1
|
Abidha CA, Meeks KAC, Chilunga FP, Venema A, Schindlmayr R, Hayfron-Benjamin C, Klipstein-Grobusch K, Mockenhaupt FP, Agyemang C, Henneman P, Danquah I. A comprehensive lifestyle index and its associations with DNA methylation and type 2 diabetes among Ghanaian adults: the rodam study. Clin Epigenetics 2024; 16:143. [PMID: 39415250 PMCID: PMC11481717 DOI: 10.1186/s13148-024-01758-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND A series of modifiable lifestyle factors, such as diet quality, physical activity, alcohol intake, and smoking, may drive the rising burden of type 2 diabetes (T2DM) among sub-Saharan Africans globally. It is unclear whether epigenetic changes play a mediatory role in the associations between these lifestyle factors and T2DM. We assessed the associations between a comprehensive lifestyle index, DNA methylation and T2DM among Ghanaian adults. METHODS We used whole-blood Illumina 450 k DNA methylation data from 713 Ghanaians from the Research on Obesity and Diabetes among African Migrants (RODAM) study. We constructed a comprehensive lifestyle index based on established cut-offs for diet quality, physical activity, alcohol intake, and smoking status. In the T2DM-free discovery cohort (n = 457), linear models were fitted to identify differentially methylated positions (DMPs) and differentially methylated regions (DMRs) associated with the lifestyle index after adjustment for age, sex, body mass index (BMI), and technical covariates. Associations between the identified DMPs and the primary outcome (T2DM), as well as secondary outcomes (fasting blood glucose (FBG) and HbA1c), were determined via logistic and linear regression models, respectively. RESULTS In the present study population (mean age: 52 ± 10 years; male: 42.6%), the comprehensive lifestyle index showed a significant association with one DMP annotated to an intergenic region on chromosome 7 (false discovery rate (FDR) = 0.024). Others were annotated to ADCY7, SMARCE1, AHRR, LOXL2, and PTBP1 genes. One DMR was identified and annotated to the GFPT2 gene (familywise error rate (FWER) from bumphunter bootstrap = 0.036). None of the DMPs showed significant associations with T2DM; directions of effect were positive for the DMP in the AHRR and inverse for all the other DMPs. Higher methylation of the ADCY7 DMP was associated with higher FBG (p = 0.024); LOXL2 DMP was associated with lower FBG (p = 0.023) and HbA1c (p = 0.049); and PTBP1 DMP was associated with lower HbA1c (p = 0.002). CONCLUSIONS In this explorative epigenome-wide association study among Ghanaians, we identified one DMP and DMR associated with a comprehensive lifestyle index not previously associated with individual lifestyle factors. Based on our findings, we infer that lifestyle factors in combination, affect DNA methylation, thereby influencing the risk of T2DM among Ghanaian adults living in different contexts.
Collapse
Affiliation(s)
- C A Abidha
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, Germany.
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| | - K A C Meeks
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - F P Chilunga
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - A Venema
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - R Schindlmayr
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, Germany
| | - C Hayfron-Benjamin
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Physiology, University of Ghana Medical School, Accra, Ghana
| | - Kerstin Klipstein-Grobusch
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, Julius Global Health, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Frank P Mockenhaupt
- Institute of Tropical Medicine and International Health, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - C Agyemang
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P Henneman
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - I Danquah
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, Germany.
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.
| |
Collapse
|
2
|
Chandra Jena B, Flaherty DP, O'Brien VP, Watts VJ. Biochemical pharmacology of adenylyl cyclases in cancer. Biochem Pharmacol 2024; 228:116160. [PMID: 38522554 PMCID: PMC11410551 DOI: 10.1016/j.bcp.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Globally, despite extensive research and pharmacological advancement, cancer remains one of the most common causes of mortality. Understanding the signaling pathways involved in cancer progression is essential for the discovery of new drug targets. The adenylyl cyclase (AC) superfamily comprises glycoproteins that regulate intracellular signaling and convert ATP into cyclic AMP, an important second messenger. The present review highlights the involvement of ACs in cancer progression and suppression, broken down for each specific mammalian AC isoform. The precise mechanisms by which ACs contribute to cancer cell proliferation and invasion are not well understood and are variable among cancer types; however, AC overactivation, along with that of downstream regulators, presents a potential target for novel anticancer therapies. The expression patterns of ACs in numerous cancers are discussed. In addition, we highlight inhibitors of AC-related signaling that are currently under investigation, with a focus on possible anti-cancer strategies. Recent discoveries with small molecules regarding more direct modulation AC activity are also discussed in detail. A more comprehensive understanding of different components in AC-related signaling could potentially lead to the development of novel therapeutic strategies for personalized oncology and might enhance the efficacy of chemoimmunotherapy in the treatment of various cancers.
Collapse
Affiliation(s)
- Bikash Chandra Jena
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Valerie P O'Brien
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Val J Watts
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
3
|
Bertotto LB, Lampson-Stixrud D, Sinha A, Rohani NK, Myer I, Zorrilla EP. Effects of the Phosphodiesterase 10A Inhibitor MR1916 on Alcohol Self-Administration and Striatal Gene Expression in Post-Chronic Intermittent Ethanol-Exposed Rats. Cells 2024; 13:321. [PMID: 38391934 PMCID: PMC10886814 DOI: 10.3390/cells13040321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Alcohol use disorder (AUD) requires new neurobiological targets. Problematic drinking involves underactive indirect pathway medium spiny neurons (iMSNs) that subserve adaptive behavioral selection vs. overactive direct pathway MSNs (dMSNs) that promote drinking, with a shift from ventromedial to dorsolateral striatal (VMS, DLS) control of EtOH-related behavior. We hypothesized that inhibiting phosphodiesterase 10A (PDE10A), enriched in striatal MSNs, would reduce EtOH self-administration in rats with a history of chronic intermittent ethanol exposure. To test this, Wistar rats (n = 10/sex) with a history of chronic intermittent EtOH (CIE) vapor exposure received MR1916 (i.p., 0, 0.05, 0.1, 0.2, and 0.4 µmol/kg), a PDE10A inhibitor, before operant EtOH self-administration sessions. We determined whether MR1916 altered the expression of MSN markers (Pde10a, Drd1, Drd2, Penk, and Tac1) and immediate-early genes (IEG) (Fos, Fosb, ΔFosb, and Egr1) in EtOH-naïve (n = 5-6/grp) and post-CIE (n = 6-8/grp) rats. MR1916 reduced the EtOH self-administration of high-drinking, post-CIE males, but increased it at a low, but not higher, doses, in females and low-drinking males. MR1916 increased Egr1, Fos, and FosB in the DLS, modulated by sex and alcohol history. MR1916 elicited dMSN vs. iMSN markers differently in ethanol-naïve vs. post-CIE rats. High-drinking, post-CIE males showed higher DLS Drd1 and VMS IEG expression. Our results implicate a role and potential striatal bases of PDE10A inhibitors to influence post-dependent drinking.
Collapse
Affiliation(s)
| | | | | | | | | | - Eric P. Zorrilla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.B.B.); (D.L.-S.); (A.S.); (N.K.R.); (I.M.)
| |
Collapse
|
4
|
Tabakoff B, Hoffman PL. The role of the type 7 adenylyl cyclase isoform in alcohol use disorder and depression. Front Pharmacol 2022; 13:1012013. [PMID: 36386206 PMCID: PMC9649618 DOI: 10.3389/fphar.2022.1012013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/07/2022] [Indexed: 10/28/2023] Open
Abstract
The translation of extracellular signals to intracellular responses involves a number of signal transduction molecules. A major component of this signal transducing function is adenylyl cyclase, which produces the intracellular "second messenger," cyclic AMP. What was initially considered as a single enzyme for cyclic AMP generation is now known to be a family of nine membrane-bound enzymes, and one cytosolic enzyme. Each member of the adenylyl cyclase family is distinguished by factors that modulate its catalytic activity, by the cell, tissue, and organ distribution of the family members, and by the physiological/behavioral functions that are subserved by particular family members. This review focuses on the Type 7 adenylyl cyclase (AC7) in terms of its catalytic characteristics and its relationship to alcohol use disorder (AUD, alcoholism), and major depressive disorder (MDD). AC7 may be part of the inherited system predisposing an individual to AUD and/or MDD in a sex-specific manner, or this enzyme may change in its expression or activity in response to the progression of disease or in response to treatment. The areas of brain expressing AC7 are related to responses to stress and evidence is available that CRF1 receptors are coupled to AC7 in the amygdala and pituitary. Interestingly, AC7 is the major form of the cyclase contained in bone marrow-derived cells of the immune system and platelets, and in microglia. AC7 is thus, poised to play an integral role in both peripheral and brain immune function thought to be etiologically involved in both AUD and MDD. Both platelet and lymphocyte adenylyl cyclase activity have been proposed as markers for AUD and MDD, as well as prognostic markers of positive response to medication for MDD. We finish with consideration of paths to medication development that may selectively modulate AC7 activity as treatments for MDD and AUD.
Collapse
Affiliation(s)
- Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Lohocla Research Corporation, Aurora, CO, United States
| | - Paula L. Hoffman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Lohocla Research Corporation, Aurora, CO, United States
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
5
|
Ostrom KF, LaVigne JE, Brust TF, Seifert R, Dessauer CW, Watts VJ, Ostrom RS. Physiological roles of mammalian transmembrane adenylyl cyclase isoforms. Physiol Rev 2022; 102:815-857. [PMID: 34698552 PMCID: PMC8759965 DOI: 10.1152/physrev.00013.2021] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. Mammals possess nine isoforms of transmembrane ACs, dubbed AC1-9, that serve as major effector enzymes of G protein-coupled receptors (GPCRs). The transmembrane ACs display varying expression patterns across tissues, giving the potential for them to have a wide array of physiological roles. Cells express multiple AC isoforms, implying that ACs have redundant functions. Furthermore, all transmembrane ACs are activated by Gαs, so it was long assumed that all ACs are activated by Gαs-coupled GPCRs. AC isoforms partition to different microdomains of the plasma membrane and form prearranged signaling complexes with specific GPCRs that contribute to cAMP signaling compartments. This compartmentation allows for a diversity of cellular and physiological responses by enabling unique signaling events to be triggered by different pools of cAMP. Isoform-specific pharmacological activators or inhibitors are lacking for most ACs, making knockdown and overexpression the primary tools for examining the physiological roles of a given isoform. Much progress has been made in understanding the physiological effects mediated through individual transmembrane ACs. GPCR-AC-cAMP signaling pathways play significant roles in regulating functions of every cell and tissue, so understanding each AC isoform's role holds potential for uncovering new approaches for treating a vast array of pathophysiological conditions.
Collapse
Affiliation(s)
| | - Justin E LaVigne
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| |
Collapse
|
6
|
Price T, Brust TF. Adenylyl cyclase 7 and neuropsychiatric disorders: A new target for depression? Pharmacol Res 2019; 143:106-112. [PMID: 30904753 DOI: 10.1016/j.phrs.2019.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022]
Abstract
Adenylyl cyclases (ACs) are enzymes that catalyze the production of cyclic adenosine monophosphate (cAMP) from adenosine triphosphate (ATP). Humans express nine isoforms of membranous ACs and a soluble AC. Studies with genetic knockout or overexpression rodent models have indicated that AC isoforms may be targeted to achieve specific therapeutic outcomes. AC1, for instance, has been suggested and pursued as a target for relieving pain. Notably, previous studies examining genetically modified mice as well as human genetic polymorphisms have suggested a link between AC7 activity and depressive disorders. In the present review we present an overview on AC function and discuss the most recent developments to target AC isoforms for drug therapies. We next focus on discussing the available literature on the molecular and animal pharmacology of AC7 highlighting the available studies on the role of AC7 in depressive disorders. In addition, we discuss other possible physiological functions of AC7 relating to ethanol effects and the immune system and conclude with considerations about pharmacological modulation of AC7.
Collapse
Affiliation(s)
- Tatum Price
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL 33416, United States
| | - Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL 33416, United States..
| |
Collapse
|
7
|
Spence JP, Reiter JL, Qiu B, Gu H, Garcia DK, Zhang L, Graves T, Williams KE, Bice PJ, Zou Y, Lai Z, Yong W, Liang T. Estrogen-Dependent Upregulation of Adcyap1r1 Expression in Nucleus Accumbens Is Associated With Genetic Predisposition of Sex-Specific QTL for Alcohol Consumption on Rat Chromosome 4. Front Genet 2018; 9:513. [PMID: 30564267 PMCID: PMC6288178 DOI: 10.3389/fgene.2018.00513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
Humans show sex differences related to alcohol use disorders (AUD). Animal model research has the potential to provide important insight into how sex differences affect alcohol consumption, particularly because female animals frequently drink more than males. In previous work, inbred strains of the selectively bred alcohol-preferring (P) and non-preferring (NP) rat lines revealed a highly significant quantitative trait locus (QTL) on rat chromosome 4, with a logarithm of the odds score of 9.2 for alcohol consumption. Recently, interval-specific congenic strains (ISCS) were developed by backcrossing the congenic P.NP line to inbred P (iP) rats to further refine the chromosome 4 QTL region. Two ISCS sub-strains, ISCS-A and ISCS-B, were obtained with a narrowed QTL, where the smallest region of overlap consisted of 8.9 Mb in ISCS-B. Interestingly, we found that females from both ISCS lines consumed significantly less alcohol than female iP controls (p < 0.05), while no differences in alcohol consumption were observed between male ISCS and iP controls. RNA-sequencing was performed on the nucleus accumbens of alcohol-naïve female ISCS-B and iP rats, which revealed differentially expressed genes (DEG) with greater than 2-fold change and that were functionally relevant to behavior. These DEGs included down-regulation of Oxt, Asb4, Gabre, Gabrq, Chat, Slc5a7, Slc18a8, Slc10a4, and Ngfr, and up-regulation of Ttr, Msln, Mpzl2, Wnt6, Slc17a7, Aldh1a2, and Gstm2. Pathway analysis identified significant alterations in gene networks controlling nervous system development and function, as well as cell signaling, GABA and serotonin receptor signaling and G-protein coupled receptor signaling. In addition, β-estradiol was identified as the most significant upstream regulator. The expression levels of estrogen-responsive genes that mapped to the QTL interval and have been previously associated with alcohol consumption were measured using RT-qPCR. We found that expression of the Adcyap1r1 gene, encoding the pituitary adenylate cyclase-activating polypeptide type 1 (PAC1) receptor, was upregulated in female ISCS-B compared to female iP controls, while no differences were exhibited in males. In addition, sequence variants in the Adcyap1r1 promoter region showed a differential response to estrogen stimulation in vitro. These findings demonstrate that rat chromosome 4 QTL contains genetic variants that respond to estrogen and are associated with female alcohol consumption.
Collapse
Affiliation(s)
- John Paul Spence
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jill L Reiter
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bin Qiu
- Comparative Medical Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hao Gu
- Comparative Medical Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dawn K Garcia
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, United States
| | - Lingling Zhang
- Comparative Medical Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tamara Graves
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kent E Williams
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Paula J Bice
- Department of Psychology, Southeast Missouri State University, Cape Girardeau, MO, United States
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, United States
| | - Zhao Lai
- Department of Psychology, Southeast Missouri State University, Cape Girardeau, MO, United States
| | - Weidong Yong
- Comparative Medical Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tiebing Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
8
|
Dessauer CW, Watts VJ, Ostrom RS, Conti M, Dove S, Seifert R. International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Pharmacol Rev 2017; 69:93-139. [PMID: 28255005 PMCID: PMC5394921 DOI: 10.1124/pr.116.013078] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adenylyl cyclases (ACs) generate the second messenger cAMP from ATP. Mammalian cells express nine transmembrane AC (mAC) isoforms (AC1-9) and a soluble AC (sAC, also referred to as AC10). This review will largely focus on mACs. mACs are activated by the G-protein Gαs and regulated by multiple mechanisms. mACs are differentially expressed in tissues and regulate numerous and diverse cell functions. mACs localize in distinct membrane compartments and form signaling complexes. sAC is activated by bicarbonate with physiologic roles first described in testis. Crystal structures of the catalytic core of a hybrid mAC and sAC are available. These structures provide detailed insights into the catalytic mechanism and constitute the basis for the development of isoform-selective activators and inhibitors. Although potent competitive and noncompetitive mAC inhibitors are available, it is challenging to obtain compounds with high isoform selectivity due to the conservation of the catalytic core. Accordingly, caution must be exerted with the interpretation of intact-cell studies. The development of isoform-selective activators, the plant diterpene forskolin being the starting compound, has been equally challenging. There is no known endogenous ligand for the forskolin binding site. Recently, development of selective sAC inhibitors was reported. An emerging field is the association of AC gene polymorphisms with human diseases. For example, mutations in the AC5 gene (ADCY5) cause hyperkinetic extrapyramidal motor disorders. Overall, in contrast to the guanylyl cyclase field, our understanding of the (patho)physiology of AC isoforms and the development of clinically useful drugs targeting ACs is still in its infancy.
Collapse
Affiliation(s)
- Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Val J Watts
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Rennolds S Ostrom
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Marco Conti
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Stefan Dove
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Roland Seifert
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| |
Collapse
|
9
|
Lai KP, Li JW, Tse ACK, Wang SY, Chan TF, Wu RSS. Differential responses of female and male brains to hypoxia in the marine medaka Oryzias melastigma. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 172:36-43. [PMID: 26765084 DOI: 10.1016/j.aquatox.2015.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 05/26/2023]
Abstract
Hypoxia, an endocrine disruptor, affects synthesis and balance of sex steroid hormones, leading to reproductive impairment in both female and male fish. Cumulating reports demonstrated the alternation of hypothalamus-pituitary-gonad axis (HPG-axis) by hypoxia. However, the detail mechanism underlying how hypoxia may alter other brain functions remains largely unknown. In this report, we used marine medaka as a model and conducted a high-throughput RNA sequencing followed by bioinformatics analysis on hypoxia-exposed brain tissues, aiming to determine the change of transcriptional signature and to unravel the pathways that are induced by hypoxia. We found that hypoxia lead to dysregulation of brain functions (including synaptic transmission, axon guidance, potassium ion transport, neuron differentiation, and development of brain and pituitary gland), and also signaling pathways (e.g., gap junction, calcium signaling pathway, and GnRH signaling pathway). Our results further demonstrate gender-specific responses to hypoxia in female and male fish's brains, which provides novel insights into the mechanism underlying the hypoxia induced sex specific brain functions impairments.
Collapse
Affiliation(s)
- Keng-Po Lai
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory in Marine Pollution, Hong Kong SAR, China.
| | - Jing-Woei Li
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Anna Chung-Kwan Tse
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory in Marine Pollution, Hong Kong SAR, China.
| | - Simon Yuan Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory in Marine Pollution, Hong Kong SAR, China.
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Rudolf Shiu-Sun Wu
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory in Marine Pollution, Hong Kong SAR, China.
| |
Collapse
|
10
|
Warrington NM, Sun T, Rubin JB. Targeting brain tumor cAMP: the case for sex-specific therapeutics. Front Pharmacol 2015; 6:153. [PMID: 26283963 PMCID: PMC4516881 DOI: 10.3389/fphar.2015.00153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/10/2015] [Indexed: 12/20/2022] Open
Abstract
A relationship between cyclic adenosine 3′, 5′-monophosphate (cAMP) levels and brain tumor biology has been evident for nearly as long as cAMP and its synthetase, adenylate cyclase (ADCY) have been known. The importance of the pathway in brain tumorigenesis has been demonstrated in vitro and in multiple animal models. Recently, we provided human validation for a cooperating oncogenic role for cAMP in brain tumorigenesis when we found that SNPs in ADCY8 were correlated with glioma (brain tumor) risk in individuals with Neurofibromatosis type 1 (NF1). Together, these studies provide a strong rationale for targeting cAMP in brain tumor therapy. However, the cAMP pathway is well-known to be sexually dimorphic, and SNPs in ADCY8 affected glioma risk in a sex-specific fashion, elevating the risk for females while protecting males. The cAMP pathway can be targeted at multiple levels in the regulation of its synthesis and degradation. Sex differences in response to drugs that target cAMP regulators indicate that successful targeting of the cAMP pathway for brain tumor patients is likely to require matching specific mechanisms of drug action with patient sex.
Collapse
Affiliation(s)
- Nicole M Warrington
- Department of Pediatrics, Washington University School of Medicine St Louis, MO, USA
| | - Tao Sun
- Department of Pediatrics, Washington University School of Medicine St Louis, MO, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine St Louis, MO, USA ; Department of Anatomy and Neurobiology, Washington University School of Medicine St Louis, MO, USA
| |
Collapse
|
11
|
Abstract
Acute myeloid leukemia (AML) is the most common adult acute leukemia. Despite treatment, the majority of the AML patients relapse within 5 years. In silico analysis of several available databases of AML patients showed that the expression of adenylate cyclase 7 (ADCY7) significantly inversely correlates with the overall survival of AML patients. To determine whether ADCY7 supports AML development, we employed an shRNA-encoding lentivirus system to inhibit adcy7 expression in human AML cells including U937, MV4-11, and THP-1 cells. The ADCY7 deficiency resulted in decreased cell growth, elevated apoptosis, and lower c-Myc expression of these leukemia cells. This indicates that G protein-coupled receptor signaling contributes to AML pathogenesis. Our study suggests that inhibition of ADCY7 may be novel strategy for treating leukemia.
Collapse
|
12
|
Risøe PK, Rutkovskiy A, Ågren J, Kolseth IBM, Kjeldsen SF, Valen G, Vaage J, Dahle MK. Higher TNFα responses in young males compared to females are associated with attenuation of monocyte adenylyl cyclase expression. Hum Immunol 2015; 76:427-30. [PMID: 25959651 DOI: 10.1016/j.humimm.2015.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 04/24/2014] [Accepted: 03/31/2015] [Indexed: 01/20/2023]
Abstract
Tumor necrosis factor α (TNFα) expression is strongly attenuated by the intracellular signaling mediator cyclic adenosine monophosphate (cAMP), which is synthesized by adenylyl cyclase (AC) enzymes. We have compared AC regulation and TNFα production in male and female monocytes, and characterized the role of monocyte AC isoforms in TNFα regulation. Males and females, age groups 20-30 years and 50-70 years donated blood for this study. In lipopolysaccharide-stimulated blood from young male donors, we observed significantly higher TNFα responses (6h, p=0.03) compared to females of the same age, a difference not observed in the older donors. Rapid down-regulation of the monocyte AC isoforms AC4, AC7 and AC9 were observed in young males. AC-directed siRNA experiments in the human monocyte cell line THP-1 demonstrated that AC7 and AC9 knock-down significantly induced TNFα release (p=0.01 for both isoforms). These data indicate that the stronger TNFα-responses in young males may be partly associated with male-specific down-regulation of adenylyl cyclases.
Collapse
Affiliation(s)
- Petter K Risøe
- Institute for Surgical Research, Oslo University Hospital Rikshospitalet, Oslo, Norway; Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Arkady Rutkovskiy
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Joanna Ågren
- Institute for Surgical Research, Oslo University Hospital Rikshospitalet, Oslo, Norway; Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Ingrid B M Kolseth
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Signe Flood Kjeldsen
- Institute for Surgical Research, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Guro Valen
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Jarle Vaage
- Department of Emergency Medicine and Intensive Care, Institute of Clinical Medicine, Oslo University Hospital Ulleval, University of Oslo, Norway
| | - Maria K Dahle
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Norway; Section of Immunology, Norwegian Veterinary Institute, Oslo, Norway.
| |
Collapse
|
13
|
Hashimoto E, Riederer PF, Hesselbrock VM, Hesselbrock MN, Mann K, Ukai W, Sohma H, Thibaut F, Schuckit MA, Saito T. Consensus paper of the WFSBP task force on biological markers: biological markers for alcoholism. World J Biol Psychiatry 2013; 14:549-64. [PMID: 24236956 DOI: 10.3109/15622975.2013.838302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES This article presents an overview of the current literature on biological markers for alcoholism, including markers associated with the pharmacological effects of alcohol and markers related to the clinical course and treatment of alcohol-related problems. Many of these studies are well known, while other studies cited are new and still being evaluated. METHODS In this paper we first describe known biomarkers of alcohol-related disorders, review their features and the problems involved in their use. We then consider future developments on biomarkers and their possible impact on the field. RESULTS More recent findings cited include the work on type 7 adenylcyclase (AC) polymorphism and its lower expression levels in female alcoholics. Neuroimaging studies involving biomarkers have also reported brain volume reductions of gray and white matter, including amygdala and subcortical regions in alcoholic patients, while a high association between the copy number variations (CNVs) in 6q14.1/5q13.2 and alcohol dependence has more recently been identified in genetic studies. CONCLUSIONS In addition to their possible importance for diagnosis, biomarkers may have utility for predicting prognosis, progression of the disorder, the development of new treatments, and monitoring treatment effects. Although such findings should be verified in independent studies, the search for new biomarkers is continuing. Several potential candidate biomarkers have been found recently in blood, imaging, and genetic studies with encouraging results.
Collapse
Affiliation(s)
- Eri Hashimoto
- Department of Neuropsychiatry, Sapporo Medical University School of Medicine , Sapporo , Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tabakoff B, Hoffman PL. The neurobiology of alcohol consumption and alcoholism: an integrative history. Pharmacol Biochem Behav 2013; 113:20-37. [PMID: 24141171 PMCID: PMC3867277 DOI: 10.1016/j.pbb.2013.10.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 01/17/2023]
Abstract
Studies of the neurobiological predisposition to consume alcohol (ethanol) and to transition to uncontrolled drinking behavior (alcoholism), as well as studies of the effects of alcohol on brain function, started a logarithmic growth phase after the repeal of the 18th Amendment to the United States Constitution. Although the early studies were primitive by current technological standards, they clearly demonstrated the effects of alcohol on brain structure and function, and by the end of the 20th century left little doubt that alcoholism is a "disease" of the brain. This review traces the history of developments in the understanding of ethanol's effects on the most prominent inhibitory and excitatory systems of brain (GABA and glutamate neurotransmission). This neurobiological information is integrated with knowledge of ethanol's actions on other neurotransmitter systems to produce an anatomical and functional map of ethanol's properties. Our intent is limited in scope, but is meant to provide context and integration of the actions of ethanol on the major neurobiologic systems which produce reinforcement for alcohol consumption and changes in brain chemistry that lead to addiction. The developmental history of neurobehavioral theories of the transition from alcohol drinking to alcohol addiction is presented and juxtaposed to the neurobiological findings. Depending on one's point of view, we may, at this point in history, know more, or less, than we think we know about the neurobiology of alcoholism.
Collapse
Affiliation(s)
- Boris Tabakoff
- University of Colorado School of Medicine, MS8303, 12800 E. 19 Ave., Aurora, CO 80045 U.S.A
| | - Paula L. Hoffman
- University of Colorado School of Medicine, MS8303, 12800 E. 19 Ave., Aurora, CO 80045 U.S.A
| |
Collapse
|
15
|
Procopio DO, Saba LM, Walter H, Lesch O, Skala K, Schlaff G, Vanderlinden L, Clapp P, Hoffman PL, Tabakoff B. Genetic markers of comorbid depression and alcoholism in women. Alcohol Clin Exp Res 2013; 37:896-904. [PMID: 23278386 PMCID: PMC3620932 DOI: 10.1111/acer.12060] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/28/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alcohol dependence (AD) is often accompanied by comorbid depression. Recent clinical evidence supports the benefit of subtype-specific pharmacotherapy in treating the population of alcohol-dependent subjects with comorbid major depressive disorder (MDD). However, in many alcohol-dependent subjects, depression is a reactive response to chronic alcohol use and withdrawal and abates with a period of abstinence. Genetic markers may distinguish alcohol-dependent subjects with MDD not tied chronologically and etiologically to their alcohol consumption. In this work, we investigated the association of adenylyl cyclase genes (ADCY1-9), which are implicated in both AD and mood disorders, with alcoholism and comorbid depression. METHODS Subjects from Vienna, Austria (n = 323) were genotyped, and single nucleotide polymorphisms (1,152) encompassing the genetic locations of the 9 ADCY genes were examined. The Vienna cohort contained alcohol-dependent subjects differentiated using the Lesch Alcoholism Typology. In this typology, subjects are segregated into 4 types. Type III alcoholism is distinguished by co-occurrence of symptoms of depression and by affecting predominantly females. RESULTS We identified 4 haplotypes associated with the phenotype of Type III alcoholism in females. One haplotype was in a genomic area in proximity to ADCY2, but actually within a lincRNA gene, 2 haplotypes were within ADCY5, and 1 haplotype was within the coding region of ADCY8. Three of the 4 haplotypes contributed independently to Type III alcoholism and together generated a positive predictive value of 72% and a negative predictive value of 78% for distinguishing women with a Lesch Type III diagnosis versus women designated as Type I or II alcoholics. CONCLUSIONS Polymorphisms in ADCY8 and ADCY5 and within a lincRNA are associated with an alcohol-dependent phenotype in females, which is distinguished by comorbid signs of depression. Each of these genetic locations can rationally contribute to the polygenic etiology of the alcoholism/depression phenotype, and the use of these genetic markers may aid in choosing appropriate and beneficial treatment strategies.
Collapse
Affiliation(s)
- Daniela O Procopio
- Department of Pharmacology, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tabakoff B, Hoffman PL. Transducing emotionality: the role of adenylyl cyclases. Biol Psychiatry 2012; 71:572-3. [PMID: 22424112 DOI: 10.1016/j.biopsych.2012.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 01/13/2023]
|
17
|
Joeyen-Waldorf J, Nikolova YS, Edgar N, Walsh C, Kota R, Lewis DA, Ferrell R, Manuck SB, Hariri AR, Sibille E. Adenylate cyclase 7 is implicated in the biology of depression and modulation of affective neural circuitry. Biol Psychiatry 2012; 71:627-32. [PMID: 22264442 PMCID: PMC3307939 DOI: 10.1016/j.biopsych.2011.11.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 11/29/2022]
Abstract
BACKGROUND Evolutionarily conserved genes and their associated molecular pathways can serve as a translational bridge between human and mouse research, extending our understanding of biological pathways mediating individual differences in behavior and risk for psychopathology. METHODS Comparative gene array analysis in the amygdala and cingulate cortex between the serotonin transporter knockout mouse, a genetic animal model replicating features of human depression, and existing brain transcriptome data from postmortem tissue derived from clinically depressed humans was conducted to identify genes with similar changes across species (i.e., conserved) that may help explain risk of depressive-like phenotypes. Human neuroimaging analysis was then used to investigate the impact of a common single-nucleotide polymorphism (rs1064448) in a gene with identified conserved human-mouse changes, adenylate cyclase 7 (ADCY7), on threat-associated amygdala reactivity in two large independent samples. RESULTS Comparative analysis identified genes with conserved transcript changes in amygdala (n = 29) and cingulate cortex (n = 19), both critically involved in the generation and regulation of emotion. Selected results were confirmed by real-time quantitative polymerase chain reaction, including upregulation in the amygdala of transcripts for ADCY7, a gene previously implicated in human depression and associated with altered emotional responsiveness in mouse models. Translating these results back to living healthy human subjects, we show that genetic variation (rs1064448) in ADCY7 biases threat-related amygdala reactivity. CONCLUSIONS This converging cross-species evidence implicates ADCY7 in the modulation of mood regulatory neural mechanisms and, possibly, risk for and pathophysiology of depression, together supporting a continuous dimensional approach to major depressive disorder and other affective disorders.
Collapse
Affiliation(s)
| | | | - Nicole Edgar
- Department of Psychiatry (JJW, NE, RK, DAL, ES) & Center for Neuroscience (NE, DAL, ES), Department of Human Genetics (RF), Department of Psychology (SBM), University of Pittsburgh, 3811 O'Hara street, BST W1643, Pittsburgh, PA 15312. Department of Psychology & Neuroscience and Institute for Genome Sciences & Policy (YSN, ARH), Duke University, 417 Chapel Drive, Box 90086, Durham, NC 27708
| | - Chris Walsh
- Department of Psychiatry (JJW, NE, RK, DAL, ES) & Center for Neuroscience (NE, DAL, ES), Department of Human Genetics (RF), Department of Psychology (SBM), University of Pittsburgh, 3811 O'Hara street, BST W1643, Pittsburgh, PA 15312. Department of Psychology & Neuroscience and Institute for Genome Sciences & Policy (YSN, ARH), Duke University, 417 Chapel Drive, Box 90086, Durham, NC 27708
| | - Rama Kota
- Department of Psychiatry (JJW, NE, RK, DAL, ES) & Center for Neuroscience (NE, DAL, ES), Department of Human Genetics (RF), Department of Psychology (SBM), University of Pittsburgh, 3811 O'Hara street, BST W1643, Pittsburgh, PA 15312. Department of Psychology & Neuroscience and Institute for Genome Sciences & Policy (YSN, ARH), Duke University, 417 Chapel Drive, Box 90086, Durham, NC 27708
| | - David A. Lewis
- Department of Psychiatry (JJW, NE, RK, DAL, ES) & Center for Neuroscience (NE, DAL, ES), Department of Human Genetics (RF), Department of Psychology (SBM), University of Pittsburgh, 3811 O'Hara street, BST W1643, Pittsburgh, PA 15312. Department of Psychology & Neuroscience and Institute for Genome Sciences & Policy (YSN, ARH), Duke University, 417 Chapel Drive, Box 90086, Durham, NC 27708
| | - Robert Ferrell
- Department of Psychiatry (JJW, NE, RK, DAL, ES) & Center for Neuroscience (NE, DAL, ES), Department of Human Genetics (RF), Department of Psychology (SBM), University of Pittsburgh, 3811 O'Hara street, BST W1643, Pittsburgh, PA 15312. Department of Psychology & Neuroscience and Institute for Genome Sciences & Policy (YSN, ARH), Duke University, 417 Chapel Drive, Box 90086, Durham, NC 27708
| | - Stephen B. Manuck
- Department of Psychiatry (JJW, NE, RK, DAL, ES) & Center for Neuroscience (NE, DAL, ES), Department of Human Genetics (RF), Department of Psychology (SBM), University of Pittsburgh, 3811 O'Hara street, BST W1643, Pittsburgh, PA 15312. Department of Psychology & Neuroscience and Institute for Genome Sciences & Policy (YSN, ARH), Duke University, 417 Chapel Drive, Box 90086, Durham, NC 27708
| | - Ahmad R. Hariri
- Department of Psychiatry (JJW, NE, RK, DAL, ES) & Center for Neuroscience (NE, DAL, ES), Department of Human Genetics (RF), Department of Psychology (SBM), University of Pittsburgh, 3811 O'Hara street, BST W1643, Pittsburgh, PA 15312. Department of Psychology & Neuroscience and Institute for Genome Sciences & Policy (YSN, ARH), Duke University, 417 Chapel Drive, Box 90086, Durham, NC 27708
| | - Etienne Sibille
- Department of Psychiatry (JJW, NE, RK, DAL, ES) & Center for Neuroscience (NE, DAL, ES), Department of Human Genetics (RF), Department of Psychology (SBM), University of Pittsburgh, 3811 O'Hara street, BST W1643, Pittsburgh, PA 15312. Department of Psychology & Neuroscience and Institute for Genome Sciences & Policy (YSN, ARH), Duke University, 417 Chapel Drive, Box 90086, Durham, NC 27708
| |
Collapse
|