1
|
Warren TL, Tubbs JD, Lesh TA, Corona MB, Pakzad SS, Albuquerque MD, Singh P, Zarubin V, Morse SJ, Sham PC, Carter CS, Nord AS. Association of neurotransmitter pathway polygenic risk with specific symptom profiles in psychosis. Mol Psychiatry 2024; 29:2389-2398. [PMID: 38491343 DOI: 10.1038/s41380-024-02457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 03/18/2024]
Abstract
A primary goal of psychiatry is to better understand the pathways that link genetic risk to psychiatric symptoms. Here, we tested association of diagnosis and endophenotypes with overall and neurotransmitter pathway-specific polygenic risk in patients with early-stage psychosis. Subjects included 205 demographically diverse cases with a psychotic disorder who underwent comprehensive psychiatric and neurological phenotyping and 115 matched controls. Following genotyping, we calculated polygenic scores (PGSs) for schizophrenia (SZ) and bipolar disorder (BP) using Psychiatric Genomics Consortium GWAS summary statistics. To test if overall genetic risk can be partitioned into affected neurotransmitter pathways, we calculated pathway PGSs (pPGSs) for SZ risk affecting each of four major neurotransmitter systems: glutamate, GABA, dopamine, and serotonin. Psychosis subjects had elevated SZ PGS versus controls; cases with SZ or BP diagnoses had stronger SZ or BP risk, respectively. There was no significant association within psychosis cases between individual symptom measures and overall PGS. However, neurotransmitter-specific pPGSs were moderately associated with specific endophenotypes; notably, glutamate was associated with SZ diagnosis and with deficits in cognitive control during task-based fMRI, while dopamine was associated with global functioning. Finally, unbiased endophenotype-driven clustering identified three diagnostically mixed case groups that separated on primary deficits of positive symptoms, negative symptoms, global functioning, and cognitive control. All clusters showed strong genome-wide risk. Cluster 2, characterized by deficits in cognitive control and negative symptoms, additionally showed specific risk concentrated in glutamatergic and GABAergic pathways. Due to the intensive characterization of our subjects, the present study was limited to a relatively small cohort. As such, results should be followed up with additional research at the population and mechanism level. Our study suggests pathway-based PGS analysis may be a powerful path forward to study genetic mechanisms driving psychiatric endophenotypes.
Collapse
Affiliation(s)
- Tracy L Warren
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
- Center for Neuroscience, University of California, Davis, CA, USA
| | - Justin D Tubbs
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tyler A Lesh
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Mylena B Corona
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
- Center for Neuroscience, University of California, Davis, CA, USA
| | - Sarvenaz S Pakzad
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Marina D Albuquerque
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Praveena Singh
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Vanessa Zarubin
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Sarah J Morse
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
- Center for Neuroscience, University of California, Davis, CA, USA
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Pak Chung Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR.
- Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR.
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR.
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA.
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA.
| | - Alex S Nord
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA.
- Center for Neuroscience, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
Arumuham A, Nour MM, Veronese M, Beck K, Onwordi EC, Lythgoe DJ, Jauhar S, Rabiner EA, Howes OD. Histamine-3 Receptor Availability and Glutamate Levels in the Brain: A PET-1H-MRS Study of Patients With Schizophrenia and Healthy Controls. Int J Neuropsychopharmacol 2024; 27:pyae011. [PMID: 38373256 PMCID: PMC10946236 DOI: 10.1093/ijnp/pyae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/16/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND The histamine-3 receptor (H3R) may have a role in cognitive processes through its action as a presynaptic heteroreceptor inhibiting the release of glutamate in the brain. To explore this, we examined anterior cingulate cortex (ACC) and striatum H3R availability in patients with schizophrenia and characterized their relationships with glutamate levels in corresponding brain regions. METHODS We employed a cross-sectional study, recruiting 12 patients with schizophrenia and 12 healthy volunteers. Participants underwent positron emission tomography using the H3R-specific radio ligand [11C]MK-8278, followed by proton magnetic resonance spectroscopy to measure glutamate levels, recorded as Glu and Glx. Based on existing literature, the ACC and striatum were selected as regions of interest. RESULTS We found significant inverse relationships between tracer uptake and Glu (r = -0.66, P = .02) and Glx (r = -0.62, P = .04) levels in the ACC of patients, which were absent in healthy volunteers (Glu: r = -0.19, P = .56, Glx: r = 0.10, P = .75). We also found a significant difference in striatal (F1,20 = 6.00, P = .02) and ACC (F1,19 = 4.75, P = .04) Glx levels between groups. CONCLUSIONS These results provide evidence of a regionally specific relationship between H3Rs and glutamate levels, which builds on existing preclinical literature. Our findings add to a growing literature indicating H3Rs may be a promising treatment target in schizophrenia, particularly for cognitive impairment, which has been associated with altered glutamate signaling.
Collapse
Affiliation(s)
- Atheeshaan Arumuham
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, UK
| | - Matthew M Nour
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Mattia Veronese
- Department of Information Engineering, University of Padua, Padua, Italy
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Katherine Beck
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, UK
| | - Ellis Chika Onwordi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Sameer Jauhar
- Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | | | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- H Lundbeck A/s, St Albans, UK
| |
Collapse
|
3
|
Warren TL, Tubbs JD, Lesh TA, Corona MB, Pakzad S, Albuquerque M, Singh P, Zarubin V, Morse S, Sham PC, Carter CS, Nord AS. Association of neurotransmitter pathway polygenic risk with specific symptom profiles in psychosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.24.23290465. [PMID: 37292649 PMCID: PMC10246134 DOI: 10.1101/2023.05.24.23290465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A primary goal of psychiatry is to better understand the pathways that link genetic risk to psychiatric symptoms. Here, we tested association of diagnosis and endophenotypes with overall and neurotransmitter pathway-specific polygenic risk in patients with early-stage psychosis. Subjects included 206 demographically diverse cases with a psychotic disorder who underwent comprehensive psychiatric and neurological phenotyping and 115 matched controls. Following genotyping, we calculated polygenic scores (PGSs) for schizophrenia (SZ) and bipolar disorder (BP) using Psychiatric Genomics Consortium GWAS summary statistics. To test if overall genetic risk can be partitioned into affected neurotransmitter pathways, we calculated pathway PGSs (pPGSs) for SZ risk affecting each of four major neurotransmitter systems: glutamate, GABA, dopamine, and serotonin. Psychosis subjects had elevated SZ PGS versus controls; cases with SZ or BP diagnoses had stronger SZ or BP risk, respectively. There was no significant association within psychosis cases between individual symptom measures and overall PGS. However, neurotransmitter-specific pPGSs were moderately associated with specific endophenotypes; notably, glutamate was associated with SZ diagnosis and with deficits in cognitive control during task-based fMRI, while dopamine was associated with global functioning. Finally, unbiased endophenotype-driven clustering identified three diagnostically mixed case groups that separated on primary deficits of positive symptoms, negative symptoms, global functioning, and cognitive control. All clusters showed strong genome-wide risk. Cluster 2, characterized by deficits in cognitive control and negative symptoms, additionally showed specific risk concentrated in glutamatergic and GABAergic pathways. Due to the intensive characterization of our subjects, the present study was limited to a relatively small cohort. As such, results should be followed up with additional research at the population and mechanism level. Our study suggests pathway-based PGS analysis may be a powerful path forward to study genetic mechanisms driving psychiatric endophenotypes.
Collapse
Affiliation(s)
| | - Justin D. Tubbs
- Department of Psychiatry, The University of Hong Kong
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital
- Department of Psychiatry, Harvard Medical School
| | | | | | | | | | | | | | | | - Pak Chung Sham
- Department of Psychiatry, The University of Hong Kong
- Centre for PanorOmic Sciences, The University of Hong Kong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong
| | | | | |
Collapse
|
4
|
Long J, Hull R. Conceptualizing a less paranoid schizophrenia. Philos Ethics Humanit Med 2023; 18:14. [PMID: 37936219 PMCID: PMC10631169 DOI: 10.1186/s13010-023-00142-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Schizophrenia stands as one of the most studied and storied disorders in the history of clinical psychology; however, it remains a nexus of conflicting and competing conceptualizations. Patients endure great stigma, poor treatment outcomes, and condemnatory prognosis. Current conceptualizations suffer from unstable categorical borders, heterogeneity in presentation, outcome and etiology, and holes in etiological models. Taken in aggregate, research and clinical experience indicate that the class of psychopathologies oriented toward schizophrenia are best understood as spectra of phenomenological, cognitive, and behavioral modalities. These apparently taxonomic expressions are rooted in normal human personality traits as described in both psychodynamic and Five Factor personality models, and more accurately represent explicable distress reactions to biopsychosocial stress and trauma. Current categorical approaches are internally hampered by axiomatic bias and systemic inertia rooted in the foundational history of psychological inquiry; however, when such axioms are schematically decentralized, convergent cross-disciplinary evidence outlines a more robust explanatory construct. By reconceptualizing these disorders under a dimensional and cybernetic model, the aforementioned issues of instability and inaccuracy may be resolved, while simultaneously opening avenues for both early detection and intervention, as well as for more targeted and effective treatment approaches.
Collapse
Affiliation(s)
- James Long
- Department of Psychology, Chestnut Hill College, 7113 Valley Avenue, Philadelphia, PA, 19128, USA.
| | - Rachel Hull
- Chestnut Hill College Department of Professional Psychology, 9601 Germantown Avenue, Philadelphia, PA, 19118, USA
| |
Collapse
|
5
|
Selvaggi P, Fazio L, Toro VD, Mucci A, Rocca P, Martinotti G, Cascino G, Siracusano A, Zeppegno P, Pergola G, Bertolino A, Blasi G, Galderisi S. Effect of anticholinergic burden on brain activity during Working Memory and real-world functioning in patients with schizophrenia. Schizophr Res 2023; 260:76-84. [PMID: 37633126 DOI: 10.1016/j.schres.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/30/2023] [Accepted: 08/13/2023] [Indexed: 08/28/2023]
Abstract
Cognitive impairment has been associated with poor real-world functioning in patients with Schizophrenia. Previous studies have shown that pharmacological treatment with anticholinergic properties may contribute to cognitive impairment in Schizophrenia. We investigated the effect of the anticholinergic burden (ACB) on brain activity, cognition, and real-world functioning in Schizophrenia. We hypothesized that greater ACB would be associated with altered brain activity along with poorer cognitive performance and lower real-world functioning. A sample of 100 patients with a diagnosis of schizophrenia or schizoaffective disorder was recruited in the naturalistic multicenter study of the Italian Network for Research on Psychoses (NIRP) across 7 centres. For each participant, ACB was evaluated using the Anticholinergic Cognitive Burden scale. The association of ACB with brain function was assessed using BOLD fMRI during the N-Back Working Memory (WM) task in a nested cohort (N = 31). Real-world functioning was assessed using the Specific Level of Functioning (SLOF) scale. Patients with high ACB scores (≥3) showed lower brain activity in the WM frontoparietal network (TFCE corrected alpha <0.05) and poorer cognitive performance (p = 0.05) than patients with low ACB scores (<3). Both effects were unaffected by demographic characteristics, clinical severity, and antipsychotic dosage. Moreover, patients with high ACB showed poorer real-world functioning than patients with lower ACB (p = 0.03). Our results suggest that ACB in Schizophrenia is associated with impaired WM and abnormal underlying brain function along with reduced real-world functioning. Clinical practice should consider the potential adverse cognitive effects of ACB in the treatment decision-making process.
Collapse
Affiliation(s)
- Pierluigi Selvaggi
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Leonardo Fazio
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy; Department of Medicine and Surgery, LUM University, Casamassima, Bari, Italy
| | - Veronica Debora Toro
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Armida Mucci
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paola Rocca
- Department of Neuroscience, Section of Psychiatry, University of Turin, Turin, Italy
| | - Giovanni Martinotti
- Department of Neuroscience and Imaging, G. D'Annunzio University, Chieti, Italy
| | - Giammarco Cascino
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Section of Neuroscience, University of Salerno, Salerno, Italy
| | - Alberto Siracusano
- Department of Systems Medicine, Psychiatry and Clinical Psychology Unit, Tor Vergata University of Rome, Rome, Italy
| | - Patrizia Zeppegno
- Department of Translational Medicine, Psychiatric Unit, University of Eastern Piedmont, Novara, Italy
| | - Giulio Pergola
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Alessandro Bertolino
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy
| | - Giuseppe Blasi
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", Bari, Italy.
| | - Silvana Galderisi
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
6
|
Zhang S, Li W, Xiang Q, Kuai X, Zhuo K, Wang J, Xu Y, Li Y, Liu D. Longitudinal alterations of modular functional-metabolic coupling in first-episode schizophrenia. J Psychiatr Res 2022; 156:705-712. [PMID: 36410309 DOI: 10.1016/j.jpsychires.2022.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/16/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Altered network organization and aberrant neurometabolic levels have been associated with schizophrenia. However, modular alterations of functional-neurometabolic coupling in various stages of schizophrenia remain unclear. This longitudinal study enrolled 34 drug-naïve first-episode schizophrenia (FES) patients and 30 healthy controls (HC). The FES patients underwent resting-state functional magnetic resonance imaging (rs-fMRI) and proton magnetic resonance spectroscopy (1H-MRS) at baseline, 2 months, and 6 months of treatment. For 1H-MRS, the concentrations of γ-aminobutyric acid (GABA), N-acetylaspartate (NAA) and glutamate + glutamine in the ventromedial prefrontal cortex region were measured. A graph theoretical approach was applied for functional connectivity-based modular parcellation. We found that intra-default mode network (DMN) connectivity, inter-modular connectivity between the DMN and the hippocampus, and inter-modular connectivity between the DMN and the frontoparietal module were significantly different across 6-month treatment in the FES patients. The inter-module connectivity of the DMN and hippocampus correlated positively with NAA concentration in the HC group, while this correlation was absent in FES patients. This exploratory study suggests an altered modular connectivity in association with neurometabolite concentrations in FES patients and provides insights into multimodal neuroimaging biomarkers in schizophrenia. Future studies with larger sample sizes are needed to consolidate our findings.
Collapse
Affiliation(s)
- Suzhen Zhang
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, China; First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenli Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiong Xiang
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinping Kuai
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiming Zhuo
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhong Wang
- Department of Medical Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifeng Xu
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Mental Health, Fudan University, Shanghai, China
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Dengtang Liu
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, China; First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Mental Health, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Reddy-Thootkur M, Kraguljac NV, Lahti AC. The role of glutamate and GABA in cognitive dysfunction in schizophrenia and mood disorders - A systematic review of magnetic resonance spectroscopy studies. Schizophr Res 2022; 249:74-84. [PMID: 32107102 PMCID: PMC7874516 DOI: 10.1016/j.schres.2020.02.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/14/2022]
Abstract
Epidemiologic, genetic, and neurobiological studies suggest considerable overlap between schizophrenia and mood disorders. Importantly, both disorders are associated with a broad range of cognitive deficits as well as altered glutamatergic and GABAergic neurometabolism. We conducted a systematic review of magnetic resonance spectroscopy (MRS) studies investigating the relationship between glutamatergic and GABAergic neurometabolites and cognition in schizophrenia spectrum disorders and mood disorders. A literature search in Pubmed of studies published before April 15, 2019 was conducted and 37 studies were deemed eligible for systematic review. We found that alterations in glutamatergic and GABAergic neurotransmission have been identified relatively consistently in both schizophrenia and mood disorders. However, because of the vast heterogeneity of published studies in terms of illness stage, medication exposure, MRS acquisition parameters and data post-processing strategies, we still do not understand the relationship between those neurotransmitters and cognitive dysfunction in mental illness, which is a critical initial step for rational drug development. Our findings emphasize the need for coordinated multi-center studies that characterize cognitive function and its biological substrates in large and well-defined clinical populations, using harmonized imaging sequences and analytical methods with the goal to elucidate the underlying pathophysiological mechanisms and to inform future clinical trials.
Collapse
Affiliation(s)
- Mounica Reddy-Thootkur
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Adrienne Carol Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
8
|
Nam KM, Hendriks AD, Boer VO, Klomp DWJ, Wijnen JP, Bhogal AA. Proton metabolic mapping of the brain at 7 T using a two-dimensional free induction decay-echo-planar spectroscopic imaging readout with lipid suppression. NMR IN BIOMEDICINE 2022; 35:e4771. [PMID: 35577344 PMCID: PMC9541868 DOI: 10.1002/nbm.4771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The increased signal-to-noise ratio (SNR) and chemical shift dispersion at high magnetic fields (≥7 T) have enabled neuro-metabolic imaging at high spatial resolutions. To avoid very long acquisition times with conventional magnetic resonance spectroscopic imaging (MRSI) phase-encoding schemes, solutions such as pulse-acquire or free induction decay (FID) sequences with short repetition time and inner volume selection methods with acceleration (echo-planar spectroscopic imaging [EPSI]), have been proposed. With the inner volume selection methods, limited spatial coverage of the brain and long echo times may still impede clinical implementation. FID-MRSI sequences benefit from a short echo time and have a high SNR per time unit; however, contamination from strong extra-cranial lipid signals remains a problem that can hinder correct metabolite quantification. L2-regularization can be applied to remove lipid signals in cases with high spatial resolution and accurate prior knowledge. In this work, we developed an accelerated two-dimensional (2D) FID-MRSI sequence using an echo-planar readout and investigated the performance of lipid suppression by L2-regularization, an external crusher coil, and the combination of these two methods to compare the resulting spectral quality in three subjects. The reduction factor of lipid suppression using the crusher coil alone varies from 2 to 7 in the lipid region of the brain boundary. For the combination of the two methods, the average lipid area inside the brain was reduced by 2% to 38% compared with that of unsuppressed lipids, depending on the subject's region of interest. 2D FID-EPSI with external lipid crushing and L2-regularization provides high in-plane coverage and is suitable for investigating brain metabolite distributions at high fields.
Collapse
Affiliation(s)
- Kyung Min Nam
- Center for Image Sciences, Department of Radiology, University Medical Centre Utrecht, Utrecht
| | - Arjan D Hendriks
- Center for Image Sciences, Department of Radiology, University Medical Centre Utrecht, Utrecht
| | - Vincent O Boer
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Dennis W J Klomp
- Center for Image Sciences, Department of Radiology, University Medical Centre Utrecht, Utrecht
| | - Jannie P Wijnen
- Center for Image Sciences, Department of Radiology, University Medical Centre Utrecht, Utrecht
| | - Alex A Bhogal
- Center for Image Sciences, Department of Radiology, University Medical Centre Utrecht, Utrecht
| |
Collapse
|
9
|
Joe P, Clemente JC, Piras E, Wallach DS, Robinson-Papp J, Boka E, Remsen B, Bonner M, Kimhy D, Goetz D, Hoffman K, Lee J, Ruby E, Fendrich S, Gonen O, Malaspina D. An integrative study of the microbiome gut-brain-axis and hippocampal inflammation in psychosis: Persistent effects from mode of birth. Schizophr Res 2022; 247:101-115. [PMID: 34625336 PMCID: PMC8980116 DOI: 10.1016/j.schres.2021.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
The mechanism producing psychosis appears to include hippocampal inflammation, which could be associated with the microbiome-gut-brain-axis (MGBS). To test this hypothesis we are conducting a multidisciplinary study, herein described. The procedures are illustrated with testing of a single subject and group level information on the impact of C-section birth are presented. METHOD Study subjects undergo research diagnostic interviews and symptom assessments to be categorized into one of 3 study groups: psychosis, nonpsychotic affective disorder or healthy control. Hippocampal volume and metabolite concentrations are assessed using 3-dimensional, multi-voxel H1 Magnetic Resonance Imaging (MRSI) encompassing all gray matter in the entire hippocampal volume. Rich self-report information is obtained with the PROMIS interview, which was developed by the NIH Commons for research in chronic conditions. Early trauma is assessed and cognition is quantitated using the MATRICS. The method also includes the most comprehensive autonomic nervous system (ANS) battery used to date in psychiatric research. Stool and oral samples are obtained for microbiome assessments and cytokines and other substances are measured in blood samples. RESULTS Group level preliminary data shows that C-section birth is associated with higher concentrations of GLX, a glutamate related hippocampal neurotransmitter in psychotic cases, worse symptoms in affective disorder cases and smaller hippocampal volume in controls. CONCLUSION Mode of birth appears to have persistent influences through adulthood. The methodology described for this study will define pathways through which the MGBA may influence the risk for psychiatric disorders.
Collapse
Affiliation(s)
- Peter Joe
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA.
| | - Jose C Clemente
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Enrica Piras
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - David S Wallach
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | | | - Emeka Boka
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Brooke Remsen
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA; Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Mharisi Bonner
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - David Kimhy
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Deborah Goetz
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Kevin Hoffman
- Perelman School of Medicine, University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA
| | - Jakleen Lee
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Eugene Ruby
- University of California, Los Angeles, Department of Psychology, Los Angeles, CA, USA
| | - Sarah Fendrich
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA; Perelman School of Medicine, University of Pennsylvania, Center for Health Care Incentives & Behavioral Economics, Philadelphia, PA, USA
| | - Oded Gonen
- NYU Langone Medical Center, Department of Radiology, New York, NY, USA
| | - Dolores Malaspina
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| |
Collapse
|
10
|
Griffiths K, Egerton A, Millgate E, Anton A, Barker GJ, Deakin B, Drake R, Eliasson E, Gregory CJ, Howes OD, Kravariti E, Lawrie SM, Lewis S, Lythgoe DJ, Murphy A, McGuire P, Semple S, Stockton-Powdrell C, Walters JTR, Williams SR, MacCabe JH. Impaired verbal memory function is related to anterior cingulate glutamate levels in schizophrenia: findings from the STRATA study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:60. [PMID: 35853881 PMCID: PMC9279335 DOI: 10.1038/s41537-022-00265-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/23/2022] [Indexed: 11/22/2022]
Abstract
Impaired cognition is associated with lower quality of life and poor outcomes in schizophrenia. Brain glutamate may contribute to both clinical outcomes and cognition, but these relationships are not well-understood. We studied a multicentre cohort of 85 participants with non-affective psychosis using proton magnetic resonance spectroscopy. Glutamate neurometabolites were measured in the anterior cingulate cortex (ACC). Cognition was assessed using the Brief Assessment for Cognition in Schizophrenia (BACS). Patients were categorised as antipsychotic responders or non-responders based on treatment history and current symptom severity. Inverted U-shaped associations between glutamate or Glx (glutamate + glutamine) with BACS subscale and total scores were examined with regression analyses. We then tested for an interaction effect of the antipsychotic response group on the relationship between glutamate and cognition. ACC glutamate and Glx had a positive linear association with verbal memory after adjusting for age, sex and chlorpromazine equivalent dose (glutamate, β = 3.73, 95% CI = 1.26-6.20, P = 0.004; Glx, β = 3.38, 95% CI = 0.84-5.91, P = 0.01). This association did not differ between good and poor antipsychotic response groups. ACC glutamate was also positively associated with total BACS score (β = 3.12, 95% CI = 0.01-6.23, P = 0.046), but this was not significant after controlling for antipsychotic dose. Lower glutamatergic metabolites in the ACC were associated with worse verbal memory, and this relationship was independent of antipsychotic response. Further research on relationships between glutamate and cognition in antipsychotic responsive and non-responsive illness could aid the stratification of patient groups for targeted treatment interventions.
Collapse
Affiliation(s)
- Kira Griffiths
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Edward Millgate
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Adriana Anton
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Academic Radiology, Department of Infection, Immunity and Cardiovascular Disease, Medical School, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, S10 2JF, UK
| | - Gareth J Barker
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Bill Deakin
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester, M25 3BL, UK
| | - Richard Drake
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester, M25 3BL, UK
| | - Emma Eliasson
- Division of Psychiatry, University of Edinburgh, Edinburgh, EH10 5HF, UK
| | - Catherine J Gregory
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
| | - Eugenia Kravariti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburgh, EH10 5HF, UK
| | - Shôn Lewis
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester, M25 3BL, UK
| | - David J Lythgoe
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Anna Murphy
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Scott Semple
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Charlotte Stockton-Powdrell
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Stephen R Williams
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK.
| |
Collapse
|
11
|
Broeders TAA, Bhogal AA, Morsinkhof LM, Schoonheim MM, Röder CH, Edens M, Klomp DWJ, Wijnen JP, Vinkers CH. Glutamate levels across deep brain structures in patients with a psychotic disorder and its relation to cognitive functioning. J Psychopharmacol 2022; 36:489-497. [PMID: 35243931 PMCID: PMC9066676 DOI: 10.1177/02698811221077199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Patients with psychotic disorders often show prominent cognitive impairment. Glutamate seems to play a prominent role, but its role in deep gray matter (DGM) regions is unclear. AIMS To evaluate glutamate levels within deep gray matter structures in patients with a psychotic disorder in relation to cognitive functioning, using advanced spectroscopic acquisition, reconstruction, and post-processing techniques. METHODS A 7-Tesla magnetic resonance imaging scanner combined with a lipid suppression coil and subject-specific water suppression pulses was used to acquire high-resolution magnetic resonance spectroscopic imaging data. Tissue fraction correction and registration to a standard brain were performed for group comparison in specifically delineated DGM regions. The brief assessment of cognition in schizophrenia was used to evaluate cognitive status. RESULTS Average glutamate levels across DGM structures (i.e. caudate, pallidum, putamen, and thalamus) in mostly medicated patients with a psychotic disorder (n = 16, age = 33, 4 females) were lower compared to healthy controls (n = 23, age = 24, 7 females; p = 0.005, d = 1.06). Stratified analyses showed lower glutamate levels in the caudate (p = 0.046, d = 0.76) and putamen p = 0.013, d = 0.94). These findings were largely explained by age differences between groups. DGM glutamate levels were positively correlated with psychomotor speed (r(30) = 0.49, p = 0.028), but not with other cognitive domains. CONCLUSIONS We find reduced glutamate levels across DGM structures including the caudate and putamen in patients with a psychotic disorder that are linked to psychomotor speed. Despite limitations concerning age differences, these results underscore the potential role of detailed in vivo glutamate assessments to understand cognitive deficits in psychotic disorders.
Collapse
Affiliation(s)
- Tommy AA Broeders
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands,Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,Tommy AA Broeders, Department of Anatomy & Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - Alex A Bhogal
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lisan M Morsinkhof
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Menno M Schoonheim
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christian H Röder
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mirte Edens
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis WJ Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jannie P Wijnen
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christiaan H Vinkers
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands,Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam/GGZ inGeest, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Wang L, Ma T, Qiao D, Cui K, Bi X, Han C, Yang L, Sun M, Liu L. Polymorphism of rs12294045 in EAAT2 gene is potentially associated with schizophrenia in Chinese Han population. BMC Psychiatry 2022; 22:171. [PMID: 35260124 PMCID: PMC8903623 DOI: 10.1186/s12888-022-03799-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Recent studies have shown that the excitatory amino acid transporters (EAATs) are associated with schizophrenia. The aim of this study was to investigate the relationship between the polymorphism of EAAT1 and EAAT2 genes and schizophrenia in Chinese Han population. METHODS A total of 233 patients with schizophrenia and 342 healthy controls were enrolled. Two SNPs in EAAT1 gene (rs2269272, rs2731880) and four SNPs in EAAT2 gene (rs12360706, rs3088168, rs12294045, rs10836387) were genotyped by SNaPshot. Clinical features were collected using a self-made questionnaire. Psychotic symptoms of patients were measured by the Positive and Negative Syndrome Scale (PANSS), and patients' cognitive function was assessed by Matrics Consensus Cognitive Battery (MCCB). RESULTS Significant difference in allelic distributions between cases and controls was confirmed at locus rs12294045 (Ρ = 0.004) of EAAT2 gene. Different genotypes of rs12294045 were associated with family history (P = 0.046), in which patients with CT genotype had higher proportion of family history of psychosis. The polymorphism of rs12294045 was related to working operational memory (LNS: P = 0.016) and verbal learning function (HVLT-R: P = 0.042) in patients in which CT genotype had lower scores. However, these differences were no longer significant after Bonferroni correction. CONCLUSIONS Our study showed that the polymorphism of rs12294045 in EAAT2 gene may be associated with schizophrenia in Chinese Han population. CT genotype may be one of the risk factors for family history and cognitive deficits of patients.
Collapse
Affiliation(s)
- Lina Wang
- grid.27255.370000 0004 1761 1174Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014 Shandong China
| | - Tantan Ma
- grid.27255.370000 0004 1761 1174Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014 Shandong China
| | - Dongdong Qiao
- grid.27255.370000 0004 1761 1174Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014 Shandong China
| | - Kaiyan Cui
- grid.27255.370000 0004 1761 1174Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014 Shandong China
| | - Xiaojiao Bi
- grid.27255.370000 0004 1761 1174Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014 Shandong China
| | - Chao Han
- grid.27255.370000 0004 1761 1174Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014 Shandong China
| | - Limin Yang
- grid.27255.370000 0004 1761 1174Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014 Shandong China
| | - Mengmeng Sun
- grid.27255.370000 0004 1761 1174Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014 Shandong China
| | - Lanfen Liu
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, No. 49 Wenhua Dong Road, Lixia District, Jinan, 250014, Shandong, China.
| |
Collapse
|
13
|
Hangel G, Niess E, Lazen P, Bednarik P, Bogner W, Strasser B. Emerging methods and applications of ultra-high field MR spectroscopic imaging in the human brain. Anal Biochem 2022; 638:114479. [PMID: 34838516 DOI: 10.1016/j.ab.2021.114479] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/15/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022]
Abstract
Magnetic Resonance Spectroscopic Imaging (MRSI) of the brain enables insights into the metabolic changes and fluxes in diseases such as tumors, multiple sclerosis, epilepsy, or hepatic encephalopathy, as well as insights into general brain functionality. However, the routine application of MRSI is mostly hampered by very low signal-to-noise ratios (SNR) due to the low concentrations of metabolites, about 10000 times lower than water. Furthermore, MRSI spectra have a dense information content with many overlapping metabolite resonances, especially for proton MRSI. MRI scanners at ultra-high field strengths, like 7 T or above, offer the opportunity to increase SNR, as well as the separation between resonances, thus promising to solve both challenges. Yet, MRSI at ultra-high field strengths is challenged by decreased B0- and B1-homogeneity, shorter T2 relaxation times, stronger chemical shift displacement errors, and aggravated lipid contamination. Therefore, to capitalize on the advantages of ultra-high field strengths, these challenges must be overcome. This review focuses on the challenges MRSI of the human brain faces at ultra-high field strength, as well as the possible applications to this date.
Collapse
Affiliation(s)
- Gilbert Hangel
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria; Department of Neurosurgery, Medical University of Vienna, Austria
| | - Eva Niess
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Philipp Lazen
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Petr Bednarik
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Bernhard Strasser
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria.
| |
Collapse
|
14
|
Frontal neural metabolite changes in schizophrenia and their association with cognitive control: A systematic review. Neurosci Biobehav Rev 2021; 132:224-247. [PMID: 34864431 PMCID: PMC8830497 DOI: 10.1016/j.neubiorev.2021.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/01/2023]
Abstract
GABA levels are decreased in medial frontal brain areas of schizophrenia patients. Glutamate levels are lower in medial and lateral frontal areas in chronic patients. Working memory performance is associated with frontal GABA and Glu. Prediction errors are associated Glu and medial frontal GABA. Processing speed correlates with medial frontal GABA levels.
A large proportion of patients with schizophrenia exhibit deficits in cognitive control functions including working memory, processing speed and inhibitory control, which have been associated with frontal brain areas. In this systematic review, we investigated differences between chronic schizophrenia patients, first-episode (FEP) patients and healthy control groups in the neurometabolite levels of GABA, glutamate, glutamine and Glx in frontal brain areas. Additionally, we reviewed correlations between cognitive control functions or negative symptoms and these neurometabolite levels. Several studies reported decreased GABA or glutamate concentrations in frontal lobe areas, particularly in chronic schizophrenia patients, while the results were mixed for FEP patients. Working memory performance and prediction errors have been associated with frontal GABA and glutamate levels, and processing speed with frontomedial GABA levels in chronic patients. The relationship between metabolites and negative symptom severity was somewhat inconsistent. Future studies should take the participants' age, medication status or responsivity, disease stage and precise anatomical location of the voxel into account when comparing neurometabolite levels between schizophrenia patients and healthy controls.
Collapse
|
15
|
Liu Y, Ouyang P, Zheng Y, Mi L, Zhao J, Ning Y, Guo W. A Selective Review of the Excitatory-Inhibitory Imbalance in Schizophrenia: Underlying Biology, Genetics, Microcircuits, and Symptoms. Front Cell Dev Biol 2021; 9:664535. [PMID: 34746116 PMCID: PMC8567014 DOI: 10.3389/fcell.2021.664535] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Schizophrenia is a chronic disorder characterized by specific positive and negative primary symptoms, social behavior disturbances and cognitive deficits (e.g., impairment in working memory and cognitive flexibility). Mounting evidence suggests that altered excitability and inhibition at the molecular, cellular, circuit and network level might be the basis for the pathophysiology of neurodevelopmental and neuropsychiatric disorders such as schizophrenia. In the past decades, human and animal studies have identified that glutamate and gamma-aminobutyric acid (GABA) neurotransmissions are critically involved in several cognitive progresses, including learning and memory. The purpose of this review is, by analyzing emerging findings relating to the balance of excitatory and inhibitory, ranging from animal models of schizophrenia to clinical studies in patients with early onset, first-episode or chronic schizophrenia, to discuss how the excitatory-inhibitory imbalance may relate to the pathophysiology of disease phenotypes such as cognitive deficits and negative symptoms, and highlight directions for appropriate therapeutic strategies.
Collapse
Affiliation(s)
- Yi Liu
- National Clinical Research Center on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Pan Ouyang
- National Clinical Research Center on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yingjun Zheng
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lin Mi
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jingping Zhao
- National Clinical Research Center on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuping Ning
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China.,The First School of Clinical Medical University, Guangzhou, China
| | - Wenbin Guo
- National Clinical Research Center on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Cui G, Qing Y, Li M, Sun L, Zhang J, Feng L, Li J, Chen T, Wang J, Wan C. Salivary Metabolomics Reveals that Metabolic Alterations Precede the Onset of Schizophrenia. J Proteome Res 2021; 20:5010-5023. [PMID: 34618462 DOI: 10.1021/acs.jproteome.1c00504] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Schizophrenia is a complex and highly heterogeneous mental illness with a prodromal period called clinical high risk (CHR) for psychosis before onset. Metabolomics is greatly promising in analyzing the pathology of complex diseases and exploring diagnostic biomarkers. Therefore, we conducted salivary metabolomics analysis in 83 first-episode schizophrenia (FES) patients, 42 CHR individuals, and 78 healthy controls with ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. The mass spectrometry raw data have been deposited on the MetaboLights (ID: MTBLS3463). We found downregulated aromatic amino acid metabolism, disturbed glutamine and nucleotide metabolism, and upregulated tricarboxylic acid cycle in FES patients, which existed even in the CHR stage and became more intense with the onset of the schizophrenia. Moreover, differential metabolites can be considered as potential diagnostic biomarkers and indicate the severity of the different clinical stages of disease. Furthermore, three disordered pathways were closely related to peripheral indicators of inflammatory response, oxidative stress, blood-brain barrier damage, and salivary microbiota. These results indicate that the disorder of oral metabolism occurs earlier than the onset of schizophrenia and is concentrated and intensified with the onset of disease, which may originate from the dysbiotic salivary microbiota and cause the onset of schizophrenia through the peripheral inflammatory response and redox system, suggesting the importance of oral-brain connection in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Gaoping Cui
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ying Qing
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Minghui Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Liya Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Juan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lei Feng
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Li
- Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tianlu Chen
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jijun Wang
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
17
|
Borgan F, Veronese M, Reis Marques T, Lythgoe DJ, Howes O. Association between cannabinoid 1 receptor availability and glutamate levels in healthy controls and drug-free patients with first episode psychosis: a multi-modal PET and 1H-MRS study. Eur Arch Psychiatry Clin Neurosci 2021; 271:677-687. [PMID: 32986150 PMCID: PMC8119269 DOI: 10.1007/s00406-020-01191-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022]
Abstract
Cannabinoid 1 receptor and glutamatergic dysfunction have both been implicated in the pathophysiology of schizophrenia. However, it remains unclear if cannabinoid 1 receptor alterations shown in drug-naïve/free patients with first episode psychosis may be linked to glutamatergic alterations in the illness. We aimed to investigate glutamate levels and cannabinoid 1 receptor levels in the same region in patients with first episode psychosis. Forty volunteers (20 healthy volunteers, 20 drug-naïve/free patients with first episode psychosis diagnosed with schizophrenia/schizoaffective disorder) were included in the study. Glutamate levels were measured using proton magnetic resonance spectroscopy. CB1R availability was indexed using the distribution volume (VT (ml/cm3)) of [11C]MePPEP using arterial blood sampling. There were no significant associations between ACC CB1R levels and ACC glutamate levels in controls (R = - 0.24, p = 0.32) or patients (R = - 0.10, p = 0.25). However, ACC glutamate levels were negatively associated with CB1R availability in the striatum (R = - 0.50, p = 0.02) and hippocampus (R = - 0.50, p = 0.042) in controls, but these associations were not observed in patients (p > 0.05). Our findings extend our previous work in an overlapping sample to show, for the first time as far as we're aware, that cannabinoid 1 receptor alterations in the anterior cingulate cortex are shown in the absence of glutamatergic dysfunction in the same region, and indicate potential interactions between glutamatergic signalling in the anterior cingulate cortex and the endocannabinoid system in the striatum and hippocampus.
Collapse
Affiliation(s)
- Faith Borgan
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK.
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Tiago Reis Marques
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - David J Lythgoe
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Oliver Howes
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| |
Collapse
|
18
|
Bogner W, Otazo R, Henning A. Accelerated MR spectroscopic imaging-a review of current and emerging techniques. NMR IN BIOMEDICINE 2021; 34:e4314. [PMID: 32399974 PMCID: PMC8244067 DOI: 10.1002/nbm.4314] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 05/14/2023]
Abstract
Over more than 30 years in vivo MR spectroscopic imaging (MRSI) has undergone an enormous evolution from theoretical concepts in the early 1980s to the robust imaging technique that it is today. The development of both fast and efficient sampling and reconstruction techniques has played a fundamental role in this process. State-of-the-art MRSI has grown from a slow purely phase-encoded acquisition technique to a method that today combines the benefits of different acceleration techniques. These include shortening of repetition times, spatial-spectral encoding, undersampling of k-space and time domain, and use of spatial-spectral prior knowledge in the reconstruction. In this way in vivo MRSI has considerably advanced in terms of spatial coverage, spatial resolution, acquisition speed, artifact suppression, number of detectable metabolites and quantification precision. Acceleration not only has been the enabling factor in high-resolution whole-brain 1 H-MRSI, but today is also common in non-proton MRSI (31 P, 2 H and 13 C) and applied in many different organs. In this process, MRSI techniques had to constantly adapt, but have also benefitted from the significant increase of magnetic field strength boosting the signal-to-noise ratio along with high gradient fidelity and high-density receive arrays. In combination with recent trends in image reconstruction and much improved computation power, these advances led to a number of novel developments with respect to MRSI acceleration. Today MRSI allows for non-invasive and non-ionizing mapping of the spatial distribution of various metabolites' tissue concentrations in animals or humans, is applied for clinical diagnostics and has been established as an important tool for neuro-scientific and metabolism research. This review highlights the developments of the last five years and puts them into the context of earlier MRSI acceleration techniques. In addition to 1 H-MRSI it also includes other relevant nuclei and is not limited to certain body regions or specific applications.
Collapse
Affiliation(s)
- Wolfgang Bogner
- High‐Field MR Center, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Ricardo Otazo
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew York, New YorkUSA
| | - Anke Henning
- Max Planck Institute for Biological CyberneticsTübingenGermany
- Advanced Imaging Research Center, UT Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
19
|
Bryant JE, Lahti AC, Briend F, Kraguljac NV. White Matter Neurometabolic Signatures Support the Deficit and Nondeficit Distinction in Antipsychotic-Naïve First-Episode Psychosis Patients. Schizophr Bull 2021; 47:1068-1076. [PMID: 33693906 PMCID: PMC8266628 DOI: 10.1093/schbul/sbab014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The deficit syndrome is thought to be a more homogenous clinical subgroup within the syndrome of schizophrenia that is characterized by enduring negative symptoms. It is hypothesized that distinct pathophysiological processes underlie the subtypes, where the deficit syndrome reflects an early onset nonprogressive developmental process, and the nondeficit form of the illness is characterized by attenuated neuroplasticity secondary to elevated glutamate levels. We used single-voxel magnetic resonance spectroscopy (PRESS; TE: 30 ms) to measure left frontal white matter neurometabolite levels in 61 antipsychotic-naïve first-episode psychosis patients (39 who did not display deficit features, 22 who did display deficit features, assessed with the Schedule for the Deficit Syndrome) and 59 healthy controls. Metabolite levels were quantified with the LCModel. We used a MANCOVA to determine neurometabolite differences between healthy controls, deficit syndrome patients, and nondeficit patients. We report a significant group difference when all metabolites were considered jointly (F[10,208] = 2.16; P = .02). Post hoc analyses showed that patients presenting without deficit features had higher glutamate levels than patients with deficit features and controls. Patients presenting without deficit features also had significantly higher myoinositol levels than controls; myoinositol levels were trend-level higher in patients presenting with deficit features compared to controls. Our data support the idea that the pathophysiology of patients presenting without deficit features may differ from those presenting with deficit features.
Collapse
Affiliation(s)
- James Edward Bryant
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC 501, Birmingham, AL, USA
| | - Adrienne Carol Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC 501, Birmingham, AL, USA
| | - Frederic Briend
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC 501, Birmingham, AL, USA,UMR1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC 501, Birmingham, AL, USA,To whom correspondence should be addressed; tel: 205-996-7171, e-mail:
| |
Collapse
|
20
|
Bojesen KB, Broberg BV, Fagerlund B, Jessen K, Thomas MB, Sigvard A, Tangmose K, Nielsen MØ, Andersen GS, Larsson HBW, Edden RA, Rostrup E, Glenthøj BY. Associations Between Cognitive Function and Levels of Glutamatergic Metabolites and Gamma-Aminobutyric Acid in Antipsychotic-Naïve Patients With Schizophrenia or Psychosis. Biol Psychiatry 2021; 89:278-287. [PMID: 32928500 PMCID: PMC9683086 DOI: 10.1016/j.biopsych.2020.06.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Abnormal glutamate and GABA (gamma-aminobutyric acid) levels have been found in the early phase of schizophrenia and may underlie cognitive deficits. However, the association between cognitive function and levels of glutamatergic metabolites and GABA has not been investigated in a large group of antipsychotic-naïve patients. METHODS In total, 56 antipsychotic-naïve patients with schizophrenia or psychotic disorder and 51 healthy control subjects underwent magnetic resonance spectroscopy to measure glutamate, glutamate+glutamine (Glx), and GABA levels in dorsal anterior cingulate cortex (ACC) and glutamate and Glx levels in left thalamus. The cognitive domains of attention, working memory, and IQ were assessed. RESULTS The whole group of antipsychotic-naïve patients had lower levels of GABA in dorsal ACC (p = .03), and the subgroup of patients with a schizophrenia diagnosis had higher glutamate levels in thalamus (p = .01), but Glx levels in dorsal ACC and thalamus did not differ between groups. Glx levels in dorsal ACC were positively associated with working memory (logarithmically transformed: b = -.016 [higher score indicates worse performance], p = .005) and attention (b = .056, p = .035) in both patients and healthy control subjects, although the association with attention did not survive adjustment for multiple comparisons. CONCLUSIONS The findings suggest a positive association between glutamatergic metabolites and cognitive function that do not differ between patients and healthy control subjects. Moreover, our data indicate that decreased GABAergic levels in dorsal ACC are involved in schizophrenia and psychotic disorder, whereas increased glutamate levels in thalamus seem to be implicated in schizophrenia pathophysiology. The findings imply that first-episode patients with cognitive deficits may gain from glutamate-modulating compounds.
Collapse
Affiliation(s)
- Kirsten Borup Bojesen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark.
| | - Brian Villumsen Broberg
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark,Faculty of Health and Medical Sciences, and Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Glostrup, Denmark
| | - Kasper Jessen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Marie Bjerregaard Thomas
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Anne Sigvard
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Social Sciences, University of Copenhagen, Glostrup, Denmark
| | - Karen Tangmose
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Social Sciences, University of Copenhagen, Glostrup, Denmark
| | - Mette Ødegaard Nielsen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Social Sciences, University of Copenhagen, Glostrup, Denmark
| | - Gitte Saltoft Andersen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Henrik Bo Wiberg Larsson
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, F.M. Kirby Research Center for Functional Brain Imaging, Baltimore, Maryland
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Birte Yding Glenthøj
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark,Department of Clinical Medicine, Faculty of Social Sciences, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
21
|
Reid MA. Glutamate and Gamma-Aminobutyric Acid Abnormalities in Antipsychotic-Naïve Patients With Schizophrenia: Evidence From Empirical and Meta-analytic Studies Using Magnetic Resonance Spectroscopy. Biol Psychiatry 2021; 89:e1-e3. [PMID: 33357632 PMCID: PMC8221118 DOI: 10.1016/j.biopsych.2020.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Meredith A. Reid
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University
| |
Collapse
|
22
|
Kozhuharova P, Diaconescu AO, Allen P. Reduced cortical GABA and glutamate in high schizotypy. Psychopharmacology (Berl) 2021; 238:2459-2470. [PMID: 34146134 PMCID: PMC8373725 DOI: 10.1007/s00213-021-05867-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/02/2021] [Indexed: 12/04/2022]
Abstract
RATIONALE Abnormal functioning of the inhibitory gamma-aminobutyric acid (GABA) and excitatory (glutamate) systems is proposed to play a role in the development of schizophrenia spectrum disorder. Although results are mixed, previous 1H-magnetic resonance spectroscopy (MRS) studies in schizophrenia and clinical high-risk samples report these metabolites are altered in comparison to healthy controls. Currently, however, there are few studies of these metabolites in schizotypy samples, a personality dimension associated with the experience of schizophrenia and psychosis-like symptoms. OBJECTIVES We investigated if GABA and glutamate metabolite concentrations are altered in people with high schizotypy. We also explored the relationship between resilience to stress, GABA metabolite concentrations and schizotypy. METHODS We used MRS to examine GABA and glutamate levels in the medial prefrontal cortex in people with low and high schizotypy traits as assessed with the Schizotypal Personality Questionnaire. Resilience to stress was assessed using the Connor-Davidson Resilience Scale. RESULTS Compared to individuals with low schizotypy traits, high schizotypy individuals showed lower cortical prefrontal GABA (F (1,38) = 5.18, p = 0.03, η2 = 0.09) and glutamate metabolite levels (F (1, 49) = 6.25, p = 0.02, η2 = 0.02). Furthermore, participants with high GABA and high resilience levels were significantly more likely to be in the low schizotypy group than participants with low GABA and high resilience or high GABA and low resilience (95% CI 1.07-1.34, p < .001). CONCLUSIONS These findings demonstrate that subclinical schizotypal traits are associated with abnormal functioning of both inhibitory and excitatory systems and suggest that these transmitters are implicated in a personality trait believed to be on a continuum with psychosis.
Collapse
Affiliation(s)
- Petya Kozhuharova
- Centre for Cognition, Neuroscience and Neuroimaging, Department of Psychology, University of Roehampton, Holybourne Ave, Roehampton, London, SW15 4JD, UK.
| | - Andreea O Diaconescu
- Department of Psychiatry, Brain and Therapeutics, Krembil Centre for Neuroinformatics, CAMH, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Paul Allen
- Centre for Cognition, Neuroscience and Neuroimaging, Department of Psychology, University of Roehampton, Holybourne Ave, Roehampton, London, SW15 4JD, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
23
|
Corcoran M, Hawkins EL, O'Hora D, Whalley HC, Hall J, Lawrie SM, Dauvermann MR. Are working memory and glutamate concentrations involved in early-life stress and severity of psychosis? Brain Behav 2020; 10:e01616. [PMID: 32385970 PMCID: PMC7303391 DOI: 10.1002/brb3.1616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/18/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Occurrences of early-life stress (ELS) are associated with the severity of psychotic symptoms and working memory (WM) deficits in patients with psychosis (PSY). This study investigated potential mediation roles of WM behavioral performance and glutamate concentrations in prefrontal brain regions on the association between ELS and psychotic symptom severity in PSY. METHOD Forty-seven patients with PSY (established schizophrenia, n = 30; bipolar disorder, n = 17) completed measures of psychotic symptom severity. In addition, data on ELS and WM performance were collected in both patients with PSY and healthy controls (HC; n = 41). Resting-state glutamate concentrations in the bilateral dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) were also assessed with proton magnetic resonance spectroscopy for both PSY and HC groups. t tests, analyses of variance, and regression analyses were utilized. RESULTS Participants with PSY reported significantly more ELS occurrences and showed poorer WM performance than HC. Furthermore, individuals with PSY displayed lower glutamate concentrations in the left DLPFC than HC. Neither ELS nor WM performance were predictive of severity of psychotic symptoms in participants with PSY. However, we found a significant negative correlation between glutamate concentrations in the left DLPFC and ELS occurrence in HC only. CONCLUSION In individuals with PSY, the current study found no evidence that the association between ELS and psychotic symptoms is mediated by WM performance or prefrontal glutamate concentrations. In HC, the association between ELS experience and glutamate concentrations may indicate a neurometabolite effect of ELS that is independent of an illness effect in psychosis.
Collapse
Affiliation(s)
- Mark Corcoran
- School of Psychology, National University of Ireland Galway, Galway, Ireland
| | - Emma L Hawkins
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Denis O'Hora
- School of Psychology, National University of Ireland Galway, Galway, Ireland
| | | | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | | | - Maria R Dauvermann
- School of Psychology, National University of Ireland Galway, Galway, Ireland.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Cen H, Xu J, Yang Z, Mei L, Chen T, Zhuo K, Xiang Q, Song Z, Wang Y, Guo X, Wang J, Jiang K, Xu Y, Li Y, Liu D. Neurochemical and brain functional changes in the ventromedial prefrontal cortex of first-episode psychosis patients: A combined functional magnetic resonance imaging-proton magnetic resonance spectroscopy study. Aust N Z J Psychiatry 2020; 54:519-527. [PMID: 31958975 DOI: 10.1177/0004867419898520] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Previous studies showed alterations of brain function in the ventromedial prefrontal cortex of schizophrenia patients. Also, neurochemical changes, especially GABA level alteration, have been found in the medial prefrontal cortex of schizophrenia patients. However, the relationship between GABA level in the ventromedial prefrontal cortex and brain functional activity in schizophrenia patients remains unexplored. METHODS In total, 23 drug-naïve, first-episode psychosis patients and 26 matched healthy controls completed the study. The single voxel proton magnetic resonance spectroscopy data were acquired in ventromedial prefrontal cortex region, which was used as the seed region for resting-state functional connectivity analysis. The proton magnetic resonance spectroscopy data were processed to quantify the concentrations of GABA+, glutamine and glutamate, and N-acetylaspartate in ventromedial prefrontal cortex. Spearman correlation analysis was used to examine the relationship between metabolite concentration, functional connectivity and clinical variables. Pearson correlation analysis was used to examine the relationship between GABA+ concentration and functional connectivity value. RESULTS In first-episode psychosis patients, GABA+ level in ventromedial prefrontal cortex was higher and was positively correlated with ventromedial prefrontal cortex-left middle orbital frontal cortex functional connectivity. N-acetylaspartate level was positively correlated with positive symptoms, and the functional connectivity between ventromedial prefrontal cortex and left precuneus was negatively associated with negative symptoms of first-episode psychosis patients. CONCLUSION Our results indicated that ventromedial prefrontal cortex functional connectivity changes were positively correlated with higher local GABA+ level in first-episode psychosis patients. The altered neurochemical concentration and functional connectivity provide insights into the pathology of schizophrenia.
Collapse
Affiliation(s)
- Haixin Cen
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiale Xu
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhilei Yang
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Mental Disorders, Shanghai Jiading Mental Health Center, Shanghai, China
| | - Li Mei
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyi Chen
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Outpatient Department, Shanghai Hongkou Mental Health Center, Shanghai, China
| | - Kaiming Zhuo
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Xiang
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghua Song
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingchan Wang
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyun Guo
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhong Wang
- Department of Medical Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaida Jiang
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifeng Xu
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Mental Health, Fudan University, Shanghai, China
| | - Yao Li
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Dengtang Liu
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Mental Health, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Fisher E, Gillam J, Upthegrove R, Aldred S, Wood SJ. Role of magnetic resonance spectroscopy in cerebral glutathione quantification for youth mental health: A systematic review. Early Interv Psychiatry 2020; 14:147-162. [PMID: 31148383 PMCID: PMC7065077 DOI: 10.1111/eip.12833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/27/2019] [Accepted: 04/14/2019] [Indexed: 01/01/2023]
Abstract
AIM Oxidative stress is strongly implicated in many psychiatric disorders, which has resulted in the development of new interventions to attempt to perturb this pathology. A great deal of attention has been paid to glutathione, which is the brain's dominant antioxidant and plays a fundamental role in removing free radicals and other reactive oxygen species. Measurement of glutathione concentration in the brain in vivo can provide information on redox status and potential for oxidative stress to develop. Glutathione might also represent a marker to assess treatment response. METHODS This paper systematically reviews studies that assess glutathione concentration (measured using magnetic resonance spectroscopy) in various mental health conditions. RESULTS There is limited evidence showing altered brain glutathione concentration in mental disorders; the best evidence suggests glutathione is decreased in depression, but is not altered in bipolar disorder. The review then outlines the various methodological options for acquiring glutathione data using spectroscopy. CONCLUSIONS Analysis of the minimum effect size measurable in existing studies indicates that increased number of participants is required to measure subtle but possibly important differences and move the field forward.
Collapse
Affiliation(s)
- Emily Fisher
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamEdgbastonUK
| | - John Gillam
- Orygenthe National Centre of Excellence in Youth Mental HealthMelbourneVictoriaAustralia
- Centre for Youth Mental HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Rachel Upthegrove
- Institute for Mental HealthUniversity of BirminghamEdgbastonUK
- Department of PsychiatryUniversity of BirminghamBirminghamUK
| | - Sarah Aldred
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamEdgbastonUK
| | - Stephen J. Wood
- Orygenthe National Centre of Excellence in Youth Mental HealthMelbourneVictoriaAustralia
- Centre for Youth Mental HealthUniversity of MelbourneMelbourneVictoriaAustralia
- Institute for Mental HealthUniversity of BirminghamEdgbastonUK
| |
Collapse
|
26
|
Dienel SJ, Enwright JF, Hoftman GD, Lewis DA. Markers of glutamate and GABA neurotransmission in the prefrontal cortex of schizophrenia subjects: Disease effects differ across anatomical levels of resolution. Schizophr Res 2020; 217:86-94. [PMID: 31296415 PMCID: PMC6946893 DOI: 10.1016/j.schres.2019.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
Abstract
Cognitive dysfunction in individuals with schizophrenia is thought to reflect, at least in part, altered levels of excitatory and inhibitory neurotransmission in the dorsolateral prefrontal cortex (DLPFC). Studies of the postmortem human brain allow for interrogation of the disease-related alterations in markers of excitatory and inhibitory neurotransmission at different levels of anatomical resolution. Here, we re-analyzed six published datasets from postmortem studies of schizophrenia to assess molecular markers of glutamate and GABA neurotransmission in the DLPFC at three levels of anatomical resolution: 1) total cortical gray matter, 2) gray matter restricted to layer 3, and 3) a layer 3 local circuit composed of excitatory pyramidal cells and inhibitory, parvalbumin-containing, GABA neurons. We formulated composite measures of glutamate and GABA neurotransmission from z-scores of key transcripts that regulate these functions. Relative to unaffected comparison subjects, the composite glutamate measure was higher in schizophrenia subjects in total gray matter homogenates but lower in samples restricted to layer 3 or the layer 3 local circuit. The composite index of GABA neurotransmission did not differ between subject groups in total gray matter homogenates but was lower in schizophrenia subjects in layer 3 and lower still in the local layer 3 circuit. These findings suggest that the balance of excitation and inhibition in the DLPFC of schizophrenia subjects differs depending on the level of anatomical resolution studied, highlighting the importance of layer- and cell type-specific studies to understand disease-related alterations in cortical circuitry.
Collapse
Affiliation(s)
- Samuel J Dienel
- Medical Scientist Training Program, University of Pittsburgh, United States of America; Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States of America; Center for the Neural Basis of Cognition, Carnegie Mellon University, United States of America; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, United States of America
| | - John F Enwright
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States of America
| | - Gil D Hoftman
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States of America
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, United States of America; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, United States of America.
| |
Collapse
|
27
|
Daniju Y, Bossong MG, Brandt K, Allen P. Do the effects of cannabis on the hippocampus and striatum increase risk for psychosis? Neurosci Biobehav Rev 2020; 112:324-335. [PMID: 32057817 DOI: 10.1016/j.neubiorev.2020.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/17/2020] [Accepted: 02/10/2020] [Indexed: 11/19/2022]
Abstract
Cannabis use is associated with increased risk of psychotic symptoms and in a small number of cases it can lead to psychoses. This review examines the neurobiological mechanisms that mediate the link between cannabis use and psychosis risk. We use an established preclinical model of psychosis, the methylazoxymethanol acetate (MAM) rodent model, as a framework to examine if psychosis risk in some cannabis users is mediated by the effects of cannabis on the hippocampus, and this region's role in the regulation of mesolimbic dopamine. We also examine how cannabis affects excitatory neurotransmission known to regulate hippocampal neural activity and output. Whilst there is clear evidence that cannabis/cannabinoids can affect hippocampal and medial temporal lobe function and structure, the evidence that cannabis/cannabinoids increase striatal dopamine function is less robust. There is limited evidence that cannabis use affects cortical and striatal glutamate levels, but there are currently too few studies to draw firm conclusions. Future work is needed to test the MAM model in relation to cannabis using multimodal neuroimaging approaches.
Collapse
Affiliation(s)
- Y Daniju
- Department of Psychology, University of Roehampton, London, UK
| | - M G Bossong
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, the Netherlands
| | - K Brandt
- Department of Psychology, University of Roehampton, London, UK
| | - P Allen
- Department of Psychology, University of Roehampton, London, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Icahn School of Medicine at Mount Sinai Hospital, New York, USA.
| |
Collapse
|
28
|
Li J, Ren H, He Y, Li Z, Ma X, Yuan L, Ouyang L, Zhou J, Wang D, Li C, Chen X, Han H, Tang J. Anterior Cingulate Cortex Glutamate Levels Are Related to Response to Initial Antipsychotic Treatment in Drug-Naive First-Episode Schizophrenia Patients. Front Psychiatry 2020; 11:553269. [PMID: 33192666 PMCID: PMC7644538 DOI: 10.3389/fpsyt.2020.553269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/22/2020] [Indexed: 01/23/2023] Open
Abstract
The glutamatergic system has previously been shown to be involved in the pathophysiology of schizophrenia and the mechanisms of action of antipsychotic treatment. The present study aimed to investigate the relationship between the levels of glutamate (Glu) or Glu/total creatine (Glu/Cr+PCr) in the anterior cingulate cortex (ACC) and psychiatric symptoms as well as the response to antipsychotic treatment. We performed proton magnetic resonance spectroscopy (1H-MRS) to measure Glu and Glu/Cr+PCr in the ACC of 35 drug-naïve first-episode schizophrenia (FES) patients and 40 well-matched healthy controls (HCs). After scanning, we treated the patients with risperidone for eight weeks. Remission status was based on the Positive and Negative Syndrome Scale (PANSS) scores at week 8. At baseline, there were no significant differences in the levels of Glu or Glu/Cr+PCr in the ACC between drug-naïve FES patients and HCs. Lower baseline levels of Glu/Cr+PCr but not Glu in the ACC were associated with more severe negative symptoms of schizophrenia. Compared to the remission group (RM), the non-remission group (NRM) had lower baseline ACC Glu levels (P < 0.05). Our results suggest that ACC Glu levels may be related to the severity of symptoms in the early stages of schizophrenia and therefore may be a marker with which to evaluate the treatment effect of antipsychotics in schizophrenia patients.
Collapse
Affiliation(s)
- Jinguang Li
- Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry, National Clinical Research Center for Mental Disorders, Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China.,Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Honghong Ren
- Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry, National Clinical Research Center for Mental Disorders, Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ying He
- Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry, National Clinical Research Center for Mental Disorders, Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - ZongChang Li
- Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry, National Clinical Research Center for Mental Disorders, Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoqian Ma
- Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry, National Clinical Research Center for Mental Disorders, Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liu Yuan
- Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry, National Clinical Research Center for Mental Disorders, Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lijun Ouyang
- Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry, National Clinical Research Center for Mental Disorders, Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jun Zhou
- Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry, National Clinical Research Center for Mental Disorders, Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dong Wang
- Department of Psychiatry, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Chunwang Li
- Department of Radiology, Hunan Childen's Hospital, Changsha, China
| | - Xiaogang Chen
- Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry, National Clinical Research Center for Mental Disorders, Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongying Han
- Department of Psychiatry, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jinsong Tang
- Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry, National Clinical Research Center for Mental Disorders, Hunan Medical Center for Mental Health, China National Technology Institute on Mental Disorders, Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Kumar J, Liddle EB, Fernandes CC, Palaniyappan L, Hall EL, Robson SE, Simmonite M, Fiesal J, Katshu MZ, Qureshi A, Skelton M, Christodoulou NG, Brookes MJ, Morris PG, Liddle PF. Glutathione and glutamate in schizophrenia: a 7T MRS study. Mol Psychiatry 2020; 25:873-882. [PMID: 29934548 PMCID: PMC7156342 DOI: 10.1038/s41380-018-0104-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 05/04/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022]
Abstract
In schizophrenia, abnormal neural metabolite concentrations may arise from cortical damage following neuroinflammatory processes implicated in acute episodes. Inflammation is associated with increased glutamate, whereas the antioxidant glutathione may protect against inflammation-induced oxidative stress. We hypothesized that patients with stable schizophrenia would exhibit a reduction in glutathione, glutamate, and/or glutamine in the cerebral cortex, consistent with a post-inflammatory response, and that this reduction would be most marked in patients with "residual schizophrenia", in whom an early stage with positive psychotic symptoms has progressed to a late stage characterized by long-term negative symptoms and impairments. We recruited 28 patients with stable schizophrenia and 45 healthy participants matched for age, gender, and parental socio-economic status. We measured glutathione, glutamate and glutamine concentrations in the anterior cingulate cortex (ACC), left insula, and visual cortex using 7T proton magnetic resonance spectroscopy (MRS). Glutathione and glutamate were significantly correlated in all three voxels. Glutamine concentrations across the three voxels were significantly correlated with each other. Principal components analysis (PCA) produced three clear components: an ACC glutathione-glutamate component; an insula-visual glutathione-glutamate component; and a glutamine component. Patients with stable schizophrenia had significantly lower scores on the ACC glutathione-glutamate component, an effect almost entirely leveraged by the sub-group of patients with residual schizophrenia. All three metabolite concentration values in the ACC were significantly reduced in this group. These findings are consistent with the hypothesis that excitotoxicity during the acute phase of illness leads to reduced glutathione and glutamate in the residual phase of the illness.
Collapse
Affiliation(s)
- Jyothika Kumar
- 0000 0004 1936 8868grid.4563.4Division of Psychiatry and Applied Psychology, University of Nottingham, Nottingham, UK
| | - Elizabeth B. Liddle
- 0000 0004 1936 8868grid.4563.4Division of Psychiatry and Applied Psychology, University of Nottingham, Nottingham, UK
| | - Carolina C. Fernandes
- 0000 0004 1936 8868grid.4563.4Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Lena Palaniyappan
- 0000 0004 1936 8884grid.39381.30Departments of Psychiatry, Medical Biophysics and Neuroscience, Western University, London, ON Canada ,Lawson Research, Brain and Mind & Robarts Research Institutes, London, ON Canada
| | - Emma L. Hall
- 0000 0004 1936 8868grid.4563.4Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Siân E. Robson
- 0000 0000 8610 2323grid.482042.8Healthcare Improvement Scotland, Gyle Square, Edinburgh, UK
| | - Molly Simmonite
- 0000000086837370grid.214458.eDepartment of Psychology, University of Michigan, Ann Arbor, MI USA
| | - Jan Fiesal
- grid.500956.fSouth Staffordshire and Shropshire Healthcare NHS Foundation Trust, Stafford, UK
| | - Mohammad Z. Katshu
- 0000 0004 1936 8868grid.4563.4Division of Psychiatry and Applied Psychology, University of Nottingham, Nottingham, UK ,0000 0001 1514 761Xgrid.439378.2Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, UK
| | - Ayaz Qureshi
- 0000 0004 0430 6955grid.450837.dGreater Manchester West Mental Health NHS Foundation Trust, Manchester, UK
| | - Michael Skelton
- 0000 0004 0396 1667grid.418388.eDerbyshire Healthcare NHS Foundation Trust, Derby, UK
| | - Nikolaos G. Christodoulou
- 0000 0004 1936 8868grid.4563.4Division of Psychiatry and Applied Psychology, University of Nottingham, Nottingham, UK ,0000 0001 1514 761Xgrid.439378.2Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, UK
| | - Matthew J. Brookes
- 0000 0004 1936 8868grid.4563.4Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Peter G. Morris
- 0000 0004 1936 8868grid.4563.4Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Peter F. Liddle
- 0000 0004 1936 8868grid.4563.4Division of Psychiatry and Applied Psychology, University of Nottingham, Nottingham, UK
| |
Collapse
|
30
|
Using proton magnetic resonance spectroscopic imaging to study glutamatergic alterations in patients with schizophrenia: A systematic review. Schizophr Res 2019; 210:13-20. [PMID: 31272905 DOI: 10.1016/j.schres.2019.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/05/2019] [Accepted: 06/16/2019] [Indexed: 12/21/2022]
Abstract
The glutamate hypothesis of schizophrenia posits aberrant glutamatergic activity in patients with schizophrenia. Levels of glutamate and glutamine can be detected and quantified in vivo by proton magnetic resonance spectroscopy. A related technique, proton magnetic resonance spectroscopic imaging (1H-MRSI), is particularly useful as it simultaneously collects multiple spectra, across multiple voxels, from a single acquisition. The primary aim of this study was to review and discuss the use of 1H-MRSI to measure levels of glutamate and glutamine in patients with schizophrenia. Additionally, the advantages and disadvantages of using 1H-MRSI to examine schizophrenia pathophysiology are discussed. A literature search was conducted through Ovid. English language studies utilizing 1H-MRSI to measure glutamate and glutamine in patients with schizophrenia were identified. Six studies met the inclusion criteria. The included studies provide inconclusive support for glutamatergic elevations within frontal brain regions in patients with schizophrenia. The key benefit of employing 1H-MRSI to examine schizophrenia pathophysiology appears to be its broader spatial coverage. Future 1H-MRSI studies utilizing large sample sizes and longitudinal study designs are necessitated to further our understanding of glutamatergic alterations in patients with schizophrenia.
Collapse
|
31
|
Borgan FR, Jauhar S, McCutcheon RA, Pepper FS, Rogdaki M, Lythgoe DJ, Howes OD. Glutamate levels in the anterior cingulate cortex in un-medicated first episode psychosis: a proton magnetic resonance spectroscopy study. Sci Rep 2019; 9:8685. [PMID: 31266965 PMCID: PMC6606579 DOI: 10.1038/s41598-019-45018-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/22/2019] [Indexed: 01/09/2023] Open
Abstract
Converging lines of evidence suggest that glutamatergic dysfunction may contribute to the pathophysiology of first episode psychosis. We investigated whether first episode psychosis patients free from all pharmacological treatments and illicit substances show cortical glutamatergic alterations. One-hundred and eleven volunteers including 65 healthy volunteers and 46 first episode psychosis patients free from all pharmacological treatments (28 drug naïve) underwent a proton magnetic resonance spectroscopy scan measuring glutamate levels in the bilateral anterior cingulate cortex. Symptom severity was measured using the Positive and Negative Syndrome Scale (PANSS) and cognition was measured using the Wechsler Adult Intelligence Scale (WAIS) digit symbol test. There were no differences in glutamate levels between patients and controls. These findings remained unchanged when adjusting for the effects of age, sex and ethnicity or when restricting the analyses to patients who were both medication naïve to all pharmacological treatments and illicit substances. Whilst these findings do not preclude glutamatergic alterations in psychosis, methodological advances are needed for us to investigate whether patients show alterations in other aspects of glutamate function, such as pre-synaptic glutamate or release.
Collapse
Affiliation(s)
- Faith R Borgan
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England. .,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK.
| | - Sameer Jauhar
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Robert A McCutcheon
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Fiona S Pepper
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Maria Rogdaki
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - David J Lythgoe
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Oliver D Howes
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England. .,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK.
| |
Collapse
|
32
|
Allen P, Moore H, Corcoran CM, Gilleen J, Kozhuharova P, Reichenberg A, Malaspina D. Emerging Temporal Lobe Dysfunction in People at Clinical High Risk for Psychosis. Front Psychiatry 2019; 10:298. [PMID: 31133894 PMCID: PMC6526750 DOI: 10.3389/fpsyt.2019.00298] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Clinical high-risk (CHR) individuals have been increasingly utilized to investigate the prodromal phases of psychosis and progression to illness. Research has identified medial and lateral temporal lobe abnormalities in CHR individuals. Dysfunction in the medial temporal lobe, particularly the hippocampus, is linked to dysregulation of glutamate and dopamine via a hippocampal-striatal-midbrain network that may lead to aberrant signaling of salience underpinning the formation of delusions. Similarly, lateral temporal dysfunction may be linked to the disorganized speech and language impairments observed in the CHR stage. Here, we summarize the significance of these neurobiological findings in terms of emergent psychotic symptoms and conversion to psychosis in CHR populations. We propose key questions for future work with the aim to identify the neural mechanisms that underlie the development of psychosis.
Collapse
Affiliation(s)
- Paul Allen
- Department of Psychology, University of Roehampton, London, United Kingdom
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Holly Moore
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, University of Columbia, New York, NY, United States
| | - Cheryl M. Corcoran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - James Gilleen
- Department of Psychology, University of Roehampton, London, United Kingdom
| | - Petya Kozhuharova
- Department of Psychology, University of Roehampton, London, United Kingdom
| | - Avi Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Dolores Malaspina
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
33
|
Xiang Q, Xu J, Wang Y, Chen T, Wang J, Zhuo K, Guo X, Zeljic K, Li W, Sun Y, Wang Z, Li Y, Liu D. Modular Functional-Metabolic Coupling Alterations of Frontoparietal Network in Schizophrenia Patients. Front Neurosci 2019; 13:40. [PMID: 30787862 PMCID: PMC6372554 DOI: 10.3389/fnins.2019.00040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/15/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Brain functional dysconnectivity, as well as altered network organization, have been demonstrated to occur in schizophrenia. Brain networks are increasingly understood to exhibit modular community structures, which provides advantages in robustness and functional adaptivity. The frontoparietal network (FPN) serves as an important functional module, and metabolic and functional alterations in the FPN are associated with the pathophysiology of schizophrenia. However, how intra-modular biochemical disruptions lead to inter-modular dysfunction of the FPN, remains unclear. In this study, we aim to investigate alterations in the modular functional-metabolic coupling of the FPN, in patients with schizophrenia. Methods: We combined resting-state functional magnetic resonance imaging (rs-fMRI) and magnetic resonance spectroscopy (MRS) technology and acquired multimodal neuroimaging data in 20 patients with schizophrenia and 26 healthy controls. For the MRS, the dorsolateral prefrontal cortex (DLPFC) region within the FPN was explored. Metabolites including gamma aminobutyric acid (GABA), N-aspart-acetyl (NAA) and glutamate + glutamine (Glx) were quantified, using LCModel software. A graph theoretical approach was applied for functional modular parcellation. The relationship between inter/intra-modular connectivity and metabolic concentration was examined using the Pearson correlation analysis. Moreover, correlations with schizophrenia symptomatology were investigated by the Spearman correlation analysis. Results: The functional topological network consisted of six modules in both subject groups, namely, the default mode, frontoparietal, central, hippocampus, occipital, and subcortical modules. Inter-modular connectivity between the frontoparietal and central modules, and the frontoparietal and the hippocampus modules was decreased in the patient group compared to the healthy controls, while the connectivity within the frontoparietal modular increased in the patient group. Moreover, a positive correlation between the frontoparietal and central module functional connectivity and the NAA in the DLPFC was found in the healthy control group (r = 0.614, p = 0.001), but not in the patient group. Significant functional dysconnectivity between the frontoparietal and limbic modules was correlated with the clinical symptoms of patients. Conclusions: This study examined the links between functional connectivity and the neuronal metabolic level in the DLPFC of SCZ. Impaired functional connectivity of the frontoparietal areas in SCZ, may be partially explained by a neurochemical-functional connectivity decoupling effect. This disconnection pattern can further provide useful insights in the cognitive and perceptual impairments of schizophrenia in future studies.
Collapse
Affiliation(s)
- Qiong Xiang
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiale Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Institute for Medical Imaging Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yingchan Wang
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyi Chen
- Shanghai Hong Kou Mental Health Center, Shanghai, China
| | - Jinhong Wang
- Department of Medical Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiming Zhuo
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyun Guo
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kristina Zeljic
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Wenli Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Institute for Medical Imaging Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Sun
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Zheng Wang
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Institute for Medical Imaging Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Dengtang Liu
- First-Episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Wang X, Zhao J, Hu Y, Jiao Z, Lu Y, Ding M, Kou Y, Li B, Meng F, Zhao H, Li H, Li W, Yang Y, Lv L. Sodium nitroprusside treatment for psychotic symptoms and cognitive deficits of schizophrenia: A randomized, double-blind, placebo-controlled trial. Psychiatry Res 2018; 269:271-277. [PMID: 30170285 DOI: 10.1016/j.psychres.2018.08.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 07/07/2018] [Accepted: 08/19/2018] [Indexed: 11/24/2022]
Abstract
Schizophrenia presents with a broad range of negative, positive, and cognitive symptoms, and comprehensive treatment is still a challenge. Sodium nitroprusside (SNP) has been reported to rapidly reduce psychotic symptoms and improve cognitive functions in patients with schizophrenia, providing a new possible direction for treatment. In this study, we tested whether SNP can improve psychotic symptoms and cognitive function in schizophrenia patients with longer disease history. This was a randomized, double-blind, placebo-controlled trial conducted between May 2016 and April 2017. Forty-two schizophrenia patients aged 18-45 years were recruited from Henan Province Mental Hospital. Baseline psychiatric symptoms were measured using the Positive and Negative Syndrome Scale (PANSS), and baseline cognitive functions were measured using the Wechsler Adult Intelligence Scale. Patients received two SNP or placebo infusions (0.5 μg/kg per min for 4 h) at a one-week interval. We reassessed psychiatric symptoms and cognitive functions using the same tests shortly after the first and second infusions and 4 weeks after the second infusion. We did not find any significant effect of SNP over placebo on psychotic symptoms or cognitive functions, although SNP was relatively well tolerated with a good safety profile.
Collapse
Affiliation(s)
- Xiujuan Wang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Jingyuan Zhao
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - YunQing Hu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Zhiqiang Jiao
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yanli Lu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Minli Ding
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yanna Kou
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Benliang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Fancui Meng
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hongzu Zhao
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hong Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
35
|
Li C, Wang A, Wang C, Ramamurthy J, Zhang E, Guadagno E, Trakadis Y. Metabolomics in patients with psychosis: A systematic review. Am J Med Genet B Neuropsychiatr Genet 2018; 177:580-588. [PMID: 30076730 DOI: 10.1002/ajmg.b.32662] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 06/04/2018] [Accepted: 06/13/2018] [Indexed: 01/06/2023]
Abstract
The purpose of this article is to provide a comprehensive review of metabolomics studies for psychosis, as a means of biomarker discovery. Manuscripts were selected for review if they involved discovery of metabolites using high-throughput analysis in human subjects and were published in the last decade. The metabolites identified were searched in Human Metabolome Data Base (HMDB) for a link to psychosis. Metabolites associated with psychosis based on evidence in HMBD were then searched using PubMed to explore the availability of further evidence. Almost all of the studies which underwent full review involved patients with schizophrenia. Ten biomarkers were identified. Six of them were reported in two or more independent metabolomics studies: N-acetyl aspartate, lactate, tryptophan, kynurenine, glutamate, and creatine. Four additional metabolites were encountered in a single metabolomics study but had significant evidence (two supporting articles or more) for a link to psychosis based on PubMed: linoleic acid, D-serine, glutathione, and 3-hydroxybutyrate. The pathways affected are discussed as they may be relevant to the pathophysiology of psychosis, and specifically of schizophrenia, as well as, constitute new drug targets for treatment of related conditions. Based on the biomarkers identified, early diagnosis of schizophrenia and/or monitoring may be possible.
Collapse
Affiliation(s)
- Christopher Li
- Department of Medical Genetics, McGill University, Montreal, Quebec, Canada
| | - Aviva Wang
- Department of Medical Genetics, McGill University, Montreal, Quebec, Canada
| | - Chloe Wang
- Department of Medical Genetics, McGill University, Montreal, Quebec, Canada
| | - Janani Ramamurthy
- Department of Medical Genetics, McGill University, Montreal, Quebec, Canada
| | - Edlyn Zhang
- Department of Medical Genetics, McGill University, Montreal, Quebec, Canada
| | - Elena Guadagno
- Department of Medical Genetics, McGill University, Montreal, Quebec, Canada
| | - Yannis Trakadis
- Department of Medical Genetics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
36
|
Plitman E, Chavez S, Nakajima S, Iwata Y, Chung JK, Caravaggio F, Kim J, Alshehri Y, Chakravarty MM, De Luca V, Remington G, Gerretsen P, Graff-Guerrero A. Striatal neurometabolite levels in patients with schizophrenia undergoing long-term antipsychotic treatment: A proton magnetic resonance spectroscopy and reliability study. Psychiatry Res Neuroimaging 2018; 273:16-24. [PMID: 29414127 DOI: 10.1016/j.pscychresns.2018.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/14/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
Previous proton magnetic resonance spectroscopy (1H-MRS) studies have reported disrupted levels of various neurometabolites in patients with schizophrenia. An area of particular interest within this patient population is the striatum, which is highly implicated in the pathophysiology of schizophrenia. The present study examined neurometabolite levels in the striatum of 12 patients with schizophrenia receiving antipsychotic treatment for at least 1 year and 11 healthy controls using 3-Tesla 1H-MRS (PRESS, TE = 35 ms). Glutamate, glutamate+glutamine (Glx), myo-inositol, choline, N-acetylaspartate, and creatine levels were estimated using LCModel, and corrected for fraction of cerebrospinal fluid in the 1H-MRS voxel. Striatal neurometabolite levels were compared between groups. Multiple study visits permitted a reliability assessment for neurometabolite levels (days between paired 1H-MRS acquisitions: average = 90.33; range = 7-306). Striatal neurometabolite levels did not differ between groups. Within the whole sample, intraclass correlation coefficients for glutamate, Glx, myo-inositol, choline, and N-acetylaspartate were fair to excellent (0.576-0.847). The similarity in striatal neurometabolite levels between groups implies a marked difference from the antipsychotic-naïve first-episode state, especially in terms of glutamatergic neurometabolites, and might provide insight regarding illness progression and the influence of antipsychotic medication.
Collapse
Affiliation(s)
- Eric Plitman
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sofia Chavez
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Shinichiro Nakajima
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Neuropsychiatry, Keio University, Tokyo, Japan
| | - Yusuke Iwata
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Jun Ku Chung
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Julia Kim
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Youssef Alshehri
- Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Departments of Psychiatry and Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Vincenzo De Luca
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Gary Remington
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Dauvermann MR, Moorhead TW, Watson AR, Duff B, Romaniuk L, Hall J, Roberts N, Lee GL, Hughes ZA, Brandon NJ, Whitcher B, Blackwood DH, McIntosh AM, Lawrie SM. Verbal working memory and functional large-scale networks in schizophrenia. Psychiatry Res Neuroimaging 2017; 270:86-96. [PMID: 29111478 DOI: 10.1016/j.pscychresns.2017.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 09/16/2017] [Accepted: 10/20/2017] [Indexed: 12/17/2022]
Abstract
The aim of this study was to test whether bilinear and nonlinear effective connectivity (EC) measures of working memory fMRI data can differentiate between patients with schizophrenia (SZ) and healthy controls (HC). We applied bilinear and nonlinear Dynamic Causal Modeling (DCM) for the analysis of verbal working memory in 16 SZ and 21 HC. The connection strengths with nonlinear modulation between the dorsolateral prefrontal cortex (DLPFC) and the ventral tegmental area/substantia nigra (VTA/SN) were evaluated. We used Bayesian Model Selection at the group and family levels to compare the optimal bilinear and nonlinear models. Bayesian Model Averaging was used to assess the connection strengths with nonlinear modulation. The DCM analyses revealed that SZ and HC used different bilinear networks despite comparable behavioral performance. In addition, the connection strengths with nonlinear modulation between the DLPFC and the VTA/SN area showed differences between SZ and HC. The adoption of different functional networks in SZ and HC indicated neurobiological alterations underlying working memory performance, including different connection strengths with nonlinear modulation between the DLPFC and the VTA/SN area. These novel findings may increase our understanding of connectivity in working memory in schizophrenia.
Collapse
Affiliation(s)
- Maria R Dauvermann
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK; School of Psychology, National University of Ireland Galway, University Road, Galway, Ireland; McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA.
| | - Thomas Wj Moorhead
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Andrew R Watson
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Barbara Duff
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Liana Romaniuk
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Jeremy Hall
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK; Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Neil Roberts
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK; British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Graham L Lee
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA
| | - Zoë A Hughes
- Neuroscience Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Nicholas J Brandon
- Neuroscience Research Unit, Pfizer Inc., Cambridge, MA, USA; IMED Neuroscience Unit, AstraZeneca, Waltham, MA, USA
| | - Brandon Whitcher
- Clinical and Translational Imaging, Pfizer Inc., Cambridge, MA, USA
| | - Douglas Hr Blackwood
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Andrew M McIntosh
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Stephen M Lawrie
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| |
Collapse
|
38
|
Schizophrenia: A review of potential biomarkers. J Psychiatr Res 2017; 93:37-49. [PMID: 28578207 DOI: 10.1016/j.jpsychires.2017.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/10/2017] [Accepted: 05/22/2017] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Understanding the biological process and progression of schizophrenia is the first step to developing novel approaches and new interventions. Research on new biomarkers is extremely important when the goal is an early diagnosis (prediction) and precise theranostics. The objective of this review is to understand the research on biomarkers and their effects in schizophrenia to synthesize the role of these new advances. METHODS In this review, we search and review publications in databases in accordance with established limits and specific objectives. We look at particular endpoints such as the category of biomarkers, laboratory techniques and the results/conclusions of the selected publications. RESULTS The investigation of biomarkers and their potential as a predictor, diagnosis instrument and therapeutic orientation, requires an appropriate methodological strategy. In this review, we found different laboratory techniques to identify biomarkers and their function in schizophrenia. CONCLUSION The consolidation of this information will provide a large-scale application network of schizophrenia biomarkers.
Collapse
|
39
|
Huang ML, Khoh TT, Lu SJ, Pan F, Chen JK, Hu JB, Hu SH, Xu WJ, Zhou WH, Wei N, Qi HL, Shang DS, Xu Y. Relationships between dorsolateral prefrontal cortex metabolic change and cognitive impairment in first-episode neuroleptic-naive schizophrenia patients. Medicine (Baltimore) 2017; 96:e7228. [PMID: 28640119 PMCID: PMC5484227 DOI: 10.1097/md.0000000000007228] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/28/2017] [Accepted: 05/30/2017] [Indexed: 01/07/2023] Open
Abstract
The present study aimed to explore the possible associations between the dorsolateral prefrontal cortex (DLPFC) metabolites and the cognitive function in first-episode schizophrenia (FES).This study included 58 patients with FES (29 males and 29 females; mean age, 22.66 ± 7.64 years) recruited from the First Affiliated Hospital, College of Medicine, Zhejiang University, and 43 locally recruited healthy controls (16 males and 27 females; mean age, 23.07 ± 7.49 years). The single-voxel proton magnetic resonance spectroscopy was used to measure the levels of N-acetylaspartate (NAA); complex of glutamate, glutamine, and γ-aminobutyric acid (Glx); choline-containing compounds; and myo-inositol in the DLPFC. The ratios of metabolites to creatine (Cr) were calculated. The cognitive function was assessed by Measurement and Treatment Research to Improve Cognition in Schizophrenia Consensus Cognitive Battery (MCCB). Correlation analysis was used to assess the relationships between the DLPFC metabolites and the cognitive function.Compared with the healthy controls, the patients with FES showed significantly reduced scores in each part of the MCCB, significantly reduced NAA/Cr, and significantly increased Glx/Cr in the left DLPFC. Poor performance in verbal learning and visual learning was correlated to the reduced NAA/Cr ratio in the left DLPFC.These findings suggest that a lower NAA/Cr ratio in the left DLPFC is associated with the cognitive deficits in patients with FES, and may be an early biochemical marker for the cognitive impairment in schizophrenia.
Collapse
Affiliation(s)
- Man-Li Huang
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province
| | | | - Shao-Jia Lu
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province
| | - Fen Pan
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province
| | - Jin-Kai Chen
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province
| | - Jian-Bo Hu
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province
| | - Shao-Hua Hu
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province
| | - Wei-Juan Xu
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province
| | - Wei-Hua Zhou
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province
| | - Ning Wei
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province
| | - Hong-Li Qi
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province
| | - De-Sheng Shang
- Department of Radiology, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China
| | - Yi Xu
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, The Key Laboratory of Mental Disorder's Management of Zhejiang Province
| |
Collapse
|
40
|
Thomas EH, Bozaoglu K, Rossell SL, Gurvich C. The influence of the glutamatergic system on cognition in schizophrenia: A systematic review. Neurosci Biobehav Rev 2017; 77:369-387. [DOI: 10.1016/j.neubiorev.2017.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/24/2017] [Accepted: 04/06/2017] [Indexed: 12/22/2022]
|
41
|
Bustillo JR, Jones T, Chen H, Lemke N, Abbott C, Qualls C, Stromberg S, Canive J, Gasparovic C. Glutamatergic and Neuronal Dysfunction in Gray and White Matter: A Spectroscopic Imaging Study in a Large Schizophrenia Sample. Schizophr Bull 2017; 43:611-619. [PMID: 27550776 PMCID: PMC5473520 DOI: 10.1093/schbul/sbw122] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glutamine plus glutamate (Glx), as well as N-acetylaspartate compounds (NAAc, N-acetylaspartate plus N-acetyl-aspartyl-glutamate), a marker of neuronal viability, can be quantified with proton magnetic resonance spectroscopy (1H-MRS). We used 1H-MRS imaging to assess Glx and NAAc, as well as total-choline (glycerophospho-choline plus phospho-choline), myo-inositol and total-creatine (creatine plus phosphocreatine) from an axial supraventricular slab of gray matter (GM, medial-frontal and medial-parietal) and white matter (WM, bilateral-frontal and bilateral-parietal) voxels. Schizophrenia subjects (N = 104) and healthy controls (N = 97) with a broad age range (16 to 65) were studied. In schizophrenia, Glx was increased in GM (P < .001) and WM (P = .01), regardless of age. However, with greater age, NAAc increased in GM (P < .001) but decreased in WM (P < .001) in schizophrenia. In patients, total creatine decreased with age in WM (P < .001). Finally, overall cognitive score correlated positively with WM neurometabolites in controls but negatively in the schizophrenia group (NAAc, P < .001; and creatine [only younger], P < .001). We speculate the results support an ongoing process of increased glutamate metabolism in schizophrenia. Later in the illness, disease progression is suggested by increased cortical compaction without neuronal loss (elevated NAAc) and reduced axonal integrity (lower NAAc). Furthermore, this process is associated with fundamentally altered relationships between neurometabolite concentrations and cognitive function in schizophrenia.
Collapse
Affiliation(s)
- Juan R Bustillo
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA
| | - Thomas Jones
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Hongji Chen
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Nicholas Lemke
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Christopher Abbott
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Clifford Qualls
- Department of Mathematics & Statistics, University of New Mexico, Albuquerque, NM, USA
| | - Shannon Stromberg
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Jose Canive
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA
- Department of Psychiatry, VA Health Care System, Albuquerque, NM, USA
| | | |
Collapse
|
42
|
Mouchlianitis E, Bloomfield MAP, Law V, Beck K, Selvaraj S, Rasquinha N, Waldman A, Turkheimer FE, Egerton A, Stone J, Howes OD. Treatment-Resistant Schizophrenia Patients Show Elevated Anterior Cingulate Cortex Glutamate Compared to Treatment-Responsive. Schizophr Bull 2016; 42:744-52. [PMID: 26683625 PMCID: PMC4838083 DOI: 10.1093/schbul/sbv151] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Resistance to antipsychotic treatment is a significant clinical problem in patients with schizophrenia with approximately 1 in 3 showing limited or no response to repeated treatments with antipsychotic medication. The neurobiological basis for treatment resistance is unknown but recent evidence implicates glutamatergic function in the anterior cingulate cortex. We examined glutamate levels of chronically ill treatment-resistant patients directly compared to treatment-responsive patients. METHODS We acquired proton magnetic resonance spectroscopy (1H-MRS) at 3 Tesla from 21 treatment-resistant and 20 treatment-responsive patients. All participants had a DSM-IV diagnosis of schizophrenia. Treatment-resistant patients were classified using the modified Kane criteria. The groups were matched for age, sex, smoking status, and illness duration. RESULTS Glutamate to creatine ratio levels were higher in treatment-resistant patients (Mean [SD] = 1.57 [0.24]) than in treatment-responsive patients (Mean[SD] = 1.38 [0.23]), (T[35] = 2.34, P = .025, 2-tailed), with a large effect size of d = 0.76. A model assuming 2 populations showed a 25% improvement in the fit of the Akaike weights (0.55) over a model assuming 1 population (0.44), producing group values almost identical to actual group means. DISCUSSION Increased anterior cingulate glutamate level is associated with treatment-resistant schizophrenia. This appears to be a stable neurobiological trait of treatment-resistant patients. We discuss possible explanations for glutamatergic dysfunction playing a significant role in resistance to conventional antipsychotic treatments, which are all dopamine-2 receptor blockers. Our findings suggest that glutamatergic treatments may be particularly effective in resistant patients and that 1H-MRS glutamate indices can potentially have clinical use.
Collapse
Affiliation(s)
- Elias Mouchlianitis
- Medical Research Council Clinical Sciences Centre, Psychiatric Imaging Group, Hammersmith Hospital, London, UK; Institute of Psychiatry Psychology and Neuroscience, Department of Psychosis Studies, King's College London, UK;
| | - Michael A. P. Bloomfield
- Medical Research Council Clinical Sciences Centre, Psychiatric Imaging Group, Hammersmith Hospital, London, UK;,University College London, Division of Psychiatry, London, UK
| | - Vincent Law
- Medical Research Council Clinical Sciences Centre, Psychiatric Imaging Group, Hammersmith Hospital, London, UK
| | - Katherine Beck
- Institute of Psychiatry Psychology and Neuroscience, Department of Psychosis Studies, King’s College London, UK
| | - Sudhakar Selvaraj
- Department of Psychiatry and Behavioral Sciences, University of Texas, Houston, TX
| | | | - Adam Waldman
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Federico E. Turkheimer
- Institute of Psychiatry Psychology and Neuroscience, Department of Psychosis Studies, King’s College London, UK
| | - Alice Egerton
- Institute of Psychiatry Psychology and Neuroscience, Department of Psychosis Studies, King’s College London, UK
| | - James Stone
- Medical Research Council Clinical Sciences Centre, Psychiatric Imaging Group, Hammersmith Hospital, London, UK;,Institute of Psychiatry Psychology and Neuroscience, Department of Psychosis Studies, King’s College London, UK
| | - Oliver D. Howes
- Medical Research Council Clinical Sciences Centre, Psychiatric Imaging Group, Hammersmith Hospital, London, UK;,Institute of Psychiatry Psychology and Neuroscience, Department of Psychosis Studies, King’s College London, UK
| |
Collapse
|
43
|
Brandt AS, Unschuld PG, Pradhan S, Lim IAL, Churchill G, Harris AD, Hua J, Barker PB, Ross CA, van Zijl PCM, Edden RAE, Margolis RL. Age-related changes in anterior cingulate cortex glutamate in schizophrenia: A (1)H MRS Study at 7 Tesla. Schizophr Res 2016; 172:101-5. [PMID: 26925800 PMCID: PMC4821673 DOI: 10.1016/j.schres.2016.02.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 12/27/2022]
Abstract
The extent of age-related changes in glutamate and other neurometabolites in the anterior cingulate cortex (ACC) in individuals with schizophrenia remain unclear. Magnetic resonance spectroscopy (MRS) at 7 T, which yields precise measurements of various metabolites and can distinguish glutamate from glutamine, was used to determine levels of ACC glutamate and other metabolites in 24 individuals with schizophrenia and 24 matched controls. Multiple regression analysis revealed that ACC glutamate decreased with age in patients but not controls. No changes were detected in levels of glutamine, N-acetylaspartate, N-acetylaspartylglutamic acid, myo-inositol, GABA, glutathione, total creatine, and total choline. These results suggest that age may be an important modifier of ACC glutamate in schizophrenia.
Collapse
Affiliation(s)
- Allison S Brandt
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul G Unschuld
- Laboratory for Aging Neuroscience and Neuroimaging, Division of Psychiatry Research and Psychogeriatric Medicine, University of Zürich, Zurich, Switzerland
| | - Subechhya Pradhan
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Issel Anne L Lim
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Gregory Churchill
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ashley D Harris
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Jun Hua
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Peter B Barker
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Christopher A Ross
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Departments of Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Russell L Margolis
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
44
|
Plitman E, de la Fuente-Sandoval C, Reyes-Madrigal F, Chavez S, Gómez-Cruz G, León-Ortiz P, Graff-Guerrero A. Elevated Myo-Inositol, Choline, and Glutamate Levels in the Associative Striatum of Antipsychotic-Naive Patients With First-Episode Psychosis: A Proton Magnetic Resonance Spectroscopy Study With Implications for Glial Dysfunction. Schizophr Bull 2016; 42:415-24. [PMID: 26320195 PMCID: PMC4753594 DOI: 10.1093/schbul/sbv118] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glial disturbances are highly implicated in the pathophysiology of schizophrenia and may be linked with glutamatergic dysregulation. Myo-inositol (mI), a putative marker of glial cells, and choline (Cho), representative of membrane turnover, are both present in larger concentrations within glial cells than in neurons, and their elevation is often interpreted to reflect glial activation. Proton magnetic resonance spectroscopy ((1)H-MRS) allows for the evaluation of mI, Cho, glutamate, glutamate + glutamine (Glx), and N-acetylaspartate (NAA). A collective investigation of these measures in antipsychotic-naive patients experiencing their first nonaffective episode of psychosis (FEP) can improve the understanding of glial dysfunction and its implications in the early stages of schizophrenia. 3-Tesla (1)H-MRS (echo time = 35 ms) was performed in 60 antipsychotic-naive patients with FEP and 60 age- and sex-matched healthy controls. mI, Cho, glutamate, Glx, and NAA were estimated using LCModel and corrected for cerebrospinal fluid composition within the voxel. mI, Cho, and glutamate were elevated in the FEP group. After correction for multiple comparisons, mI positively correlated with grandiosity. The relationships between mI and glutamate, and Cho and glutamate, were more positive in the FEP group. These findings are suggestive of glial activation in the absence of neuronal loss and may thereby provide support for the presence of a neuroinflammatory process within the early stages of schizophrenia. Dysregulation of glial function might result in the disruption of glutamatergic neurotransmission, which may influence positive symptomatology in patients with FEP.
Collapse
Affiliation(s)
- Eric Plitman
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada;,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico; Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico;
| | - Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Sofia Chavez
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada;,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Gladys Gómez-Cruz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Pablo León-Ortiz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico;,Department of Education, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada;,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada;,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada;,Geriatric Mental Health Division, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada;,Campbell Institute Research Program, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Zhang B, Guan F, Chen G, Lin H, Zhang T, Feng J, Li L, Fu D. Common variants in SLC1A2 and schizophrenia: Association and cognitive function in patients with schizophrenia and healthy individuals. Schizophr Res 2015; 169:128-134. [PMID: 26459047 DOI: 10.1016/j.schres.2015.10.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 11/24/2022]
Abstract
SLC1A2 is reported to be responsible for the majority of glutamate uptake, which has a crucial role in neural development and synaptic plasticity, and a disturbance in glutamatergic transmission has been suggested to be involved in the pathophysiology of schizophrenia (SCZ) and cognition. To evaluate the relationship of common variants within SLC1A2 with SCZ and cognition in Han Chinese, 28 tag SNPs were genotyped in the discovery stage, which included 1117 cases and 2289 controls; significantly associated markers were genotyped in the replication stage with 2128 cases and 3865 controls. The rs4354668 SNP was identified to be significantly associated with SCZ in both datasets, and a similar pattern was also observed in the two-stage study on conducting imputation and haplotype association analyses. In addition, significant associations between the rs4354668 SNP and cognition were observed when processing the perseverative error of the Wisconsin Card Sorting Test in patients and controls. Our results provide supportive evidence for an effect of SLC1A2 on the etiology of SCZ, suggesting that genetic variation (rs4354668 and its haplotypes) in SLC1A2 may be involved in impaired executive function, which adds to the current body of knowledge regarding the risk of SCZ and the impairment of cognitive performance.
Collapse
Affiliation(s)
- Bao Zhang
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, China; Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fanglin Guan
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China; Institute of Human Genomics & Forensic Sciences, Xi'an, China.
| | - Gang Chen
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Huali Lin
- Xi'an Mental Health Center, Xi'an, Shannxi, China
| | - Tianxiao Zhang
- Department of Biology & Biomedical Sciences, Washington University in Saint Louis, MO, USA
| | - Jiali Feng
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lu Li
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dongke Fu
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Institute of Human Genomics & Forensic Sciences, Xi'an, China
| |
Collapse
|
46
|
Comparison of Metabolite Concentrations in the Left Dorsolateral Prefrontal Cortex, the Left Frontal White Matter, and the Left Hippocampus in Patients in Stable Schizophrenia Treated with Antipsychotics with or without Antidepressants. ¹H-NMR Spectroscopy Study. Int J Mol Sci 2015; 16:24387-402. [PMID: 26501256 PMCID: PMC4632756 DOI: 10.3390/ijms161024387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 02/01/2023] Open
Abstract
Managing affective, negative, and cognitive symptoms remains the most difficult therapeutic problem in stable phase of schizophrenia. Efforts include administration of antidepressants. Drugs effects on brain metabolic parameters can be evaluated by means of proton nuclear magnetic resonance (¹H-NMR) spectroscopy. We compared spectroscopic parameters in the left prefrontal cortex (DLPFC), the left frontal white matter (WM) and the left hippocampus and assessed the relationship between treatment and the spectroscopic parameters in both groups. We recruited 25 patients diagnosed with schizophrenia (DSM-IV-TR), with dominant negative symptoms and in stable clinical condition, who were treated with antipsychotic and antidepressive medication for minimum of three months. A group of 25 patients with schizophrenia, who were taking antipsychotic drugs but not antidepressants, was matched. We compared metabolic parameters (N-acetylaspartate (NAA), myo-inositol (mI), glutamatergic parameters (Glx), choline (Cho), and creatine (Cr)) between the two groups. All patients were also assessed with the Positive and Negative Syndrome Scale (PANSS) and the Calgary Depression Scale for Schizophrenia (CDSS). In patients receiving antidepressants we observed significantly higher NAA/Cr and NAA/Cho ratios within the DLPFC, as well as significantly higher mI/Cr within the frontal WM. Moreover, we noted significantly lower values of parameters associated with the glutamatergic transmission--Glx/Cr and Glx/Cho in the hippocampus. Doses of antipsychotic drugs in the group treated with antidepressants were also significantly lower in the patients showing similar severity of psychopathology.
Collapse
|
47
|
Effects of glutamate positive modulators on cognitive deficits in schizophrenia: a systematic review and meta-analysis of double-blind randomized controlled trials. Mol Psychiatry 2015; 20:1151-60. [PMID: 26077694 PMCID: PMC5323255 DOI: 10.1038/mp.2015.68] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/16/2015] [Accepted: 04/27/2015] [Indexed: 12/23/2022]
Abstract
Hypofunction of N-methyl-d-aspartate (NMDA) receptors has been proposed to have an important role in the cognitive impairments observed in schizophrenia. Although glutamate modulators may be effective in reversing such difficult-to-treat conditions, the results of individual studies thus far have been inconsistent. We conducted a systematic review and meta-analysis to examine whether glutamate positive modulators have beneficial effects on cognitive functions in patients with schizophrenia. A literature search was conducted to identify double-blind randomized placebo-controlled trials in schizophrenia or related disorders, using Embase, Medline, and PsycINFO (last search: February 2015). The effects of glutamate positive modulators on cognitive deficits were evaluated for overall cognitive function and eight cognitive domains by calculating standardized mean differences (SMDs) between active drugs and placebo added to antipsychotics. Seventeen studies (N=1391) were included. Glutamate positive modulators were not superior to placebo in terms of overall cognitive function (SMD=0.08, 95% confidence interval=-0.06 to 0.23) (11 studies, n=858) nor each of eight cognitive domains (SMDs=-0.03 to 0.11) (n=367-940) in this population. Subgroup analyses by diagnosis (schizophrenia only studies), concomitant antipsychotics, or pathway of drugs to enhance the glutamatergic neurotransmission (glycine allosteric site of NMDA receptors or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors) suggested no procognitive effect of glutamate positive modulators. Further, no effect was found in individual compounds on cognition. In conclusion, glutamate positive modulators may not be effective in reversing overall cognitive impairments in patients with schizophrenia as adjunctive therapies.
Collapse
|
48
|
Galderisi S, Merlotti E, Mucci A. Neurobiological background of negative symptoms. Eur Arch Psychiatry Clin Neurosci 2015; 265:543-58. [PMID: 25797499 DOI: 10.1007/s00406-015-0590-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/15/2015] [Indexed: 01/29/2023]
Abstract
Studies investigating neurobiological bases of negative symptoms of schizophrenia failed to provide consistent findings, possibly due to the heterogeneity of this psychopathological construct. We tried to review the findings published to date investigating neurobiological abnormalities after reducing the heterogeneity of the negative symptoms construct. The literature in electronic databases as well as citations and major articles are reviewed with respect to the phenomenology, pathology, genetics and neurobiology of schizophrenia. We searched PubMed with the keywords "negative symptoms," "deficit schizophrenia," "persistent negative symptoms," "neurotransmissions," "neuroimaging" and "genetic." Additional articles were identified by manually checking the reference lists of the relevant publications. Publications in English were considered, and unpublished studies, conference abstracts and poster presentations were not included. Structural and functional imaging studies addressed the issue of neurobiological background of negative symptoms from several perspectives (considering them as a unitary construct, focusing on primary and/or persistent negative symptoms and, more recently, clustering them into factors), but produced discrepant findings. The examined studies provided evidence suggesting that even primary and persistent negative symptoms include different psychopathological constructs, probably reflecting the dysfunction of different neurobiological substrates. Furthermore, they suggest that complex alterations in multiple neurotransmitter systems and genetic variants might influence the expression of negative symptoms in schizophrenia. On the whole, the reviewed findings, representing the distillation of a large body of disparate data, suggest that further deconstruction of negative symptomatology into more elementary components is needed to gain insight into underlying neurobiological mechanisms.
Collapse
Affiliation(s)
- Silvana Galderisi
- Department of Psychiatry, Second University of Naples (SUN), L.go Madonna delle Grazie, 1, 80138, Naples, Italy.
| | - Eleonora Merlotti
- Department of Psychiatry, Second University of Naples (SUN), L.go Madonna delle Grazie, 1, 80138, Naples, Italy
| | - Armida Mucci
- Department of Psychiatry, Second University of Naples (SUN), L.go Madonna delle Grazie, 1, 80138, Naples, Italy
| |
Collapse
|
49
|
de la Fuente-Sandoval C, Reyes-Madrigal F, Mao X, León-Ortiz P, Rodríguez-Mayoral O, Solís-Vivanco R, Favila R, Graff-Guerrero A, Shungu DC. Cortico-Striatal GABAergic and Glutamatergic Dysregulations in Subjects at Ultra-High Risk for Psychosis Investigated with Proton Magnetic Resonance Spectroscopy. Int J Neuropsychopharmacol 2015; 19:pyv105. [PMID: 26364273 PMCID: PMC4815472 DOI: 10.1093/ijnp/pyv105] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/06/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Dysregulations of the major inhibitory and excitatory amino neurotransmitter systems of γ-aminobutyric acid and glutamate, respectively, have been described in patients with schizophrenia. However, it is unclear whether these abnormalities are present in subjects at ultra-high risk for psychosis. METHODS Twenty-three antipsychotic naïve subjects at ultra-high risk and 24 healthy control subjects, matched for age, sex, handedness, cigarette smoking, and parental education, underwent proton magnetic resonance spectroscopy scans in the dorsal caudate bilaterally and the medial prefrontal cortex at 3T. Levels of γ-aminobutyric acid and of the combined resonance of glutamate and glutamine (Glx) were obtained using the standard J-editing technique and expressed as peak area ratios relative to the synchronously acquired unsuppressed voxel water signal. RESULTS Higher levels of γ-aminobutyric acid (P<.001) and Glx (P=.007) were found in the dorsal caudate of the subjects at ultra-high risk than in the healthy controls. In the medial prefrontal cortex, likewise, both γ-aminobutyric acid (P=.03) and Glx (P=.006) levels were higher in the ultra-high risk group than in the healthy controls. No group differences were found for any of the other metabolites (N-acetylaspartate, total choline, or total creatine) in the 2 regions of interest. CONCLUSIONS This study presents the first evidence of abnormal elevations, in subjects at ultra-high risk, of γ-aminobutyric acid and Glx in 2 brain regions that have been implicated in the pathophysiology of psychosis, warranting longitudinal studies to assess whether these neurotransmitter abnormalities can serve as noninvasive biomarkers of conversion risk to psychosis as well as of illness progression and treatment response.
Collapse
Affiliation(s)
- Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry (Drs de la Fuente-Sandoval, Reyes-Madrigal, and León-Ortiz), Neuropsychiatry Department (Dr de la Fuente-Sandoval), Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico; Department of Radiology, Weill Cornell Medical College, New York, NY (Ms Mao and Dr Shungu); Department of Education, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico (Dr León-Ortiz); Early Psychosis Intervention Department, Hospital Fray Bernardino Alvarez, Mexico City, Mexico (Dr Rodríguez-Mayoral); Palliative Care Unit, Instituto Nacional de Cancerología, Mexico City, Mexico (Dr Rodríguez-Mayoral); Laboratory of Neuropsychology, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico (Dr Solís-Vivanco); MR Advanced Applications, GE Healthcare, Mexico City, Mexico (Mr Favila); Multimodal Neuroimaging Schizophrenia Group, Research Imaging Centre, and Geriatric Mental Health Program at Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Canada (Dr Graff-Guerrero).
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dempster K, Norman R, Théberge J, Densmore M, Schaefer B, Williamson P. Glutamatergic metabolite correlations with neuropsychological tests in first episode schizophrenia. Psychiatry Res 2015; 233:180-5. [PMID: 26163385 DOI: 10.1016/j.pscychresns.2015.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 03/14/2015] [Accepted: 06/05/2015] [Indexed: 12/17/2022]
Abstract
Increased glutamatergic metabolites have been found in first episode schizophrenia. Although abnormal neuropsychological functioning has been demonstrated to be a core feature of schizophrenia, no studies have examined glutamatergic metabolites and neuropsychological function in drug-naïve patients. The present study addressed whether higher levels of glutamatergic metabolites would be associated with poorer neuropsychological performance and social functioning in first episode patients. Glutamatergic concentration estimates were obtained from the left anterior cingulate cortex (ACC) and thalamus at baseline and 10 months after treatment in 16 patients with psychosis using 4.0 T (1)H magnetic resonance spectroscopy. A neuropsychological test battery was administered at baseline and 1 year. In the ACC, baseline glutamine was associated with performance on the Paced Auditory Serial Addition Task (PASAT). Glutamate at 10 months was associated with Wisconsin Card Sorting Test (WCST) errors and Trail-Making Test-B duration. Glutamine at 10 months was positively associated with WCST errors and negatively associated with WCST categories completed. In the thalamus, baseline glutamine was negatively associated with performance on the PASAT. Thalamic glutamate at baseline showed a trend towards a negative association with social functioning at 5 years. Glutamatergic metabolites were associated with neuropsychological test deficits and impaired social functioning at 5-year follow-up in patients with first episode psychosis, findings suggestive of an association between glutamatergic alterations on neurotoxicity early in the course of schizophrenia.
Collapse
Affiliation(s)
- Kara Dempster
- Department of Psychiatry, Western University, London, Ontario, Canada.
| | - Ross Norman
- Department of Psychiatry, Western University, London, Ontario, Canada; Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Jean Théberge
- Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; St. Joseph's Health Care London, London, Ontario, Canada
| | - Maria Densmore
- Department of Psychiatry, Western University, London, Ontario, Canada; St. Joseph's Health Care London, London, Ontario, Canada
| | - Betsy Schaefer
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - Peter Williamson
- Department of Psychiatry, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; St. Joseph's Health Care London, London, Ontario, Canada
| |
Collapse
|