1
|
Hendriks WJAJ, van Cruchten RTP, Pulido R. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Front Cell Dev Biol 2023; 10:1051311. [PMID: 36755664 PMCID: PMC9900141 DOI: 10.3389/fcell.2022.1051311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.
Collapse
Affiliation(s)
- Wiljan J. A. J. Hendriks
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen, The Netherlands,*Correspondence: Wiljan J. A. J. Hendriks,
| | | | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
2
|
Blok LER, Boon M, van Reijmersdal B, Höffler KD, Fenckova M, Schenck A. Genetics, molecular control and clinical relevance of habituation learning. Neurosci Biobehav Rev 2022; 143:104883. [PMID: 36152842 DOI: 10.1016/j.neubiorev.2022.104883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/08/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022]
Abstract
Habituation is the most fundamental form of learning. As a firewall that protects our brain from sensory overload, it is indispensable for cognitive processes. Studies in humans and animal models provide increasing evidence that habituation is affected in autism and related monogenic neurodevelopmental disorders (NDDs). An integrated application of habituation assessment in NDDs and their animal models has unexploited potential for neuroscience and medical care. With the aim to gain mechanistic insights, we systematically retrieved genes that have been demonstrated in the literature to underlie habituation. We identified 258 evolutionarily conserved genes across species, describe the biological processes they converge on, and highlight regulatory pathways and drugs that may alleviate habituation deficits. We also summarize current habituation paradigms and extract the most decisive arguments that support the crucial role of habituation for cognition in health and disease. We conclude that habituation is a conserved, quantitative, cognition- and disease-relevant process that can connect preclinical and clinical work, and hence is a powerful tool to advance research, diagnostics, and treatment of NDDs.
Collapse
Affiliation(s)
- Laura Elisabeth Rosalie Blok
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Marina Boon
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Boyd van Reijmersdal
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Kira Daniela Höffler
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Michaela Fenckova
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands; Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Aschner Y, Correll KA, Beke K, Foster DG, Roybal HM, Nelson MR, Meador CL, Strand M, Anderson KC, Moore CM, Reynolds PR, Kopf KW, Burnham EL, Downey GP. PTPα Promotes Fibroproliferative Responses After Acute Lung Injury. Am J Physiol Lung Cell Mol Physiol 2022; 323:L69-L83. [PMID: 35670474 DOI: 10.1152/ajplung.00436.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Acute Respiratory Distress Syndrome (ARDS) is a major healthcare problem, accounting for significant mortality and long-term disability. Approximately 25% of patients with ARDS will develop an over-exuberant fibrotic response, termed fibroproliferative ARDS (FP-ARDS) that portends a poor prognosis and increased mortality. The cellular pathologic processes that drive FP-ARDS remain incompletely understood. We have previously shown that the transmembrane receptor-type tyrosine phosphatase Protein Tyrosine Phosphatase-a (PTPa) promotes pulmonary fibrosis in preclinical murine models through regulation of TGF-b signaling. In this study, we examine the role of PTPa in the pathogenesis of FP-ARDS in a preclinical murine model of acid (HCl)-induced acute lung injury. We demonstrate that while mice genetically deficient in PTPa (Ptpra-/-) are susceptible to early HCl-induced lung injury, they exhibit markedly attenuated fibroproliferative responses. Additionally, early pro-fibrotic gene expression is reduced in lung tissue after acute lung injury in Ptpra-/- mice, and stimulation of naïve lung fibroblasts with the BAL fluid from these mice results in attenuated fibrotic outcomes compared to wild type littermate controls. Transcriptomic analyses demonstrates reduced Extracellular Matrix (ECM) deposition and remodeling in mice genetically deficient in PTPa. Importantly, human lung fibroblasts modified with a CRISPR-targeted deletion of PTPRA exhibit reduced expression of profibrotic genes in response to TGF-β stimulation, demonstrating the importance of PTPa in human lung fibroblasts. Together, these findings demonstrate that PTPa is a key regulator of fibroproliferative processes following acute lung injury and could serve as a therapeutic target for patients at risk for poor long-term outcomes in ARDS.
Collapse
Affiliation(s)
- Yael Aschner
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO, United States.,Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Kelly A Correll
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Keriann Beke
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Daniel G Foster
- Department of Medicine, National Jewish Health, Denver, CO, United States.,Department of Pediatrics, National Jewish Health, Denver, CO, United States
| | - Helen M Roybal
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Meghan R Nelson
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Carly L Meador
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Matthew Strand
- Division of Biostatistics, National Jewish Health, Denver, CO, United States
| | - Kelsey C Anderson
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States
| | - Camille M Moore
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States
| | - Paul R Reynolds
- Department of Medicine, National Jewish Health, Denver, CO, United States.,Department of Pediatrics, National Jewish Health, Denver, CO, United States
| | - Katrina W Kopf
- Office of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Ellen L Burnham
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Gregory P Downey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO, United States.,Department of Medicine, National Jewish Health, Denver, CO, United States.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States.,Department of Pediatrics, National Jewish Health, Denver, CO, United States.,Office of Academic Affairs, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States
| |
Collapse
|
4
|
Boni C, Laudanna C, Sorio C. A Comprehensive Review of Receptor-Type Tyrosine-Protein Phosphatase Gamma (PTPRG) Role in Health and Non-Neoplastic Disease. Biomolecules 2022; 12:84. [PMID: 35053232 PMCID: PMC8773835 DOI: 10.3390/biom12010084] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Protein tyrosine phosphatase receptor gamma (PTPRG) is known to interact with and regulate several tyrosine kinases, exerting a tumor suppressor role in several type of cancers. Its wide expression in human tissues compared to the other component of group 5 of receptor phosphatases, PTPRZ expressed as a chondroitin sulfate proteoglycan in the central nervous system, has raised interest in its role as a possible regulatory switch of cell signaling processes. Indeed, a carbonic anhydrase-like domain (CAH) and a fibronectin type III domain are present in the N-terminal portion and were found to be associated with its role as [HCO3-] sensor in vascular and renal tissues and a possible interaction domain for cell adhesion, respectively. Studies on PTPRG ligands revealed the contactins family (CNTN) as possible interactors. Furthermore, the correlation of PTPRG phosphatase with inflammatory processes in different normal tissues, including cancer, and the increasing amount of its soluble form (sPTPRG) in plasma, suggest a possible role as inflammatory marker. PTPRG has important roles in human diseases; for example, neuropsychiatric and behavioral disorders and various types of cancer such as colon, ovary, lung, breast, central nervous system, and inflammatory disorders. In this review, we sum up our knowledge regarding the latest discoveries in order to appreciate PTPRG function in the various tissues and diseases, along with an interactome map of its relationship with a group of validated molecular interactors.
Collapse
Affiliation(s)
| | | | - Claudio Sorio
- Department of Medicine, General Pathology Division, University of Verona, 37134 Verona, Italy; (C.B.); (C.L.)
| |
Collapse
|
5
|
Rajani V, Sengar AS, Salter MW. Src and Fyn regulation of NMDA receptors in health and disease. Neuropharmacology 2021; 193:108615. [PMID: 34051267 DOI: 10.1016/j.neuropharm.2021.108615] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
The Src family kinases (SFKs) are cytoplasmic non-receptor tyrosine kinases involved in multiple signalling pathways. In the central nervous system (CNS), SFKs are key regulators of N-methyl-d-aspartate receptor (NMDAR) function and major points of convergence for neuronal transduction pathways. Physiological upregulation of NMDAR activity by members of the SFKs, namely Src and Fyn, is crucial for induction of plasticity at Schaffer collateral-CA1 synapses of the hippocampus. Aberrant SFK regulation of NMDARs is implicated in several pathological conditions in the CNS including schizophrenia and pain hypersensitivity. Here, evidence is presented to highlight the current understanding of the intermolecular interactions of SFKs within the NMDAR macromolecular complex, the upstream regulators of SFK activity on NMDAR function and the role Src and Fyn have in synaptic plasticity and metaplasticity. The targeting of SFK protein-protein interactions is discussed as a potential therapeutic strategy to restore signalling activity underlying glutamatergic dysregulation in CNS disease pathophysiology.
Collapse
Affiliation(s)
- Vishaal Rajani
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Ameet S Sengar
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Michael W Salter
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
6
|
Ward KR, Featherstone RE, Naschek MJ, Melnychenko O, Banerjee A, Yi J, Gifford RL, Borgmann-Winter KE, Salter MW, Hahn CG, Siegel SJ. Src deficient mice demonstrate behavioral and electrophysiological alterations relevant to psychiatric and developmental disease. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:84-92. [PMID: 30826459 DOI: 10.1016/j.pnpbp.2019.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 01/12/2023]
Abstract
Much evidence suggests that hypofunction of the N-methyl-d-aspartate glutamate receptor (NMDAR) may contribute broadly towards a subset of molecular, cognitive and behavioral abnormalities common among psychiatric and developmental diseases. However, little is known about the specific molecular changes that lead to NMDAR dysfunction. As such, personalized approaches to remediating NMDAR dysfunction based on a specific etiology remains a challenge. Sarcoma tyrosine kinase (Src) serves as a hub for multiple signaling mechanisms affecting GluN2 phosphorylation and can be disrupted by convergent alterations of various signaling pathways. We recently showed reduced Src signaling in post mortem tissue from schizophrenia patients, despite increased MK-801 binding and NMDA receptor complex expression in the postsynaptic density (PSD). These data suggest that Src dysregulation may be an important underlying mechanism responsible for reduced glutamate signaling. Despite this evidence for a central role of Src in NMDAR signaling, little is known about how reductions in Src activity might regulate phenotypic changes in cognition and behavior. As such, the current study sought to characterize behavioral and electrophysiological phenotypes in mice heterozygous for the Src Acl gene (Src+/- mice). Src+/- mice demonstrated decreased sociability and working memory relative to Src+/+ (WT) mice while no significant differences were seen on locomotive activity and anxiety-related behavior. In relation to WT mice, Src+/- mice showed decreased mid-latency P20 auditory event related potential (aERP) amplitudes, decreased mismatch negativity (MMN) and decreased evoked gamma power, which was only present in males. These data indicate that Src+/- mice are a promising new model to help understand the pathophysiology of these electrophysiological, behavioral and cognitive changes. As such, we propose that Src+/- mice can be used in the future to evaluate potential therapeutic approaches by targeting increased Src activity as a common final pathway for multiple etiologies of SCZ and other diseases characterized by reduced glutamate function.
Collapse
Affiliation(s)
- Katelyn R Ward
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA; Department of Child and Adolescent Psychiatry, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Robert E Featherstone
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA; Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, USA
| | - Melissa J Naschek
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | - Olga Melnychenko
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | - Anamika Banerjee
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | - Janice Yi
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, USA
| | - Raymond L Gifford
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, USA
| | | | - Michael W Salter
- Program in Neurosciences &Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Chang-Gyu Hahn
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | - Steven J Siegel
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA; Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, USA.
| |
Collapse
|
7
|
John J, Kukshal P, Sharma A, Bhatia T, Nimgaonkar VL, Deshpande SN, Thelma BK. Rare variants in Protein tyrosine phosphatase, receptor type A (PTPRA) in schizophrenia: Evidence from a family based study. Schizophr Res 2019; 206:75-81. [PMID: 30594456 PMCID: PMC7321970 DOI: 10.1016/j.schres.2018.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/25/2018] [Accepted: 12/08/2018] [Indexed: 12/23/2022]
Abstract
The contribution of both common and rare risk variants to the genetic architecture of schizophrenia (SZ) has been documented in genome-wide association studies, whole exome and whole genome sequencing approaches. As SZ is highly heritable and segregates in families, highly penetrant rare variants are more likely to be identified through analyses of multiply affected families. Further, much of the gene mapping studies in SZ have utilized individuals of Caucasian ancestry. Analysis of other ethnic groups may be informative. In this study, we aimed at identification of rare, penetrant risk variants utilizing whole exome sequencing (WES) in a three-generation Indian family with multiple members affected. Filtered data from WES, combined with in silico analyses revealed a novel heterozygous missense variant (NM_080841:c.1730C>G:p.T577R; exon18) in Protein tyrosine phosphatase, receptor type A (PTPRA 20p13). The variant was located in an evolutionarily conserved position and predicted to be damaging. Screening for variants in this gene in the WES data of an independent SZ cohort (n = 350) of matched ethnicity, identified five additional rare missense variants with MAF < 0.003, which were also predicted to be damaging. In conclusion, the rare missense variants in PTPRA identified in this study could confer risk for SZ. This has also derived support from concordant data from prior linkage and association, as well as animal studies which indicated a role for PTPRA in glutamate function.
Collapse
Affiliation(s)
- Jibin John
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Prachi Kukshal
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Aditya Sharma
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Triptish Bhatia
- Department of Psychiatry, PGIMER-Dr. RML Hospital, New Delhi 110 001, India
| | - V L Nimgaonkar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, 3811 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, DeSoto St, Pittsburgh, PA 15213, USA
| | - S N Deshpande
- Department of Psychiatry, PGIMER-Dr. RML Hospital, New Delhi 110 001, India
| | - B K Thelma
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India.
| |
Collapse
|
8
|
Loss-of-function of PTPR γ and ζ, observed in sporadic schizophrenia, causes brain region-specific deregulation of monoamine levels and altered behavior in mice. Psychopharmacology (Berl) 2017; 234:575-587. [PMID: 28025742 DOI: 10.1007/s00213-016-4490-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 11/17/2016] [Indexed: 12/12/2022]
Abstract
RATIONALE The receptor protein tyrosine phosphatase PTPRG has been genetically associated with psychiatric disorders and is a ligand for members of the contactin family, which are themselves linked to autism spectrum disorders. OBJECTIVE Based on our finding of a phosphatase-null de novo mutation in PTPRG associated with a case of sporadic schizophrenia, we used PTPRG knockout (KO) mice to model the effect of a loss-of-function mutation. We compared the results with loss-of-function in its close paralogue PTPRZ, previously associated with schizophrenia. We tested PTPRG -/- , PTPRZ -/- , and wild-type male mice for effects on social behavior, forced swim test, and anxiety, as well as on regional brain neurochemistry. RESULTS The most notable behavioral consequences of PTPRG gene inactivation were reduced immobilization in the forced swim test, suggestive of some negative symptoms of schizophrenia. By contrast, PTPRZ -/- mice demonstrated marked social alteration with increased aggressivity, reminiscent of some positive symptoms of schizophrenia. Both knockouts showed elevated dopamine levels in prefrontal cortex, hippocampus, and most particularly amygdala, but not striatum, accompanied by reduced dopamine beta hydroxylase activity only in amygdala. In addition, PTPRG KO elicited a distinct increase in hippocampal serotonin level not observed in PTPRZ KO. CONCLUSION PTPRG and PTPRZ gene loss therefore induces distinct patterns of behavioral change and region-specific alterations in neurotransmitters, highlighting their usefulness as models for neuropsychiatric disorder mechanisms and making these receptors attractive targets for therapy.
Collapse
|
9
|
Banerjee A, Wang HY, Borgmann-Winter KE, MacDonald ML, Kaprielian H, Stucky A, Kvasic J, Egbujo C, Ray R, Talbot K, Hemby SE, Siegel SJ, Arnold SE, Sleiman P, Chang X, Hakonarson H, Gur RE, Hahn CG. Src kinase as a mediator of convergent molecular abnormalities leading to NMDAR hypoactivity in schizophrenia. Mol Psychiatry 2015; 20:1091-100. [PMID: 25330739 PMCID: PMC5156326 DOI: 10.1038/mp.2014.115] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 01/28/2023]
Abstract
Numerous investigations support decreased glutamatergic signaling as a pathogenic mechanism of schizophrenia, yet the molecular underpinnings for such dysregulation are largely unknown. In the post-mortem dorsolateral prefrontal cortex (DLPFC), we found striking decreases in tyrosine phosphorylation of N-methyl-D aspartate (NMDA) receptor subunit 2 (GluN2) that is critical for neuroplasticity. The decreased GluN2 activity in schizophrenia may not be because of downregulation of NMDA receptors as MK-801 binding and NMDA receptor complexes in postsynaptic density (PSD) were in fact increased in schizophrenia cases. At the postreceptor level, however, we found striking reductions in the protein kinase C, Pyk 2 and Src kinase activity that in tandem can decrease GluN2 activation. Given that Src serves as a hub of various signaling mechanisms affecting GluN2 phosphorylation, we postulated that Src hypoactivity may result from convergent alterations of various schizophrenia susceptibility pathways and thus mediate their effects on NMDA receptor signaling. Indeed, the DLPFC of schizophrenia cases exhibit increased PSD-95 and erbB4 and decreased receptor-type tyrosine-protein phosphatase-α (RPTPα) and dysbindin-1, each of which reduces Src activity via protein interaction with Src. To test genomic underpinnings for Src hypoactivity, we examined genome-wide association study results, incorporating 13 394 cases and 34 676 controls. We found no significant association of individual variants of Src and its direct regulators with schizophrenia. However, a protein-protein interaction-based network centered on Src showed significant enrichment of gene-level associations with schizophrenia compared with other psychiatric illnesses. Our results together demonstrate striking decreases in NMDA receptor signaling at the postreceptor level and propose Src as a nodal point of convergent dysregulations affecting NMDA receptor pathway via protein-protein associations.
Collapse
Affiliation(s)
- Anamika Banerjee
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Hoau-Yan Wang
- Department of Physiology, Pharmacology and Neuroscience, City University of New York Medical School, New York, NY 10031
| | | | - Mathew L. MacDonald
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Hagop Kaprielian
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Andres Stucky
- Department of Physiology, Pharmacology and Neuroscience, City University of New York Medical School, New York, NY 10031
| | - Jessica Kvasic
- Department of Physiology, Pharmacology and Neuroscience, City University of New York Medical School, New York, NY 10031
| | - Chijioke Egbujo
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Rabindranath Ray
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Konrad Talbot
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Scott E Hemby
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27106
| | - Steven J. Siegel
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Steven E. Arnold
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Patrick Sleiman
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104
| | - Xiao Chang
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104
| | - Hakon Hakonarson
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| | - Chang-Gyu Hahn
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403
| |
Collapse
|
10
|
Wang C, Aleksic B, Ozaki N. Glia-related genes and their contribution to schizophrenia. Psychiatry Clin Neurosci 2015; 69:448-61. [PMID: 25759284 DOI: 10.1111/pcn.12290] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2015] [Indexed: 12/24/2022]
Abstract
Schizophrenia, a debilitating disease with 1% prevalence in the general population, is characterized by major neuropsychiatric symptoms, including delusions, hallucinations, and deficits in emotional and social behavior. Previous studies have directed their investigations on the mechanism of schizophrenia towards neuronal dysfunction and have defined schizophrenia as a 'neuron-centric' disorder. However, along with the development of genetics and systematic biology approaches in recent years, the crucial role of glial cells in the brain has also been shown to contribute to the etiopathology of schizophrenia. Here, we summarize comprehensive data that support the involvement of glial cells (including oligodendrocytes, astrocytes, and microglial cells) in schizophrenia and list several acknowledged glia-related genes or molecules associated with schizophrenia. Instead of purely an abnormality of neurons in schizophrenia, an additional 'glial perspective' provides us a novel and promising insight into the causal mechanisms and treatment for this disease.
Collapse
Affiliation(s)
- Chenyao Wang
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
11
|
Xu J, Kurup P, Foscue E, Lombroso PJ. Striatal-enriched protein tyrosine phosphatase regulates the PTPα/Fyn signaling pathway. J Neurochem 2015; 134:629-41. [PMID: 25951993 DOI: 10.1111/jnc.13160] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/05/2015] [Accepted: 04/27/2015] [Indexed: 12/13/2022]
Abstract
The tyrosine kinase Fyn has two regulatory tyrosine residues that when phosphorylated either activate (Tyr(420)) or inhibit (Tyr(531)) Fyn activity. Within the central nervous system, two protein tyrosine phosphatases (PTPs) target these regulatory tyrosines in Fyn. PTPα dephosphorylates Tyr(531) and activates Fyn, while STEP (STriatal-Enriched protein tyrosine Phosphatase) dephosphorylates Tyr(420) and inactivates Fyn. Thus, PTPα and STEP have opposing functions in the regulation of Fyn; however, whether there is cross talk between these two PTPs remains unclear. Here, we used molecular techniques in primary neuronal cultures and in vivo to demonstrate that STEP negatively regulates PTPα by directly dephosphorylating PTPα at its regulatory Tyr(789). Dephosphorylation of Tyr(789) prevents the translocation of PTPα to synaptic membranes, blocking its ability to interact with and activate Fyn. Genetic or pharmacologic reduction in STEP61 activity increased the phosphorylation of PTPα at Tyr(789), as well as increased translocation of PTPα to synaptic membranes. Activation of PTPα and Fyn and trafficking of GluN2B to synaptic membranes are necessary for ethanol (EtOH) intake behaviors in rodents. We tested the functional significance of STEP61 in this signaling pathway by EtOH administration to primary cultures as well as in vivo, and demonstrated that the inactivation of STEP61 by EtOH leads to the activation of PTPα, its translocation to synaptic membranes, and the activation of Fyn. These findings indicate a novel mechanism by which STEP61 regulates PTPα and suggest that STEP and PTPα coordinate the regulation of Fyn. STEP61 , PTPα, Fyn, and NMDA receptor (NMDAR) have been implicated in ethanol intake behaviors in the dorsomedial striatum (DMS) in rodents. Here, we report that PTPα is a novel substrate for STEP61. Upon ethanol exposure, STEP61 is phosphorylated and inactivated by protein kinase A (PKA) signaling in the DMS. As a result of STEP61 inhibition, there is an increase in the phosphorylation of PTPα, which translocates to lipid rafts and activates Fyn and subsequent NMDAR signaling. The results demonstrate a synergistic regulation of Fyn-NMDAR signaling by STEP61 and PTPα, which may contribute to the regulation of ethanol-related behaviors. NMDA, N-methyl-D-aspartate; PTPα, receptor-type protein tyrosine phosphatase alpha; STEP, STriatal-Enriched protein tyrosine Phosphatase.
Collapse
Affiliation(s)
- Jian Xu
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Pradeep Kurup
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ethan Foscue
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Paul J Lombroso
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
12
|
Dubreuil V, Sap J, Harroch S. Protein tyrosine phosphatase regulation of stem and progenitor cell biology. Semin Cell Dev Biol 2015; 37:82-9. [DOI: 10.1016/j.semcdb.2014.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 12/18/2022]
|
13
|
Xing J, Wang C, Kimura H, Takasaki Y, Kunimoto S, Yoshimi A, Nakamura Y, Koide T, Banno M, Kushima I, Uno Y, Okada T, Aleksic B, Ikeda M, Iwata N, Ozaki N. Resequencing and association analysis of PTPRA, a possible susceptibility gene for schizophrenia and autism spectrum disorders. PLoS One 2014; 9:e112531. [PMID: 25393624 PMCID: PMC4231042 DOI: 10.1371/journal.pone.0112531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/30/2014] [Indexed: 12/30/2022] Open
Abstract
Background The PTPRA gene, which encodes the protein RPTP-α, is critical to neurodevelopment. Previous linkage studies, genome-wide association studies, controlled expression analyses and animal models support an association with both schizophrenia and autism spectrum disorders, both of which share a substantial portion of genetic risks. Methods We sequenced the protein-encoding areas of the PTPRA gene for single nucleotide polymorphisms or small insertions/deletions (InDel) in 382 schizophrenia patients. To validate their association with the disorders, rare (minor allele frequency <1%), missense mutations as well as one InDel in the 3′UTR region were then genotyped in another independent sample set comprising 944 schizophrenia patients, 336 autism spectrum disorders patients, and 912 healthy controls. Results Eight rare mutations, including 3 novel variants, were identified during the mutation-screening phase. In the following association analysis, L59P, one of the two missense mutations, was only observed among patients of schizophrenia. Additionally, a novel duplication in the 3′UTR region, 174620_174623dupTGAT, was predicted to be located within a Musashi Binding Element. Major Conclusions No evidence was seen for the association of rare, missense mutations in the PTPRA gene with schizophrenia or autism spectrum disorders; however, we did find some rare variants with possibly damaging effects that may increase the susceptibility of carriers to the disorders.
Collapse
Affiliation(s)
- Jingrui Xing
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chenyao Wang
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuto Takasaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shohko Kunimoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Yoshimi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukako Nakamura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayoshi Koide
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Banno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yota Uno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail:
| | - Masashi Ikeda
- Department of Psychiatry, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Nakao Iwata
- Department of Psychiatry, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
14
|
New insights into the roles of the contactin cell adhesion molecules in neural development. ADVANCES IN NEUROBIOLOGY 2014; 8:165-94. [PMID: 25300137 DOI: 10.1007/978-1-4614-8090-7_8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In vertebrates, the contactin (CNTN) family of neural cell recognition molecules includes six related cell adhesion molecules that play non-overlapping roles in the formation and maintenance of the nervous system. CNTN1 and CNTN2 are the prototypical members of the family and have been involved, through cis- and trans-interactions with distinct cell adhesion molecules, in neural cell migration, axon guidance, and the organization of myelin subdomains. In contrast, the roles of CNTN3-6 are less well characterized although the generation of null mice and the recent identification of a common extracellular binding partner have considerably advanced our grasp of their physiological roles in particular as they relate to the wiring of sensory tissues. In this review, we aim to present a summary of our current understanding of CNTN functions and give an overview of the challenges that lie ahead in understanding the roles these proteins play in nervous system development and maintenance.
Collapse
|
15
|
Fernandez-Enright F, Andrews JL, Newell KA, Pantelis C, Huang XF. Novel implications of Lingo-1 and its signaling partners in schizophrenia. Transl Psychiatry 2014; 4:e348. [PMID: 24448210 PMCID: PMC3905231 DOI: 10.1038/tp.2013.121] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/04/2013] [Accepted: 11/10/2013] [Indexed: 02/06/2023] Open
Abstract
Myelination and neurite outgrowth both occur during brain development, and their disturbance has been previously been implicated in the pathophysiology of schizophrenia. Leucine-rich repeat and immunoglobulin domain-containing protein (Lingo-1) is a potent negative regulator of axonal myelination and neurite extension. As co-factors of Lingo-1 signaling (Nogo receptor (NgR), With No Lysine (K) (WNK1) and Myelin transcription factor 1 (Myt1)) have been implicated in the genetics of schizophrenia, we explored for the first time the role of Lingo-1 signaling pathways in this disorder. Lingo-1 protein, together with its co-receptor and co-factor proteins NgR, tumor necrosis factor (TNF) receptor orphan Y (TROY), p75, WNK1 and Myt1, have never been explored in the pathogenesis of schizophrenia. We examined protein levels of Lingo-1, NgR, TROY, p75, WNK1, Myt1 and myelin basic protein (MBP) (as a marker of myelination) within the post-mortem dorsolateral prefrontal cortex (DLPFC) (37 schizophrenia patients versus 37 matched controls) and hippocampus (Cornu Ammonis, CA1 and CA3) (20 schizophrenia patients versus 20 matched controls from the same cohort). Both of these brain regions are highly disrupted in the schizophrenia pathophysiology. There were significant increases in Lingo-1 (P<0.001) and Myt1 (P=0.023) and a reduction in NgR (P<0.001) in the DLPFC in schizophrenia subjects compared with controls. There were also increases in both TROY (P=0.001) and WNK1 (P=0.011) in the CA1 of schizophrenia subjects and, in contrast to the DLPFC, there was an increase in NgR (P=0.006) in the CA3 of schizophrenia subjects compared with controls. No significant difference was reported for MBP levels (P>0.05) between the schizophrenia and control groups in the three tested regions. This is the first time that a study has shown altered Lingo-1 signaling in the schizophrenia brain. Our novel findings may present a direct application for the use of a Lingo-1 antagonist to complement current and future schizophrenia therapies.
Collapse
Affiliation(s)
- F Fernandez-Enright
- Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia,Schizophrenia Research Institute, Darlinghurst, NSW, Australia,Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Avenue, Wollongong 2522, NSW, Australia. E-mail:
| | - J L Andrews
- Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia,Schizophrenia Research Institute, Darlinghurst, NSW, Australia
| | - K A Newell
- Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia,Schizophrenia Research Institute, Darlinghurst, NSW, Australia
| | - C Pantelis
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, VIC, Australia
| | - X F Huang
- Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia,Schizophrenia Research Institute, Darlinghurst, NSW, Australia
| |
Collapse
|
16
|
McCullumsmith RE, Hammond JH, Shan D, Meador-Woodruff JH. Postmortem brain: an underutilized substrate for studying severe mental illness. Neuropsychopharmacology 2014; 39:65-87. [PMID: 24091486 PMCID: PMC3857666 DOI: 10.1038/npp.2013.239] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 02/08/2023]
Abstract
We propose that postmortem tissue is an underutilized substrate that may be used to translate genetic and/or preclinical studies, particularly for neuropsychiatric illnesses with complex etiologies. Postmortem brain tissues from subjects with schizophrenia have been extensively studied, and thus serve as a useful vehicle for illustrating the challenges associated with this biological substrate. Schizophrenia is likely caused by a combination of genetic risk and environmental factors that combine to create a disease phenotype that is typically not apparent until late adolescence. The complexity of this illness creates challenges for hypothesis testing aimed at understanding the pathophysiology of the illness, as postmortem brain tissues collected from individuals with schizophrenia reflect neuroplastic changes from a lifetime of severe mental illness, as well as treatment with antipsychotic medications. While there are significant challenges with studying postmortem brain, such as the postmortem interval, it confers a translational element that is difficult to recapitulate in animal models. On the other hand, data derived from animal models typically provide specific mechanistic and behavioral measures that cannot be generated using human subjects. Convergence of these two approaches has led to important insights for understanding molecular deficits and their causes in this illness. In this review, we discuss the problem of schizophrenia, review the common challenges related to postmortem studies, discuss the application of biochemical approaches to this substrate, and present examples of postmortem schizophrenia studies that illustrate the role of the postmortem approach for generating important new leads for understanding the pathophysiology of severe mental illness.
Collapse
Affiliation(s)
| | - John H Hammond
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Dan Shan
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| |
Collapse
|
17
|
Protein tyrosine phosphatase α in the dorsomedial striatum promotes excessive ethanol-drinking behaviors. J Neurosci 2013; 33:14369-78. [PMID: 24005290 DOI: 10.1523/jneurosci.1954-13.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We previously found that excessive ethanol drinking activates Fyn in the dorsomedial striatum (DMS) (Wang et al., 2010; Gibb et al., 2011). Ethanol-mediated Fyn activation in the DMS leads to the phosphorylation of the GluN2B subunit of the NMDA receptor, to the enhancement of the channel's activity, and to the development and/or maintenance of ethanol drinking behaviors (Wang et al., 2007, 2010). Protein tyrosine phosphatase α (PTPα) is essential for Fyn kinase activation (Bhandari et al., 1998), and we showed that ethanol-mediated Fyn activation is facilitated by the recruitment of PTPα to synaptic membranes, the compartment where Fyn resides (Gibb et al., 2011). Here we tested the hypothesis that PTPα in the DMS is part of the Fyn/GluN2B pathway and is thus a major contributor to the neuroadaptations underlying excessive ethanol intake behaviors. We found that RNA interference (RNAi)-mediated PTPα knockdown in the DMS reduces excessive ethanol intake and preference in rodents. Importantly, no alterations in water, saccharine/sucrose, or quinine intake were observed. Furthermore, downregulation of PTPα in the DMS of mice significantly reduces ethanol-mediated Fyn activation, GluN2B phosphorylation, and ethanol withdrawal-induced long-term facilitation of NMDAR activity without altering the intrinsic features of DMS neurons. Together, these results position PTPα upstream of Fyn within the DMS and demonstrate the important contribution of the phosphatase to the maladaptive synaptic changes that lead to excessive ethanol intake.
Collapse
|
18
|
Hendriks WJAJ, Pulido R. Protein tyrosine phosphatase variants in human hereditary disorders and disease susceptibilities. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1673-96. [PMID: 23707412 DOI: 10.1016/j.bbadis.2013.05.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 12/18/2022]
Abstract
Reversible tyrosine phosphorylation of proteins is a key regulatory mechanism to steer normal development and physiological functioning of multicellular organisms. Phosphotyrosine dephosphorylation is exerted by members of the super-family of protein tyrosine phosphatase (PTP) enzymes and many play such essential roles that a wide variety of hereditary disorders and disease susceptibilities in man are caused by PTP alleles. More than two decades of PTP research has resulted in a collection of PTP genetic variants with corresponding consequences at the molecular, cellular and physiological level. Here we present a comprehensive overview of these PTP gene variants that have been linked to disease states in man. Although the findings have direct bearing for disease diagnostics and for research on disease etiology, more work is necessary to translate this into therapies that alleviate the burden of these hereditary disorders and disease susceptibilities in man.
Collapse
Affiliation(s)
- Wiljan J A J Hendriks
- Department of Cell Biology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | |
Collapse
|
19
|
Affiliation(s)
- Gregory A. Miller
- Department of Psychology, University of Delaware, Newark, Delaware 19716;
- Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
- Department of Psychology and Beckman Institute, University of Illinois at Urbana-Champaign, Illinois 61820
| | - Brigitte Rockstroh
- Department of Psychology, University of Konstanz, 78457 Konstanz, Germany;
| |
Collapse
|
20
|
Zucchi FCR, Yao Y, Ward ID, Ilnytskyy Y, Olson DM, Benzies K, Kovalchuk I, Kovalchuk O, Metz GAS. Maternal stress induces epigenetic signatures of psychiatric and neurological diseases in the offspring. PLoS One 2013; 8:e56967. [PMID: 23451123 PMCID: PMC3579944 DOI: 10.1371/journal.pone.0056967] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 01/18/2013] [Indexed: 12/21/2022] Open
Abstract
The gestational state is a period of particular vulnerability to diseases that affect maternal and fetal health. Stress during gestation may represent a powerful influence on maternal mental health and offspring brain plasticity and development. Here we show that the fetal transcriptome, through microRNA (miRNA) regulation, responds to prenatal stress in association with epigenetic signatures of psychiatric and neurological diseases. Pregnant Long-Evans rats were assigned to stress from gestational days 12 to 18 while others served as handled controls. Gestational stress in the dam disrupted parturient maternal behaviour and was accompanied by characteristic brain miRNA profiles in the mother and her offspring, and altered transcriptomic brain profiles in the offspring. In the offspring brains, prenatal stress upregulated miR-103, which is involved in brain pathologies, and downregulated its potential gene target Ptplb. Prenatal stress downregulated miR-145, a marker of multiple sclerosis in humans. Prenatal stress also upregulated miR-323 and miR-98, which may alter inflammatory responses in the brain. Furthermore, prenatal stress upregulated miR-219, which targets the gene Dazap1. Both miR-219 and Dazap1 are putative markers of schizophrenia and bipolar affective disorder in humans. Offspring transcriptomic changes included genes related to development, axonal guidance and neuropathology. These findings indicate that prenatal stress modifies epigenetic signatures linked to disease during critical periods of fetal brain development. These observations provide a new mechanistic association between environmental and genetic risk factors in psychiatric and neurological disease.
Collapse
Affiliation(s)
- Fabiola C. R. Zucchi
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Biological Sciences, University of Mato Grosso State, Caceres, Mato Grosso, Brazil
| | - Youli Yao
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Isaac D. Ward
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - David M. Olson
- Departments of Obstetrics and Gynecology, Pediatrics and Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Karen Benzies
- Faculty of Nursing, University of Calgary, Calgary, Alberta, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Gerlinde A. S. Metz
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- * E-mail:
| |
Collapse
|
21
|
Roth A, Kyzar E, Cachat J, Stewart AM, Green J, Gaikwad S, O’Leary TP, Tabakoff B, Brown RE, Kalueff AV. Potential translational targets revealed by linking mouse grooming behavioral phenotypes to gene expression using public databases. Prog Neuropsychopharmacol Biol Psychiatry 2013; 40:312-25. [PMID: 23123364 PMCID: PMC4141078 DOI: 10.1016/j.pnpbp.2012.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/04/2012] [Accepted: 10/23/2012] [Indexed: 11/18/2022]
Abstract
Rodent self-grooming is an important, evolutionarily conserved behavior, highly sensitive to pharmacological and genetic manipulations. Mice with aberrant grooming phenotypes are currently used to model various human disorders. Therefore, it is critical to understand the biology of grooming behavior, and to assess its translational validity to humans. The present in-silico study used publicly available gene expression and behavioral data obtained from several inbred mouse strains in the open-field, light-dark box, elevated plus- and elevated zero-maze tests. As grooming duration differed between strains, our analysis revealed several candidate genes with significant correlations between gene expression in the brain and grooming duration. The Allen Brain Atlas, STRING, GoMiner and Mouse Genome Informatics databases were used to functionally map and analyze these candidate mouse genes against their human orthologs, assessing the strain ranking of their expression and the regional distribution of expression in the mouse brain. This allowed us to identify an interconnected network of candidate genes (which have expression levels that correlate with grooming behavior), display altered patterns of expression in key brain areas related to grooming, and underlie important functions in the brain. Collectively, our results demonstrate the utility of large-scale, high-throughput data-mining and in-silico modeling for linking genomic and behavioral data, as well as their potential to identify novel neural targets for complex neurobehavioral phenotypes, including grooming.
Collapse
Affiliation(s)
- Andrew Roth
- Department of Pharmacology and Neuroscience Program, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Evan Kyzar
- Department of Pharmacology and Neuroscience Program, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jonathan Cachat
- Department of Pharmacology and Neuroscience Program, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Adam Michael Stewart
- Department of Pharmacology and Neuroscience Program, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jeremy Green
- Department of Pharmacology and Neuroscience Program, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Siddharth Gaikwad
- Department of Pharmacology and Neuroscience Program, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Timothy P. O’Leary
- Department of Psychology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Boris Tabakoff
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Richard E. Brown
- Department of Psychology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Allan V. Kalueff
- Department of Pharmacology and Neuroscience Program, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- ZENEREI Institute, Slidell, LA 70458, USA
| |
Collapse
|