1
|
Ijomone OK, Oria RS, Ijomone OM, Aschner M, Bornhorst J. Dopaminergic Perturbation in the Aetiology of Neurodevelopmental Disorders. Mol Neurobiol 2025; 62:2420-2434. [PMID: 39110391 PMCID: PMC11772124 DOI: 10.1007/s12035-024-04418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 08/01/2024] [Indexed: 01/28/2025]
Abstract
Brain development may be influenced by both genetic and environmental factors, with potential consequences that may last through the lifespan. Alterations during neurogenesis are linked to neurodevelopmental cognitive disorders. Many neurotransmitters and their systems play a vital role in brain development, as most are present prior to synaptogenesis, and they are involved in the aetiology of many neurodevelopmental disorders. For instance, dopamine (DA) receptor expression begins at the early stages of development and matures at adolescence. The long maturation period suggests how important it is for the stabilisation and integration of neural circuits. DA and dopaminergic (DAergic) system perturbations have been implicated in the pathogenesis of several neurological and neuropsychiatric disorders. The DAergic system controls key cognitive and behavioural skills including emotional and motivated behaviour through DA as a neurotransmitter and through the DA neuron projections to major parts of the brain. In this review, we summarise the current understanding of the DAergic system's influence on neurodevelopment and its involvement in the aetiology and progression of major disorders of the developing brain including autism, schizophrenia, attention deficit hyperactivity disorder, down syndrome, and fragile X syndrome.
Collapse
Affiliation(s)
- Olayemi K Ijomone
- Food Chemistry, Faculty of Mathematics and Natural Science, University of Wuppertal, Wuppertal, Germany.
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Laje Road, Ondo, Ondo State, Nigeria.
- Department of Anatomy, University of Medical Sciences, Laje Road, Ondo, Ondo State, Nigeria.
| | - Rademene Sunday Oria
- Department of Anatomy, University of Cross River State, Okuku Campus, Cross River, Nigeria
| | - Omamuyovwi M Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Laje Road, Ondo, Ondo State, Nigeria.
- Department of Anatomy, University of Medical Sciences, Laje Road, Ondo, Ondo State, Nigeria.
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Science, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
2
|
Babii Y, Pałucha-Poniewiera A, Rafało-Ulińska A, Brański P, Pilc A. Subchronic administration of scopolamine reverses UCMS-induced behavior in mice via eEF2 protein dephosphorylation. Pharmacol Rep 2024; 76:1001-1011. [PMID: 39042346 PMCID: PMC11387448 DOI: 10.1007/s43440-024-00630-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND The cholinergic system has been increasingly linked to the pathophysiology of mood disorders such as depression, with the potential involvement of nicotinic and/or muscarinic receptors. Conventional antidepressants usually require weeks of daily dosing to achieve a full antidepressant response. In contrast, clinical studies have shown that scopolamine, a nonselective muscarinic acetylcholine receptor antagonist, can induce potent and rapid antidepressant effects, requiring only a few days of treatment. This study aimed to examine the suitability of the unpredictable chronic mild stress (UCMS) model of depression to reproduce the above scopolamine antidepressant activity patterns. METHODS Rapid and sustained antidepressant-like effects were assessed by using the splash test, sucrose preference test (SPT), tail suspension test (TST), and forced swimming test (FST) in animals undergoing the UCMS procedure and stress-naïve C57BL/6J mice. Western Blotting was used to measure tropomyosin receptor kinase B (TrkB), mammalian target of rapamycin (mTOR), eukaryotic elongation factor (eEF2) and postsynaptic density protein 95 (PSD95) levels. RESULTS Scopolamine induced antidepressant-like effects in a dose-dependent manner only after subchronic, but not single, administration in the UCMS model of depression in C57BL/6J mice without affecting locomotor activity. Specifically, scopolamine administered at a dose of 0.3 mg/kg for four consecutive days significantly reversed the UCMS-induced depressive-like behavior, such as apathy, anhedonia, and behavioral despair, while scopolamine, given at the same dose but only once, did not relieve the above symptoms. Scopolamine treatment was accompanied by eEF2 protein dephosphorylation and its subsequent reactivation in the prefrontal cortex (PFC). CONCLUSION Subchronic administration of scopolamine is needed to ameliorate UCMS-induced depressive-like behavior. The suggested mechanism of scopolamine action covers eEF2 protein activity in the PFC.
Collapse
Affiliation(s)
- Yana Babii
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland
| | - Agnieszka Pałucha-Poniewiera
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland
| | - Anna Rafało-Ulińska
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland
| | - Piotr Brański
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland
| | - Andrzej Pilc
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland.
| |
Collapse
|
3
|
Hazan S, Tauber M, Ben-Chaim Y. Voltage dependence of M2 muscarinic receptor antagonists and allosteric modulators. Biochem Pharmacol 2024; 227:116421. [PMID: 38996933 DOI: 10.1016/j.bcp.2024.116421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/12/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Muscarinic receptors are G protein-coupled receptors (GPCRs) that play a role in various physiological functions. Previous studies have shown that these receptors, along with other GPCRs, are voltage-sensitive; both their affinity toward agonists and their activation are regulated by membrane potential. To our knowledge, whether the effect of antagonists on these receptors is voltage-dependent has not yet been studied. In this study, we used Xenopus oocytes expressing the M2 muscarinic receptor (M2R) to investigate this question. Our results indicate that the potencies of two M2R antagonists, atropine and scopolamine, are voltage-dependent; they are more effective at resting potential than under depolarization. In contrast, the M2R antagonist AF-DX 386 did not exhibit voltage-dependent potency.Furthermore, we discovered that the voltage dependence of M2R activation by acetylcholine remains unchanged in the presence of two allosteric modulators, the negative modulator gallamine and the positive modulator LY2119620. These findings enhance our understanding of GPCRs' voltage dependence and may have pharmacological implications.
Collapse
Affiliation(s)
- Shimrit Hazan
- Department of Natural Sciences, The Open University of Israel, Ra'anana, Israel
| | - Merav Tauber
- Department of Natural Sciences, The Open University of Israel, Ra'anana, Israel
| | - Yair Ben-Chaim
- Department of Natural Sciences, The Open University of Israel, Ra'anana, Israel.
| |
Collapse
|
4
|
Kniffin A, Bangasser DA, Parikh V. Septohippocampal cholinergic system at the intersection of stress and cognition: Current trends and translational implications. Eur J Neurosci 2024; 59:2155-2180. [PMID: 37118907 PMCID: PMC10875782 DOI: 10.1111/ejn.15999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 04/30/2023]
Abstract
Deficits in hippocampus-dependent memory processes are common across psychiatric and neurodegenerative disorders such as depression, anxiety and Alzheimer's disease. Moreover, stress is a major environmental risk factor for these pathologies and it exerts detrimental effects on hippocampal functioning via the activation of hypothalamic-pituitary-adrenal (HPA) axis. The medial septum cholinergic neurons extensively innervate the hippocampus. Although, the cholinergic septohippocampal pathway (SHP) has long been implicated in learning and memory, its involvement in mediating the adaptive and maladaptive impact of stress on mnemonic processes remains less clear. Here, we discuss current research highlighting the contributions of cholinergic SHP in modulating memory encoding, consolidation and retrieval. Then, we present evidence supporting the view that neurobiological interactions between HPA axis stress response and cholinergic signalling impact hippocampal computations. Finally, we critically discuss potential challenges and opportunities to target cholinergic SHP as a therapeutic strategy to improve cognitive impairments in stress-related disorders. We argue that such efforts should consider recent conceptualisations on the dynamic nature of cholinergic signalling in modulating distinct subcomponents of memory and its interactions with cellular substrates that regulate the adaptive stress response.
Collapse
Affiliation(s)
- Alyssa Kniffin
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| | - Debra A. Bangasser
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA
| | - Vinay Parikh
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| |
Collapse
|
5
|
Wang L, Zhu X, Wang B, Wang Y, Wang M, Yang S, Su C, Chang J, Zhu B. Design, Synthesis, and Activity Evaluation of Fluorine-Containing Scopolamine Analogues as Potential Antidepressants. J Med Chem 2024; 67:5391-5420. [PMID: 38354305 DOI: 10.1021/acs.jmedchem.3c01970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
This study aimed to develop novel rapid-acting antidepressants with sustained efficacy and favorable safety profiles. We designed and synthesized a series of fluorine-containing scopolamine analogues and evaluated their antidepressant potential. In vitro cytotoxicity assays showed that most of these compounds exhibited minimal toxicity against neuronal and non-neuronal mammalian cell lines (IC50 > 100 μM). The antidepressant activities of the compounds were evaluated using the tail suspension test, and S-3a was identified as a lead compound with potent and sustained antidepressant effects. Behaviorally, S-3a alleviated depressive symptoms in mice and displayed a higher cognitive safety margin than scopolamine. Toxicological assessments confirmed S-3a's safety, while pharmacokinetics showed a rapid clearance (half-life: 16.6 min). Mechanistically, S-3a antagonized M1 receptors and elevated BDNF levels, suggesting its potential as an antidepressant for further exploration.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xushuo Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bo Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yijing Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengqi Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shuping Yang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chenhe Su
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bo Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
6
|
Wu J, Li X, Zhang Q, Li J, Cui R, Li X. Differential effects of intra-RMTg infusions of pilocarpine or 4-DAMP on regulating depression- and anxiety-like behaviors. Behav Brain Res 2024; 462:114833. [PMID: 38220059 DOI: 10.1016/j.bbr.2023.114833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
Depression and anxiety are associated with dysfunction of the mesolimbic dopamine system. The rostromedial tegmental nucleus (RMTg) is predominantly composed of GABAergic neurons that exhibit dense projections and strongly inhibit mesolimbic dopaminergic neurons, proposed as a major "brake" for the system. Consequently, the RMTg may be a crucial brain region for regulating these emotions. The central cholinergic system, particularly the muscarinic receptors, plays an important regulatory role in depression and anxiety. M3 muscarinic receptors are distributed on GABAergic neurons in the RMTg, but their involvement in the regulation of depression and anxiety remains uncertain. This study aimed to examine the effects of RMTg M3 muscarinic receptors on regulating depression- and anxiety-like behaviors in adult male Wistar rats, as assessed through the forced swim, tail suspension, and elevated plus maze tests. The results showed that intra-RMTg injections of the M1/M3 muscarinic receptors agonist, pilocarpine (3, 10, and 30 μg/side), or the M3 muscarinic receptors antagonist, 4-DAMP (0.5, 1, and 2 μg/side), did not alter the immobility time in the forced swim and tail suspension tests. Additionally, pilocarpine (30 μg/side) decreased time spent in open arms and increased time in closed arms in the elevated plus maze; while 4-DAMP (1 and 2 μg/side) played the opposite role by increasing time spent in open arms and decreasing time in closed arms. These findings suggest that RMTg M3 muscarinic receptors have differential effects on regulating depression- and anxiety-like behaviors. Enhancing or inhibiting these receptors can produce anxiogenic or anxiolytic effects, but have no impact on depression-like behavior. Therefore, RMTg M3 muscarinic receptors are involved in regulating anxiety and may be a potential therapeutic target for anxiolytic drugs.
Collapse
Affiliation(s)
- Jing Wu
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China; Faculty of Education, Henan Normal University, Xinxiang, China
| | - Xuhong Li
- Department of Education, Lyuliang University, Lyuliang, China
| | - Qi Zhang
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China
| | - Jiaxiang Li
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China
| | - Ruisi Cui
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China
| | - Xinwang Li
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China.
| |
Collapse
|
7
|
Hinchcliffe JK, Stuart SA, Wood CM, Bartlett J, Kamenish K, Arban R, Thomas CW, Selimbeyoglu A, Hurley S, Hengerer B, Gilmour G, Robinson ES. Rapid-acting antidepressant drugs modulate affective bias in rats. Sci Transl Med 2024; 16:eadi2403. [PMID: 38198569 PMCID: PMC7615567 DOI: 10.1126/scitranslmed.adi2403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
How rapid-acting antidepressants (RAADs), such as ketamine, induce immediate and sustained improvements in mood in patients with major depressive disorder (MDD) is poorly understood. A core feature of MDD is the prevalence of cognitive processing biases associated with negative affective states, and the alleviation of negative affective biases may be an index of response to drug treatment. Here, we used an affective bias behavioral test in rats, based on an associative learning task, to investigate the effects of RAADs. To generate an affective bias, animals learned to associate two different digging substrates with a food reward in the presence or absence of an affective state manipulation. A choice between the two reward-associated digging substrates was used to quantify the affective bias generated. Acute treatment with the RAADs ketamine, scopolamine, or psilocybin selectively attenuated a negative affective bias in the affective bias test. Low, but not high, doses of ketamine and psilocybin reversed the valence of the negative affective bias 24 hours after RAAD treatment. Only treatment with psilocybin, but not ketamine or scopolamine, led to a positive affective bias that was dependent on new learning and memory formation. The relearning effects of ketamine were dependent on protein synthesis localized to the rat medial prefrontal cortex and could be modulated by cue reactivation, consistent with experience-dependent neural plasticity. These findings suggest a neuropsychological mechanism that may explain both the acute and sustained effects of RAADs, potentially linking their effects on neural plasticity with affective bias modulation in a rodent model.
Collapse
Affiliation(s)
- Justyna K Hinchcliffe
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, Bristol, BS8 1TD, UK
| | - Sarah A Stuart
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, Bristol, BS8 1TD, UK
| | - Christian M Wood
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB3 2DY, UK
| | - Julia Bartlett
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, Bristol, BS8 1TD, UK
| | - Katie Kamenish
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, Bristol, BS8 1TD, UK
| | - Roberto Arban
- CNS Diseases Research, Boehringer Ingelheim GmbH & Co. KG, Biberach an der Riss, Germany
| | | | | | | | - Bastian Hengerer
- CNS Diseases Research, Boehringer Ingelheim GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Emma S.J. Robinson
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, Bristol, BS8 1TD, UK
| |
Collapse
|
8
|
Mamelak M. Depression and the Glutamate/GABA-Glutamine Cycle. Curr Neuropharmacol 2024; 23:75-84. [PMID: 39150032 PMCID: PMC11519819 DOI: 10.2174/1570159x22666240815120244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 08/17/2024] Open
Abstract
Many features of major depressive disorder are mirrored in rodent models of psychological stress. These models have been used to examine the relationship between the activation of the hypothalamic- pituitary axis in response to stress, the development of oxidative stress and neuroinflammation, the dominance of cholinergic neurotransmission and the associated increase in REM sleep pressure. Rodent models have also provided valuable insights into the impairment of glycolysis and brain glucose utilization by the brain under stress, the resulting decrease in brain energy production and the reduction in glutamate/GABA-glutamine cycling. The rapidly acting antidepressants, scopolamine, ketamine and ECT, all raise extracellular glutamate and scopolamine and ketamine have specifically been shown to increase glutamate/GABA-glutamine cycling in men and rodents with corresponding short-term relief of depression. The nightly use of gammahydroxybutyrate (GHB) may achieve more permanent results and may even act prophylactically to prevent the development or recurrence of depression. GHB is a GABAB agonist and restores the normal balance between cholinergic and monoaminergic neurotransmission by inhibiting cholinergic neurotransmission. It relieves REM sleep pressure. GHB's metabolism generates NADPH, a key antioxidant cofactor. Its metabolism also generates succinate, the tricarboxylic acid cycle intermediate, to provide energy to the cell and to synthesize glutamate. In both animals and man, GHB increases the level of brain glutamate.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, Baycrest Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Loeffler DA. Approaches for Increasing Cerebral Efflux of Amyloid-β in Experimental Systems. J Alzheimers Dis 2024; 100:379-411. [PMID: 38875041 PMCID: PMC11307100 DOI: 10.3233/jad-240212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/16/2024]
Abstract
Amyloid protein-β (Aβ) concentrations are increased in the brain in both early onset and late onset Alzheimer's disease (AD). In early onset AD, cerebral Aβ production is increased and its clearance is decreased, while increased Aβ burden in late onset AD is due to impaired clearance. Aβ has been the focus of AD therapeutics since development of the amyloid hypothesis, but efforts to slow AD progression by lowering brain Aβ failed until phase 3 trials with the monoclonal antibodies lecanemab and donanemab. In addition to promoting phagocytic clearance of Aβ, antibodies lower cerebral Aβ by efflux of Aβ-antibody complexes across the capillary endothelia, dissolving Aβ aggregates, and a "peripheral sink" mechanism. Although the blood-brain barrier is the main route by which soluble Aβ leaves the brain (facilitated by low-density lipoprotein receptor-related protein-1 and ATP-binding cassette sub-family B member 1), Aβ can also be removed via the blood-cerebrospinal fluid barrier, glymphatic drainage, and intramural periarterial drainage. This review discusses experimental approaches to increase cerebral Aβ efflux via these mechanisms, clinical applications of these approaches, and findings in clinical trials with these approaches in patients with AD or mild cognitive impairment. Based on negative findings in clinical trials with previous approaches targeting monomeric Aβ, increasing the cerebral efflux of soluble Aβ is unlikely to slow AD progression if used as monotherapy. But if used as an adjunct to treatment with lecanemab or donanemab, this approach might allow greater slowing of AD progression than treatment with either antibody alone.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, USA
| |
Collapse
|
10
|
Hu X, Liu W, Yan Y, Deng H, Cai Y. Tropinone reductase: A comprehensive review on its role as the key enzyme in tropane alkaloids biosynthesis. Int J Biol Macromol 2023; 253:127377. [PMID: 37839598 DOI: 10.1016/j.ijbiomac.2023.127377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
TAs, including hyoscyamine and scopolamine, were used to treat neuromuscular disorders ranging from nerve agent poisoning to Parkinson's disease. Tropinone reductase I (TR-I; EC 1.1.1.206) catalyzed the conversion of tropinone into tropine in the biosynthesis of TAs, directing the metabolic flow towards hyoscyamine and scopolamine. Tropinone reductase II (TR-II; EC 1.1.1.236) was responsible for the conversion of tropinone into pseudotropine, diverting the metabolic flux towards calystegine A3. The regulation of metabolite flow through both branches of the TAs pathway seemed to be influenced by the enzymatic activity of both enzymes and their accessibility to the precursor tropinone. The significant interest in the utilization of metabolic engineering for the efficient production of TAs has highlighted the importance of TRs as crucial enzymes that govern both the direction of metabolic flow and the yield of products. This review discussed recent advances for the TRs sources, properties, protein structure and biocatalytic mechanisms, and a detailed overview of its crucial role in the metabolism and synthesis of TAs was summarized. Furthermore, we conducted a detailed investigation into the evolutionary origins of these two TRs. A prospective analysis of potential challenges and applications of TRs was presented.
Collapse
Affiliation(s)
- Xiaoxiang Hu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Wenjing Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yi Yan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huaxiang Deng
- Center for Synthetic Biochemistry, Institute of Synthetic Biology, Institutes of Advanced Technologies, Shenzhen, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
11
|
Chaki S, Watanabe M. mGlu2/3 receptor antagonists for depression: overview of underlying mechanisms and clinical development. Eur Arch Psychiatry Clin Neurosci 2023; 273:1451-1462. [PMID: 36715750 DOI: 10.1007/s00406-023-01561-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
Triggered by the ground-breaking finding that ketamine exerts robust and rapid-acting antidepressant effects in patients with treatment-resistant depression, glutamatergic systems have attracted attention as targets for the development of novel antidepressants. Among glutamatergic systems, group II metabotropic glutamate (mGlu) receptors, consisting of mGlu2 and mGlu3 receptors, are of interest because of their modulatory roles in glutamatergic transmission. Accumulating evidence has indicated that mGlu2/3 receptor antagonists have antidepressant-like effects in rodent models that mirror those of ketamine and that mGlu2/3 receptor antagonists also share underlying mechanisms with ketamine that are responsible for these antidepressant-like actions. Importantly, contrary to their antidepressant-like profile, preclinical studies have revealed that mGlu2/3 receptor antagonists are devoid of ketamine-like adverse effects, such as psychotomimetic-like behavior, abuse potential and neurotoxicity. Despite some discouraging results for an mGlu2/3 receptor antagonist decoglurant (classified as a negative allosteric modulator [NAM]) in patients with major depressive disorder, clinical trials of two mGlu2/3 receptor antagonists, a phase 2 trial of TS-161 (an orthosteric antagonist) and a phase 1 trial of DSP-3456 (a NAM), are presently on-going. mGlu2/3 receptors still hold promise for the development of safer and more efficacious antidepressants.
Collapse
Affiliation(s)
- Shigeyuki Chaki
- Research Headquarters, Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama, 331-9530, Japan.
| | - Mai Watanabe
- Taisho Pharmaceutical R&D Inc, 350 Mt. Kemble Avenue, Morristown, NJ, 07960, USA
| |
Collapse
|
12
|
Cai M, Zhu Y, Shanley MR, Morel C, Ku SM, Zhang H, Shen Y, Friedman AK, Han MH. HCN channel inhibitor induces ketamine-like rapid and sustained antidepressant effects in chronic social defeat stress model. Neurobiol Stress 2023; 26:100565. [PMID: 37664876 PMCID: PMC10468802 DOI: 10.1016/j.ynstr.2023.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Repeated, long-term (weeks to months) exposure to standard antidepressant medications is required to achieve treatment efficacy. In contrast, acute ketamine quickly improves mood for an extended time. Recent work implicates that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are involved in mediating ketamine's antidepressant effects. In this study, we directly targeted HCN channels and achieved ketamine-like rapid and sustained antidepressant efficacy. Our in vitro electrophysiological recordings first showed that HCN inhibitor DK-AH 269 (also called cilobradine) decreased the pathological HCN-mediated current (Ih) and abnormal hyperactivity of ventral tegmental area (VTA) dopamine (DA) neurons in a depressive-like model produced by chronic social defeat stress (CSDS). Our in vivo studies further showed that acute intra-VTA or acute systemic administration of DK-AH 269 normalized social behavior and rescued sucrose preference in CSDS-susceptible mice. The single-dose of DK-AH 269, both by intra-VTA microinfusion and intraperitoneal (ip) approaches, could produce an extended 13-day duration of antidepressant-like efficacy. Animals treated with acute DK-AH 269 spent less time immobile than vehicle-treated mice during forced swim test. A social behavioral reversal lasted up to 13 days following the acute DK-AH 269 ip injection, and this rapid and sustained antidepressant-like response is paralleled with a single-dose treatment of ketamine. This study provides a novel ion channel target for acutely acting, long-lasting antidepressant-like effects.
Collapse
Affiliation(s)
- Min Cai
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yingbo Zhu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- China Shenzhen Naowunao Network Technology Co.,Ltd., Shenzhen, Guangdong, China
| | - Mary Regis Shanley
- Department of Biological Sciences, Hunter College, Biology and Biochemistry PhD Program, Graduate Center, The City University of New York, New York, NY, USA
| | - Carole Morel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stacy M. Ku
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hongxing Zhang
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuan Shen
- Anesthesia and Brain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Allyson K. Friedman
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Orlando IF, Shine JM, Robbins TW, Rowe JB, O'Callaghan C. Noradrenergic and cholinergic systems take centre stage in neuropsychiatric diseases of ageing. Neurosci Biobehav Rev 2023; 149:105167. [PMID: 37054802 DOI: 10.1016/j.neubiorev.2023.105167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Noradrenergic and cholinergic systems are among the most vulnerable brain systems in neuropsychiatric diseases of ageing, including Alzheimer's disease, Parkinson's disease, Lewy body dementia, and progressive supranuclear palsy. As these systems fail, they contribute directly to many of the characteristic cognitive and psychiatric symptoms. However, their contribution to symptoms is not sufficiently understood, and pharmacological interventions targeting noradrenergic and cholinergic systems have met with mixed success. Part of the challenge is the complex neurobiology of these systems, operating across multiple timescales, and with non-linear changes across the adult lifespan and disease course. We address these challenges in a detailed review of the noradrenergic and cholinergic systems, outlining their roles in cognition and behaviour, and how they influence neuropsychiatric symptoms in disease. By bridging across levels of analysis, we highlight opportunities for improving drug therapies and for pursuing personalised medicine strategies.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - James M Shine
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, CB2 3EB, United Kingdom
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, CB2 0SZ, United Kingdom
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia.
| |
Collapse
|
14
|
Fang Y, Guo P, Lv L, Feng M, Wang H, Sun G, Wang S, Qian M, Chen H. Scopolamine augmentation for depressive symptoms and cognitive functions in treatment-resistant depression: A case series. Asian J Psychiatr 2023; 82:103484. [PMID: 36736107 DOI: 10.1016/j.ajp.2023.103484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Affiliation(s)
- Yu Fang
- Department of Psychiatry, The Third People's Hospital of Huzhou Municipal, The Affiliated Hospital of Huzhou University, Zhejiang, China
| | - Ping Guo
- Department of Psychiatry, The Third People's Hospital of Huzhou Municipal, The Affiliated Hospital of Huzhou University, Zhejiang, China.
| | - Liang Lv
- Department of Psychiatry, The Third People's Hospital of Huzhou Municipal, The Affiliated Hospital of Huzhou University, Zhejiang, China
| | - Min Feng
- Department of Psychiatry, The Third People's Hospital of Huzhou Municipal, The Affiliated Hospital of Huzhou University, Zhejiang, China
| | - Hong Wang
- Department of Psychiatry, The Third People's Hospital of Huzhou Municipal, The Affiliated Hospital of Huzhou University, Zhejiang, China
| | - Guilan Sun
- Department of Psychiatry, The Third People's Hospital of Huzhou Municipal, The Affiliated Hospital of Huzhou University, Zhejiang, China
| | - Shikai Wang
- Department of Psychiatry, The Third People's Hospital of Huzhou Municipal, The Affiliated Hospital of Huzhou University, Zhejiang, China
| | - Mincai Qian
- Department of Psychiatry, The Third People's Hospital of Huzhou Municipal, The Affiliated Hospital of Huzhou University, Zhejiang, China
| | - Huanxin Chen
- Key Laboratory of Psychiatry, The Third People's Hospital of Huzhou Municipal, The Affiliated Hospital of Huzhou University, Zhejiang, China
| |
Collapse
|
15
|
Jiang Y, Zou M, Wang Y, Wang Y. Nucleus accumbens in the pathogenesis of major depressive disorder: A brief review. Brain Res Bull 2023; 196:68-75. [PMID: 36889362 DOI: 10.1016/j.brainresbull.2023.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Major depressive disorder (MDD) is the most prevalent mental disorder characterized by anhedonia, loss of motivation, avolition, behavioral despair and cognitive abnormalities. Despite substantial advancements in the pathophysiology of MDD in recent years, the pathogenesis of this disorder is not fully understood. Meanwhile,the treatment of MDD with currently available antidepressants is inadequate, highlighting the urgent need for clarifying the pathophysiology of MDD and developing novel therapeutics. Extensive studies have demonstrated the involvement of nuclei such as the prefrontal cortex (PFC), hippocampus (HIP), nucleus accumbens (NAc), hypothalamus, etc., in MDD. NAc,a region critical for reward and motivation,dysregulation of its activity seems to be a hallmark of this mood disorder. In this paper, we present a review of NAc related circuits, cellular and molecular mechanisms underlying MDD and share an analysis of the gaps in current research and possible future research directions.
Collapse
Affiliation(s)
- Yajie Jiang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, China
| | - Manshu Zou
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, China
| | - Yeqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yuhong Wang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, China.
| |
Collapse
|
16
|
Xu K, Liu XN, Zhang HB, Zhu XP, Zhang XJ. Tear film instability is associated with weakened colocalization between occludin and MUC5AC in scopolamine-induced dry eye disease (DED) rats. Int Ophthalmol 2023; 43:463-473. [PMID: 35908134 DOI: 10.1007/s10792-022-02443-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Dry eye disease (DED) is a disease with tear film instability because of multiple factors. This study was conducted to explore roles of occludin and MUC5AC in tear film instability in DED rat model. METHODS A total of 20 SD rats were divided into DED group (n = 10) and normal control (NC) group (n = 10). DED rat model was established by subcutaneously injecting with scopolamine hydrobromide. Clinical examinations, including tear breakup time (tBUT), Schirmer's test and corneal fluorescein staining, were conducted to determine corneal functions. Transmission electron microscopy was used to measure the ultrastructures of corneal epithelial cells. Western blotting assay was used to identify occludin expression in corneal tissues of DED rats. Real-time PCR (RT-PCR) was performed to verify gene transcription of occludin and MUC5AC. Colocalization between occludin and MUC5AC was identified with confocal fluorescence microscopy. RESULTS Tear breakup time was significantly shorter, and corneal fluorescein staining score was predominantly higher in DED rats compared to those in normal rats (P < 0.05). Normal rats showed a steady tear secretion throughout the whole experiments, while DED rats showed a dramatic reduction on day 14. DED rats demonstrated ultrastructural damage of Golgi apparatus and endoplasmic reticulum in corneal epithelial cells. Occludin and MUC5AC expressions were significantly downregulated in corneal tissue of DED rats compared with those of normal rats (P < 0.05). Percentage of occludin-MUC5AC-colocalized corneal epithelial cells in DED rats was significantly less compared with those in normal rats (P < 0.01). CONCLUSIONS Tear film stability was damaged in scopolamine-induced DED rats because of the weakened colocalization between occludin and MUC5AC molecule. This study would provide a potential clue for the pathogenesis and a promising theoretical basis for clinical work of DED.
Collapse
Affiliation(s)
- Kun Xu
- Xi'an Center for Disease Control and Prevention, No. 599, Xiying Road, Xi'an, 710054, China. .,Xi'an No. 1 Hospital, Shaanxi Institute of Ophthalmology, Shaanxi Key Laboratory of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, The First Affiliated Hospital of Northwest University, Xi'an, China.
| | - Xian-Ning Liu
- Xi'an No. 1 Hospital, Shaanxi Institute of Ophthalmology, Shaanxi Key Laboratory of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, The First Affiliated Hospital of Northwest University, Xi'an, China
| | - Hong-Bing Zhang
- Xi'an No. 1 Hospital, Shaanxi Institute of Ophthalmology, Shaanxi Key Laboratory of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, The First Affiliated Hospital of Northwest University, Xi'an, China
| | - Xiu-Ping Zhu
- Xi'an No. 1 Hospital, Shaanxi Institute of Ophthalmology, Shaanxi Key Laboratory of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, The First Affiliated Hospital of Northwest University, Xi'an, China
| | - Xian-Jiao Zhang
- Xi'an No. 1 Hospital, Shaanxi Institute of Ophthalmology, Shaanxi Key Laboratory of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, The First Affiliated Hospital of Northwest University, Xi'an, China
| |
Collapse
|
17
|
Wang X, Zhu X, Ji X, Yang J, Zhou J. Group-Based Symptom Trajectory of Intramuscular Administration of Scopolamine Augmentation in Moderate to Severe Major Depressive Disorder: A Post-Hoc Analysis. Neuropsychiatr Dis Treat 2023; 19:1043-1053. [PMID: 37153351 PMCID: PMC10162387 DOI: 10.2147/ndt.s408794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023] Open
Abstract
Objective Developing new strategies for rapid and sustained relief of depressive symptom has been the focus of research in the field of major depressive disorder (MDD). Scopolamine exerts rapid antidepressant effect in recent years but is controversial. Therefore, we aimed to identify a sensitive patient who may respond to intramuscular injections of scopolamine added to antidepressants based on distinct trajectory patterns. Methods We analyzed longitudinal post hoc data collected from 66 MDD patients at Beijing Anding Hospital, Capital Medical University, over a 4-week period. In addition to demographics, depressive symptoms were assessed using the 16-item Quick Inventory of Depressive Symptomatology and Self-Report (QIDS-SR16) Scale and 17-item Hamilton Rating Scale for Depression (HRSD-17) following an i.m. injection of scopolamine. We explored different longitudinal patterns of depressive symptoms using a group-based trajectory model (GBTM). We used multiple logistic regression models to help identify predictors of different depressive symptom trajectories. Results A two-class GBTM was identified as optimal for classifying depressive symptoms: high/rapidly declining (39.4%) and moderate/gradually declining depression trajectories (60.6%) were distinguished based on the HRSD-17. The high/rapidly declining depression trajectory was characterized by high initial depression followed by a rapid decrease at the end of the study. The moderate/gradual decline trajectory was dominated by moderate depression and gradual decline over 4 weeks. There were no significant associations of age, gender, education, or age of onset with the two trajectory groups. Conclusion Scopolamine added to antidepressants can effectively relieve the symptoms of patients with severe depression, and it decreases faster than patients with moderate depression.
Collapse
Affiliation(s)
- Xiao Wang
- The National Clinical Research Center for Mental Disorders & Beijing Anding Hospital of Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Mental Disorders & Beijing Anding Hospital of Capital Medical University, Beijing, People’s Republic of China
| | - Xuequan Zhu
- The National Clinical Research Center for Mental Disorders & Beijing Anding Hospital of Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Mental Disorders & Beijing Anding Hospital of Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Xiao Ji
- The National Clinical Research Center for Mental Disorders & Beijing Anding Hospital of Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Mental Disorders & Beijing Anding Hospital of Capital Medical University, Beijing, People’s Republic of China
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders & Beijing Anding Hospital of Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Mental Disorders & Beijing Anding Hospital of Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
- Correspondence: Jian Yang; Jingjing Zhou, The National Clinical Research Center for Mental Disorders & Beijing Anding Hospital of Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, People’s Republic of China, Email ;
| | - Jingjing Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Anding Hospital of Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Mental Disorders & Beijing Anding Hospital of Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
18
|
Ru Q, Lu Y, Saifullah AB, Blanco FA, Yao C, Cata JP, Li DP, Tolias KF, Li L. TIAM1-mediated synaptic plasticity underlies comorbid depression-like and ketamine antidepressant-like actions in chronic pain. J Clin Invest 2022; 132:e158545. [PMID: 36519542 PMCID: PMC9753999 DOI: 10.1172/jci158545] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic pain often leads to depression, increasing patient suffering and worsening prognosis. While hyperactivity of the anterior cingulate cortex (ACC) appears to be critically involved, the molecular mechanisms underlying comorbid depressive symptoms in chronic pain remain elusive. T cell lymphoma invasion and metastasis 1 (Tiam1) is a Rac1 guanine nucleotide exchange factor (GEF) that promotes dendrite, spine, and synapse development during brain development. Here, we show that Tiam1 orchestrates synaptic structural and functional plasticity in ACC neurons via actin cytoskeleton reorganization and synaptic N-methyl-d-aspartate receptor (NMDAR) stabilization. This Tiam1-coordinated synaptic plasticity underpins ACC hyperactivity and drives chronic pain-induced depressive-like behaviors. Notably, administration of low-dose ketamine, an NMDAR antagonist emerging as a promising treatment for chronic pain and depression, induces sustained antidepressant-like effects in mouse models of chronic pain by blocking Tiam1-mediated maladaptive synaptic plasticity in ACC neurons. Our results reveal Tiam1 as a critical factor in the pathophysiology of chronic pain-induced depressive-like behaviors and the sustained antidepressant-like effects of ketamine.
Collapse
Affiliation(s)
- Qin Ru
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Yungang Lu
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Ali Bin Saifullah
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Francisco A. Blanco
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, USA
| | - Changqun Yao
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Juan P. Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - De-Pei Li
- Center for Precision Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Kimberley F. Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Lingyong Li
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
19
|
Wang S, Tang S, Huang J, Chen H. Rapid-acting antidepressants targeting modulation of the glutamatergic system: clinical and preclinical evidence and mechanisms. Gen Psychiatr 2022; 35:e100922. [PMID: 36605479 PMCID: PMC9743367 DOI: 10.1136/gpsych-2022-100922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/05/2022] [Indexed: 12/14/2022] Open
Abstract
Major depressive disorder (MDD) is a devastating mental illness that affects approximately 20% of the world's population. It is a major disease that leads to disability and suicide, causing a severe burden among communities. Currently available medications for treating MDD target the monoaminergic systems. The most prescribed medications include selective serotonin reuptake inhibitors and selective norepinephrine reuptake inhibitors. However, these medications have serious drawbacks, such as a delayed onset requiring weeks or months to reach efficacy and drug resistance, as one-third of patients are unresponsive to the medications. Therefore, it is imperative to develop novel therapies with rapid action, high efficacy and few adverse effects. The discovery of the rapid antidepressant effect of ketamine has triggered tremendous enthusiasm for studying new antidepressants that target the glutamatergic system in the central nervous system. Many agents that directly or indirectly modulate the glutamatergic system have been shown to provide rapid and lasting antidepressant action. Among these agents, ketamine, an antagonist of metabotropic glutamate 2/3 receptors, and scopolamine, an unspecific muscarinic acetylcholine receptor antagonist, have been extensively studied. In this review, we discuss the clinical and preclinical evidence supporting the antidepressant efficacy of these agents and the current understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Shikai Wang
- Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Sufang Tang
- Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Jintao Huang
- Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Huanxin Chen
- Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| |
Collapse
|
20
|
Kan HW, Peng WH, Wu CC, Wang DW, Lee MT, Lee YK, Chu TH, Ho YC. Rapid antidepressant-like effects of muscarinic receptor antagonists require BDNF-dependent signaling in the ventrolateral periaqueductal gray. Psychopharmacology (Berl) 2022; 239:3805-3818. [PMID: 36221037 DOI: 10.1007/s00213-022-06250-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/26/2022] [Indexed: 10/17/2022]
Abstract
RATIONALE Clinical reports reveal that scopolamine, an acetylcholine muscarinic receptor antagonist, exerts rapid antidepressant effects in depressed patients, but the mechanisms underlying the therapeutic effects have not been fully identified. OBJECTIVES The present study examines the cellular mechanisms by which scopolamine produces antidepressant-like effects through its action in the ventrolateral midbrain periaqueductal gray (vlPAG). METHODS We used a well-established mouse model of depression induced by chronic restraint stress (CRS) exposure for 14 days. Behaviors were tested using the forced swim test (FST), tail suspension test (TST), female urine sniffing test (FUST), novelty-suppressed feeding test (NSFT), and locomotor activity (LMA). Synaptic transmission in the vlPAG was measured by whole-cell patch-clamp recordings. IntravlPAG microinjection was used to pharmacologically verify the signaling cascades of scopolamine in the vlPAG. RESULTS The results demonstrated that intraperitoneal injection of scopolamine produced antidepressant-like effects in a dose-dependent manner without affecting locomotor activity. CRS elicited depression-like behaviors, whereas intraperitoneal injection of scopolamine alleviated CRS-induced depression-like behaviors. CRS diminished glutamatergic transmission in the vlPAG, while scopolamine reversed the above effects. Moreover, intravlPAG microinjection of the L-type voltage-dependent calcium channel (VDCC) blocker verapamil, tropomyosin-related kinase B (TrkB) receptor antagonist ANA-12, mammalian target of rapamycin complex 1 (mTORC1) inhibitor rapamycin, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA) antagonist CNQX prevented scopolamine-induced antidepressant-like effects. CONCLUSIONS Scopolamine ameliorated CRS-elicited depression-like behavior required activation of VDCC, resulting in activity-dependent release of brain-derived neurotrophic factor (BDNF), engaging the TrkB receptor and downstream mTORC1 signaling in the vlPAG.
Collapse
Affiliation(s)
- Hung-Wei Kan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan, Republic of China
| | - Wei-Hao Peng
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan, Republic of China.,School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, Republic of China
| | - Cheng-Chun Wu
- School of Medicine, College of Medicine, I-Shou University, No.8, Yida Rd., Yanchao District, Kaohsiung City, 82445, Taiwan, Republic of China
| | - Deng-Wu Wang
- School of Medicine, College of Medicine, I-Shou University, No.8, Yida Rd., Yanchao District, Kaohsiung City, 82445, Taiwan, Republic of China.,Department of Psychiatry, E-Da Hospital, Kaohsiung City, 82445, Taiwan, Republic of China
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Yung-Kuo Lee
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung City, 80284, Taiwan, Republic of China
| | - Tian-Huei Chu
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung City, 80284, Taiwan, Republic of China
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, No.8, Yida Rd., Yanchao District, Kaohsiung City, 82445, Taiwan, Republic of China.
| |
Collapse
|
21
|
Amasi-Hartoonian N, Pariante CM, Cattaneo A, Sforzini L. Understanding treatment-resistant depression using "omics" techniques: A systematic review. J Affect Disord 2022; 318:423-455. [PMID: 36103934 DOI: 10.1016/j.jad.2022.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Treatment-resistant depression (TRD) results in huge healthcare costs and poor patient clinical outcomes. Most studies have adopted a "candidate mechanism" approach to investigate TRD pathogenesis, however this is made more challenging due to the complex and heterogeneous nature of this condition. High-throughput "omics" technologies can provide a more holistic view and further insight into the underlying mechanisms involved in TRD development, expanding knowledge beyond already-identified mechanisms. This systematic review assessed the information from studies that examined TRD using hypothesis-free omics techniques. METHODS PubMed, MEDLINE, Embase, APA PsycInfo, Scopus and Web of Science databases were searched on July 2022. 37 human studies met the eligibility criteria, totalling 17,518 TRD patients, 571,402 healthy controls and 62,279 non-TRD depressed patients (including antidepressant responders and untreated MDD patients). RESULTS Significant findings were reported that implicate the role in TRD of various molecules, including polymorphisms, genes, mRNAs and microRNAs. The pathways most commonly reported by the identified studies were involved in immune system and inflammation, neuroplasticity, calcium signalling and neurotransmitters. LIMITATIONS Small sample sizes, variability in defining TRD, and heterogeneity in study design and methodology. CONCLUSIONS These findings provide insight into TRD pathophysiology, proposing future research directions for novel drug targets and potential biomarkers for clinical staging and response to antidepressants (citalopram/escitalopram in particular) and electroconvulsive therapy (ECT). Further validation is warranted in large prospective studies using standardised TRD criteria. A multi-omics and systems biology strategy with a collaborative effort will likely deliver robust findings for translation into the clinic.
Collapse
Affiliation(s)
- Nare Amasi-Hartoonian
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Department of Psychological Medicine, London, UK.
| | - Carmine Maria Pariante
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Department of Psychological Medicine, London, UK; National Institute for Health and Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, UK
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Luca Sforzini
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, Department of Psychological Medicine, London, UK
| |
Collapse
|
22
|
Are mGluR2/3 Inhibitors Potential Compounds for Novel Antidepressants? Cell Mol Neurobiol 2022:10.1007/s10571-022-01310-8. [DOI: 10.1007/s10571-022-01310-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022]
Abstract
AbstractDepression is the most common mental illness characterized by anhedonia, avolition and loss of appetite and motivation. The majority of conventional antidepressants are monoaminergic system selective inhibitors, yet the efficacies are not sufficient. Up to 30% of depressed patients are resistant to treatment with available antidepressants, underscoring the urgent need for development of novel therapeutics to meet clinical needs. Recent years, compounds acting on the glutamate system have attracted wide attention because of their strong, rapid and sustained antidepressant effects. Among them, selective inhibitors of metabotropic glutamate receptors 2 and 3 (mGluR2/3) have shown robust antidepressant benefits with fewer side-effects in both preclinical and clinical studies. Thus, we here attempt to summarize the antidepressant effects and underlying mechanisms of these inhibitors revealed in recent years as well as analyze the potential value of mGluR2/3 selective inhibitors in the treatment of depression.
Collapse
|
23
|
Basal Forebrain Cholinergic Innervation Induces Depression-Like Behaviors Through Ventral Subiculum Hyperactivation. Neurosci Bull 2022; 39:617-630. [PMID: 36342657 PMCID: PMC10073402 DOI: 10.1007/s12264-022-00962-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractMalfunction of the ventral subiculum (vSub), the main subregion controlling the output connections from the hippocampus, is associated with major depressive disorder (MDD). Although the vSub receives cholinergic innervation from the medial septum and diagonal band of Broca (MSDB), whether and how the MSDB-to-vSub cholinergic circuit is involved in MDD is elusive. Here, we found that chronic unpredictable mild stress (CUMS) induced depression-like behaviors with hyperactivation of vSub neurons, measured by c-fos staining and whole-cell patch-clamp recording. By retrograde and anterograde tracing, we confirmed the dense MSDB cholinergic innervation of the vSub. In addition, transient restraint stress in CUMS increased the level of ACh in the vSub. Furthermore, chemogenetic stimulation of this MSDB-vSub innervation in ChAT-Cre mice induced hyperactivation of vSub pyramidal neurons along with depression-like behaviors; and local infusion of atropine, a muscarinic receptor antagonist, into the vSub attenuated the depression-like behaviors induced by chemogenetic stimulation of this pathway and CUMS. Together, these findings suggest that activating the MSDB-vSub cholinergic pathway induces hyperactivation of vSub pyramidal neurons and depression-like behaviors, revealing a novel circuit underlying vSub pyramidal neuronal hyperactivation and its associated depression.
Collapse
|
24
|
Garrido E, Climent E, Marcos MD, Sancenón F, Rurack K, Martínez-Máñez R. Dualplex lateral flow assay for simultaneous scopolamine and "cannibal drug" detection based on receptor-gated mesoporous nanoparticles. NANOSCALE 2022; 14:13505-13513. [PMID: 36102017 DOI: 10.1039/d2nr03325a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report herein the design of a strip-based rapid test utilizing bio-inspired hybrid nanomaterials for the in situ and at site detection of the drug scopolamine (SCP) using a smartphone for readout, allowing SCP identification in diluted saliva down to 40 nM in less than 15 min. For this purpose, we prepared a nanosensor based on mesoporous silica nanoparticles loaded with a fluorescent reporter (rhodamine B) and functionalized with bethanechol, a potent agonist of recombinant human muscarinic acetylcholine receptor M2 (M2-AChR). M2-AChR interaction with the anchored bethanechol derivative leads to capping of the pores. The sensing mechanism relies on binding of SCP to M2-AChR resulting in pore opening and delivery of the entrapped rhodamine B reporter. Moreover, the material was incorporated into strips for lateral-flow assays coupled to smartphone readout, giving fast response time, good selectivity, and exceptional sensitivity. In an attempt to a mobile analytical test system for law enforcement services, we have also developed a dualplex lateral flow assay for SCP and 3,4-methylenedioxypyrovalerone (MDPV) also known as the so-called "cannibal drug".
Collapse
Affiliation(s)
- Eva Garrido
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, Pabellón 11, Planta 0 28029 Madrid
- Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Estela Climent
- Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM) Richard-Willstätter-Str. 11, 12489, Berlin, Germany.
| | - M Dolores Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, Pabellón 11, Planta 0 28029 Madrid
- Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, Pabellón 11, Planta 0 28029 Madrid
- Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Knut Rurack
- Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM) Richard-Willstätter-Str. 11, 12489, Berlin, Germany.
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos, 3-5, Pabellón 11, Planta 0 28029 Madrid
- Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
25
|
Navia-Pelaez JM, Silva Dias MT, Ariza Orellano LA, Campos GP, Alvarez-Leite J, Campos PP, Aggum Capettini LS. Dual effect of amitriptyline in the control of vascular tone: Direct blockade of calcium channel in smooth muscle cells and reduction of TLR4-dependent NO production in endothelial cells. Eur J Pharmacol 2022; 934:175255. [PMID: 36088982 DOI: 10.1016/j.ejphar.2022.175255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/01/2022] [Accepted: 09/05/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND PURPOSE Amitriptyline (AM) is a classical and typical tricyclic antidepressant drug. Despite its well-known effects on the nervous system, it has been described to work as a TLR4 antagonist and several clinical works suggested some unexpected cardiovascular effects. The role of amitriptyline on vascular tone is not clear, thus we hypothesized that amitriptyline has a double effect on vascular tone by both endothelial TLR4-dependent nitric oxide down-regulation and calcium channel blockade in smooth muscle cells. EXPERIMENTAL APPROACH Changes in isometric tension were recorded on a wire myograph. NO production was evaluated by fluorescence microscopy and flow cytometry in the mouse aorta and EAhy926 cells using DAF fluorescence intensity. Calcium influx was evaluated in A7r5 cells by flow cytometry. Western blot was used to analyze eNOS and nNOS phosphorylation. KEY RESULTS AM reduced PE-induced contraction by calcium influx diminution in smooth muscle cells (F/F0 = 225.6 ± 15.9 and 118.6 ± 17.6 to CT and AM, respectively). AM impaired Ach-dependent vasodilation (Emax = 95.8 ± 1.4; 78.1 ± 1.8; 60.4 ± 2.9 and -7.4 ± 1.0 for CT, 0.01, 0,1 and 1 μmol/L AM, respectively) through reduction of calcium influx and NO availability and TLR4 antagonism in a concentration-dependent manner. AM or TLR4 gene deletion significantly reduced NO production (Fluorescence = 9503 ± 871.7, 2561 ± 282, 4771 ± 728 and 1029 ± 103 to CT, AM, TLR4-/- and AM + TLR4-/-, respectively) by an increase in nNOSser852 and reduction in eNOSser1177 phosphorylation in endothelial cells. CONCLUSIONS AND IMPLICATIONS Our data show that amitriptyline impaired vascular function through two different mechanisms: blockade of TLR4 in endothelial cells and consequent decrease in NO production and calcium influx reduction in smooth muscle and endothelial cells. We also suggest, for the first time, nNOS activity reduction by AM in non-neuronal cells.
Collapse
Affiliation(s)
- Juliana Maria Navia-Pelaez
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil; Department of Medicine. University of California San Diego, Biomedical Sciences Building, Room 1081 9500 Gilman Drive, La Jolla, CA, 92093-0682, USA.
| | - Melissa Tainan Silva Dias
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Laura Alejandra Ariza Orellano
- Department of General Pathology, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil.
| | - Gianne Paul Campos
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Jacqueline Alvarez-Leite
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Paula Peixoto Campos
- Department of General Pathology, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil.
| | - Luciano Santos Aggum Capettini
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
26
|
Mineur YS, Mose TN, Vanopdenbosch L, Etherington IM, Ogbejesi C, Islam A, Pineda CM, Crouse RB, Zhou W, Thompson DC, Bentham MP, Picciotto MR. Hippocampal acetylcholine modulates stress-related behaviors independent of specific cholinergic inputs. Mol Psychiatry 2022; 27:1829-1838. [PMID: 34997190 PMCID: PMC9106825 DOI: 10.1038/s41380-021-01404-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 11/08/2022]
Abstract
Acetylcholine (ACh) levels are elevated in actively depressed subjects. Conversely, antagonism of either nicotinic or muscarinic ACh receptors can have antidepressant effects in humans and decrease stress-relevant behaviors in rodents. Consistent with a role for ACh in mediating maladaptive responses to stress, brain ACh levels increase in response to stressful challenges, whereas systemically blocking acetylcholinesterase (AChE, the primary ACh degradative enzyme) elicits depression-like symptoms in human subjects, and selectively blocking AChE in the hippocampus increases relevant behaviors in rodents. We used an ACh sensor to characterize stress-evoked ACh release, then used chemogenetic, optogenetic and pharmacological approaches to determine whether cholinergic inputs from the medial septum/diagonal bands of Broca (MSDBB) or ChAT-positive neurons intrinsic to the hippocampus mediate stress-relevant behaviors in mice. Chemogenetic inhibition or activation of MSDBB cholinergic neurons did not result in significant behavioral effects, while inhibition attenuated the behavioral effects of physostigmine. In contrast, optogenetic stimulation of septohippocampal terminals or selective chemogenetic activation of ChAT-positive inputs to hippocampus increased stress-related behaviors. Finally, stimulation of sparse ChAT-positive hippocampal neurons increased stress-related behaviors in one ChAT-Cre line, which were attenuated by local infusion of cholinergic antagonists. These studies suggest that ACh signaling results in maladaptive behavioral responses to stress if the balance of signaling is shifted toward increased hippocampal engagement.
Collapse
Affiliation(s)
- Yann S Mineur
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Tenna N Mose
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Laura Vanopdenbosch
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Ian M Etherington
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Chika Ogbejesi
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Ashraful Islam
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Cristiana M Pineda
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Richard B Crouse
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Wenliang Zhou
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - David C Thompson
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Matthew P Bentham
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA.
| |
Collapse
|
27
|
Cope ZA, Murai T, Sukoff Rizzo SJ. Emerging Electroencephalographic Biomarkers to Improve Preclinical to Clinical Translation in Alzheimer's Disease. Front Aging Neurosci 2022; 14:805063. [PMID: 35250541 PMCID: PMC8891809 DOI: 10.3389/fnagi.2022.805063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
Abstract
Continually emerging data indicate that sub-clinical, non-convulsive epileptiform activity is not only prevalent in Alzheimer's disease (AD) but is detectable early in the course of the disease and predicts cognitive decline in both humans and animal models. Epileptiform activity and other electroencephalographic (EEG) measures may hold powerful, untapped potential to improve the translational validity of AD-related biomarkers in model animals ranging from mice, to rats, and non-human primates. In this review, we will focus on studies of epileptiform activity, EEG slowing, and theta-gamma coupling in preclinical models, with particular focus on its role in cognitive decline and relevance to AD. Here, each biomarker is described in the context of the contemporary literature and recent findings in AD relevant animal models are discussed.
Collapse
Affiliation(s)
| | | | - Stacey J. Sukoff Rizzo
- Aging Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
28
|
Drug Design Targeting the Muscarinic Receptors and the Implications in Central Nervous System Disorders. Biomedicines 2022; 10:biomedicines10020398. [PMID: 35203607 PMCID: PMC8962391 DOI: 10.3390/biomedicines10020398] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
There is substantial evidence that cholinergic system function impairment plays a significant role in many central nervous system (CNS) disorders. During the past three decades, muscarinic receptors (mAChRs) have been implicated in various pathologies and have been prominent targets of drug-design efforts. However, due to the high sequence homology of the orthosteric binding site, many drug candidates resulted in limited clinical success. Although several advances in treating peripheral pathologies have been achieved, targeting CNS pathologies remains challenging for researchers. Nevertheless, significant progress has been made in recent years to develop functionally selective orthosteric and allosteric ligands targeting the mAChRs with limited side effect profiles. This review highlights past efforts and focuses on recent advances in drug design targeting these receptors for Alzheimer’s disease (AD), schizophrenia (SZ), and depression.
Collapse
|
29
|
Duan L, Fan R, Li T, Yang Z, Hu E, Yu Z, Tian J, Luo W, Zhang C. Metabolomics Analysis of the Prefrontal Cortex in a Rat Chronic Unpredictable Mild Stress Model of Depression. Front Psychiatry 2022; 13:815211. [PMID: 35370823 PMCID: PMC8965009 DOI: 10.3389/fpsyt.2022.815211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Depressive disorder is the leading cause of disability and suicidality worldwide. Metabolites are considered indicators and regulators of depression. However, the pathophysiology of the prefrontal cortex (PFC) in depression remains unclear. METHODS A chronic unpredictable mild stress (CUMS) model and a maturation rodent model of depression was used to investigate metabolic changes in the PFC. Eighteen male Sprague-Dawley rats were randomly divided into CUMS and control groups. The sucrose preference test (SPT) and forced swimming test (FST) were employed to evaluate and record depression-associated behaviors and changes in body weight (BW). High-performance liquid chromatography-tandem mass spectrometry was applied to test metabolites in rat PFC. Furthermore, principal component analysis and orthogonal partial least-squares discriminant analysis were employed to identify differentially abundant metabolites. Metabolic pathways were analyzed using MetaboAnalyst. Finally, a metabolite-protein interaction network was established to illustrate the function of differential metabolites. RESULTS SPT and FST results confirmed successful establishment of the CUMS-induced depression-like behavior model in rats. Five metabolites, including 1-methylnicotinamide, 3-methylhistidine, acetylcholine, glycerophospho-N-palmitoyl ethanolamine, α-D-mannose 1-phosphate, were identified as potential biomarkers of depression. Four pathways changed in the CUMS group. Metabolite-protein interaction analysis revealed that 10 pathways play roles in the metabolism of depression. CONCLUSION Five potential biomarkers were identified in the PFC and metabolite-protein interactions associated with metabolic pathophysiological processes were explored using the CUMS model. The results of this study will assist physicians and scientists in discovering potential diagnostic markers and novel therapeutic targets for depression.
Collapse
Affiliation(s)
- Lihua Duan
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Fan
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Teng Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoyu Yang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - En Hu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhe Yu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Tian
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Weikang Luo
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunhu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Drug Repurposing for the Management of Depression: Where Do We Stand Currently? Life (Basel) 2021; 11:life11080774. [PMID: 34440518 PMCID: PMC8398872 DOI: 10.3390/life11080774] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022] Open
Abstract
A slow rate of new drug discovery and higher costs of new drug development attracted the attention of scientists and physicians for the repurposing and repositioning of old medications. Experimental studies and off-label use of drugs have helped drive data for further studies of approving these medications. A deeper understanding of the pathogenesis of depression encourages novel discoveries through drug repurposing and drug repositioning to treat depression. In addition to reducing neurotransmitters like epinephrine and serotonin, other mechanisms such as inflammation, insufficient blood supply, and neurotoxicants are now considered as the possible involved mechanisms. Considering the mentioned mechanisms has resulted in repurposed medications to treat treatment-resistant depression (TRD) as alternative approaches. This review aims to discuss the available treatments and their progress way during repositioning. Neurotransmitters’ antagonists, atypical antipsychotics, and CNS stimulants have been studied for the repurposing aims. However, they need proper studies in terms of formulation, matching with regulatory standards, and efficacy.
Collapse
|
31
|
Teneralli RE, Kern DM, Cepeda MS, Gilbert JP, Drevets WC. Exploring real-world evidence to uncover unknown drug benefits and support the discovery of new treatment targets for depressive and bipolar disorders. J Affect Disord 2021; 290:324-333. [PMID: 34020207 DOI: 10.1016/j.jad.2021.04.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/19/2021] [Accepted: 04/25/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Major depressive and bipolar disorders are associated with impaired quality of life and high economic burden. Although progress has been made in our understanding of the underlying pathophysiology and the development of novel pharmacological treatments, a large unmet need remains for finding effective treatment options. The purpose of this study was to identify potential new mechanisms of actions or treatment targets that could inform future research and development opportunities for major depressive and bipolar disorders. METHODS A self-controlled cohort study was conducted to examine associations between 1933 medications and incidence of major depressive and bipolar disorders across four US insurance claims databases. Presence of incident depressive or bipolar disorders were captured for each patient prior to or after drug exposure and incident rate ratios were calculated. Medications that demonstrated ≥50% reduction in risk for both depressive and bipolar disorders within two or more databases were evaluated as potential treatment targets. RESULTS Eight medications met our inclusion criteria, which fell into three treatment groups: drugs used in substance use disorders; drugs that affect the cholinergic system; and drugs used for the management of cardiovascular-related conditions. LIMITATIONS This study was not designed to confirm a causal association nor inform current clinical practice. Instead, this research and the methods employed intended to be hypothesis generating and help uncover potential treatment pathways that could warrant further investigation. CONCLUSIONS Several potential drug targets that could aid further research and discovery into novel treatments for depressive and bipolar disorders were identified.
Collapse
Affiliation(s)
- Rachel E Teneralli
- Janssen Research & Development, LLC., Epidemiology, Titusville, NJ, USA.
| | - David M Kern
- Janssen Research & Development, LLC., Epidemiology, Titusville, NJ, USA
| | - M Soledad Cepeda
- Janssen Research & Development, LLC., Epidemiology, Titusville, NJ, USA
| | - James P Gilbert
- Janssen Research & Development, LLC., Observational Health and Data Analytics, Raritan, NJ, USA
| | - Wayne C Drevets
- Janssen Research & Development, LLC., Neuroscience, San Diego, CA, USA
| |
Collapse
|
32
|
Fogaça MV, Wu M, Li C, Li XY, Picciotto MR, Duman RS. Inhibition of GABA interneurons in the mPFC is sufficient and necessary for rapid antidepressant responses. Mol Psychiatry 2021; 26:3277-3291. [PMID: 33070149 PMCID: PMC8052382 DOI: 10.1038/s41380-020-00916-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 09/15/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022]
Abstract
Major depressive disorder (MDD) is associated with alterations of GABAergic interneurons, notably somatostatin (Sst) as well as parvalbumin (Pvalb), in cortical brain areas. In addition, the antidepressant effects of rapid-acting drugs are thought to occur via inhibition of GABA interneurons. However, the impact of these interneuron subtypes in affective behaviors as well as in the effects of rapid-acting antidepressants remains to be determined. Here, we used a Cre-dependent DREADD-chemogenetic approach to determine if inhibition of GABA interneurons in the mPFC of male mice is sufficient to produce antidepressant actions, and conversely if activation of these interneurons blocks the rapid and sustained antidepressant effects of scopolamine, a nonselective acetylcholine muscarinic receptor antagonist. Chemogenetic inhibition of all GABA interneurons (Gad1+), as well as Sst+ and Pvalb+ subtypes in the mPFC produced dose and time-dependent antidepressant effects in the forced swim and novelty suppressed feeding tests, and increased synaptic plasticity. In contrast, stimulation of Gad1, Sst, or Pvalb interneurons in mPFC abolished the effects of scopolamine and prevented scopolamine induction of synaptic plasticity. The results demonstrate that transient inhibition of GABA interneurons promotes synaptic plasticity that underlies rapid antidepressant responses.
Collapse
Affiliation(s)
- Manoela V. Fogaça
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06519, USA,Corresponding author: Manoela V. Fogaça, 34 Park Street, New Haven, Connecticut 06519 USA, ; , Phone: +1 (203) 974-7726
| | - Min Wu
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06519, USA
| | - Chan Li
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06519, USA
| | - Xiao-Yuan Li
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06519, USA
| | - Marina R. Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06519, USA
| | - Ronald S. Duman
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06519, USA
| |
Collapse
|
33
|
Johnson CR, Kangas BD, Jutkiewicz EM, Winger G, Bergman J, Coop A, Woods JH. Novel Antimuscarinic Antidepressant-like Compounds with Reduced Effects on Cognition. J Pharmacol Exp Ther 2021; 377:336-345. [PMID: 33712507 PMCID: PMC8140394 DOI: 10.1124/jpet.120.000337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/09/2021] [Indexed: 11/22/2022] Open
Abstract
The cholinergic nervous system has been implicated in mood disorders, evident in the fast-onset antidepressant effects of scopolamine, a potent muscarinic antagonist, in clinical studies. One prominent disadvantage of the use of scopolamine in the treatment of depression is its detrimental effects on cognition, especially as such effects might aggravate cognitive deficits that occur with depression itself. Thus, the identification of antimuscarinic drugs that are free of such detrimental effects may provide an important avenue for the development of novel therapeutics for the management of depression. The present data in rats indicate that a historical muscarinic antagonist, L-687,306, and a muscarinic antagonist of our own design, CJ2100, were as or more effective than scopolamine in antagonizing both the bradycardic effects of the muscarinic agonist arecoline in cardiovascular studies and its discriminative stimulus and rate-decreasing effects in behavioral studies. Additionally, both novel muscarinic antagonists were as effective as scopolamine in decreasing immobility in the forced swim test, a preclinical indicator of potential antidepressant activity. However, at equieffective or even larger doses, they were considerably less disruptive than scopolamine in assays of cognition-related behavior. All three drugs displayed high specificity for the mAChRs with few off-target binding sites, and CJ2100 showed modest affinity across the mAChRs when compared with L-687,306 and scopolamine. These data emphasize the dissimilar pharmacological profiles that are evident across antimuscarinic compounds and the potential utility of novel antagonists for the improved treatment of depression. SIGNIFICANCE STATEMENT: Some clinical studies with the muscarinic antagonist scopolamine document its ability to produce antidepressant effects in patients with mood disorders; however, scopolamine also has well known adverse effects on both autonomic and centrally mediated physiological functions that limit its therapeutic use. This study characterizes the cardiovascular and discriminative stimulus effects of two novel muscarinic antagonists, L-687,306 and CJ2100, that produce antidepressant-like effects in a rodent model (forced swim test) without affecting touchscreen-based cognitive performance (titrating psychomotor vigilance and delayed matching-to-position).
Collapse
Affiliation(s)
- Chad R Johnson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J., A.C.); Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (E.M.J.); Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas (G.W., J.H.W.)
| | - Brian D Kangas
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J., A.C.); Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (E.M.J.); Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas (G.W., J.H.W.)
| | - Emily M Jutkiewicz
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J., A.C.); Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (E.M.J.); Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas (G.W., J.H.W.)
| | - Gail Winger
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J., A.C.); Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (E.M.J.); Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas (G.W., J.H.W.)
| | - Jack Bergman
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J., A.C.); Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (E.M.J.); Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas (G.W., J.H.W.)
| | - Andrew Coop
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J., A.C.); Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (E.M.J.); Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas (G.W., J.H.W.)
| | - James H Woods
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J., A.C.); Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (E.M.J.); Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas (G.W., J.H.W.)
| |
Collapse
|
34
|
Somogyi G, Hlatky D, Spisák T, Spisák Z, Nyitrai G, Czurkó A. Deciphering the scopolamine challenge rat model by preclinical functional MRI. Sci Rep 2021; 11:10873. [PMID: 34035328 PMCID: PMC8149883 DOI: 10.1038/s41598-021-90273-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/07/2021] [Indexed: 11/09/2022] Open
Abstract
During preclinical drug testing, the systemic administration of scopolamine (SCO), a cholinergic antagonist, is widely used. However, it suffers important limitations, like non-specific behavioural effects partly due to its peripheral side-effects. Therefore, neuroimaging measures would enhance its translational value. To this end, in Wistar rats, we measured whisker-stimulation induced functional MRI activation after SCO, peripherally acting butylscopolamine (BSCO), or saline administration in a cross-over design. Besides the commonly used gradient-echo echo-planar imaging (GE EPI), we also used an arterial spin labeling method in isoflurane anesthesia. With the GE EPI measurement, SCO decreased the evoked BOLD response in the barrel cortex (BC), while BSCO increased it in the anterior cingulate cortex. In a second experiment, we used GE EPI and spin-echo (SE) EPI sequences in a combined (isoflurane + i.p. dexmedetomidine) anesthesia to account for anesthesia-effects. Here, we also examined the effect of donepezil. In the combined anesthesia, with the GE EPI, SCO decreased the activation in the BC and the inferior colliculus (IC). BSCO reduced the response merely in the IC. Our results revealed that SCO attenuated the evoked BOLD activation in the BC as a probable central effect in both experiments. The likely peripheral vascular actions of SCO with the given fMRI sequences depended on the type of anesthesia or its dose.
Collapse
Affiliation(s)
- Gergely Somogyi
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., POB: 27, Budapest 10, H-1475 , Hungary
| | - Dávid Hlatky
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., POB: 27, Budapest 10, H-1475 , Hungary
| | - Tamás Spisák
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., POB: 27, Budapest 10, H-1475 , Hungary.,Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Zsófia Spisák
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., POB: 27, Budapest 10, H-1475 , Hungary
| | - Gabriella Nyitrai
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., POB: 27, Budapest 10, H-1475 , Hungary
| | - András Czurkó
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., POB: 27, Budapest 10, H-1475 , Hungary.
| |
Collapse
|
35
|
Filatova EV, Shadrina MI, Slominsky PA. Major Depression: One Brain, One Disease, One Set of Intertwined Processes. Cells 2021; 10:cells10061283. [PMID: 34064233 PMCID: PMC8224372 DOI: 10.3390/cells10061283] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/18/2023] Open
Abstract
Major depressive disorder (MDD) is a heterogeneous disease affecting one out of five individuals and is the leading cause of disability worldwide. Presently, MDD is considered a multifactorial disease with various causes such as genetic susceptibility, stress, and other pathological processes. Multiple studies allowed the formulation of several theories attempting to describe the development of MDD. However, none of these hypotheses are comprehensive because none of them can explain all cases, mechanisms, and symptoms of MDD. Nevertheless, all of these theories share some common pathways, which lead us to believe that these hypotheses depict several pieces of the same big puzzle. Therefore, in this review, we provide a brief description of these theories and their strengths and weaknesses in an attempt to highlight the common mechanisms and relationships of all major theories of depression and combine them together to present the current overall picture. The analysis of all hypotheses suggests that there is interdependence between all the brain structures and various substances involved in the pathogenesis of MDD, which could be not entirely universal, but can affect all of the brain regions, to one degree or another, depending on the triggering factor, which, in turn, could explain the different subtypes of MDD.
Collapse
|
36
|
Liu S, Shi D, Sun Z, He Y, Yang J, Wang G. M2-AChR Mediates Rapid Antidepressant Effects of Scopolamine Through Activating the mTORC1-BDNF Signaling Pathway in the Medial Prefrontal Cortex. Front Psychiatry 2021; 12:601985. [PMID: 34093254 PMCID: PMC8176437 DOI: 10.3389/fpsyt.2021.601985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/06/2021] [Indexed: 01/22/2023] Open
Abstract
Background: Scopolamine, a non-selective muscarinic acetylcholine receptor (M1~5-AChR) antagonist, has rapid and robust antidepressant effects in humans and other species. However, which of the five M-AChRs mediates these therapeutic effects has not been fully identified. Several studies implicate M2-AChR as a potential antidepressant target of scopolamine. This study aimed to explore the role of M2-AChR in scopolamine's antidepressant-like effects and determine the underlying mechanisms. Methods: We used the classic novelty suppressed feeding test (NSFT), open field test (OFT) and forced swim test (FST) to observe antidepressant-related behaviors of normal rats, medial prefrontal cortex (mPFC) neuron silenced rats and M2-AChR knockdown rats treated with scopolamine. In a further experiment, the M2 cholinergic receptor antagonist methoctramine (MCT) was injected intracerebroventricularly into normal rats. Levels of mTORC1 and brain-derived neurotrophic factor (BDNF) in the mPFC of animals were analyzed by Western blotting. Results: Consistent with previous studies, mPFC was required for the antidepressant-like effects of scopolamine, and intracerebroventricular injection of MCT into rats could produce similar antidepressant-like effects. Use of AAV-shRNA to knock down M2-AChR in the mPFC resulted in the antidepressant-like effects of scopolamine being blunted. Furthermore, Western blotting demonstrated increased expression of mTORC1 signaling and BDNF in MCT-treated rats. Conclusion: Our results indicate that M2-AChR in the mPFC mediates the antidepressant-like effects of scopolamine by increasing the expression of BDNF and activating the mTORC1 signaling pathway.
Collapse
Affiliation(s)
- Shuang Liu
- The National Clinical Research Center for Mental Disorder and Beijing Key Laboratory of Mental Disorder, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Dandan Shi
- The National Clinical Research Center for Mental Disorder and Beijing Key Laboratory of Mental Disorder, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zuoli Sun
- The National Clinical Research Center for Mental Disorder and Beijing Key Laboratory of Mental Disorder, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yi He
- The National Clinical Research Center for Mental Disorder and Beijing Key Laboratory of Mental Disorder, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jian Yang
- The National Clinical Research Center for Mental Disorder and Beijing Key Laboratory of Mental Disorder, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorder and Beijing Key Laboratory of Mental Disorder, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
37
|
Bortolozzi A, Manashirov S, Chen A, Artigas F. Oligonucleotides as therapeutic tools for brain disorders: Focus on major depressive disorder and Parkinson's disease. Pharmacol Ther 2021; 227:107873. [PMID: 33915178 DOI: 10.1016/j.pharmthera.2021.107873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/05/2021] [Indexed: 12/25/2022]
Abstract
Remarkable advances in understanding the role of RNA in health and disease have expanded considerably in the last decade. RNA is becoming an increasingly important target for therapeutic intervention; therefore, it is critical to develop strategies for therapeutic modulation of RNA function. Oligonucleotides, including antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA mimic (miRNA), and anti-microRNA (antagomir) are perhaps the most direct therapeutic strategies for addressing RNA. Among other mechanisms, most oligonucleotide designs involve the formation of a hybrid with RNA that promotes its degradation by activation of endogenous enzymes such as RNase-H (e.g., ASO) or the RISC complex (e.g. RNA interference - RNAi for siRNA and miRNA). However, the use of oligonucleotides for the treatment of brain disorders is seriously compromised by two main limitations: i) how to deliver oligonucleotides to the brain compartment, avoiding the action of peripheral RNAses? and once there, ii) how to target specific neuronal populations? We review the main molecular pathways in major depressive disorder (MDD) and Parkinson's disease (PD), and discuss the challenges associated with the development of novel oligonucleotide therapeutics. We pay special attention to the use of conjugated ligand-oligonucleotide approach in which the oligonucleotide sequence is covalently bound to monoamine transporter inhibitors (e.g. sertraline, reboxetine, indatraline). This strategy allows their selective accumulation in the monoamine neurons of mice and monkeys after their intranasal or intracerebroventricular administration, evoking preclinical changes predictive of a clinical therapeutic action after knocking-down disease-related genes. In addition, recent advances in oligonucleotide therapeutic clinical trials are also reviewed.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain.
| | - Sharon Manashirov
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain; miCure Therapeutics LTD., Tel-Aviv, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Francesc Artigas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| |
Collapse
|
38
|
Jin X, Guo JL, Wang L, Zhong X, Yao WF, Gao H, Liu MY. Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatments of Alzheimer's disease: A comprehensive review. Eur J Med Chem 2021; 218:113401. [PMID: 33831779 DOI: 10.1016/j.ejmech.2021.113401] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder characterized by neuronal loss and cognitive impairment that harshly affect the elderly individuals. Currently, the available anti-AD pharmacological approaches are purely symptomatic to alleviate AD symptoms, and the curative effects of novel anti-AD drugs focused on Aβ target are disappointing. Hence, there is a tremendous need to adjust AD therapeutic targets and discover novel anti-AD agents. In AD, mitochondrial dysfunction gradually triggers neuronal death from different aspects and worsens the occurrence and progress of AD. Consequently, it has been proposed that the intervention of impaired mitochondria represents an attractive breakthrough point for AD treatments. Due to chemical diversity, poly-pharmacological activities, few adverse effects and multiple targeting, natural products (NPs) have been identified as a valuable treasure for drug discovery and development. Multiple lines of studies have scientifically proven that NPs display ameliorative benefits in AD treatment in relation to mitochondrial dysfunction. This review surveys the complicated implications for mitochondrial dysregulation and AD, and then summarizes the potentials of NPs and their underlying molecular mechanisms against AD via reducing or improving mitochondrial dysfunction. It is expected that this work may open the window to speed up the development of innovative anti-AD drugs originated from NPs and improve upcoming AD therapeutics.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Jia-Ling Guo
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Lin Wang
- Department of Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Xin Zhong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Wei-Fan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Hua Gao
- Division of Pharmacology Laboratory, National Institutes for Food and Drug Control, Beijing, China
| | - Ming-Yan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.
| |
Collapse
|
39
|
Mei L, Zhou Y, Sun Y, Liu H, Zhang D, Liu P, Shu H. Acetylcholine Muscarinic Receptors in Ventral Hippocampus Modulate Stress-Induced Anxiety-Like Behaviors in Mice. Front Mol Neurosci 2020; 13:598811. [PMID: 33384583 PMCID: PMC7769836 DOI: 10.3389/fnmol.2020.598811] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic stress exposure increases the risk of developing various neuropsychiatric illnesses. The ventral hippocampus (vHPC) is central to affective and cognitive processing and displays a high density of acetylcholine (ACh) muscarinic receptors (mAChRs). However, the precise role of vHPC mAChRs in anxiety remains to be fully investigated. In this study, we found that chronic restraint stress (CRS) induced social avoidance and anxiety-like behaviors in mice and increased mAChR expression in the vHPC. CRS increased the vHPC ACh release in behaving mice. Moreover, CRS altered the synaptic activities and enhanced neuronal activity of the vHPC neurons. Using pharmacological and viral approaches, we showed that infusing the antagonist of mAChRs or decreasing their expression in the vHPC attenuated the anxiety-like behavior and rescued the social avoidance behaviors in mice probably due to suppression of vHPC neuronal activity and its excitatory synaptic transmission. Our results suggest that the changes of neuronal activity and synaptic transmission in the vHPC mediated by mAChRs may play an important role in stress-induced anxiety-like behavior, providing new insights into the pathological mechanism and potential pharmacological target for anxiety disorders.
Collapse
Affiliation(s)
- Li Mei
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu Zhou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi Sun
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hong Liu
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dengwen Zhang
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Pingping Liu
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haihua Shu
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
40
|
Matera MG, Page CP, Calzetta L, Rogliani P, Cazzola M. Pharmacology and Therapeutics of Bronchodilators Revisited. Pharmacol Rev 2020; 72:218-252. [PMID: 31848208 DOI: 10.1124/pr.119.018150] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bronchodilators remain the cornerstone of the treatment of airway disorders such as asthma and chronic obstructive pulmonary disease (COPD). There is therefore considerable interest in understanding how to optimize the use of our existing classes of bronchodilator and in identifying novel classes of bronchodilator drugs. However, new classes of bronchodilator have proved challenging to develop because many of these have no better efficacy than existing classes of bronchodilator and often have unacceptable safety profiles. Recent research has shown that optimization of bronchodilation occurs when both arms of the autonomic nervous system are affected through antagonism of muscarinic receptors to reduce the influence of parasympathetic innervation of the lung and through stimulation of β 2-adrenoceptors (β 2-ARs) on airway smooth muscle with β 2-AR-selective agonists to mimic the sympathetic influence on the lung. This is currently achieved by use of fixed-dose combinations of inhaled long-acting β 2-adrenoceptor agonists (LABAs) and long-acting muscarinic acetylcholine receptor antagonists (LAMAs). Due to the distinct mechanisms of action of LAMAs and LABAs, the additive/synergistic effects of using these drug classes together has been extensively investigated. More recently, so-called "triple inhalers" containing fixed-dose combinations of both classes of bronchodilator (dual bronchodilation) and an inhaled corticosteroid in the same inhaler have been developed. Furthermore, a number of so-called "bifunctional drugs" having two different primary pharmacological actions in the same molecule are under development. This review discusses recent advancements in knowledge on bronchodilators and bifunctional drugs for the treatment of asthma and COPD. SIGNIFICANCE STATEMENT: Since our last review in 2012, there has been considerable research to identify novel classes of bronchodilator drugs, to further understand how to optimize the use of the existing classes of bronchodilator, and to better understand the role of bifunctional drugs in the treatment of asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- M G Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - C P Page
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - L Calzetta
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - P Rogliani
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - M Cazzola
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| |
Collapse
|
41
|
Ly C, Greb AC, Vargas MV, Duim WC, Grodzki ACG, Lein PJ, Olson DE. Transient Stimulation with Psychoplastogens Is Sufficient to Initiate Neuronal Growth. ACS Pharmacol Transl Sci 2020; 4:452-460. [PMID: 33860174 DOI: 10.1021/acsptsci.0c00065] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Indexed: 12/16/2022]
Abstract
Cortical neuron atrophy is a hallmark of depression and includes neurite retraction, dendritic spine loss, and decreased synaptic density. Psychoplastogens, small molecules capable of rapidly promoting cortical neuron growth, have been hypothesized to produce long-lasting positive effects on behavior by rectifying these deleterious structural and functional changes. Here we demonstrate that ketamine and LSD, psychoplastogens from two structurally distinct chemical classes, promote sustained growth of cortical neurons after only short periods of stimulation. Furthermore, we show that psychoplastogen-induced cortical neuron growth can be divided into two distinct epochs: an initial stimulation phase requiring TrkB activation and a growth period involving sustained mTOR and AMPA receptor activation. Our results provide important temporal details concerning the molecular mechanisms by which next-generation antidepressants produce persistent changes in cortical neuron structure, and they suggest that rapidly excreted psychoplastogens might still be effective neurotherapeutics with unique advantages over compounds like ketamine and LSD.
Collapse
Affiliation(s)
- Calvin Ly
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, Davis 95616, United States
| | - Alexandra C Greb
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, Davis 95616, United States
| | - Maxemiliano V Vargas
- Neuroscience Graduate Program, University of California, Davis, Davis, California 95618, United States
| | - Whitney C Duim
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, Davis 95616, United States
| | - Ana Cristina G Grodzki
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, California 95616, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, California 95616, United States
| | - David E Olson
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, Davis 95616, United States.,Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, 2700 Stockton Boulevard, Suite 2102, Sacramento, California 95817, United States.,Center for Neuroscience, University of California, Davis, 1544 Newton Ct, Davis, California 95618, United States
| |
Collapse
|
42
|
Converging evidence that short-active photoperiod increases acetylcholine signaling in the hippocampus. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 20:1173-1183. [PMID: 32794101 DOI: 10.3758/s13415-020-00824-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Seasonal variations in environmental light influence switches between moods in seasonal affective disorder (SAD) and bipolar disorder (BD), with depression arising during short active (SA) winter periods. Light-induced changes in behavior are also seen in healthy animals and are intensified in mice with reduced dopamine transporter expression. Specifically, decreasing the nocturnal active period (SA) of mice increases punishment perseveration and forced swim test (FST) immobility. Elevating acetylcholine with the acetylcholinesterase inhibitor physostigmine induces depression symptoms in people and increases FST immobility in mice. We used SA photoperiods and physostigmine to elevate acetylcholine prior to testing in a probabilistic learning task and the FST, including reversing subsequent deficits with nicotinic and scopolamine antagonists and targeted hippocampal adeno-associated viral administration. We confirmed that physostigmine also increases punishment sensitivity in a probabilistic learning paradigm. In addition, muscarinic and nicotinic receptor blockade attenuated both physostigmine-induced and SA-induced phenotypes. Finally, viral-mediated hippocampal expression of human AChE used to lower ACh levels blocked SA-induced elevation of FST immobility. These results indicate that increased hippocampal acetylcholine neurotransmission is necessary for the expression of SA exposure-induced behaviors. Furthermore, these studies support the potential for cholinergic treatments in depression. Taken together, these results provide evidence for hippocampal cholinergic mechanisms in contributing to seasonally depressed affective states induced by short day lengths.
Collapse
|
43
|
Wang S, Guo P, Feng M, Qian M, Shen X, Wang G. The efficacy of scopolamine for patients with Parkinson's disease and depression: Two case reports. Asian J Psychiatr 2020; 52:102107. [PMID: 32447268 DOI: 10.1016/j.ajp.2020.102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Shikai Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; The Third People's Hospital of Huzhou Municipal, Zhejiang, China
| | - Ping Guo
- The Third People's Hospital of Huzhou Municipal, Zhejiang, China
| | - Min Feng
- The Third People's Hospital of Huzhou Municipal, Zhejiang, China
| | - Mincai Qian
- The Third People's Hospital of Huzhou Municipal, Zhejiang, China
| | - Xinhua Shen
- The Third People's Hospital of Huzhou Municipal, Zhejiang, China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
44
|
Li C, Huang J, Cheng YC, Zhang YW. Traditional Chinese Medicine in Depression Treatment: From Molecules to Systems. Front Pharmacol 2020; 11:586. [PMID: 32457610 PMCID: PMC7221138 DOI: 10.3389/fphar.2020.00586] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/16/2020] [Indexed: 12/26/2022] Open
Abstract
Depression is a multigenetic or multifactorial syndrome. The central neuron system (CNS)-orientated, single target, and conventional antidepressants are insufficient and far from ideal. Traditional Chinese Medicine (TCM) has historically been used to treat depression up till today, particularly in Asia. Its holistic, multidrug, multitarget nature fits well with the therapeutic idea of systems medicine in depression treatment. Over the past two decades, although efforts have been made to understand TCM herbal antidepressants at the molecular level, many fundamental questions regarding their mechanisms of action remain to be addressed at the systems level in order to better understand the complicated herbal formulations in depression treatment. In this Mini Review, we review and discuss the mechanisms of action of herbal antidepressants and their acting targets in the pathological systems in the brain, such as monoamine neurotransmissions, hypothalamic–pituitary–adrenal (HPA) axis, neurotropic factor brain-derived neurotrophic factor (BDNF) cascade, and glutamate transmission. Some herbal molecules, constituents, and formulas are highlighted as examples to discuss their mechanisms of action and future directions for comprehensive researches at the systems level. Furthermore, we discuss pharmacological approaches to integrate the mechanism of action from the molecular level into the systems level for understanding of systems pharmacology of TCM formulations. Integration of the studies at the molecular level into the systems level not only represents a trend in TCM study but also promotes our understanding of the system-wide mechanism of action of herbal antidepressant formulations.
Collapse
Affiliation(s)
- Chan Li
- School of Life Sciences, Guangzhou University, Guangzhou, China.,Department of Pharmacology, School of Medicine Yale University, New Haven, CT, United States
| | - Junying Huang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yung-Chi Cheng
- Department of Pharmacology, School of Medicine Yale University, New Haven, CT, United States
| | - Yuan-Wei Zhang
- School of Life Sciences, Guangzhou University, Guangzhou, China.,Department of Pharmacology, School of Medicine Yale University, New Haven, CT, United States
| |
Collapse
|
45
|
Epoxide containing molecules: A good or a bad drug design approach. Eur J Med Chem 2020; 201:112327. [PMID: 32526552 DOI: 10.1016/j.ejmech.2020.112327] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022]
Abstract
Functional group modification is one of the main strategies used in drug discovery and development. Despite the controversy of being identified for many years as a biologically hazardous functional group, the introduction of an epoxide function in a structural backbone is still one of the possible modifications being implemented in drug design. In this manner, it is our intention to prove with this work that epoxides can have significant interest in medicinal chemistry, not only as anticancer agents, but also as important drugs for other pathologies. Thus, this revision paper aims to highlight the biological activity and the proposed mechanisms of action of several epoxide-containing molecules either in preclinical studies or in clinical development or even in clinical use. An overview of the chemistry of epoxides is also reported. Some of the conclusions are that effectively most of the epoxide-containing molecules referred in this work were being studied or are in the market as anticancer drugs. However, some of them in preclinical studies, were also associated with other different activities such as anti-malarial, anti-arthritic, insecticidal, antithrombotic, and selective inhibitory activity of FXIII-A (a transglutaminase). As for the epoxide-containing molecules in clinical trials, some of them are being tested for obesity and schizophrenia. Finally, drugs containing epoxide groups already in the market are mostly used for the treatment of different types of cancer, such as breast cancer and multiple myeloma. Other diseases for which the referred drugs are being used include heart failure, infections and gastrointestinal disturbs. In summary, epoxides can be a suitable option in drug design, particularly in the design of anticancer agents, and deserve to be better explored. However, and despite the promising results, it is imperative to explore the mechanisms of action of these compounds in order to have a better picture of their efficiency and safety.
Collapse
|
46
|
Witkin JM, Smith JL, Golani LK, Brooks EA, Martin AE. Involvement of muscarinic receptor mechanisms in antidepressant drug action. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 89:311-356. [PMID: 32616212 DOI: 10.1016/bs.apha.2020.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Conventional antidepressants typically require weeks of daily dosing to achieve full antidepressant response in antidepressant responders. A newly evolving group of compounds can engender more rapid response times in depressed patients. These drugs include the newly approved antidepressant (S)-ketamine (esketamine, Spravato). A seminal study by Furey and Drevets in 2006 showed antidepressant response in patients after only a few doses with the antimuscarinic drug scopolamine. Several clinical reports have generally confirmed scopolamine as a rapid-acting antidepressant. The data with scopolamine are consistent with the adrenergic/cholinergic hypothesis of mania/depression derived from clinical reports originating in the 1970s from Janowsky and colleagues. Additional support for a role for muscarinic receptors in mood disorders comes from the greater efficacy of conventional antidepressants that have relatively high levels of muscarinic receptor blocking actions (e.g., the tricyclic antidepressant amitriptyline vs the selective serotonin reuptake inhibitor fluoxetine). There appears to be appreciable overlap in the mechanisms of action of scopolamine and other rapid-acting antidepressants (ketamine) or putative rapid-acting agents (mGlu2/3 receptor antagonists) although gaps exist in the experimental literature. Current hypotheses regarding the mechanisms underlying the rapid antidepressant response to scopolamine posit an M1 receptor subtype-initiated cascade of biological events that involve the amplification of AMPA receptors. Consequent impact on brain-derived neurotrophic factor and mTor signaling pathways result in the induction of dendritic spines that enable augmented functional connectivity in brain areas regulating mood. Two major goals for research in this area focus on finding ways in which scopolamine might best be utilized for depressed patients and the discovery of alternative compounds that improve upon the efficacy and safety of scopolamine.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Witkin Consulting Group, Carmel, IN, United States; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, United States; Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States.
| | - Jodi L Smith
- Peyton Manning Children's Hospital, Ascension St. Vincent, Indianapolis, IN, United States
| | - Lalit K Golani
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | | | | |
Collapse
|
47
|
Schintu N, Zhang X, Stroth N, Mathé AA, Andrén PE, Svenningsson P. Non-dopaminergic Alterations in Depression-Like FSL Rats in Experimental Parkinsonism and L-DOPA Responses. Front Pharmacol 2020; 11:304. [PMID: 32265703 PMCID: PMC7099513 DOI: 10.3389/fphar.2020.00304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
Depression is a common comorbid condition in Parkinson’s disease (PD). Patients with depression have a two-fold increased risk to develop PD. Further, depression symptoms often precede motor symptoms in PD and are frequent at all stages of the disease. However, the influence of a depressive state on the responses to antiparkinson treatments is largely unknown. In this study, the genetically inbred depression-like flinders sensitive line (FSL) rats and control flinders resistant line (FRL) rats were studied in models of experimental parkinsonism. FSL rats showed a potentiated tremorgenic response to tacrine, a cholinesterase inhibitor used experimentally to induce 6 Hz resting tremor reminiscent of parkinsonian tremor. We also studied rats lesioned with 6-OHDA to induce hemiparkinsonism. No baseline differences in dopaminergic response to acute apomorphine or L-DOPA was found. However, following chronic treatment with L-DOPA, FRL rats developed sensitization of turning and abnormal involuntary movements (AIMs); these effects were counteracted by the anti-dyskinetic 5-HT1A agonist/D2 partial agonist sarizotan. In contrast, FSL rats did not develop sensitization of turning and only minor AIMs in response to L-DOPA treatment. The roles of several non-dopamine systems underlying this discrepancy were studied. Unexpectedly, no differences of opioid neuropeptides or serotonin markers were found between FRL and FSL rats. The marked behavioral difference between the FRL and FSL rats was paralleled with the striatal expression of the established marker, c-fos, but also the GABAergic transporter (vGAT), and a hitherto unknown marker, tamalin, that is known to regulate mGluR5 receptor function and postsynaptic organization. This study demonstrates that behavioral and transcriptional responses of non-dopaminergic systems to experimental parkinsonism and L-DOPA are modified in a genetic rat model of depression.
Collapse
Affiliation(s)
- Nicoletta Schintu
- Department of Clinical Neuroscience, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoqun Zhang
- Department of Clinical Neuroscience, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Nikolas Stroth
- Department of Clinical Neuroscience, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Aleksander A Mathé
- Department of Clinical Neuroscience, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Per E Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
48
|
Moosavyzadeh A, Mokri A, Ghaffari F, Faghihzadeh S, Azizi H, Jafari Hajati R, Naseri M. Hab-o Shefa, a Persian Medicine Compound for Maintenance Treatment of Opioid Dependence: Randomized Placebo-Controlled Clinical Trial. J Altern Complement Med 2020; 26:376-383. [PMID: 32109133 DOI: 10.1089/acm.2019.0390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objectives: The major problem in maintenance treatment of opioid use disorder is craving and relapse. The utilization of herbal compounds and complementary therapy for treatment of disease and addiction has been widely expanding. Considering the significant effect of Hab-o Shefa in detoxification phase, this clinical trial has explored the influence of this compound on maintenance treatment of opioid-dependent patients. This product is made of four herbs, including Datura stramonium L., Rheum palmatum L., Zingiber officinale Roscoe, and Acacia senegal L. Design: The authors conducted a two-group parallel randomized double-blind clinical trial on 81 opioid-dependent patients within 12 weeks. After medically assisted detoxification, participants were assigned randomly to Hab-o Shefa (n = 41) and placebo (n = 40). Outcome measures included craving assessed by craving beliefs questionnaire, self-reported opioid use, and lapse (any opioid-positive urine test) according to urinalysis and addiction severity index-lite questionnaire, retention in treatment, and depression and anxiety scores on the Hamilton's anxiety and depression scales. Results: Forty-one participants completed the study for 12 weeks, 21 subjects in the drug group and 20 subjects in the placebo group. The rates of opioid-positive urine tests and self-reported opioid use were significantly lower in Hab-o Shefa group (f = 8.41, p = 0.001). Hab-o Shefa also indicated a significant superiority over placebo in the effect of treatment by time interaction for craving (f = 5.91, p = 0.001), depression (f = 3.40, p = 0.01), and anxiety (f = 2.58, p = 0.035). The retention time was 66.6 days for drug group and 59.6 days for placebo one. Although the causes for dropping out in two groups were different, there was no significant difference (p = 0.623). The side effects of the two groups were not significantly different. Conclusion: Results indicated that Hab-o Shefa could be useful for opioid maintenance treatment, and it can also be considered as a new promising drug for prevention of craving and relapse.
Collapse
Affiliation(s)
- Abdolali Moosavyzadeh
- Department of Iranian Traditional Medicine, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Azarakhsh Mokri
- Psychiatry Department and National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Ghaffari
- School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soghrat Faghihzadeh
- Department of Biological statistics and Epidemiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Razieh Jafari Hajati
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
| | - Mohsen Naseri
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
49
|
Zhou J, Yang J, Zhu X, Zghoul T, Feng L, Chen R, Wang G. The effects of intramuscular administration of scopolamine augmentation in moderate to severe major depressive disorder: a randomized, double-blind, placebo-controlled trial. Ther Adv Psychopharmacol 2020; 10:2045125320938556. [PMID: 32655854 PMCID: PMC7331769 DOI: 10.1177/2045125320938556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Major depressive disorder (MDD) is a common affective disorder. Currently established pharmacotherapies lack rapid clinical response, thereby limiting their ability to bring instant relief to patients. A series of clinical trials has demonstrated the antidepressant effects of scopolamine, yet few have studied the effects of add-on scopolamine to currently available antidepressants. It is not known whether conventional antidepressant treatment with a 3-day scopolamine injection could speed up oral antidepressant efficacy. The main focus of this study is to detect the capacity of the rapid-onset efficacy of such a treatment option. METHODS AND ANALYSIS This study consisted of a single-centre, double-blind, three-arm randomized trial with a 4-week follow-up period. Sixty-six participants meeting entry criteria were randomly allocated to three treatment groups: a high-dose group, a low-dose group and a placebo control group. Psychiatric rating scales were administered at baseline and seven viewing points following the administration of intramuscular injections. The primary outcome measure was length of time from randomization (baseline) to early improvement. RESULTS Both primary and secondary outcome measures consistently showed no differences among the three groups. The cumulative response rate and the remission rate were 72.7% (48/66) and 47.0% (31/66). Intramuscular scopolamine treatment was relatively well tolerated. Two subjects with high-dose injections dropped out because of a drug-related side effect. CONCLUSION Contrary to our prediction, we found that, compared to placebo (0.9% saline i.m.), scopolamine was not associated with a significantly faster antidepressant response rate. TRIAL REGISTRATION ClinicalTrials.gov, NCT03131050. Registered on 18 April 2017.
Collapse
Affiliation(s)
- Jingjing Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xuequan Zhu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Tarek Zghoul
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Lei Feng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Runsen Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing 100088, China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing 100088, China
| |
Collapse
|
50
|
Boiko AS, Ivanova SA, Pozhidaev IV, Freidin MB, Osmanova DZ, Fedorenko OY, Semke AV, Bokhan NA, Wilffert B, Loonen AJM. Pharmacogenetics of tardive dyskinesia in schizophrenia: The role of CHRM1 and CHRM2 muscarinic receptors. World J Biol Psychiatry 2020; 21:72-77. [PMID: 30623717 DOI: 10.1080/15622975.2018.1548780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objectives: Acetylcholine M (muscarinic) receptors are possibly involved in tardive dyskinesia (TD). The authors tried to verify this hypothesis by testing for possible associations between two muscarinic receptor genes (CHRM1 and CHRM2) polymorphisms and TD in patients with schizophrenia.Methods: A total of 472 patients with schizophrenia were recruited. TD was assessed cross-sectionally using the Abnormal Involuntary Movement Scale. Fourteen allelic variants of CHRM1 and CHRM2 were genotyped using Applied Biosystems amplifiers (USA) and the MassARRAY System by Agena Bioscience.Results: The prevalence of the rs1824024*GG genotype of the CHRM2 gene was lower in TD patients compared to the group without it (χ2 = 6.035, p = 0.049). This suggested that this genotype has a protective effect for the development of TD (OR = 0.4, 95% CI: 0.19-0.88). When age, gender, duration of schizophrenia and dosage of antipsychotic treatment were added as covariates in regression analysis, the results did not reach statistical significance.Conclusions: This study did identify associations between CHRM2 variations and TD; the results of logistic regression analysis with covariates suggest that the association is, however, likely to be secondary to other concomitant factors.
Collapse
Affiliation(s)
- Anastasiia S Boiko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Ivan V Pozhidaev
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk State University, Tomsk, Russian Federation
| | - Maxim B Freidin
- Department of Twin Research and Genetic Epidemiology, School of Live Course Sciences, King's College London, London, United Kingdom.,Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Diana Z Osmanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk State University, Tomsk, Russian Federation
| | - Olga Yu Fedorenko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Arkadyi V Semke
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Nikolay A Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,National Research Tomsk State University, Tomsk, Russian Federation
| | - Bob Wilffert
- Groningen Research Institute of Pharmacy, Unit of PharmacoTherapy, -Epidemiology & -Economics, University of Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anton J M Loonen
- Groningen Research Institute of Pharmacy, Unit of PharmacoTherapy, -Epidemiology & -Economics, University of Groningen, Groningen, the Netherlands.,GGZ WNB, Mental health hospital, Bergen op Zoom, The Netherlands
| |
Collapse
|