1
|
Ramkumar R, Edge-Partington M, Terstege DJ, Adigun K, Ren Y, Khan NS, Rouhi N, Jamani NF, Tsutsui M, Epp JR, Sargin D. Long-Term Impact of Early-Life Stress on Serotonin Connectivity. Biol Psychiatry 2024; 96:287-299. [PMID: 38316332 DOI: 10.1016/j.biopsych.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Chronic childhood stress is a prominent risk factor for developing affective disorders, yet mechanisms underlying this association remain unclear. Maintenance of optimal serotonin (5-HT) levels during early postnatal development is critical for the maturation of brain circuits. Understanding the long-lasting effects of early-life stress (ELS) on serotonin-modulated brain connectivity is crucial to develop treatments for affective disorders arising from childhood stress. METHODS Using a mouse model of chronic developmental stress, we determined the long-lasting consequences of ELS on 5-HT circuits and behavior in females and males. Using FosTRAP mice, we cross-correlated regional c-Fos density to determine brain-wide functional connectivity of the raphe nucleus. We next performed in vivo fiber photometry to establish ELS-induced deficits in 5-HT dynamics and optogenetics to stimulate 5-HT release to improve behavior. RESULTS Adult female and male mice exposed to ELS showed heightened anxiety-like behavior. ELS further enhanced susceptibility to acute stress by disrupting the brain-wide functional connectivity of the raphe nucleus and the activity of 5-HT neuron population, in conjunction with increased orbitofrontal cortex (OFC) activity and disrupted 5-HT release in medial OFC. Optogenetic stimulation of 5-HT terminals in the medial OFC elicited an anxiolytic effect in ELS mice in a sex-dependent manner. CONCLUSIONS These findings suggest a significant disruption in 5-HT-modulated brain connectivity in response to ELS, with implications for sex-dependent vulnerability. The anxiolytic effect of the raphe-medial OFC circuit stimulation has potential implications for developing targeted stimulation-based treatments for affective disorders that arise from early life adversities.
Collapse
Affiliation(s)
- Raksha Ramkumar
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Moriah Edge-Partington
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Dylan J Terstege
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kabirat Adigun
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yi Ren
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nazmus S Khan
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nahid Rouhi
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Naila F Jamani
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mio Tsutsui
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan R Epp
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derya Sargin
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Seyedmirzaei H, Bayan N, Ohadi MAD, Cattarinussi G, Sambataro F. Effects of antidepressants on brain structure and function in patients with obsessive-compulsive disorder: A review of neuroimaging studies. Psychiatry Res Neuroimaging 2024; 342:111842. [PMID: 38875766 DOI: 10.1016/j.pscychresns.2024.111842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/07/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
Obsessive-compulsive disorder (OCD) affects 2-3% of people worldwide. Although antidepressants are the standard pharmachological treatment of OCD, their effect on the brain of individuals with OCD has not yet been fully clarified. We conducted a systematic search on PubMed, Scopus, Embase, and Web of Science to explore the effects of antidepressants on neuroimaging findings in OCD. Thirteen neuroimaging investigations were included. After antidepressant treatment, structural magnetic resonance imaging studies suggested thalamic, amygdala, and pituitary volume changes in patients. In addition, the use of antidepressants was associated with alterations in diffusion tensor imaging metrics in the left striatum, the right midbrain, and the posterior thalamic radiation in the right parietal lobe. Finally, functional magnetic resonance imaging highlighted possible changes in the ventral striatum, frontal, and prefrontal cortex. The small number of included studies and sample sizes, short durations of follow-up, different antidepressants, variable regions of interest, and heterogeneous samples limit the robustness of the findings of the present review. In conclusion, our review suggests that antidepressant treatment is associated with brain changes in individuals with OCD, and these results may help to deepen our knowledge of the pathophysiology of OCD and the brain mechanisms underlying the effects of antidepressants.
Collapse
Affiliation(s)
- Homa Seyedmirzaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences, Tehran, Iran
| | - Nikoo Bayan
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Dabbagh Ohadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences, Tehran, Iran; Department of Pediatric Neurosurgery, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Giulia Cattarinussi
- Department of Neuroscience (DNS), University of Padova, Padua, Italy; Padova Neuroscience Center, University of Padova, Padua, Italy
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padua, Italy; Padova Neuroscience Center, University of Padova, Padua, Italy.
| |
Collapse
|
3
|
Feng YY, Bromberg-Martin ES, Monosov IE. Dorsal raphe neurons integrate the values of reward amount, delay, and uncertainty in multi-attribute decision-making. Cell Rep 2024; 43:114341. [PMID: 38878290 DOI: 10.1016/j.celrep.2024.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/27/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
The dorsal raphe nucleus (DRN) is implicated in psychiatric disorders that feature impaired sensitivity to reward amount, impulsivity when facing reward delays, and risk-seeking when confronting reward uncertainty. However, it has been unclear whether and how DRN neurons signal reward amount, reward delay, and reward uncertainty during multi-attribute value-based decision-making, where subjects consider these attributes to make a choice. We recorded DRN neurons as monkeys chose between offers whose attributes, namely expected reward amount, reward delay, and reward uncertainty, varied independently. Many DRN neurons signaled offer attributes, and this population tended to integrate the attributes in a manner that reflected monkeys' preferences for amount, delay, and uncertainty. After decision-making, in response to post-decision feedback, these same neurons signaled signed reward prediction errors, suggesting a broader role in tracking value across task epochs and behavioral contexts. Our data illustrate how the DRN participates in value computations, guiding theories about the role of the DRN in decision-making and psychiatric disease.
Collapse
Affiliation(s)
- Yang-Yang Feng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | | | - Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA; Washington University Pain Center, Washington University, St. Louis, MO, USA; Department of Neurosurgery, Washington University, St. Louis, MO, USA; Department of Electrical Engineering, Washington University, St. Louis, MO, USA.
| |
Collapse
|
4
|
Feng YY, Bromberg-Martin ES, Monosov IE. Dorsal raphe neurons signal integrated value during multi-attribute decision-making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553745. [PMID: 37662243 PMCID: PMC10473596 DOI: 10.1101/2023.08.17.553745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The dorsal raphe nucleus (DRN) is implicated in psychiatric disorders that feature impaired sensitivity to reward amount, impulsivity when facing reward delays, and risk-seeking when grappling with reward uncertainty. However, whether and how DRN neurons signal reward amount, reward delay, and reward uncertainty during multi-attribute value-based decision-making, where subjects consider all these attributes to make a choice, is unclear. We recorded DRN neurons as monkeys chose between offers whose attributes, namely expected reward amount, reward delay, and reward uncertainty, varied independently. Many DRN neurons signaled offer attributes. Remarkably, these neurons commonly integrated offer attributes in a manner that reflected monkeys' overall preferences for amount, delay, and uncertainty. After decision-making, in response to post-decision feedback, these same neurons signaled signed reward prediction errors, suggesting a broader role in tracking value across task epochs and behavioral contexts. Our data illustrate how DRN participates in integrated value computations, guiding theories of DRN in decision-making and psychiatric disease.
Collapse
Affiliation(s)
- Yang-Yang Feng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | | | - Ilya E. Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Washington University Pain Center, Washington University, St. Louis, Missouri, USA
- Department of Neurosurgery, Washington University, St. Louis, Missouri, USA
- Department of Electrical Engineering, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Sunderji A, Gallant HD, Hall A, Davis AD, Pokhvisneva I, Meaney MJ, Silveira PP, Sassi RB, Hall GB. Serotonin transporter (5-HTT) gene network moderates the impact of prenatal maternal adversity on orbitofrontal cortical thickness in middle childhood. PLoS One 2023; 18:e0287289. [PMID: 37319261 PMCID: PMC10270637 DOI: 10.1371/journal.pone.0287289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 06/03/2023] [Indexed: 06/17/2023] Open
Abstract
In utero, the developing brain is highly susceptible to the environment. For example, adverse maternal experiences during the prenatal period are associated with outcomes such as altered neurodevelopment and emotion dysregulation. Yet, the underlying biological mechanisms remain unclear. Here, we investigate whether the function of a network of genes co-expressed with the serotonin transporter in the amygdala moderates the impact of prenatal maternal adversity on the structure of the orbitofrontal cortex (OFC) in middle childhood and/or the degree of temperamental inhibition exhibited in toddlerhood. T1-weighted structural MRI scans were acquired from children aged 6-12 years. A cumulative maternal adversity score was used to conceptualize prenatal adversity and a co-expression based polygenic risk score (ePRS) was generated. Behavioural inhibition at 18 months was assessed using the Early Childhood Behaviour Questionnaire (ECBQ). Our results indicate that in the presence of a low functioning serotonin transporter gene network in the amygdala, higher levels of prenatal adversity are associated with greater right OFC thickness at 6-12 years old. The interaction also predicts temperamental inhibition at 18 months. Ultimately, we identified important biological processes and structural modifications that may underlie the link between early adversity and future deviations in cognitive, behavioural, and emotional development.
Collapse
Affiliation(s)
- Aleeza Sunderji
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Heather D. Gallant
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Alexander Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Andrew D. Davis
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Irina Pokhvisneva
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Michael J. Meaney
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences and Brain–Body Initiative, Agency for Science, Technology and Research (A*STAR), Singapore Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patricia P. Silveira
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Roberto B. Sassi
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Geoffrey B. Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
6
|
Arnsten AFT, Joyce MKP, Roberts AC. The Aversive Lens: Stress effects on the prefrontal-cingulate cortical pathways that regulate emotion. Neurosci Biobehav Rev 2023; 145:105000. [PMID: 36529312 PMCID: PMC9898199 DOI: 10.1016/j.neubiorev.2022.105000] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
ARNSTEN, A.F.T., M.K.P. Joyce and A.C. Roberts. The Aversive Lens: Stress effects on the prefrontal-cingulate cortical pathways that regulate emotion. NEUROSCI BIOBEHAV REV XXX-XXX, 2022. The symptoms of major-depressive-disorder include psychic pain and anhedonia, i.e. seeing the world through an "aversive lens". The neurobiology underlying this shift in worldview is emerging. Here these data are reviewed, focusing on how activation of subgenual cingulate (BA25) induces an "aversive lens", and how higher prefrontal cortical (PFC) areas (BA46/10/32) provide top-down regulation of BA25 but are weakened by excessive dopamine and norepinephrine release during stress exposure, and dendritic spine loss with chronic stress exposure. These changes may generate an attractor state, which maintains the brain under the control of BA25, requiring medication or neuromodulatory treatments to return connectivity to a more flexible state. In line with this hypothesis, effective anti-depressant treatments reduce the activity of BA25 and restore top-down regulation by higher circuits, e.g. as seen with SSRI medications, ketamine, deep brain stimulation of BA25, or rTMS to strengthen dorsolateral PFC. This research has special relevance in an era of chronic stress caused by the COVID19 pandemic, political unrest and threat of climate change.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Mary Kate P Joyce
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Angela C Roberts
- Department Physiology, Development and Neuroscience, and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
7
|
Griebsch NI, Kern J, Hansen J, Rullmann M, Luthardt J, Helfmeyer S, Dekorsy FJ, Soeder M, Hankir MK, Zientek F, Becker GA, Patt M, Meyer PM, Dietrich A, Blüher M, Ding YS, Hilbert A, Sabri O, Hesse S. Central Serotonin/Noradrenaline Transporter Availability and Treatment Success in Patients with Obesity. Brain Sci 2022; 12:brainsci12111437. [PMID: 36358364 PMCID: PMC9688491 DOI: 10.3390/brainsci12111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/30/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) as well as noradrenaline (NA) are key modulators of various fundamental brain functions including the control of appetite. While manipulations that alter brain serotoninergic signaling clearly affect body weight, studies implicating 5-HT transporters and NA transporters (5-HTT and NAT, respectively) as a main drug treatment target for human obesity have not been conclusive. The aim of this positron emission tomography (PET) study was to investigate how these central transporters are associated with changes of body weight after 6 months of dietary intervention or Roux-en-Y gastric bypass (RYGB) surgery in order to assess whether 5-HTT as well as NAT availability can predict weight loss and consequently treatment success. The study population consisted of two study cohorts using either the 5-HTT-selective radiotracer [11C]DASB to measure 5-HTT availability or the NAT-selective radiotracer [11C]MRB to assess NAT availability. Each group included non-obesity healthy participants, patients with severe obesity (body mass index, BMI, >35 kg/m2) following a conservative dietary program (diet) and patients undergoing RYGB surgery within a 6-month follow-up. Overall, changes in BMI were not associated with changes of both 5-HTT and NAT availability, while 5-HTT availability in the dorsal raphe nucleus (DRN) prior to intervention was associated with substantial BMI reduction after RYGB surgery and inversely related with modest BMI reduction after diet. Taken together, the data of our study indicate that 5-HTT and NAT are involved in the pathomechanism of obesity and have the potential to serve as predictors of treatment outcomes.
Collapse
Affiliation(s)
| | - Johanna Kern
- Department of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Jonas Hansen
- Integrated Research and Treatment Center Adiposity Diseases, 04103 Leipzig, Germany
- Department of Pneumology, Jena University Hospital, University of Jena, 07747 Jena, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Julia Luthardt
- Department of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Stephanie Helfmeyer
- Integrated Research and Treatment Center Adiposity Diseases, 04103 Leipzig, Germany
- Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Franziska J. Dekorsy
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Marvin Soeder
- Integrated Research and Treatment Center Adiposity Diseases, 04103 Leipzig, Germany
| | - Mohammed K. Hankir
- Department of Experimental Surgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Franziska Zientek
- Department of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
- Integrated Research and Treatment Center Adiposity Diseases, 04103 Leipzig, Germany
| | | | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Philipp M. Meyer
- Department of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
- Integrated Research and Treatment Center Adiposity Diseases, 04103 Leipzig, Germany
| | - Arne Dietrich
- Integrated Research and Treatment Center Adiposity Diseases, 04103 Leipzig, Germany
- Department of Abdominal, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig, 04103 Leipzig, Germany
| | - Yu-Shin Ding
- Departments of Radiology and Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Anja Hilbert
- Integrated Research and Treatment Center Adiposity Diseases, 04103 Leipzig, Germany
- Behavioral Medicine Research Unit, Department of Psychosomatic Medicine and Psychotherapy, 04103 Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
- Integrated Research and Treatment Center Adiposity Diseases, 04103 Leipzig, Germany
- Correspondence:
| |
Collapse
|
8
|
Boehm I, Hennig J, Ritschel F, Geisler D, King JA, Lesch I, Roessner V, Zepf FD, Ehrlich S. Acute tryptophan depletion balances altered resting-state functional connectivity of the salience network in female patients recovered from anorexia nervosa. J Psychiatry Neurosci 2022; 47:E351-E358. [PMID: 36195339 PMCID: PMC9533767 DOI: 10.1503/jpn.210161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/03/2022] [Accepted: 04/17/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND It has been suggested that individuals predisposed to or recovered from anorexia nervosa experience a hyperserotonergic state associated with anxiety that might be mitigated by restricted food intake, because diminished levels of the tryptophan precursor lower the central availability of serotonin (5-HT). At the neural level, the salience network is a system of functionally connected brain regions; it has been closely associated with 5-HT functioning and mental disorders (including anorexia nervosa). The aim of the present study was to investigate the effect on the salience network of a temporary dietary manipulation of 5-HT synthesis in patients with anorexia nervosa. METHODS In this double-blind crossover study, we obtained data on resting-state functional connectivity from 22 weight-recovered female patients with a history of anorexia nervosa, and 22 age-matched female healthy controls. The study procedure included acute tryptophan depletion (a dietary intervention that lowers the central 5-HT synthesis rate) and a sham condition. RESULTS We identified an interaction of group and experimental condition in resting-state functional connectivity between the salience network and the orbitofrontal cortex extending to the frontal pole (F 1,42 = 12.52; p FWE = 0.026). Further analysis revealed increased resting-state functional connectivity during acute tryptophan depletion in patients recovered from anorexia nervosa, resembling that of healthy controls during the sham condition (T 42 = -0.66; p = 0.51). LIMITATIONS The effect of acute tryptophan depletion on the central availability of 5-HT can be judged only indirectly using plasma ratios of tryptophan to large neutral amino acids. Moreover, the definition of anorexia nervosa recovery varies widely across studies, limiting comparability. CONCLUSION Taken together, our findings support the notion of 5-HT dysregulation in anorexia nervosa and indicate that reduced 5-HT synthesis and availability during acute tryptophan depletion (and possibly with food restriction) may balance hyperserotonergic functioning and the associated resting-state functional connectivity of the salience network.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Stefan Ehrlich
- From the Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany (Boehm, Hennig, Ritschel, Geisler, King, Lesch, Ehrlich); the Department of Child and Adolescent Psychiatry, Faculty of Medicine, University Hospital C. G. Carus, Technische Universität Dresden, Dresden, Germany (Roessner); the Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Friedrich Schiller University, Jena, Germany (Zepf); the Eating Disorder Treatment and Research Centre, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany (Ehrlich)
| |
Collapse
|
9
|
Shine JM, O’Callaghan C, Walpola IC, Wainstein G, Taylor N, Aru J, Huebner B, John YJ. Understanding the effects of serotonin in the brain through its role in the gastrointestinal tract. Brain 2022; 145:2967-2981. [DOI: 10.1093/brain/awac256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The neuromodulatory arousal system imbues the nervous system with the flexibility and robustness required to facilitate adaptive behaviour. While there are well-understood mechanisms linking dopamine, noradrenaline and acetylcholine to distinct behavioural states, similar conclusions have not been as readily available for serotonin. Fascinatingly, despite clear links between serotonergic function and cognitive capacities as diverse as reward processing, exploration, and the psychedelic experience, over 95% of the serotonin in the body is released in the gastrointestinal tract, where it controls digestive muscle contractions (peristalsis). Here, we argue that framing neural serotonin as a rostral extension of the gastrointestinal serotonergic system dissolves much of the mystery associated with the central serotonergic system. Specifically, we outline that central serotonin activity mimics the effects of a digestion/satiety circuit mediated by hypothalamic control over descending serotonergic nuclei in the brainstem. We review commonalities and differences between these two circuits, with a focus on the heterogeneous expression of different classes of serotonin receptors in the brain. Much in the way that serotonin-induced peristalsis facilitates the work of digestion, serotonergic influences over cognition can be reframed as performing the work of cognition. Extending this analogy, we argue that the central serotonergic system allows the brain to arbitrate between different cognitive modes as a function of serotonergic tone: low activity facilitates cognitive automaticity, whereas higher activity helps to identify flexible solutions to problems, particularly if and when the initial responses fail. This perspective sheds light on otherwise disparate capacities mediated by serotonin, and also helps to understand why there are such pervasive links between serotonergic pathology and the symptoms of psychiatric disorders.
Collapse
Affiliation(s)
| | | | - Ishan C Walpola
- Prince of Wales Hospital , Randwick, New South Wales , Australia
| | | | | | - Jaan Aru
- University of Tartu , Tartu , Estonia
| | | | | |
Collapse
|
10
|
Cools R, Arnsten AFT. Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine. Neuropsychopharmacology 2022; 47:309-328. [PMID: 34312496 PMCID: PMC8617291 DOI: 10.1038/s41386-021-01100-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
The primate prefrontal cortex (PFC) subserves our highest order cognitive operations, and yet is tremendously dependent on a precise neurochemical environment for proper functioning. Depletion of noradrenaline and dopamine, or of acetylcholine from the dorsolateral PFC (dlPFC), is as devastating as removing the cortex itself, and serotonergic influences are also critical to proper functioning of the orbital and medial PFC. Most neuromodulators have a narrow inverted U dose response, which coordinates arousal state with cognitive state, and contributes to cognitive deficits with fatigue or uncontrollable stress. Studies in monkeys have revealed the molecular signaling mechanisms that govern the generation and modulation of mental representations by the dlPFC, allowing dynamic regulation of network strength, a process that requires tight regulation to prevent toxic actions, e.g., as occurs with advanced age. Brain imaging studies in humans have observed drug and genotype influences on a range of cognitive tasks and on PFC circuit functional connectivity, e.g., showing that catecholamines stabilize representations in a baseline-dependent manner. Research in monkeys has already led to new treatments for cognitive disorders in humans, encouraging future research in this important field.
Collapse
Affiliation(s)
- Roshan Cools
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
11
|
Effects of Withdrawal from Cocaine Self-Administration on Rat Orbitofrontal Cortex Parvalbumin Neurons Expressing Cre recombinase: Sex-Dependent Changes in Neuronal Function and Unaltered Serotonin Signaling. eNeuro 2021; 8:ENEURO.0017-21.2021. [PMID: 34083381 PMCID: PMC8266218 DOI: 10.1523/eneuro.0017-21.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 11/21/2022] Open
Abstract
The orbitofrontal cortex (OFC) is a brain region involved in higher-order decision-making. Rodent studies show that cocaine self-administration (CSA) reduces OFC contribution to goal-directed behavior and behavioral strategies to avoid drug intake. This change in OFC function persists for many weeks after cocaine withdrawal, suggesting involvement in the process of addiction. The mechanisms underlying impaired OFC function by cocaine are not well-understood. However, studies implicate altered OFC serotonin (5-HT) function in disrupted cognitive processes during addiction and other psychiatric disorders. Thus, it is hypothesized that cocaine impairment of OFC function involves changes in 5-HT signaling, and previous work shows that 5-HT1A and 5-HT2A receptor-mediated effects on OFC pyramidal neurons (PyNs) are impaired weeks after cocaine withdrawal. However, 5-HT effects on other contributors to OFC circuit function have not been fully investigated, including the parvalbumin-containing, fast-spiking interneurons (OFCPV), whose function is essential to normal OFC-mediated behavior. Here, 5-HT function in naive rats and those withdrawn from CSA were evaluated using a novel rat transgenic line in which the rat parvalbumin promoter drives Cre-recombinase expression to permit identification of OFCPV cells by fluorescent reporter protein expression. We find that whereas CSA altered basal synaptic and membrane properties of the OFCPV neurons in a sex-dependent manner, the effects of 5-HT on these cells were unchanged by CSA. These data suggest that the behavioral effects of dysregulated OFC 5-HT function caused by cocaine experience are primarily mediated by changes in 5-HT signaling at PyNs, and not at OFCPV neurons.
Collapse
|
12
|
Escartín Pérez RE, Mancilla Díaz JM, Cortés Salazar F, López Alonso VE, Florán Garduño B. CB1/5-HT/GABA interactions and food intake regulation. PROGRESS IN BRAIN RESEARCH 2021; 259:177-196. [PMID: 33541676 DOI: 10.1016/bs.pbr.2021.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite historically the serotonergic, GABAergic, and cannabinoid systems have been shown to play a crucial role in the central regulation of eating behavior, interest in the study of the interactions of these neurotransmission systems has only now been investigated. Current evidence suggests that serotonin may influence normal and pathological eating behavior in significantly more complex ways than was initially thought. This knowledge has opened the possibility of exploring the potential clinical utility of new therapeutic strategies more effective and safer than the current approaches to treat pathological eating behavior. Furthermore, the nature and complexity of the interactions between these neurotransmitter systems have provided a better understanding of the pathophysiological mechanisms not only of eating behavior and eating disorders but also of some of the comorbidities associated with modulation of cortical circuits, which are involved in high order cognitive processes. Accordingly, in the present chapter, the clinical and experimental findings of the interactions between serotonin, GABA, and cannabinoids are synthesized, emphasizing the pharmacological, neurophysiological, and neuroanatomical aspects that could potentially improve the current therapeutic approaches against pathological eating behavior.
Collapse
Affiliation(s)
- Rodrigo Erick Escartín Pérez
- Facultad de Estudios Superiores Iztacala, División de Investigación y Posgrado, Laboratorio de Neurobiología de la Alimentación, Universidad Nacional Autónoma de México, México, México.
| | - Juan Manuel Mancilla Díaz
- Facultad de Estudios Superiores Iztacala, División de Investigación y Posgrado, Laboratorio de Neurobiología de la Alimentación, Universidad Nacional Autónoma de México, México, México
| | - Felipe Cortés Salazar
- Facultad de Estudios Superiores Iztacala, División de Investigación y Posgrado, Laboratorio de Neurobiología de la Alimentación, Universidad Nacional Autónoma de México, México, México
| | - Verónica Elsa López Alonso
- Facultad de Estudios Superiores Iztacala, División de Investigación y Posgrado, Laboratorio de Neurobiología de la Alimentación, Universidad Nacional Autónoma de México, México, México
| | - Benjamín Florán Garduño
- Facultad de Estudios Superiores Iztacala, División de Investigación y Posgrado, Laboratorio de Neurobiología de la Alimentación, Universidad Nacional Autónoma de México, México, México
| |
Collapse
|
13
|
Serotonin depletion impairs both Pavlovian and instrumental reversal learning in healthy humans. Mol Psychiatry 2021; 26:7200-7210. [PMID: 34429517 PMCID: PMC8873011 DOI: 10.1038/s41380-021-01240-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
Serotonin is involved in updating responses to changing environmental circumstances. Optimising behaviour to maximise reward and minimise punishment may require shifting strategies upon encountering new situations. Likewise, autonomic responses to threats are critical for survival yet must be modified as danger shifts from one source to another. Whilst numerous psychiatric disorders are characterised by behavioural and autonomic inflexibility, few studies have examined the contribution of serotonin in humans. We modelled both processes, respectively, in two independent experiments (N = 97). Experiment 1 assessed instrumental (stimulus-response-outcome) reversal learning whereby individuals learned through trial and error which action was most optimal for obtaining reward or avoiding punishment initially, and the contingencies subsequently reversed serially. Experiment 2 examined Pavlovian (stimulus-outcome) reversal learning assessed by the skin conductance response: one innately threatening stimulus predicted receipt of an uncomfortable electric shock and another did not; these contingencies swapped in a reversal phase. Upon depleting the serotonin precursor tryptophan-in a double-blind randomised placebo-controlled design-healthy volunteers showed impairments in updating both actions and autonomic responses to reflect changing contingencies. Reversal deficits in each domain, furthermore, were correlated with the extent of tryptophan depletion. Initial Pavlovian conditioning, moreover, which involved innately threatening stimuli, was potentiated by depletion. These results translate findings in experimental animals to humans and have implications for the neurochemical basis of cognitive inflexibility.
Collapse
|
14
|
Abstract
Executive function (EF) skills are neurocognitive skills that support the reflective, top-down coordination and control of other brain functions, and there is neural and behavioral evidence for a continuum from more "cool" EF skills activated in emotionally neutral contexts to more "hot" EF skills needed for the reversal of motivationally significant tendencies. Difficulties in EF are transdiagnostic indicators of atypical development. A neurodevelopmental model traces the pathway from adverse childhood experiences and stress to disruption of the development of neural systems supporting reflection and EF skills to an increased risk for general features of psychopathology. Research indicates that EF skills can be cultivated through scaffolded training and are a promising target for therapeutic and preventive intervention. Intervention efficacy can be enhanced by mitigating disruptive bottom-up influences such as stress, training both hot and cool EF skills, and adding a reflective, metacognitive component to promote far transfer of trained skills.
Collapse
Affiliation(s)
- Philip David Zelazo
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota 55455-0345, USA;
| |
Collapse
|
15
|
Zhukovsky P, Puaud M, Jupp B, Sala-Bayo J, Alsiö J, Xia J, Searle L, Morris Z, Sabir A, Giuliano C, Everitt BJ, Belin D, Robbins TW, Dalley JW. Withdrawal from escalated cocaine self-administration impairs reversal learning by disrupting the effects of negative feedback on reward exploitation: a behavioral and computational analysis. Neuropsychopharmacology 2019; 44:2163-2173. [PMID: 30952156 PMCID: PMC6895115 DOI: 10.1038/s41386-019-0381-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 11/11/2022]
Abstract
Addiction is regarded as a disorder of inflexible choice with behavior dominated by immediate positive rewards over longer-term negative outcomes. However, the psychological mechanisms underlying the effects of self-administered drugs on behavioral flexibility are not well understood. To investigate whether drug exposure causes asymmetric effects on positive and negative outcomes we used a reversal learning procedure to assess how reward contingencies are utilized to guide behavior in rats previously exposed to intravenous cocaine self-administration (SA). Twenty-four rats were screened for anxiety in an open field prior to acquisition of cocaine SA over six daily sessions with subsequent long-access cocaine SA for 7 days. Control rats (n = 24) were trained to lever-press for food under a yoked schedule of reinforcement. Higher rates of cocaine SA were predicted by increased anxiety and preceded impaired reversal learning, expressed by a decrease in lose-shift as opposed to win-stay probability. A model-free reinforcement learning algorithm revealed that rats with high, but not low cocaine escalation failed to exploit previous reward learning and were more likely to repeat the same response as the previous trial. Eight-day withdrawal from high cocaine escalation was associated, respectively, with increased and decreased dopamine receptor D2 (DRD2) and serotonin receptor 2C (HTR2C) expression in the ventral striatum compared with controls. Dopamine receptor D1 (DRD1) expression was also significantly reduced in the orbitofrontal cortex of high cocaine-escalating rats. These findings indicate that withdrawal from escalated cocaine SA disrupts how negative feedback is used to guide goal-directed behavior for natural reinforcers and that trait anxiety may be a latent variable underlying this interaction.
Collapse
Affiliation(s)
- Peter Zhukovsky
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Mickael Puaud
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Bianca Jupp
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Júlia Sala-Bayo
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Johan Alsiö
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Jing Xia
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Lydia Searle
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Zoe Morris
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Aryan Sabir
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Chiara Giuliano
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Barry J Everitt
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - David Belin
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 2QQ, UK.
| |
Collapse
|
16
|
Thiele A, Bellgrove MA. Neuromodulation of Attention. Neuron 2019; 97:769-785. [PMID: 29470969 PMCID: PMC6204752 DOI: 10.1016/j.neuron.2018.01.008] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/26/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023]
Abstract
Attention is critical to high-level cognition and attention deficits are a hallmark of neurologic and neuropsychiatric disorders. Although years of research indicates that distinct neuromodulators influence attentional control, a mechanistic account that traverses levels of analysis (cells, circuits, behavior) is missing. However, such an account is critical to guide the development of next-generation pharmacotherapies aimed at forestalling or remediating the global burden associated with disorders of attention. Here, we summarize current neuroscientific understanding of how attention affects single neurons and networks of neurons. We then review key results that have informed our understanding of how neuromodulation shapes these neuron and network properties and thereby enables the appropriate allocation of attention to relevant external or internal events. Finally, we highlight areas where we believe hypotheses can be formulated and tackled experimentally in the near future, thereby critically increasing our mechanistic understanding of how attention is implemented at the cellular and network levels.
Collapse
Affiliation(s)
- Alexander Thiele
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
| | - Mark A Bellgrove
- Monash Institute of Cognitive and Clinical Neurosciences (MICCN) and School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
17
|
Dunn GA, Nigg JT, Sullivan EL. Neuroinflammation as a risk factor for attention deficit hyperactivity disorder. Pharmacol Biochem Behav 2019; 182:22-34. [PMID: 31103523 PMCID: PMC6855401 DOI: 10.1016/j.pbb.2019.05.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 01/08/2023]
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a persistent, and impairing pediatric-onset neurodevelopmental condition. Its high prevalence, and recurrent controversy over its widespread identification and treatment, drive strong interest in its etiology and mechanisms. Emerging evidence for a role for neuroinflammation in ADHD pathophysiology is of great interest. This evidence includes 1) the above-chance comorbidity of ADHD with inflammatory and autoimmune disorders, 2) initial studies indicating an association with ADHD and increased serum cytokines, 3) preliminary evidence from genetic studies demonstrating associations between polymorphisms in genes associated with inflammatory pathways and ADHD, 4) emerging evidence that early life exposure to environmental factors may increase risk for ADHD via an inflammatory mechanism, and 5) mechanistic evidence from animal models of maternal immune activation documenting behavioral and neural outcomes consistent with ADHD. Prenatal exposure to inflammation is associated with changes in offspring brain development including reductions in cortical gray matter volume and the volume of certain cortical areas -parallel to observations associated with ADHD. Alterations in neurotransmitter systems, including the dopaminergic, serotonergic and glutamatergic systems, are observed in ADHD populations. Animal models provide strong evidence that development and function of these neurotransmitters systems are sensitive to exposure to in utero inflammation. In summary, accumulating evidence from human studies and animal models, while still incomplete, support a potential role for neuroinflammation in the pathophysiology of ADHD. Confirmation of this association and the underlying mechanisms have become valuable targets for research. If confirmed, such a picture may be important in opening new intervention routes.
Collapse
Affiliation(s)
| | - Joel T Nigg
- Oregon Health and Science University, United States of America
| | - Elinor L Sullivan
- University of Oregon, United States of America; Oregon Health and Science University, United States of America; Oregon National Primate Research Center, United States of America.
| |
Collapse
|
18
|
Liu K, Ma Q, Wang M. Comparison of Quantitative Electroencephalogram During Sleep in Depressed and Non-Depressed Patients with Parkinson's Disease. Med Sci Monit 2019; 25:1046-1052. [PMID: 30729958 PMCID: PMC6375285 DOI: 10.12659/msm.913931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Depression is one of the most important factors affecting quality of life in Parkinson's patients. Most research on Parkinson's disease with depression has focused on neuroimaging, and there have been few quantitative electroencephalogram studies. Sleep is a biomarker for depression; therefore, the aim of this study was to identify differences in quantitative electroencephalograms during sleep in depressed and non-depressed patients with Parkinson's disease. MATERIAL AND METHODS We assessed 38 Parkinson's disease patients (26 depressed patients, 12 non-depressed patients) and 20 normal subjects using the Geriatric Depressive Scale for Depressive Symptoms and quantitative electroencephalogram analysis of amplitude of different frequency bands in different sleep stages using Met-lab software and Fast Fourier Transformation. RESULTS Non-rapid eye moment 2 and the Frontal 4 Electrode amplitude in the delta and theta ranges were progressively and significantly greater in the depressed-Parkinson's disease group (p<0.05) than in the control group. In the depressed Parkinson's disease group, from the comparison of non-rapid eye moment 2 and rapid eye moment, in Frontal 4 the amplitude in the delta ranges of non-rapid eye moment 2 was greater than in the non-depressed group, and in Central 3, Central 4, Occipital 1, and Occipital 2, the amplitudes in the beta ranges of rapid eye moment were greater (p<0.05) than in the non-depressed group. CONCLUSIONS The higher amplitude in theta in frontal areas in NREM2 and the higher amplitude in beta in parietal and occipital lobe areas in REM relative to NREM2 were significantly different in depressed and non-depressed patients with Parkinson's disease.
Collapse
Affiliation(s)
- Ke Liu
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei Province, Shijiazhuang, Hebei, China (mainland)
| | - QinYing Ma
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei Province, Shijiazhuang, Hebei, China (mainland)
| | - MingWei Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei, Shijiazhuang, China (mainland)
| |
Collapse
|
19
|
Deza-Araujo YI, Neukam PT, Marxen M, Müller DK, Henle T, Smolka MN. Acute tryptophan loading decreases functional connectivity between the default mode network and emotion-related brain regions. Hum Brain Mapp 2018; 40:1844-1855. [PMID: 30585373 DOI: 10.1002/hbm.24494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
It has been shown that the functional architecture of the default mode network (DMN) can be affected by serotonergic challenges and these effects may provide insights on the neurobiological bases of depressive symptomatology. To deepen our understanding of this possible interplay, we used a double-blind, randomized, cross-over design, with a control condition and two interventions to decrease (tryptophan depletion) and increase (tryptophan loading) brain serotonin synthesis. Resting-state fMRI from 85 healthy subjects was acquired for all conditions 3 hr after the ingestion of an amino acid mixture containing different amounts of tryptophan, the dietary precursor of serotonin. The DMN was derived for each participant and session. Permutation testing was performed to detect connectivity changes within the DMN as well as between the DMN and other brain regions elicited by the interventions. We found that tryptophan loading increased tryptophan plasma levels and decreased DMN connectivity with visual cortices and several brain regions involved in emotion and affect regulation (i.e., putamen, subcallosal cortex, thalamus, and frontal cortex). Tryptophan depletion significantly reduced tryptophan levels but did not affect brain connectivity. Subjective ratings of mood, anxiety, sleepiness, and impulsive choice were not strongly affected by any intervention. Our data indicate that connectivity between the DMN and emotion-related brain regions might be modulated by changes in the serotonergic system. These results suggest that functional changes in the brain associated with different brain serotonin levels may be relevant to understand the neural bases of depressive symptoms.
Collapse
Affiliation(s)
- Yacila I Deza-Araujo
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Philipp T Neukam
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael Marxen
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Dirk K Müller
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Thomas Henle
- Institute of Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
20
|
Wright AM, Zapata A, Baumann MH, Elmore JS, Hoffman AF, Lupica CR. Enduring Loss of Serotonergic Control of Orbitofrontal Cortex Function Following Contingent and Noncontingent Cocaine Exposure. Cereb Cortex 2018; 27:5463-5476. [PMID: 27733540 DOI: 10.1093/cercor/bhw312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022] Open
Abstract
Clinical descriptions of cocaine addiction include compulsive drug seeking and maladaptive decision-making despite substantial aversive consequences. Research suggests that this may result from altered orbitofrontal cortex (OFC) function and its participation in outcome-based behavior. Clinical and animal studies also implicate serotonin in the regulation of OFC function in addiction and other neuropsychiatric disorders. Here we test the hypothesis that exposure to cocaine, through self-administration (CSA) or yoked-administration (CYA), alters the regulation of OFC function by 5-HT. Using whole-cell electrophysiology in brain slices from naïve rats we find that 5-HT1A receptors generate hyperpolarizing outward currents in layer-V OFC pyramidal neurons, and that 5-HT2A receptors increase glutamate release onto these cells. Following extended withdrawal from CSA or CYA, this 5-HT regulation of OFC activity is largely lost. In-situ hybridization of 5-HT receptor transcripts reveals that 5-HT1A receptor mRNA is unaffected and 5-HT2A receptor mRNA is significantly elevated after CSA or CYA. These results demonstrate that 5-HT control of OFC neurons is disrupted for extended periods following cocaine exposure. We hypothesize that this dysregulation of 5-HT signaling leads to enduring disruptions of OFC network activity that this is involved in impaired decision-making associated with cocaine addiction.
Collapse
Affiliation(s)
- Andrew M Wright
- Electrophysiology Research Section, Cellular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Agustin Zapata
- Electrophysiology Research Section, Cellular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael H Baumann
- Designer Drug Research Unit, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Joshua S Elmore
- Designer Drug Research Unit, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Alexander F Hoffman
- Electrophysiology Research Section, Cellular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Carl R Lupica
- Electrophysiology Research Section, Cellular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
21
|
Luo J, Feng J, Yu G, Yang P, Mack MR, Du J, Yu W, Qian A, Zhang Y, Liu S, Yin S, Xu A, Cheng J, Liu Q, O'Neil RG, Xia Y, Ma L, Carlton SM, Kim BS, Renner K, Liu Q, Hu H. Transient receptor potential vanilloid 4-expressing macrophages and keratinocytes contribute differentially to allergic and nonallergic chronic itch. J Allergy Clin Immunol 2017; 141:608-619.e7. [PMID: 28807414 DOI: 10.1016/j.jaci.2017.05.051] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/05/2017] [Accepted: 05/24/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Chronic itch is a highly debilitating symptom that underlies many medical disorders with no universally effective treatments. Although unique neuronal signaling cascades in the sensory ganglia and spinal cord have been shown to critically promote the pathogenesis of chronic itch, the role of skin-associated cells remains poorly understood. OBJECTIVE We sought to examine the cutaneous mechanisms underlying transient receptor potential vanilloid 4 (TRPV4)-mediated allergic and nonallergic chronic itch. METHODS Expression of TRPV4 in chronic itch and healthy control skin preparations was examined by using real-time RT-PCR. Trpv4eGFP mice were used to study the expression and function of TRPV4 in the skin by means of immunofluorescence staining, flow cytometry, calcium imaging, and patch-clamp recordings. Genetic and pharmacologic approaches were used to examine the role and underlying mechanisms of TRPV4 in mouse models of dry skin-associated chronic itch and spontaneous scratching associated with squaric acid dibutylester-induced allergic contact dermatitis. RESULTS TRPV4 is selectively expressed by dermal macrophages and epidermal keratinocytes in mice. Lineage-specific deletion of TRPV4 in macrophages and keratinocytes reduces allergic and nonallergic chronic itch in mice, respectively. Importantly, TRPV4 expression is significantly increased in skin biopsy specimens from patients with chronic idiopathic pruritus in comparison with skin from healthy control subjects. Moreover, TRPV4-dependent chronic itch requires 5-hydroxytryptamine (5-HT) signaling secondary to activation of distinct 5-HT receptors in mice with allergic and those with nonallergic chronic itch conditions. CONCLUSION Our study reveals previously unrecognized mechanisms by which TRPV4-expressing epithelial and immune cells in the skin critically and dynamically mediate chronic itch and unravels novel targets for therapeutics in the setting of chronic itch.
Collapse
Affiliation(s)
- Jialie Luo
- Center for the Study of Itch, Department of Anesthesiology, Washington University School of Medicine, St Louis, Mo
| | - Jing Feng
- Center for the Study of Itch, Department of Anesthesiology, Washington University School of Medicine, St Louis, Mo
| | - Guang Yu
- Center for the Study of Itch, Department of Anesthesiology, Washington University School of Medicine, St Louis, Mo; School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pu Yang
- Center for the Study of Itch, Department of Anesthesiology, Washington University School of Medicine, St Louis, Mo
| | - Madison R Mack
- Center for the Study of Itch, Department of Anesthesiology, Washington University School of Medicine, St Louis, Mo
| | - Junhui Du
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Tex
| | - Weihua Yu
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Aihua Qian
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yujin Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Tex
| | - Shenbin Liu
- Center for the Study of Itch, Department of Anesthesiology, Washington University School of Medicine, St Louis, Mo
| | - Shijin Yin
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Amy Xu
- Center for the Study of Itch, Department of Anesthesiology, Washington University School of Medicine, St Louis, Mo
| | - Jizhong Cheng
- Department of Medicine, Baylor College of Medicine, Houston, Tex
| | - Qingyun Liu
- Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Tex
| | - Roger G O'Neil
- Department of Integrative Biology and Pharmacology, the University of Texas Medical School at Houston, Houston, Tex
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Tex
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St Louis, Mo
| | - Susan M Carlton
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Tex
| | - Brian S Kim
- Center for the Study of Itch, Department of Anesthesiology, Washington University School of Medicine, St Louis, Mo; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St Louis, Mo
| | - Kenneth Renner
- Center for Brain and Behavior Research, Biology Department, University of South Dakota, Vermillion, SD
| | - Qin Liu
- Center for the Study of Itch, Department of Anesthesiology, Washington University School of Medicine, St Louis, Mo.
| | - Hongzhen Hu
- Center for the Study of Itch, Department of Anesthesiology, Washington University School of Medicine, St Louis, Mo.
| |
Collapse
|
22
|
Prefrontal mechanisms of comorbidity from a transdiagnostic and ontogenic perspective. Dev Psychopathol 2017; 28:1147-1175. [PMID: 27739395 DOI: 10.1017/s0954579416000742] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Accumulating behavioral and genetic research suggests that most forms of psychopathology share common genetic and neural vulnerabilities and are manifestations of a relatively few core underlying processes. These findings support the view that comorbidity mostly arises, not from true co-occurrence of distinct disorders, but from the behavioral expression of shared vulnerability processes across the life span. The purpose of this review is to examine the role of the prefrontal cortex (PFC) in the shared vulnerability mechanisms underlying the clinical phenomena of comorbidity from a transdiagnostic and ontogenic perspective. In adopting this perspective, we suggest complex transactions between neurobiologically rooted vulnerabilities inherent in PFC circuitry and environmental factors (e.g., parenting, peers, stress, and substance use) across development converge on three key PFC-mediated processes: executive functioning, emotion regulation, and reward processing. We propose that individual differences and impairments in these PFC-mediated functions provide intermediate mechanisms for transdiagnostic symptoms and underlie behavioral tendencies that evoke and interact with environmental risk factors to further potentiate vulnerability.
Collapse
|
23
|
Won E, Han KM, Kang J, Kim A, Yoon HK, Chang HS, Park JY, Lee MS, Greenberg T, Tae WS, Ham BJ. Vesicular monoamine transporter 1 gene polymorphism and white matter integrity in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:138-145. [PMID: 28408293 DOI: 10.1016/j.pnpbp.2017.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/28/2016] [Accepted: 02/23/2017] [Indexed: 11/19/2022]
Abstract
The genetic variant of the vesicular monoamine transporter 1 gene (VMAT1) has been suggested to be associated with monoaminergic signaling and neural circuit activity related to emotion processing. We aimed to investigate microstructural changes in white matter tracts of patients with major depressive disorder (MDD), and examined the interaction effect between VMAT1 Thr136Ile (rs1390938) polymorphism and MDD on white matter integrity. Diffusion tensor imaging (DTI) and VMAT1 Thr136Ile (rs1390938) genotyping were performed on 103 patients diagnosed with MDD and 83 healthy control participants. DTI was used to investigate microstructural changes in white matter tracts in patients compared to healthy controls. The possible interaction effect between rs1390938 and MDD on white matter integrity was also assessed. Patients with MDD exhibited lower fractional anisotropy (FA) values of the forceps major (p<0.001), forceps minor (p=0.001), inferior longitudinal fasciculus (left: p=0.001; right: p<0.001), parietal endings of the superior longitudinal fasciculus (left: p<0.001; right: p=0.002), left temporal endings of the superior longitudinal fasciculus (p=0.001), and right uncinate fasciculus (p=0.001). Significant genotype-by-diagnosis interaction effects were observed on FA values of the right uncinate fasciculus (p=0.001), with A-allele carrier patients exhibiting lower FA values compared to G-allele homozygous patients (p=0.003). No significant differences in FA values were observed between genotype subgroups among healthy controls. Our results may contribute to the evidence indicating an association between the VMAT1 gene and structural brain alterations in depression.
Collapse
Affiliation(s)
- Eunsoo Won
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - June Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ho-Kyoung Yoon
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hun Soo Chang
- Department of Medical Bioscience, Graduate School, Soonchunhyang University, Bucheon, Republic of Korea
| | - Ji-Young Park
- Department of Clinical Pharmacology and Toxicology, Anam Hospital, Korea University College of Medicine, Pittsburgh, United States
| | - Min-Soo Lee
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Tsafrir Greenberg
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| |
Collapse
|
24
|
3D reconstruction of brain section images for creating axonal projection maps in marmosets. J Neurosci Methods 2017; 286:102-113. [DOI: 10.1016/j.jneumeth.2017.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/21/2017] [Accepted: 04/28/2017] [Indexed: 01/27/2023]
|
25
|
Serotonin transporter gene promoter methylation status correlates with in vivo prefrontal 5-HTT availability and reward function in human obesity. Transl Psychiatry 2017; 7:e1167. [PMID: 28675387 PMCID: PMC5538116 DOI: 10.1038/tp.2017.133] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/08/2017] [Accepted: 05/09/2017] [Indexed: 12/26/2022] Open
Abstract
A polymorphism in the promoter region of the human serotonin transporter (5-HTT)-coding SLC6A4 gene (5-HTTLPR) has been implicated in moderating susceptibility to stress-related psychopathology and to possess regulatory functions on human in vivo 5-HTT availability. However, data on a direct relation between 5-HTTLPR and in vivo 5-HTT availability have been inconsistent. Additional factors such as epigenetic modifications of 5-HTTLPR might contribute to this association. This is of particular interest in the context of obesity, as an association with 5-HTTLPR hypermethylation has previously been reported. Here, we tested the hypothesis that methylation rates of 14 cytosine-phosphate-guanine (CpG) 5-HTTLPR loci, in vivo central 5-HTT availability as measured with [11C]DASB positron emission tomography (PET) and body mass index (BMI) are related in a group of 30 obese (age: 36±10 years, BMI>35 kg/m2) and 14 normal-weight controls (age 36±7 years, BMI<25 kg/m2). No significant association between 5-HTTLPR methylation and BMI overall was found. However, site-specific elevations in 5-HTTLPR methylation rates were significantly associated with lower 5-HTT availability in regions of the prefrontal cortex (PFC) specifically within the obese group when analyzed in isolation. This association was independent of functional 5-HTTLPR allelic variation. In addition, negative correlative data showed that CpG10-associated 5-HTT availability determines levels of reward sensitivity in obesity. Together, our findings suggest that epigenetic mechanisms rather than 5-HTTLPR alone influence in vivo 5-HTT availability, predominantly in regions having a critical role in reward processing, and this might have an impact on the progression of the obese phenotype.
Collapse
|
26
|
de Boer SF, Buwalda B, Koolhaas JM. Untangling the neurobiology of coping styles in rodents: Towards neural mechanisms underlying individual differences in disease susceptibility. Neurosci Biobehav Rev 2017; 74:401-422. [DOI: 10.1016/j.neubiorev.2016.07.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/23/2023]
|
27
|
Perseveration in a spatial-discrimination serial reversal learning task is differentially affected by MAO-A and MAO-B inhibition and associated with reduced anxiety and peripheral serotonin levels. Psychopharmacology (Berl) 2017; 234:1557-1571. [PMID: 28251298 PMCID: PMC5420387 DOI: 10.1007/s00213-017-4569-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 02/15/2017] [Indexed: 01/12/2023]
Abstract
RATIONALE Impairments in behavioral flexibility lie at the core of anxiety and obsessive-compulsive disorders. Few studies, however, have investigated the neural substrates of natural variation in behavioral flexibility and whether inflexible behavior is linked to anxiety and peripheral markers of stress and monoamine function. OBJECTIVE The objective of the study was to investigate peripheral and central markers associated with perseverative behavior on a spatial-discrimination serial reversal learning task. METHODS Rats were trained on a reversal learning task prior to blood sampling, anxiety assessment, and the behavioral evaluation of selective monoamine oxidase-A (MAO-A) and MAO-B inhibitors, which block the degradation of serotonin (5-HT), dopamine (DA), and noradrenaline (NA). RESULTS Perseveration correlated positively with 5-HT levels in blood plasma and inversely with trait anxiety, as measured on the elevated plus maze. No significant relationships were found between perseveration and the stress hormone corticosterone or the 5-HT precursor tryptophan. Reversal learning was significantly improved by systemic administration of the MAO-A inhibitor moclobemide but not by the MAO-B inhibitor lazabemide. Moclobemide also increased latencies to initiate a new trial following an incorrect response suggesting a possible role in modulating behavioral inhibition to negative feedback. MAO-A but not MAO-B inhibition resulted in pronounced increases in 5-HT and NA content in the orbitofrontal cortex and dorsal raphé nuclei and increased 5-HT and DA content in the basolateral amygdala and dorsomedial striatum. CONCLUSIONS These findings indicate that central and peripheral monoaminergic mechanisms underlie inter-individual variation in behavioral flexibility, which overlaps with trait anxiety and depends on functional MAO-A activity.
Collapse
|
28
|
Liu JP, Li J, Lu Y, Wang L, Chen G. Impulse control disorder, lysosomal malfunction and ATP13A2 insufficiency in Parkinsonism. Clin Exp Pharmacol Physiol 2016; 44:172-179. [PMID: 27997702 DOI: 10.1111/1440-1681.12714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/27/2022]
Abstract
Lysosomal transport of cargos in neurons is essential for neuronal proteostasis, transmission and functional motors and behaviours. Lysosomal malfunction including storage disorders is involved in the pathogenesis of Parkinson's disease (PD). Given the unclear molecular mechanisms of diverse defects in PD phenotypes, especially behavioural deficits, this mini review explores the cellular contexts of PD impulse control disorders and the molecular aspects of lysosomal cross-membrane transports. Focuses are paid to trace metal involvements in α-synuclein assembly in Lewy bodies, the functions and molecular interactions of ATP13A2 as ATPase transporters in lysosomal membranes for cross-membrane trafficking and lysosomal homeostasis, and our current understandings of the neural circuits in ICD. Erroneously polarized distributions of cargos such as metals and lipids on each side of lysosomal membranes triggered by gene mutations and deregulated expression of ATP13A2 may thus instigate sensing protein structural changes such as aggregations, organelle degeneration, and specific neuronal ageing and death in Parkinsonism.
Collapse
Affiliation(s)
- Jun-Ping Liu
- School of Medicine, Institute of Ageing Research, Hangzhou Normal University, Hangzhou, Zhejiang Province, China.,Department of Molecular and Translational Science, Faculty of Medicine, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia.,Department of Immunology, Faculty of Medicine, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Jianfeng Li
- School of Medicine, Institute of Ageing Research, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Yanhua Lu
- School of Medicine, Institute of Ageing Research, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Lihui Wang
- School of Medicine, Institute of Ageing Research, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Gang Chen
- School of Medicine, Institute of Ageing Research, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
29
|
Mavrogiorgou P, Enzi B, Klimm AK, Köhler E, Roser P, Norra C, Juckel G. Serotonergic modulation of orbitofrontal activity and its relevance for decision making and impulsivity. Hum Brain Mapp 2016; 38:1507-1517. [PMID: 27862593 DOI: 10.1002/hbm.23468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/25/2016] [Accepted: 11/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The orbitofrontal cortex seems to play a crucial role in reward-guided learning and decision making, especially for impulsive choice procedures including delayed reward discounting. The central serotonergic system is closely involved in the regulation of impulsivity, but how the serotonergic firing rate and release, best investigated by the loudness dependence of auditory evoked potentials (LDAEP), interact with orbitofrontal activity is still unknown. METHODS Twenty healthy volunteers (11 males, 9 females, 31.3 ± 10.6 years old) were studied in a 3T MRI scanner (Philips, Hamburg, Germany) during a delay discounting task, after their LDAEP was recorded using a 32 electrodes EEG machine (Brain Products, Munich, Germany). RESULTS Significant positive correlations were only found between the LDAEP and the medial orbitofrontal part of the superior frontal gyrus (SFG/MO) [Δ immediate reward - delayed reward] for the right (r = 0.519; P = 0.019) and left side (r = 0.478; P = 0.033). This relationship was stronger for females compared with males. Orbitofrontal activity was also related to the Barratt Impulsivity Scale. CONCLUSIONS This study revealed that low serotonergic activity as measured by a strong LDAEP was related to a high fMRI signal intensity of SFG/MO during immediate reward behavior which is related to impulsivity. Since this relationship was only found for the infralimbic medial and not for the middle or lateral part of the orbitofrontal cortex, an exclusive projection tract of the serotonergic system to this cortical region can be assumed to regulate impulsive reward-orientated decision making. Hum Brain Mapp 38:1507-1517, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paraskevi Mavrogiorgou
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Alexandrinenstr. 1, Bochum, 44791, Germany
| | - Björn Enzi
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Alexandrinenstr. 1, Bochum, 44791, Germany
| | - Ann-Kristin Klimm
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Alexandrinenstr. 1, Bochum, 44791, Germany
| | - Elke Köhler
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Alexandrinenstr. 1, Bochum, 44791, Germany
| | - Patrik Roser
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Alexandrinenstr. 1, Bochum, 44791, Germany
| | - Christine Norra
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Alexandrinenstr. 1, Bochum, 44791, Germany
| | - Georg Juckel
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Alexandrinenstr. 1, Bochum, 44791, Germany
| |
Collapse
|
30
|
Wang M, Arnsten AFT. Physiological approaches to understanding molecular actions on dorsolateral prefrontal cortical neurons underlying higher cognitive processing. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2016; 36:314-8. [PMID: 26646567 DOI: 10.13918/j.issn.2095-8137.2015.6.314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Revealing how molecular mechanisms influence higher brain circuits in primates will be essential for understanding how genetic insults lead to increased risk of cognitive disorders. Traditionally, modulatory influences on higher cortical circuits have been examined using lesion techniques, where a brain region is depleted of a particular transmitter to determine how its loss impacts cognitive function. For example, depletion of catecholamines or acetylcholine from the dorsolateral prefrontal cortex produces striking deficits in working memory abilities. More directed techniques have utilized direct infusions of drug into a specific cortical site to try to circumvent compensatory changes that are common following transmitter depletion. The effects of drug on neuronal firing patterns are often studied using iontophoresis, where a minute amount of drug is moved into the brain using a tiny electrical current, thus minimizing the fluid flow that generally disrupts neuronal recordings. All of these approaches can be compared to systemic drug administration, which remains a key arena for the development of effective therapeutics for human cognitive disorders. Most recently, viral techniques are being developed to be able to manipulate proteins for which there is no developed pharmacology, and to allow optogenetic manipulations in primate cortex. As the association cortices greatly expand in brain evolution, research in nonhuman primates is particularly important for understanding the modulatory regulation of our highest order cognitive operations.
Collapse
Affiliation(s)
- Min Wang
- Department of Neurobiology, School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Amy F T Arnsten
- Department of Neurobiology, School of Medicine, Yale University, New Haven, CT, 06510,
| |
Collapse
|
31
|
Brain perfusion alterations in depressed patients with Parkinson’s disease. Ann Nucl Med 2016; 30:731-737. [DOI: 10.1007/s12149-016-1119-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/18/2016] [Indexed: 12/31/2022]
|
32
|
Aznar S, Hervig MES. The 5-HT2A serotonin receptor in executive function: Implications for neuropsychiatric and neurodegenerative diseases. Neurosci Biobehav Rev 2016; 64:63-82. [DOI: 10.1016/j.neubiorev.2016.02.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/05/2015] [Accepted: 02/08/2016] [Indexed: 02/07/2023]
|
33
|
Choi JW, Han DH, Kang KD, Jung HY, Renshaw PF. Aerobic exercise and attention deficit hyperactivity disorder: brain research. Med Sci Sports Exerc 2016; 47:33-9. [PMID: 24824770 DOI: 10.1249/mss.0000000000000373] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE As adjuvant therapy for enhancing the effects of stimulants and thereby minimizing medication doses, we hypothesized that aerobic exercise might be an effective adjunctive therapy for enhancing the effects of methylphenidate on the clinical symptoms, cognitive function, and brain activity of adolescents with attention deficit hyperactivity disorder (ADHD). METHODS Thirty-five adolescents with ADHD were randomly assigned to one of two groups in a 1/1 ratio; methylphenidate treatment + 6-wk exercise (sports-ADHD) or methylphenidate treatment + 6-wk education (edu-ADHD). At baseline and after 6 wk of treatment, symptoms of ADHD, cognitive function, and brain activity were evaluated using the Dupaul attention deficit hyperactivity disorder rating scale--Korean version (K-ARS), the Wisconsin Card Sorting Test, and 3-T functional magnetic resonance imaging, respectively. RESULTS The K-ARS total score and perseverative errors in the sports-ADHD group decreased compared with those in the edu-ADHD group. After the 6-wk treatment period, the mean β value of the right frontal lobe in the sports-ADHD group increased compared with that in the edu-ADHD group. The mean β value of the right temporal lobe in the sports-ADHD group decreased. However, the mean β value of the right temporal lobe in the edu-ADHD group did not change. The change in activity within the right prefrontal cortex in all adolescents with ADHD was negatively correlated with the change in K-ARS scores and perseverative errors. CONCLUSIONS The current results indicate that aerobic exercise increased the effectiveness of methylphenidate on clinical symptoms, perseverative errors, and brain activity within the right frontal and temporal cortices in response to the Wisconsin card sorting test stimulation.
Collapse
Affiliation(s)
- Jae Won Choi
- 1Department of Sports, Chung-Ang University, Anseong, REPUBLIC OF KOREA; 2Department of Psychiatry, Chung-Ang University Hospital, Seoul, REPUBLIC OF KOREA; and 3Brain Institute, Department of Psychiatry, University of Utah, Salt Lake City, UT
| | | | | | | | | |
Collapse
|
34
|
Hvoslef-Eide M, Nilsson SRO, Saksida LM, Bussey TJ. Cognitive Translation Using the Rodent Touchscreen Testing Approach. Curr Top Behav Neurosci 2016; 28:423-447. [PMID: 27305921 DOI: 10.1007/7854_2015_5007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The development of novel therapeutic avenues for the treatment of cognitive deficits in psychiatric and neurodegenerative disease is of high importance, yet progress in this field has been slow. One reason for this lack of success may lie in discrepancies between how cognitive functions are assessed in experimental animals and humans. In an attempt to bridge this translational gap, the rodent touchscreen testing platform is suggested as a translational tool. Specific examples of successful cross-species translation are discussed focusing on paired associate learning (PAL), the 5-choice serial reaction time task (5-CSRTT), the rodent continuous performance task (rCPT) and reversal learning. With ongoing research assessing the neurocognitive validity of tasks, the touchscreen approach is likely to become increasingly prevalent in translational cognitive research.
Collapse
Affiliation(s)
- M Hvoslef-Eide
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
| | - S R O Nilsson
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - L M Saksida
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - T J Bussey
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
35
|
Converse AK, Aubert Y, Allers KA, Sommer B, Abbott DH. Flibanserin-Stimulated Partner Grooming Reflects Brain Metabolism Changes in Female Marmosets. J Sex Med 2015; 12:2256-66. [PMID: 26635207 PMCID: PMC5681869 DOI: 10.1111/jsm.13068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Female sexual interest and arousal disorder is personally distressing for women. To better understand the mechanism of the candidate therapeutic, flibanserin, we determined its effects on an index of brain glucose metabolism. AIM We hypothesized that chronic treatment with flibanserin would alter metabolism in brain regions associated with serotonergic function and female sexual behavior. METHODS In a crossover design, eight adult female common marmosets (Calithrix jacchus) received daily flibanserin or vehicle. After 7-12 weeks of treatment, the glucose metabolism radiotracer [(18) F]fluorodeoxyglucose (FDG) was administered to each female immediately prior to 30 minutes of interaction with her male pairmate, after which females were anesthetized and imaged by positron emission tomography. Whole-brain normalized images were analyzed with anatomically defined regions of interest. Whole-brain voxelwise mapping was used to explore treatment effects. Correlations were examined between alterations in metabolism and pairmate social grooming. MAIN OUTCOME MEASURES Changes in metabolism associated with flibanserin were determined for dorsal raphe, medial prefrontal cortex (mPFC), medial preoptic area of hypothalamus (mPOA), ventromedial nucleus of hypothalamus, and field cornu ammonis 1 (CA1) of the hippocampus. RESULTS In response to chronic flibanserin, metabolism in mPOA declined, and this reduction correlated with increases in pairmate grooming. A cluster of voxels in frontal cortico-limbic regions exhibited reduced metabolism in response to flibanserin and overlapped with a voxel cluster in which reductions in metabolism correlated with increases in pairmate grooming. Finally, reductions in mPOA metabolism correlated with increases in metabolism in a cluster of voxels in somatosensory cortex. CONCLUSIONS Taken together, these results suggest that flibanserin-induced reductions in female mPOA neural activity increase intimate affiliative behavior with male pairmates.
Collapse
Affiliation(s)
| | - Yves Aubert
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, US
- Department of Biological and Medical Psychology, University of Bergen, NO
| | - Kelly A. Allers
- Department of CNS Diseases, Boehringer Ingelheim, Biberach, DE
| | - Bernd Sommer
- Department of CNS Diseases, Boehringer Ingelheim, Biberach, DE
| | - David H. Abbott
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, US
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, US
- Endocrinology-Reproductive Physiology Training Program, University of Wisconsin-Madison, US
| |
Collapse
|
36
|
Cholinergic and serotonergic modulations differentially affect large-scale functional networks in the mouse brain. Brain Struct Funct 2015. [PMID: 26195064 DOI: 10.1007/s00429-015-1087-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Resting-state functional MRI (rsfMRI) is a widely implemented technique used to investigate large-scale topology in the human brain during health and disease. Studies in mice provide additional advantages, including the possibility to flexibly modulate the brain by pharmacological or genetic manipulations in combination with high-throughput functional connectivity (FC) investigations. Pharmacological modulations that target specific neurotransmitter systems, partly mimicking the effect of pathological events, could allow discriminating the effect of specific systems on functional network disruptions. The current study investigated the effect of cholinergic and serotonergic antagonists on large-scale brain networks in mice. The cholinergic system is involved in cognitive functions and is impaired in, e.g., Alzheimer's disease, while the serotonergic system is involved in emotional and introspective functions and is impaired in, e.g., Alzheimer's disease, depression and autism. Specific interest goes to the default-mode-network (DMN), which is studied extensively in humans and is affected in many neurological disorders. The results show that both cholinergic and serotonergic antagonists impaired the mouse DMN-like network similarly, except that cholinergic modulation additionally affected the retrosplenial cortex. This suggests that both neurotransmitter systems are involved in maintaining integrity of FC within the DMN-like network in mice. Cholinergic and serotonergic modulations also affected other functional networks, however, serotonergic modulation impaired the frontal and thalamus networks more extensively. In conclusion, this study demonstrates the utility of pharmacological rsfMRI in animal models to provide insights into the role of specific neurotransmitter systems on functional networks in neurological disorders.
Collapse
|
37
|
Chantiluke K, Barrett N, Giampietro V, Brammer M, Simmons A, Murphy DG, Rubia K. Inverse Effect of Fluoxetine on Medial Prefrontal Cortex Activation During Reward Reversal in ADHD and Autism. Cereb Cortex 2015; 25:1757-70. [PMID: 24451919 PMCID: PMC4459282 DOI: 10.1093/cercor/bht365] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) share brain function abnormalities during cognitive flexibility. Serotonin is involved in both disorders, and selective serotonin reuptake inhibitors (SSRIs) can modulate cognitive flexibility and improve behavior in both disorders. Thus, this study investigates shared and disorder-specific brain dysfunctions in these 2 disorders during reward reversal, and the acute effects of an SSRI on these. Age-matched boys with ADHD (15), ASD (18), and controls (21) were compared with functional magnetic resonance imaging (fMRI) during a reversal task. Patients were scanned twice, under either an acute dose of Fluoxetine or placebo in a double-blind, placebo-controlled randomized design. Repeated-measures analyses within patients assessed drug effects. Patients under each drug condition were compared with controls to assess normalization effects. fMRI data showed that, under placebo, ASD boys underactivated medial prefrontal cortex (mPFC), compared with control and ADHD boys. Both patient groups shared decreased precuneus activation. Under Fluoxetine, mPFC activation was up-regulated and normalized in ASD boys relative to controls, but down-regulated in ADHD boys relative to placebo, which was concomitant with worse task performance in ADHD. Fluoxetine therefore has inverse effects on mPFC activation in ASD and ADHD during reversal learning, suggesting dissociated underlying serotonin abnormalities.
Collapse
Affiliation(s)
| | | | | | | | - Andrew Simmons
- Department of Neuroimaging, Institute of Psychiatry
- NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Trust
| | - Declan G. Murphy
- Department of Forensic and Developmental Sciences, King's College London, London, UK
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry
| |
Collapse
|
38
|
Nilsson SRO, Alsiö J, Somerville EM, Clifton PG. The rat's not for turning: Dissociating the psychological components of cognitive inflexibility. Neurosci Biobehav Rev 2015; 56:1-14. [PMID: 26112128 PMCID: PMC4726702 DOI: 10.1016/j.neubiorev.2015.06.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 05/13/2015] [Accepted: 06/10/2015] [Indexed: 11/23/2022]
Abstract
Non-rewarded or irrelevant prior associations are important for flexible responding. Associations of reward and non-reward in reversal learning are neurally dissociable. Disruption of prior irrelevant or rewarded associations cause pathological deficits. Experimental paradigms of cognitive flexibility can be improved to aid translation.
Executive function is commonly assessed by assays of cognitive flexibility such as reversal learning and attentional set-shifting. Disrupted performance in these assays, apparent in many neuropsychiatric disorders, is frequently interpreted as inability to overcome prior associations with reward. However, non-rewarded or irrelevant associations may be of considerable importance in both discrimination learning and cognitive flexibility. Non-rewarded associations can have greater influence on choice behaviour than rewarded associations in discrimination learning. Pathology-related deficits in cognitive flexibility can produce selective disruptions to both the processing of irrelevant associations and associations with reward. Genetic and pharmacological animal models demonstrate that modulation of reversal learning may result from alterations in either rewarded or non-rewarded associations. Successful performance in assays of cognitive flexibility can therefore depend on a combination of rewarded, non-rewarded, and irrelevant associations derived from previous learning, accounting for some inconsistencies observed in the literature. Taking this combination into account may increase the validity of animal models and may also reveal pathology-specific differences in problem solving and executive function.
Collapse
Affiliation(s)
- Simon R O Nilsson
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK; MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK..
| | - Johan Alsiö
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK; MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK.; Department of Neuroscience, Unit of Functional Neurobiology, University of Uppsala, SE-75124 Uppsala, Sweden
| | | | - Peter G Clifton
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK
| |
Collapse
|
39
|
Markers of serotonergic function in the orbitofrontal cortex and dorsal raphé nucleus predict individual variation in spatial-discrimination serial reversal learning. Neuropsychopharmacology 2015; 40:1619-30. [PMID: 25567428 PMCID: PMC4915245 DOI: 10.1038/npp.2014.335] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 11/08/2022]
Abstract
Dysfunction of the orbitofrontal cortex (OFC) impairs the ability of individuals to flexibly adapt behavior to changing stimulus-reward (S-R) contingencies. Impaired flexibility also results from interventions that alter serotonin (5-HT) and dopamine (DA) transmission in the OFC and dorsomedial striatum (DMS). However, it is unclear whether similar mechanisms underpin naturally occurring variations in behavioral flexibility. In the present study, we used a spatial-discrimination serial reversal procedure to investigate interindividual variability in behavioral flexibility in rats. We show that flexibility on this task is improved following systemic administration of the 5-HT reuptake inhibitor citalopram and by low doses of the DA reuptake inhibitor GBR12909. Rats in the upper quintile of the distribution of perseverative responses during repeated S-R reversals showed significantly reduced levels of the 5-HT metabolite, 5-hydroxy-indoleacetic acid, in the OFC. Additionally, 5-HT2A receptor binding in the OFC of mid- and high-quintile rats was significantly reduced compared with rats in the low-quintile group. These perturbations were accompanied by an increase in the expression of monoamine oxidase-A (MAO-A) and MAO-B in the lateral OFC and by a decrease in the expression of MAO-A, MAO-B, and tryptophan hydroxylase in the dorsal raphé nucleus of highly perseverative rats. We found no evidence of significant differences in markers of DA and 5-HT function in the DMS or MAO expression in the ventral tegmental area of low- vs high-perseverative rats. These findings indicate that diminished serotonergic tone in the OFC may be an endophenotype that predisposes to behavioral inflexibility and other forms of compulsive behavior.
Collapse
|
40
|
Khani A, Kermani M, Hesam S, Haghparast A, Argandoña EG, Rainer G. Activation of cannabinoid system in anterior cingulate cortex and orbitofrontal cortex modulates cost-benefit decision making. Psychopharmacology (Berl) 2015; 232:2097-112. [PMID: 25529106 DOI: 10.1007/s00213-014-3841-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/08/2014] [Indexed: 12/28/2022]
Abstract
Despite the evidence for altered decision making in cannabis abusers, the role of the cannabinoid system in decision-making circuits has not been studied. Here, we examined the effects of cannabinoid modulation during cost-benefit decision making in the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC), key brain areas involved in decision making. We trained different groups of rats in a delay-based and an effort-based form of cost-benefit T-maze decision-making task. During test days, the rats received local injections of either vehicle or ACEA, a cannabinoid type-1 receptor (CB1R) agonist in the ACC or OFC. We measured spontaneous locomotor activity following the same treatments and characterized CB1Rs localization on different neuronal populations within these regions using immunohistochemistry. We showed that CB1R activation in the ACC impaired decision making such that rats were less willing to invest physical effort to gain high reward. Similarly, CB1R activation in the OFC induced impulsive pattern of choice such that rats preferred small immediate rewards to large delayed rewards. Control tasks ensured that the effects were specific for differential cost-benefit tasks. Furthermore, we characterized widespread colocalizations of CB1Rs on GABAergic axonal ends but few colocalizations on glutamatergic, dopaminergic, and serotonergic neuronal ends. These results provide first direct evidence that the cannabinoid system plays a critical role in regulating cost-benefit decision making in the ACC and OFC and implicate cannabinoid modulation of synaptic ends of predominantly interneurons and to a lesser degree other neuronal populations in these two frontal regions.
Collapse
Affiliation(s)
- Abbas Khani
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg, Chemin du Musee 5, CH 1700, Fribourg, Switzerland
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The orbitofrontal cortex (OFC) is important for the cognitive processes of learning and decision making. Previous recordings have revealed that OFC neurons encode predictions of reward outcomes. The OFC is interconnected with the dorsal raphe nucleus (DRN), which is a major serotonin (5-HT) center of the brain. Recent studies have provided increasing evidence that the DRN encodes reward signals. However, it remains unclear how the activity of DRN neurons affects the prospective reward coding of OFC neurons. By combining single-unit recordings from the OFC and optogenetic activation of the DRN in behaving mice, we found that DRN stimulation is sufficient to organize and modulate the anticipatory responses of OFC neurons. During pavlovian conditioning tasks for mice, odorant cues were associated with the delayed delivery of natural rewards of sucrose solution or DRN stimulation. After training, OFC neurons exhibited prospective responses to the sucrose solution. More importantly, the coupling of an odorant with delayed DRN stimulation resulted in tonic excitation or inhibition of OFC neurons during the delay period. The intensity of the prospective responses was affected by the frequency and duration of DRN stimulation. Additionally, DRN stimulation bidirectionally modulated the prospective responses to natural rewards. These experiments indicate that signals from the DRN are incorporated into the brain reward system to shape the cortical prospective coding of rewards.
Collapse
|
42
|
Ishii H, Ohara S, Tobler PN, Tsutsui KI, Iijima T. Dopaminergic and serotonergic modulation of anterior insular and orbitofrontal cortex function in risky decision making. Neurosci Res 2015; 92:53-61. [DOI: 10.1016/j.neures.2014.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/15/2014] [Accepted: 11/26/2014] [Indexed: 11/28/2022]
|
43
|
Homan P, Neumeister A, Nugent AC, Charney DS, Drevets WC, Hasler G. Serotonin versus catecholamine deficiency: behavioral and neural effects of experimental depletion in remitted depression. Transl Psychiatry 2015; 5:e532. [PMID: 25781231 PMCID: PMC4354355 DOI: 10.1038/tp.2015.25] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/12/2015] [Accepted: 01/20/2015] [Indexed: 12/22/2022] Open
Abstract
Despite immense efforts into development of new antidepressant drugs, the increases of serotoninergic and catecholaminergic neurotransmission have remained the two major pharmacodynamic principles of current drug treatments for depression. Consequently, psychopathological or biological markers that predict response to drugs that selectively increase serotonin and/or catecholamine neurotransmission hold the potential to optimize the prescriber's selection among currently available treatment options. The aim of this study was to elucidate the differential symptomatology and neurophysiology in response to reductions in serotonergic versus catecholaminergic neurotransmission in subjects at high risk of depression recurrence. Using identical neuroimaging procedures with [(18)F] fluorodeoxyglucose positron emission tomography after tryptophan depletion (TD) and catecholamine depletion (CD), subjects with remitted depression were compared with healthy controls in a double-blind, randomized, crossover design. Although TD induced significantly more depressed mood, sadness and hopelessness than CD, CD induced more inactivity, concentration difficulties, lassitude and somatic anxiety than TD. CD specifically increased glucose metabolism in the bilateral ventral striatum and decreased glucose metabolism in the bilateral orbitofrontal cortex, whereas TD specifically increased metabolism in the right prefrontal cortex and the posterior cingulate cortex. Although we found direct associations between changes in brain metabolism and induced depressive symptoms following CD, the relationship between neural activity and symptoms was less clear after TD. In conclusion, this study showed that serotonin and catecholamines have common and differential roles in the pathophysiology of depression.
Collapse
Affiliation(s)
- P Homan
- Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - A Neumeister
- Molecular Imaging Program, Department of Psychiatry and Radiology, New York University School of Medicine, New York, NY, USA
| | - A C Nugent
- Experimental Therapeutics & Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, and Department of Health and Human Services, Bethesda, MD, USA
| | - D S Charney
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - W C Drevets
- Laureate Institute for Brain Research, Tulsa, OK, USA,Janssen Pharmaceuticals Research & Development, Titusville, NJ, USA
| | - G Hasler
- Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland,Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, Bern 3000, Switzerland. E-mail:
| |
Collapse
|
44
|
Raison CL, Hale MW, Williams LE, Wager TD, Lowry CA. Somatic influences on subjective well-being and affective disorders: the convergence of thermosensory and central serotonergic systems. Front Psychol 2015; 5:1580. [PMID: 25628593 PMCID: PMC4292224 DOI: 10.3389/fpsyg.2014.01580] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 12/21/2014] [Indexed: 12/20/2022] Open
Abstract
Current theories suggest that the brain is the sole source of mental illness. However, affective disorders, and major depressive disorder (MDD) in particular, may be better conceptualized as brain-body disorders that involve peripheral systems as well. This perspective emphasizes the embodied, multifaceted physiology of well-being, and suggests that afferent signals from the body may contribute to cognitive and emotional states. In this review, we focus on evidence from preclinical and clinical studies suggesting that afferent thermosensory signals contribute to well-being and depression. Although thermoregulatory systems have traditionally been conceptualized as serving primarily homeostatic functions, increasing evidence suggests neural pathways responsible for regulating body temperature may be linked more closely with emotional states than previously recognized, an affective warmth hypothesis. Human studies indicate that increasing physical warmth activates brain circuits associated with cognitive and affective functions, promotes interpersonal warmth and prosocial behavior, and has antidepressant effects. Consistent with these effects, preclinical studies in rodents demonstrate that physical warmth activates brain serotonergic neurons implicated in antidepressant-like effects. Together, these studies suggest that (1) thermosensory pathways interact with brain systems that control affective function, (2) these pathways are dysregulated in affective disorders, and (3) activating warm thermosensory pathways promotes a sense of well-being and has therapeutic potential in the treatment of affective disorders.
Collapse
Affiliation(s)
- Charles L. Raison
- Department of Psychiatry, Norton School of Family and Consumer Sciences, College of Medicine, College of Agriculture and Life Sciences, University of ArizonaTucson, AZ, USA
| | - Matthew W. Hale
- Department of Psychology, School of Psychological Science, La Trobe UniversityBundoora, Australia
| | - Lawrence E. Williams
- Marketing Division, Leeds School of Business, University of Colorado BoulderBoulder, CO, USA
| | - Tor D. Wager
- Department of Psychology and Neuroscience, University of Colorado BoulderBoulder, CO, USA
| | - Christopher A. Lowry
- Department of Integrative Physiology, University of Colorado BoulderBoulder, CO, USA
| |
Collapse
|
45
|
The role of serotonin in reward, punishment and behavioural inhibition in humans: insights from studies with acute tryptophan depletion. Neurosci Biobehav Rev 2014; 46 Pt 3:365-78. [PMID: 25195164 DOI: 10.1016/j.neubiorev.2014.07.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/19/2014] [Accepted: 07/28/2014] [Indexed: 01/06/2023]
Abstract
Deakin and Graeff proposed that forebrain 5-hydroxytryptamine (5-HT) projections are activated by aversive events and mediate anticipatory coping responses including avoidance learning and suppression of the fight-flight escape/panic response. Other theories proposed 5-HT mediates aspects of behavioural inhibition or reward. Most of the evidence comes from rodent studies. We review 36 experimental studies in humans in which the technique of acute tryptophan depletion (ATD) was used to explicitly address the role of 5-HT in response inhibition, punishment and reward. ATD did not cause disinhibition of responding in the absence of rewards or punishments (9 studies). A major role for 5-HT in reward processing is unlikely but further tests are warranted by some ATD findings. Remarkably, ATD lessened the ability of punishments (losing points or notional money) to restrain behaviour without affecting reward processing in 7 studies. Two of these studies strongly indicate that ATD blocks 5-HT mediated aversively conditioned Pavlovian inhibition and this can explain a number of the behavioural effects of ATD.
Collapse
|
46
|
Navailles S, Guillem K, Vouillac-Mendoza C, Ahmed SH. Coordinated Recruitment of Cortical–Subcortical Circuits and Ascending Dopamine and Serotonin Neurons During Inhibitory Control of Cocaine Seeking in Rats. Cereb Cortex 2014; 25:3167-81. [DOI: 10.1093/cercor/bhu112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
47
|
Abstract
Serotonin (5-HT) and oxytocin (OXT) are two neuromodulators involved in human affect and sociality and in disorders like depression and autism. We asked whether these chemical messengers interact in the regulation of emotion-based behavior by administering OXT or placebo to 24 healthy subjects and mapping cerebral 5-HT system by using 2'-methoxyphenyl-(N-2'-pyridinyl)-p-[(18)F]fluoro-benzamidoethylpiperazine ([(18)F]MPPF), an antagonist of 5-HT1A receptors. OXT increased [(18)F]MPPF nondisplaceable binding potential (BPND) in the dorsal raphe nucleus (DRN), the core area of 5-HT synthesis, and in the amygdala/hippocampal complex, insula, and orbitofrontal cortex. Importantly, the amygdala appears central in the regulation of 5-HT by OXT: [(18)F]MPPF BPND changes in the DRN correlated with changes in right amygdala, which were in turn correlated with changes in hippocampus, insula, subgenual, and orbitofrontal cortex, a circuit implicated in the control of stress, mood, and social behaviors. OXT administration is known to inhibit amygdala activity and results in a decrease of anxiety, whereas high amygdala activity and 5-HT dysregulation have been associated with increased anxiety. The present study reveals a previously unidentified form of interaction between these two systems in the human brain, i.e., the role of OXT in the inhibitory regulation of 5-HT signaling, which could lead to novel therapeutic strategies for mental disorders.
Collapse
|
48
|
Positron emission tomography imaging of 5-hydroxytryptamine1B receptors in Parkinson's disease. Neurobiol Aging 2014; 35:867-75. [DOI: 10.1016/j.neurobiolaging.2013.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 08/12/2013] [Accepted: 08/23/2013] [Indexed: 12/24/2022]
|
49
|
Mavrogiorgou P, Nalato F, Meves S, Luksnat S, Norra C, Gold R, Juckel G, Krogias C. Transcranial sonography in obsessive-compulsive disorder. J Psychiatr Res 2013; 47:1642-8. [PMID: 23932243 DOI: 10.1016/j.jpsychires.2013.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/07/2013] [Accepted: 07/16/2013] [Indexed: 01/04/2023]
Abstract
There is convergent evidence that basal ganglia structures are involved in the pathogenesis of obsessive-compulsive disorder (OCD). It has been also assumed that OCD is caused by a central serotonergic dysfunction. Transcranial sonography (TCS) has become a reliable, sensitive and non-invasive diagnostic tool concerning the evaluation of extrapyramidal movement disorders. This study used TCS to examine the alterations in different parenchymal regions, especially concerning serotonergic brainstem raphe nuclei as well as basal ganglia in OCD. Thirty-one OCD patients were compared with 31 matched healthy controls. Echogenecities were investigated according to the examination protocol for extrapyramidal disorders using a Siemens Sonoline(®) Elegra system. Obsessive-compulsive disorder patients showed reduced echogenity of the serotonergic brainstem raphe nuclei (32.3%) compared with healthy controls (16.1%). In nine OCD-patients (31%), but only in 2 control subjects (6.2%), a hyperechogenicity of the caudate nucleus was found. Patients with OCD significantly more often reveal a hypoechogenic brainstem raphe possibly reflecting altered serotonergic neurons there and a hyperechogenicity of caudate nucleus indicating structural or molecular cell changes. Further research is warranted to examine, whether TCS is useful in order to classify OCD and its subtypes.
Collapse
Affiliation(s)
- Paraskevi Mavrogiorgou
- Dept. of Psychiatry, Ruhr University Bochum, LWL-Universitätsklinikum, Alexandrinenstr. 1, 44791 Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Nilsson SRO, Somerville EM, Clifton PG. Dissociable effects of 5-HT2C receptor antagonism and genetic inactivation on perseverance and learned non-reward in an egocentric spatial reversal task. PLoS One 2013; 8:e77762. [PMID: 24204954 PMCID: PMC3813744 DOI: 10.1371/journal.pone.0077762] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022] Open
Abstract
Cognitive flexibility can be assessed in reversal learning tests, which are sensitive to modulation of 5-HT2C receptor (5-HT2CR) function. Successful performance in these tests depends on at least two dissociable cognitive mechanisms which may separately dissipate associations of previous positive and negative valence. The first is opposed by perseverance and the second by learned non-reward. The current experiments explored the effect of reducing function of the 5-HT2CR on the cognitive mechanisms underlying egocentric reversal learning in the mouse. Experiment 1 used the 5-HT2CR antagonist SB242084 (0.5 mg/kg) in a between-groups serial design and Experiment 2 used 5-HT2CR KO mice in a repeated measures design. Animals initially learned to discriminate between two egocentric turning directions, only one of which was food rewarded (denoted CS+, CS-), in a T- or Y-maze configuration. This was followed by three conditions; (1) Full reversal, where contingencies reversed; (2) Perseverance, where the previous CS+ became CS- and the previous CS- was replaced by a novel CS+; (3) Learned non-reward, where the previous CS- became CS+ and the previous CS+ was replaced by a novel CS-. SB242084 reduced perseverance, observed as a decrease in trials and incorrect responses to criterion, but increased learned non-reward, observed as an increase in trials to criterion. In contrast, 5-HT2CR KO mice showed increased perseverance. 5-HT2CR KO mice also showed retarded egocentric discrimination learning. Neither manipulation of 5-HT2CR function affected performance in the full reversal test. These results are unlikely to be accounted for by increased novelty attraction, as SB242084 failed to affect performance in an unrewarded novelty task. In conclusion, acute 5-HT2CR antagonism and constitutive loss of the 5-HT2CR have opposing effects on perseverance in egocentric reversal learning in mice. It is likely that this difference reflects the broader impact of 5HT2CR loss on the development and maintenance of cognitive function.
Collapse
Affiliation(s)
- Simon R. O. Nilsson
- School of Psychology, University of Sussex, Brighton, East Sussex, United Kingdom
| | | | - Peter G. Clifton
- School of Psychology, University of Sussex, Brighton, East Sussex, United Kingdom
| |
Collapse
|