023]
|
32
|
Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders. Mol Psychiatry 2015; 20:795-809. [PMID: 25450230 PMCID: PMC4486649 DOI: 10.1038/mp.2014.147] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 12/20/2022]
Abstract
The prefrontal cortex (PFC), seat of the highest-order cognitive functions, constitutes a conglomerate of highly specialized brain areas and has been implicated to have a role in the onset and installation of various neurodevelopmental disorders. The development of a properly functioning PFC is directed by transcription factors, guidance cues and other regulatory molecules and requires the intricate and temporal orchestration of a number of developmental processes. Disturbance or failure of any of these processes causing neurodevelopmental abnormalities within the PFC may contribute to several of the cognitive deficits seen in patients with neurodevelopmental disorders. In this review, we elaborate on the specific processes underlying prefrontal development, such as induction and patterning of the prefrontal area, proliferation, migration and axonal guidance of medial prefrontal progenitors, and their eventual efferent and afferent connections. We furthermore integrate for the first time the available knowledge from genome-wide studies that have revealed genes linked to neurodevelopmental disorders with experimental molecular evidence in rodents. The integrated data suggest that the pathogenic variants in the neurodevelopmental disorder-associated genes induce prefrontal cytoarchitectonical impairments. This enhances our understanding of the molecular mechanisms of prefrontal (mis)development underlying the four major neurodevelopmental disorders in humans, that is, intellectual disability, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia, and may thus provide clues for the development of novel therapies.
Collapse
|
33
|
Hoerder-Suabedissen A, Molnár Z. Development, evolution and pathology of neocortical subplate neurons. Nat Rev Neurosci 2015; 16:133-46. [DOI: 10.1038/nrn3915] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Schmidt MJ, Mirnics K. Neurodevelopment, GABA system dysfunction, and schizophrenia. Neuropsychopharmacology 2015; 40:190-206. [PMID: 24759129 PMCID: PMC4262918 DOI: 10.1038/npp.2014.95] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/03/2014] [Accepted: 04/11/2014] [Indexed: 02/07/2023]
Abstract
The origins of schizophrenia have eluded clinicians and researchers since Kraepelin and Bleuler began documenting their findings. However, large clinical research efforts in recent decades have identified numerous genetic and environmental risk factors for schizophrenia. The combined data strongly support the neurodevelopmental hypothesis of schizophrenia and underscore the importance of the common converging effects of diverse insults. In this review, we discuss the evidence that genetic and environmental risk factors that predispose to schizophrenia disrupt the development and normal functioning of the GABAergic system.
Collapse
Affiliation(s)
- Martin J Schmidt
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
| | - Karoly Mirnics
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, University of Szeged, Szeged, Hungary
| |
Collapse
|
35
|
The theory of bipolar disorder as an illness of accelerated aging: Implications for clinical care and research. Neurosci Biobehav Rev 2014; 42:157-69. [DOI: 10.1016/j.neubiorev.2014.02.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/17/2013] [Accepted: 02/05/2014] [Indexed: 12/20/2022]
|
36
|
Blackmon K, Kuzniecky R, Barr WB, Snuderl M, Doyle W, Devinsky O, Thesen T. Cortical Gray-White Matter Blurring and Cognitive Morbidity in Focal Cortical Dysplasia. Cereb Cortex 2014; 25:2854-62. [PMID: 24770710 DOI: 10.1093/cercor/bhu080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Focal cortical dysplasia (FCD) is a malformation of cortical development that is associated with high rates of cognitive morbidity. However, the degree to which specific irregularities of dysplastic tissue directly impact cognition remains unknown. This study investigates the relationship between blurring of the cortical gray and white matter boundary on magnetic resonance imaging (MRI) and global cognitive abilities in FCD. Gray-white blurring (GWB) is quantified by sampling the non-normalized T1 image intensity contrast above and below the gray and white matter interface along the cortical mantle. Spherical averaging is used to compare resulting GWB for patients with histopathologically verified FCD with matched controls. Whole-brain correlational analyses are used to investigate the relationship between blurring and general cognitive abilities, controlling for epilepsy duration. Results show that cognitive performance is reduced in patients with FCD relative to controls. Patients show increased GWB in bilateral temporal, parietal, and frontal regions. Furthermore, increased GWB in these regions is linearly related to decreased cognition and mediates group differences in cognitive performance. These findings demonstrate that GWB is a marker of reduced cognitive efficiency in FCD that can potentially be used to probe general and domain-specific cognitive functions in other neurological disorders.
Collapse
Affiliation(s)
- Karen Blackmon
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York 10016, USA
| | - Ruben Kuzniecky
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York 10016, USA
| | - William B Barr
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York 10016, USA
| | - Matija Snuderl
- Department of Pathology, New York University School of Medicine, New York 10016, USA
| | - Werner Doyle
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York 10016, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York 10016, USA
| | - Thomas Thesen
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York 10016, USA
| |
Collapse
|
37
|
Savitz JB, Price JL, Drevets WC. Neuropathological and neuromorphometric abnormalities in bipolar disorder: view from the medial prefrontal cortical network. Neurosci Biobehav Rev 2014; 42:132-47. [PMID: 24603026 DOI: 10.1016/j.neubiorev.2014.02.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/20/2014] [Accepted: 02/19/2014] [Indexed: 12/15/2022]
Abstract
The question of whether BD is primarily a developmental disorder or a progressive, neurodegenerative disorder remains unresolved. Here, we review the morphometric postmortem and neuroimaging literature relevant to the neuropathology of bipolar disorder (BD). We focus on the medial prefrontal cortex (mPFC) network, a key system in the regulation of emotional, behavioral, endocrine, and innate immunological responses to stress. We draw four main conclusions: the mPFC is characterized by (1) a decrease in volume, (2) reductions in neuronal size, and/or changes in neuronal density, (3) reductions in glial cell density, and (4) changes in gene expression. These data suggest the presence of dendritic atrophy of neurons and the loss of oligodendroglial cells in BD, although some data additionally suggest a reduction in the cell counts of specific subpopulations of GABAergic interneurons. Based on the weight of the postmortem and neuroimaging literature discussed herein, we favor a complex hypothesis that BD primarily constitutes a developmental disorder, but that additional, progressive, histopathological processes also are associated with recurrent or chronic illness. Conceivably BD may be best conceptualized as a progressive neurodevelopmental disorder.
Collapse
Affiliation(s)
- Jonathan B Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA; Faculty of Community Medicine, University of Tulsa, Tulsa, OK, USA.
| | - Joseph L Price
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wayne C Drevets
- Laureate Institute for Brain Research, Tulsa, OK, USA; Janssen Pharmaceuticals of Johnson & Johnson, Inc., Titusville, NJ, USA
| |
Collapse
|
38
|
Marlinge E, Bellivier F, Houenou J. White matter alterations in bipolar disorder: potential for drug discovery and development. Bipolar Disord 2014; 16:97-112. [PMID: 24571279 DOI: 10.1111/bdi.12135] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 05/24/2013] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Brain white matter (WM) alterations have recently emerged as potentially relevant in bipolar disorder. New techniques such as diffusion tensor imaging allow precise exploration of these WM microstructural alterations in bipolar disorder. Our objective was to critically review WM alterations in bipolar disorder, using neuroimaging and neuropathological studies, in the context of neural models and the potential for drug discovery and development. METHODS We conducted a systematic PubMed and Google Scholar search of the WM and bipolar disorder literature up to and including January 2013. RESULTS Findings relating to WM alterations are consistent in neuroimaging and neuropathology studies of bipolar disorder, especially in regions involved in emotional processing such as the anterior frontal lobe, corpus callosum, cingulate cortex, and in fronto-limbic connections. Some of the structural alterations are related to genetic risk factors for bipolar disorder and may underlie the dysfunctional emotional processing described in recent neurobiological models of bipolar disorder. Medication effects in bipolar disorder, from lithium and other mood stabilizers, might impact myelinating processes, particularly by inhibition of glycogen synthase kinase-3 beta. CONCLUSIONS Pathways leading to WM alterations in bipolar disorder represent potential targets for the development and discovery of new drugs. Myelin damage in bipolar disorder suggests that the effects of existing pro-myelinating drugs should also be evaluated to improve our understanding and treatment of this disease.
Collapse
Affiliation(s)
- Emeline Marlinge
- AP-HP, Groupe Henri Mondor-Albert Chenevier, Pôle de Psychiatrie, Paris, France; Inserm, U955, Equipe 15 (Psychiatrie Génétique), Paris, France; Fondation Fondamental, Créteil, France; Neurospin, I2BM, CEA, Gif-Sur-Yvette, France
| | | | | |
Collapse
|
39
|
Teixeira CM, Masachs N, Muhaisen A, Bosch C, Pérez-Martínez J, Howell B, Soriano E. Transient downregulation of Dab1 protein levels during development leads to behavioral and structural deficits: relevance for psychiatric disorders. Neuropsychopharmacology 2014; 39:556-68. [PMID: 24030361 PMCID: PMC3895234 DOI: 10.1038/npp.2013.226] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/09/2013] [Accepted: 08/11/2013] [Indexed: 02/07/2023]
Abstract
Psychiatric disorders have been hypothesized to originate during development, with genetic and environmental factors interacting in the etiology of disease. Therefore, developmentally regulated genes have received attention as risk modulators in psychiatric diseases. Reelin is an extracellular protein essential for neuronal migration and maturation during development, and its expression levels are reduced in psychiatric disorders. Interestingly, several perinatal insults that increase the risk of behavioral deficits alter Reelin signaling. However, it is not known whether a dysfunction in Reelin signaling during perinatal stages increases the risk of psychiatric disorders. Here we used a floxed dab1 allele to study whether a transient decrease in Dab1, a key component of the Reelin pathway, is sufficient to induce behavioral deficits related to psychiatric disorders. We found that transient Dab1 downregulation during perinatal stages leads to permanent abnormalities of structural layering in the neocortex and hippocampus. In contrast, conditional inactivation of the dab1 gene in the adult brain does not result in additional layering abnormalities. Furthermore, perinatal Dab1 downregulation causes behavior impairments in adult mice, such as deficits in memory, maternal care, pre-pulse inhibition, and response to cocaine. Some of these deficits were also found to be present in adolescence. We also show that D-cycloserine rescues the cognitive deficits observed in floxed dab1 mice with layering alterations in the hippocampus and neocortex. Our results indicate a causal relation between the downregulation of Dab1 protein levels during development and the structural and behavioral deficits associated with psychiatric diseases in the adult.
Collapse
Affiliation(s)
- Catia M Teixeira
- Department of Cell Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain,Department of Cell Biology, University of Barcelona, Baldiri Reixac 10, Barcelona E-08028, Spain, Tel: +34 93 4037117, Fax: +34 93 4037116, E-mail: or
| | - Nuria Masachs
- Department of Cell Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Ashraf Muhaisen
- Department of Cell Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Carles Bosch
- Department of Cell Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | | | - Brian Howell
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Eduardo Soriano
- Department of Cell Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain,Fundación CIEN, Vallecas, Spain,Department of Cell Biology, University of Barcelona, Baldiri Reixac 10, Barcelona E-08028, Spain, Tel: +34 93 4037117, Fax: +34 93 4037116, E-mail: or
| |
Collapse
|
40
|
Sivkov S, Akabaliev V, Mantarkov M, Ahmed-Popova F, Akabalieva K. Discriminating value of total minor physical anomaly score on the Waldrop scale between patients with bipolar I disorder and normal controls. Psychiatry Res 2013; 210:451-6. [PMID: 23890698 DOI: 10.1016/j.psychres.2013.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 07/23/2012] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
Abstract
Minor physical anomalies (MPAs) are slight structural aberrations indicative of abnormal neurodevelopment. Most studies of MPAs in bipolar disorder have yielded limited results. We attempted to assess the potential value of MPAs as a classifying test in the status bipolar I patients vs. normal controls. Sixty one bipolar I patients and 103 controls were evaluated for MPAs using a slightly modified version of the Waldrop scale. The specificity, sensitivity and predictive value of different total MPA (MPA-T) scores were determined. The cut-off MPA-T scores that optimally discriminated patients from controls (exhibiting the most balanced sets of sensitivity, specificity, positive and negative predictive values) were MPA-T ≥ 4 and MPA-T ≥ 5. These values set a "border zone" in which bipolar I patients began to prevail significantly over controls. The latter presented most frequently with MPA-T ≤ 3 and rarely with MPA-T ≥ 6. Bipolar I patients prevailed among outliers (subjects with significantly higher MPA-T scores). Our data establish MPA-T score as a reliable index in distinguishing between bipolar I patients and normal controls and are consistent with the hypothesis of abnormal neurodevelopment in bipolar disorder.
Collapse
Affiliation(s)
- Stefan Sivkov
- Department of Anatomy, Histology and Embryology, Medical University, Plovdiv, Bulgaria
| | | | | | | | | |
Collapse
|
41
|
Bernstein HG, Bogerts B. Neuregulin-1 alpha, the underestimated molecule: emerging new roles in normal brain function and the pathophysiology of schizophrenia? Genome 2013; 56:703-4. [PMID: 24299109 DOI: 10.1139/gen-2013-0171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We comment here, from a schizophrenia research perspective, on a recent paper of Ghahramani Seno et al., which clearly shows that the splice variant neuregulin-1 alpha is able to regulate multiple genes involved in phosphorylation, acetylation, and generation of splice variants.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, University of Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | | |
Collapse
|
42
|
Gao W, Jiao Q, Qi R, Zhong Y, Lu D, Xiao Q, Lu S, Xu C, Zhang Y, Liu X, Yang F, Lu G, Su L. Combined analyses of gray matter voxel-based morphometry and white matter tract-based spatial statistics in pediatric bipolar mania. J Affect Disord 2013; 150:70-6. [PMID: 23477846 DOI: 10.1016/j.jad.2013.02.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Ample evidence has suggested the presence of gray matter (GM) and white matter (WM) abnormalities in bipolar disorder (BD) patients, including pediatric bipolar disorder (PBD). However, little research has been done in PBD patients that carefully classify the mood states. The aim of the present study is to investigate the brain structural changes in PBD-mania children and adolescents. METHODS Eighteen children and adolescents with bipolar mania (male/female, 6/12) aged 10-18 years old and 18 age- and sex-matched healthy controls were included in the present study. The 3D T1-weighted magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) data were obtained on a Siemens 3.0 T scanner. Voxel-based morphometry (VBM) analysis and tract-based spatial statistics (TBSS) analysis were conducted to compare the gray matter volume and white matter fractional anisotropy (FA) value between patients and controls. Correlations of the MRI data of each survived area with clinical characteristics in PBD patients were further analyzed. RESULTS As compared with the control group, PBD-mania children showed decreased gray matter volume in the left hippocampus. Meanwhile, significant lower FA value was detected in the right anterior cingulate (AC) in the patient group. No region of increased gray matter volume or FA value was observed in PBD-mania. The hippocampal volume was negatively associated with the Young Mania Rating Scale (YMRS) score when controlling for clinical characteristics in PBD-mania patients, however, there was no significant correlation of FA value of the survived area with illness duration, the onset age, number of episodes, or the YMRS score in PBD-mania patients. LIMITATION The present outcomes require replication in larger samples and verification in medication free subjects. CONCLUSIONS Our findings highlighted that extensive brain structural lesions (including GM and WM) were existed in PBD-mania. The widespread occurrence of structural abnormalities mainly located in the anterior limbic network (ALN) which suggested that this network might contribute to emotional and cognitive dysregulations in PBD.
Collapse
Affiliation(s)
- Weijia Gao
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bernstein HG, Stricker R, Dobrowolny H, Steiner J, Bogerts B, Trübner K, Reiser G. Nardilysin in human brain diseases: both friend and foe. Amino Acids 2013; 45:269-78. [PMID: 23604405 DOI: 10.1007/s00726-013-1499-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 04/06/2013] [Indexed: 10/26/2022]
Abstract
Nardilysin is a metalloprotease that cleaves peptides, such as dynorphin-A, α-neoendorphin, and glucagon, at the N-terminus of arginine and lysine residues in dibasic moieties. It has various functionally important molecular interaction partners (heparin-binding epidermal growth factor-like growth factor, tumour necrosis factor-α-converting enzyme, neuregulin 1, beta-secretase 1, malate dehydrogenase, P42(IP4)/centaurin-α1, the histone H3 dimethyl Lys4, and others) and is involved in a plethora of normal brain functions. Less is known about possible implications of nardilysin for brain diseases. This review, which includes some of our own recent findings, attempts to summarize the current knowledge on possible roles of nardilysin in Alzheimer disease, Down syndrome, schizophrenia, mood disorders, alcohol abuse, heroin addiction, and cancer. We herein show that nardilysin is a Janus-faced enzyme with regard to brain pathology, being probably neuropathogenic in some diseases, but neuroprotective in others.
Collapse
Affiliation(s)
- H-G Bernstein
- Department of Psychiatry, Otto-v.-Guericke University Magdeburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
44
|
Sinka L, Kovari E, Santos M, Herrmann FR, Gold G, Hof PR, Bouras C, Giannakopoulos P. Microvascular changes in late-life schizophrenia and mood disorders: stereological assessment of capillary diameters in anterior cingulate cortex. Neuropathol Appl Neurobiol 2012; 38:696-709. [DOI: 10.1111/j.1365-2990.2012.01263.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
45
|
Joshi D, Fung SJ, Rothwell A, Weickert CS. Higher gamma-aminobutyric acid neuron density in the white matter of orbital frontal cortex in schizophrenia. Biol Psychiatry 2012; 72:725-33. [PMID: 22841514 DOI: 10.1016/j.biopsych.2012.06.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 06/06/2012] [Accepted: 06/19/2012] [Indexed: 01/19/2023]
Abstract
BACKGROUND In the orbitofrontal cortex (OFC), reduced gray matter volume and reduced glutamic acid decarboxylase 67kDa isoform (GAD67) messenger (m)RNA are found in schizophrenia; however, how these alterations relate to developmental pathology of interneurons is unclear. The present study therefore aimed to determine if increased interstitial white matter neuron (IWMN) density exists in the OFC; whether gamma-aminobutyric acid (GABA)ergic neuron density in OFC white matter was altered; and how IWMN density may be related to an early-expressed inhibitory neuron marker, Dlx1, in OFC gray matter in schizophrenia. METHODS IWMN densities were determined (38 schizophrenia and 38 control subjects) for neuronal nuclear antigen (NeuN+) and 65/67 kDa isoform of glutamic acid decarboxylase immunopositive (GAD65/67+) neurons. In situ hybridization was performed to determine Dlx1 and GAD67 mRNA expression in the OFC gray matter. RESULTS NeuN and GAD65/67 immunopositive cell density was significantly increased in the superficial white matter in schizophrenia. Gray matter Dlx1 and GAD67 mRNA expression were reduced in schizophrenia. Dlx1 mRNA levels were negatively correlated with GAD65/67 IWMN density. CONCLUSIONS Our study provides evidence that pathology of IWMNs in schizophrenia includes GABAergic interneurons and that increased IWMN density may be related to GABAergic deficits in the overlying gray matter. These findings provide evidence at the cellular level that the OFC is a site of pathology in schizophrenia and support the hypothesis that inappropriate migration of cortical inhibitory interneurons occurs in schizophrenia.
Collapse
Affiliation(s)
- Dipesh Joshi
- Schizophrenia Research Institute, Sydney, Australia.
| | | | | | | |
Collapse
|
46
|
Gilabert-Juan J, Varea E, Guirado R, Blasco-Ibáñez JM, Crespo C, Nácher J. Alterations in the expression of PSA-NCAM and synaptic proteins in the dorsolateral prefrontal cortex of psychiatric disorder patients. Neurosci Lett 2012; 530:97-102. [DOI: 10.1016/j.neulet.2012.09.032] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/12/2012] [Accepted: 09/18/2012] [Indexed: 01/21/2023]
|
47
|
Abstract
Schizophrenia is a debilitating neurodevelopmental disorder affecting approximately 1% of the population and imposing a significant burden on society. One of the most replicated and well-established postmortem findings is a deficit in the expression of the gene encoding the 67-kDa isoform of glutamic acid decarboxylase (GAD67), the primary GABA-producing enzyme in the brain. GAD67 is expressed in various classes of interneurons, with vastly different morphological, molecular, and physiological properties. Importantly, GABA system deficits in schizophrenia encompass multiple interneuronal subtypes, raising several important questions. First, do different classes of interneurons regulate different aspects of behavior? Second, can we model cell-type-specific GABAergic deficits in mice, and will the rodent findings translate to human physiology? Finally, will this knowledge open the door to knowledge-based approaches to treat schizophrenia?
Collapse
Affiliation(s)
- Martin J Schmidt
- Department of Psychiatry, Vanderbilt Kennedy Center, Vanderbilt University, Nashville, Tenn., USA.
| | | |
Collapse
|
48
|
Voxel based morphometric and diffusion tensor imaging analysis in male bipolar patients with first-episode mania. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36:231-8. [PMID: 22119745 DOI: 10.1016/j.pnpbp.2011.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/18/2011] [Accepted: 11/05/2011] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Structural abnormality of both gray and white matter has been detected in patients with bipolar disorder (BD). But results were greatly inconsistent across studies which were most likely attributed to heterogeneous populations as well as processing techniques. The present study aimed to investigate brain structural and microstructural alterations in a relative homogenous sample of bipolar mania. METHODS 3D T1-weighted magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) were conducted in 18 patients with BD and 27 healthy volunteers. Gray matter (GM) and white matter (WM) differences were evaluated using voxel-based morphometry (VBM) and voxel-based analysis of fractional anisotropy (FA) maps derived from DTI, respectively. RESULTS Patients with BD had a larger volume of GM in the left thalamus and bilateral basal ganglia, including the bilateral putamen and extending to the left claustrum, as well as reduced FA values in the left posterior corona radiata. CONCLUSIONS By combined analysis, alterations in subcortical GM areas and part of the corresponding association fiber area were detected. Compared with observations in homogeneous samples, our findings indicate that disruption of the limbic network may be intrinsic to BD.
Collapse
|
49
|
Lin CY, Sawa A, Jaaro-Peled H. Better understanding of mechanisms of schizophrenia and bipolar disorder: from human gene expression profiles to mouse models. Neurobiol Dis 2011; 45:48-56. [PMID: 21914480 DOI: 10.1016/j.nbd.2011.08.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/22/2011] [Accepted: 08/26/2011] [Indexed: 01/01/2023] Open
Abstract
The molecular mechanisms of major mental illnesses, such as schizophrenia and bipolar disorder, are unclear. To address this fundamental question, many groups have studied molecular expression profiles in postmortem brains and other tissues from patients compared with those from normal controls. Development of unbiased high-throughput approaches, such as microarray, RNA-seq, and proteomics, have supported and facilitated this endeavor. In addition to genes directly involved in neuron/glia signaling, especially those encoding for synaptic proteins, genes for metabolic cascades are differentially expressed in the brains of patients with schizophrenia and bipolar disorder, compared with those from normal controls in DNA microarray studies. Here we propose the importance and usefulness of genetic mouse models in which such differentially expressed molecules are modulated. These animal models allow us to dissect the mechanisms of how such molecular changes in patient brains may play a role in neuronal circuitries and overall behavioral phenotypes. We also point out that models in which the metabolic genes are modified are obviously untested from mental illness viewpoints, suggesting the potential to re-address these models with behavioral assays and neurochemical assessments.
Collapse
Affiliation(s)
- Chi-Ying Lin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
50
|
Smiley JF, Rosoklija G, Mancevski B, Pergolizzi D, Figarsky K, Bleiwas C, Duma A, Mann JJ, Javitt DC, Dwork AJ. Hemispheric comparisons of neuron density in the planum temporale of schizophrenia and nonpsychiatric brains. Psychiatry Res 2011; 192:1-11. [PMID: 21377842 PMCID: PMC3071586 DOI: 10.1016/j.pscychresns.2010.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 11/04/2010] [Accepted: 11/17/2010] [Indexed: 12/22/2022]
Abstract
Postmortem and in vivo studies of schizophrenia frequently reveal reduced cortical volume, but the underlying cellular abnormalities are incompletely defined. One influential hypothesis, especially investigated in Brodmann's area 9 of prefrontal cortex, is that the number of neurons is normal, and the volume change is caused by reduction of the surrounding neuropil. However, studies have differed on whether the cortex has the increased neuron density that is predicted by this hypothesis. In a recent study of bilateral planum temporale (PT), we reported smaller volume and width of the outer cortex (layers I-III), especially in the left hemisphere, among subjects with schizophrenia. In the present study, we measured neuron density and size in the same PT samples, and also in prefrontal area 9 of the same brains. In the PT, separate stereological measurements were made in layers II, IIIc, and VI, whereas area 9 was sampled in layer IIIb-c. In both cortical regions, there was no significant effect of schizophrenia on neuronal density or size. There was, nevertheless, a trend-level right>left hemispheric asymmetry of neuron density in the PT, which may partially explain the previously reported left>right asymmetry of cortical width. In schizophrenia, our findings suggest that closer packing of neurons may not always explain reduced cortical volume, and subtly decreased neuron number may be a contributing factor.
Collapse
Affiliation(s)
- John F Smiley
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|