1
|
Clark PJ, Migovich VM, Das S, Xi W, Kortagere S, España RA. Hypocretin Receptor 1 Blockade Early in Abstinence Prevents Incubation of Cocaine Seeking and Normalizes Dopamine Transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.30.625912. [PMID: 39651183 PMCID: PMC11623669 DOI: 10.1101/2024.11.30.625912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Abstinence from cocaine use has been shown to elicit a progressive intensification or incubation of cocaine craving/seeking that is posited to contribute to propensity for relapse. While the mechanisms underlying incubation of cocaine seeking remain elusive, considerable evidence suggests that abstinence from cocaine promotes mesolimbic dopamine adaptations that contribute to exaggerated cocaine seeking. Consequently, preventing these dopamine adaptations may reduce incubation of cocaine seeking and thereby reduce the likelihood of relapse. In the present studies, we first examined if incubation of cocaine seeking was associated with aberrant dopamine transmission in the nucleus accumbens after seven days of abstinence from intermittent access to cocaine. Given the extensive evidence that hypocretins/orexins regulate motivation for cocaine, we then examined to what extent hypocretin receptor 1 antagonism on the first day of abstinence prevented incubation of cocaine seeking and dopamine adaptations later in abstinence. Results indicated that abstinence from intermittent access to cocaine engendered robust incubation of cocaine seeking in both female and male rats. We also observed aberrant dopamine transmission, but only in rats that displayed incubation of cocaine seeking. Further, we showed that a single injection of the hypocretin receptor 1 antagonist, RTIOX-276, on the first day of abstinence prevented incubation of cocaine seeking and aberrant dopamine transmission. These findings suggest that hypocretin receptor 1 antagonism may serve as a viable therapeutic for reducing cocaine craving/seeking, thus reducing the likelihood of relapse.
Collapse
|
2
|
Wunsch AM, Hwang EK, Funke JR, Baker R, Moutier A, Milovanovic M, Green TA, Wolf ME. Retinoic acid-mediated homeostatic plasticity in the nucleus accumbens core contributes to incubation of cocaine craving. Psychopharmacology (Berl) 2024; 241:1983-2001. [PMID: 38935096 DOI: 10.1007/s00213-024-06612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/10/2024] [Indexed: 06/28/2024]
Abstract
RATIONALE Incubation of cocaine craving refers to the progressive intensification of cue-induced craving during abstinence from cocaine self-administration. We showed previously that homomeric GluA1 Ca2+-permeable AMPARs (CP-AMPAR) accumulate in excitatory synapses of nucleus accumbens core (NAcc) medium spiny neurons (MSN) after ∼1 month of abstinence and thereafter their activation is required for expression of incubation. Therefore, it is important to understand mechanisms underlying CP-AMPAR plasticity. OBJECTIVES We hypothesize that CP-AMPAR upregulation represents a retinoic acid (RA)-dependent form of homeostatic plasticity, previously described in other brain regions, in which a reduction in neuronal activity disinhibits RA synthesis, leading to GluA1 translation and CP-AMPAR synaptic insertion. We tested this using viral vectors to bidirectionally manipulate RA signaling in NAcc during abstinence following extended-access cocaine self-administration. RESULTS We used shRNA targeted to the RA degradative enzyme Cyp26b1 to increase RA signaling. This treatment accelerated incubation; rats expressed incubation on abstinence day (AD) 15, when it is not yet detected in control rats. It also accelerated CP-AMPAR synaptic insertion measured with slice physiology. CP-AMPARs were detected in Cyp26b1 shRNA-expressing MSN, but not control MSN, on AD15-18. Next, we used shRNA targeted to the major RA synthetic enzyme Aldh1a1 to reduce RA signaling. In MSN expressing Aldh1a1 shRNA, synaptic CP-AMPARs were reduced in late withdrawal (AD42-60) compared to controls. However, we did not detect an effect of this manipulation on incubated cocaine seeking (AD40). CONCLUSIONS These findings support the hypothesis that increased RA signaling during abstinence contributes to CP-AMPAR accumulation and incubation of cocaine craving.
Collapse
Affiliation(s)
- Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Eun-Kyung Hwang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
| | - Jonathan R Funke
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - Raines Baker
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Alana Moutier
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- Yecuris Corporation, Tualatin, OR, 97062, USA
| | - Mike Milovanovic
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Thomas A Green
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA.
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
3
|
Crawley AK, Sharma A, Coffey KR, West MO, Barker DJ. Nucleus accumbens shell neurons' early sensitivity to cocaine is associated with future increases in drug intake. ADDICTION NEUROSCIENCE 2023; 8:100107. [PMID: 37664219 PMCID: PMC10469398 DOI: 10.1016/j.addicn.2023.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The striatum, both dorsal and ventral, is strongly implicated in substance use disorder. Chronic consumption of abused substances, such as cocaine, can cause an oversaturation of mesostriatal dopamine, which results in alterations in the firing of striatal neurons. While most preclinical studies of drug self-administration (S-A) are focused on these alterations, individual differences in a subject's early responses to drugs can also account for substantial differences in addiction susceptibility. In this study, we modeled longitudinal pharmacokinetics using data from a previous longitudinal study (Coffey et al., 2015) and aimed to determine if firing in specific dorsal and ventral striatal subregions was subject to changes across chronic cocaine S-A, and if individual animal differences in striatal firing in response to early drug exposure correlated with increases in drug intake. We observed that the firing patterns of nucleus accumbens (NAc) core and shell neurons exhibited increasing sensitivity to cocaine over the first 6 S-A sessions and maintained a strong negative correlation between drug intake and neuronal firing rates across chronic S-A. Moreover, we observed that the early sensitivity of NAc shell neurons to cocaine correlated with future increases in drug intake. Specifically, rats whose NAc shell neurons were most inhibited by increasing levels of cocaine upon first exposure exhibited the strongest increases in cocaine intake over time. If this difference can be linked to a genetic difference, or druggable targets, it may be possible to screen for similar addiction susceptibility in humans or develop novel preemptive pharmacotherapies.
Collapse
Affiliation(s)
- Ashley K. Crawley
- Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - Anirudh Sharma
- Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Kevin R. Coffey
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle, WA, USA
| | - Mark O. West
- Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David J. Barker
- Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
4
|
Estrin DJ, Kulik JM, Beacher NJ, Pawlak AP, Klein SD, West MO. Acquired Alterations in Nucleus Accumbens Responsiveness to a Cocaine-Paired Discriminative Stimulus Preceding Rats' Daily Cocaine Consumption. ADDICTION NEUROSCIENCE 2023; 8:100121. [PMID: 37664217 PMCID: PMC10470667 DOI: 10.1016/j.addicn.2023.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Resumption of drug taking is a primary focus for substance use disorder research and can be triggered by drug-associated environmental stimuli. The Nucleus Accumbens (NAc) is a key brain region which guides motivated behavior and is implicated in resumption. There remains a pressing need to characterize NAc neurons' responsiveness to drug associated stimuli during withdrawal and abstinence. We recorded discriminative stimulus (DS) induced NAc activity via in vivo single-unit electrophysiology in rats that self-administered cocaine. Male and female rats implanted with a jugular catheter and a microwire array in NAc Core and Shell self-administered cocaine under control of a 30s auditory DS for 6 hours per session across 14 consecutive days. Rats acquired tone discrimination within 4 sessions. To exclude pharmacological effects of circulating cocaine from all neural analyses, we studied changes in DS-induced firing only for trials preceding the first infusion of cocaine in each of the 14 sessions, which were defined as "pre-drug trials." NAc neuron responses were assessed prior to tone-evoked movement onset. Responsiveness to the DS tone was exhibited throughout all sessions by the NAc Core population, but only during Early sessions by the NAc Shell population. Both Core and Shell responded selectively to the DS, i.e., more strongly on drug taking trials, or Hits, than on Missed opportunities. These findings suggest that NAc Core and Shell play distinct roles in initiating cocaine seeking prior to daily cocaine consumption, and align with reports suggesting that as drug use becomes chronic, cue-evoked activity shifts from NAc Shell to NAc Core.
Collapse
Affiliation(s)
- David J. Estrin
- Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, 413 East 69 Street, New York, NY 10021
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854
| | - Julianna M. Kulik
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854
| | - Nicholas J. Beacher
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854
- Neural Engineering Section, National Institute on Drug Abuse, 333 Cassell Drive, Baltimore, MD 21224
| | - Anthony P. Pawlak
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854
- Center of Alcohol & Substance Use Studies, University of Minnesota-Twin Cities, 75 East River Road, Minneapolis, MN 55455
- Graduate School of Applied & Professional Psychology, University of Minnesota-Twin Cities, 75 East River Road, Minneapolis, MN 55455
| | - Samuel D. Klein
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854
- Department of Psychology, University of Minnesota-Twin Cities, 75 East River Road, Minneapolis, MN 55455
| | - Mark O. West
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854
| |
Collapse
|
5
|
Alonso IP, O'Connor BM, Bryant KG, Mandalaywala RK, España RA. Incubation of cocaine craving coincides with changes in dopamine terminal neurotransmission. ADDICTION NEUROSCIENCE 2022; 3. [PMID: 36081573 PMCID: PMC9451023 DOI: 10.1016/j.addicn.2022.100029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Relapse to drug use is one of the major challenges in treating substance use disorders. Exposure to drug-related cues and contexts triggers drug craving, which drives cocaine seeking, and increases the probability of relapse. Clinical and animal studies have shown a progressive intensification of cocaine seeking and craving that develops over the course of abstinence, a phenomenon commonly referred to as incubation of cocaine craving. Although the neurobiology underlying incubation of cocaine craving has been examined – particularly within the context of glutamate plasticity– the extent to which increased cocaine craving engenders mesolimbic dopamine (DA) changes has received relatively little attention. To assess whether incubation of cocaine craving is associated with alterations in DA terminal neurotransmission in the nucleus accumbens core (NAc), we used ex vivo fast scan cyclic voltammetry in female and male rats to assess DA dynamics following short access, long access, or intermittent access to cocaine self-administration followed by 28 days of abstinence. Results indicated that both long access and intermittent access to cocaine produced robust incubation of cocaine craving, which was associated with increases in cocaine potency. In addition, intermittent access self-administration also produced a robust increase in DA uptake rate at baseline. In contrast, short access to cocaine did not engender incubation of cocaine craving, nor produce changes in DA neurotransmission. Together these observations indicate that incubation of cocaine craving coincides with changes in DA transmission, suggesting that underlying changes in mesolimbic DA signaling may contribute to the progressive intensification of drug craving that occurs across periods of abstinence.
Collapse
|
6
|
Alegre-Zurano L, Berbegal-Sáez P, Luján MÁ, Cantacorps L, Martín-Sánchez A, García-Baos A, Valverde O. Cannabidiol decreases motivation for cocaine in a behavioral economics paradigm but does not prevent incubation of craving in mice. Biomed Pharmacother 2022; 148:112708. [DOI: 10.1016/j.biopha.2022.112708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
|
7
|
Silent Synapses in Cocaine-Associated Memory and Beyond. J Neurosci 2021; 41:9275-9285. [PMID: 34759051 DOI: 10.1523/jneurosci.1559-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022] Open
Abstract
Glutamatergic synapses are key cellular sites where cocaine experience creates memory traces that subsequently promote cocaine craving and seeking. In addition to making across-the-board synaptic adaptations, cocaine experience also generates a discrete population of new synapses that selectively encode cocaine memories. These new synapses are glutamatergic synapses that lack functionally stable AMPARs, often referred to as AMPAR-silent synapses or, simply, silent synapses. They are generated de novo in the NAc by cocaine experience. After drug withdrawal, some of these synapses mature by recruiting AMPARs, contributing to the consolidation of cocaine-associated memory. After cue-induced retrieval of cocaine memories, matured silent synapses alternate between two dynamic states (AMPAR-absent vs AMPAR-containing) that correspond with the behavioral manifestations of destabilization and reconsolidation of these memories. Here, we review the molecular mechanisms underlying silent synapse dynamics during behavior, discuss their contributions to circuit remodeling, and analyze their role in cocaine-memory-driven behaviors. We also propose several mechanisms through which silent synapses can form neuronal ensembles as well as cross-region circuit engrams for cocaine-specific behaviors. These perspectives lead to our hypothesis that cocaine-generated silent synapses stand as a distinct set of synaptic substrates encoding key aspects of cocaine memory that drive cocaine relapse.
Collapse
|
8
|
Duan Y, Meng Y, Du W, Li M, Zhang J, Liang J, Li Y, Sui N, Shen F. Increased cocaine motivation in tree shrews is modulated by striatal dopamine D1 receptor-mediated upregulation of Ca v 1.2. Addict Biol 2021; 26:e13053. [PMID: 33987939 DOI: 10.1111/adb.13053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/17/2021] [Accepted: 04/29/2021] [Indexed: 12/01/2022]
Abstract
The progressively increased motivation for cocaine during abstinence is closely associated with the dysfunction of dopamine (DA) system. As DA receptors also dynamically regulate L-type calcium channels (LTCCs), in this study we examined how DA receptors (D1R or D2R) and LTCCs (Cav 1.2 or Cav 1.3) exert their influences on cocaine-seeking in a tree shrew (Tupaia belangeri chinensis) model. First, we demonstrated the 'incubation' effect by showing tree shrews exhibited a significantly higher seeking behaviour on withdrawal day (WD) 45 than on WD1. Then, we confirmed that longer abstinence period induced higher D1R expression in the nucleus accumbens (NAc). Next, we showed that LTCCs in the NAc participated in drug seeking. Moreover, Cav 1.2 expression in the NAc was increased on WD45, and disruption of the Cav 1.2 inhibited drug seeking. Finally, we found that D1R antagonist blocked the increase of Cav 1.2 on drug-seeking test. Collectively, these findings suggest that D1R-mediated upregulation of Cav 1.2 is involved in the incubation of cocaine craving.
Collapse
Affiliation(s)
- Ying Duan
- CAS Key Laboratory of Mental Health, Institute of Psychology Chinese Academy of Sciences Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Yiming Meng
- CAS Key Laboratory of Mental Health, Institute of Psychology Chinese Academy of Sciences Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Wenjie Du
- CAS Key Laboratory of Mental Health, Institute of Psychology Chinese Academy of Sciences Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Ming Li
- Department of Psychology University of Nebraska‐Lincoln Lincoln Nebraska USA
| | - Jianjun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology Chinese Academy of Sciences Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology Chinese Academy of Sciences Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Yonghui Li
- CAS Key Laboratory of Mental Health, Institute of Psychology Chinese Academy of Sciences Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology Chinese Academy of Sciences Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Fang Shen
- CAS Key Laboratory of Mental Health, Institute of Psychology Chinese Academy of Sciences Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
9
|
GluN3-Containing NMDA Receptors in the Rat Nucleus Accumbens Core Contribute to Incubation of Cocaine Craving. J Neurosci 2021; 41:8262-8277. [PMID: 34413203 DOI: 10.1523/jneurosci.0406-21.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/21/2022] Open
Abstract
Cue-induced cocaine craving progressively intensifies (incubates) after withdrawal from cocaine self-administration in rats and humans. In rats, the expression of incubation ultimately depends on Ca2+-permeable AMPARs that accumulate in synapses onto medium spiny neurons (MSNs) in the NAc core. However, the delay in their accumulation (∼1 month after drug self-administration ceases) suggests earlier waves of plasticity. This prompted us to conduct the first study of NMDAR transmission in NAc core during incubation, focusing on the GluN3 subunit, which confers atypical properties when incorporated into NMDARs, including insensitivity to Mg2+ block and Ca2+ impermeability. Whole-cell patch-clamp recordings were conducted in MSNs of adult male rats 1-68 d after discontinuing extended-access saline or cocaine self-administration. NMDAR transmission was enhanced after 5 d of cocaine withdrawal, and this persisted for at least 68 d of withdrawal. The earliest functional alterations were mediated through increased contributions of GluN2B-containing NMDARs, followed by increased contributions of GluN3-containing NMDARs. As predicted by GluN3-NMDAR incorporation, fewer MSN spines exhibited NMDAR-mediated Ca2+ entry. GluN3A knockdown in NAc core was sufficient to prevent incubation of craving, consistent with biotinylation studies showing increased GluN3A surface expression, although array tomography studies suggested that adaptations involving GluN3B also occur. Collectively, our data show that a complex cascade of NMDAR and AMPAR plasticity occurs in NAc core, potentially through a homeostatic mechanism, leading to persistent increases in cocaine cue reactivity and relapse vulnerability. This is a remarkable example of experience-dependent glutamatergic plasticity evolving over a protracted window in the adult brain.SIGNIFICANCE STATEMENT "Incubation of craving" is an animal model for the persistence of vulnerability to cue-induced relapse after prolonged drug abstinence. Incubation also occurs in human drug users. AMPAR plasticity in medium spiny neurons (MSNs) of the NAc core is critical for incubation of cocaine craving but occurs only after a delay. Here we found that AMPAR plasticity is preceded by NMDAR plasticity that is essential for incubation and involves GluN3, an atypical NMDAR subunit that markedly alters NMDAR transmission. Together with AMPAR plasticity, this represents profound remodeling of excitatory synaptic transmission onto MSNs. Given the importance of MSNs for translating motivation into action, this plasticity may explain, at least in part, the profound shifts in motivated behavior that characterize addiction.
Collapse
|
10
|
Murray CH, Gaulden AD, Kawa AB, Milovanovic M, Caccamise AJ, Funke JR, Patel S, Wolf ME. CaMKII Modulates Diacylglycerol Lipase-α Activity in the Rat Nucleus Accumbens after Incubation of Cocaine Craving. eNeuro 2021; 8:ENEURO.0220-21.2021. [PMID: 34544759 PMCID: PMC8503962 DOI: 10.1523/eneuro.0220-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 01/04/2023] Open
Abstract
Relapse is a major challenge to the treatment of substance use disorders. A progressive increase in cue-induced drug craving, termed incubation of craving, is observed after withdrawal from multiple drugs of abuse in humans and rodents. Incubation of cocaine craving involves the strengthening of excitatory synapses onto nucleus accumbens (NAc) medium spiny neurons via postsynaptic accumulation of high-conductance Ca2+-permeable AMPA receptors. This enhances reactivity to drug-associated cues and is required for the expression of incubation. Additionally, incubation of cocaine craving is associated with loss of the synaptic depression normally triggered by stimulation of metabotropic glutamate receptor 5 (mGlu5), leading to endocannabinoid production, and expressed presynaptically via cannabinoid receptor 1 activation. Previous studies have found alterations in mGlu5 and Homer proteins associated with the loss of this synaptic depression. Here we conducted coimmunoprecipitation studies to investigate associations of diacylglycerol lipase-α (DGL), which catalyzes formation of the endocannabinoid 2-arachidonylglycerol (2-AG), with mGlu5 and Homer proteins. Although these interactions were unchanged in the NAc core at incubation-relevant withdrawal times, the association of DGL with total and phosphorylated Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) and CaMKIIβ was increased. This would be predicted, based on other studies, to inhibit DGL activity and therefore 2-AG production. This was confirmed by measuring DGL enzymatic activity. However, the magnitude of DGL inhibition did not correlate with the magnitude of incubation of craving for individual rats. These results suggest that CaMKII contributes to the loss of mGlu5-dependent synaptic depression after incubation, but the functional significance of this loss remains unclear.
Collapse
Affiliation(s)
- Conor H Murray
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064-3095
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239-3098
| | - Andrew D Gaulden
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee 37240
| | - Alex B Kawa
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239-3098
| | - Mike Milovanovic
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064-3095
| | - Aaron J Caccamise
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064-3095
| | - Jonathan R Funke
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239-3098
| | - Sachin Patel
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee 37240
| | - Marina E Wolf
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064-3095
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239-3098
| |
Collapse
|
11
|
The role of circTmeff-1 in incubation of context-induced morphine craving. Pharmacol Res 2021; 170:105722. [PMID: 34116208 DOI: 10.1016/j.phrs.2021.105722] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/08/2021] [Accepted: 06/04/2021] [Indexed: 02/04/2023]
Abstract
A progressive increase in drug craving following drug exposure is an important trigger of relapse. CircularRNAs (CircRNAs), key regulators of gene expression, play an important role in neurological diseases. However, the role of circRNAs in drug craving is unclear. In the present study, we trained mice to morphine conditioned place preference (CPP) and collected the nucleus accumbens (NAc) sections on abstinence day 1 (AD1) and day 14 (AD14) for RNA-sequencing. CircTmeff-1, which was highly expressed in the NAc core, was associated with incubation of context-induced morphine craving. The gain- and loss- of function showed that circTmeff-1 was a positive regulator of incubation. Simultaneously, the expression of miR-541-5p and miR-6934-3p were down-regulated in the NAc core during the incubation period. The dual luciferase reporter, RNA pulldown, and fluorescence insitu hybridization assays confirmed that miR-541-5p and miR-6934-3p bind to circTmeff-1 selectively. Furthermore, bioinformatics and western blot analysis suggested that vesicle-associated membrane protein 1 (VAMP1) and neurofascin (NFASC), both overlapping targets of miR-541-5p and miR-6934-3p, were highly expressed during incubation. Lastly, AAV-induced down-regulation of circTmeff-1 decreased VAMP1 and NFASC expression and incubation of morphine craving. These findings suggested that circTmeff-1, a novel circRNA, promotes incubation of context-induced morphine craving by sponging miR-541/miR-6934 in the NAc core. Thus, circTmeff-1 represents a potential therapeutic target for context-induced opioid craving, following prolonged abstinence.
Collapse
|
12
|
Assis MA, Carranza PG, Ambrosio E. A "Drug-Dependent" Immune System Can Compromise Protection against Infection: The Relationships between Psychostimulants and HIV. Viruses 2021; 13:v13050722. [PMID: 33919273 PMCID: PMC8143316 DOI: 10.3390/v13050722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/31/2023] Open
Abstract
Psychostimulant use is a major comorbidity in people living with HIV, which was initially explained by them adopting risky behaviors that facilitate HIV transmission. However, the effects of drug use on the immune system might also influence this phenomenon. Psychostimulants act on peripheral immune cells even before they reach the central nervous system (CNS) and their effects on immunity are likely to influence HIV infection. Beyond their canonical activities, classic neurotransmitters and neuromodulators are expressed by peripheral immune cells (e.g., dopamine and enkephalins), which display immunomodulatory properties and could be influenced by psychostimulants. Immune receptors, like Toll-like receptors (TLRs) on microglia, are modulated by cocaine and amphetamine exposure. Since peripheral immunocytes also express TLRs, they may be similarly affected by psychostimulants. In this review, we will summarize how psychostimulants are currently thought to influence peripheral immunity, mainly focusing on catecholamines, enkephalins and TLR4, and shed light on how these drugs might affect HIV infection. We will try to shift from the classic CNS perspective and adopt a more holistic view, addressing the potential impact of psychostimulants on the peripheral immune system and how their systemic effects could influence HIV infection.
Collapse
Affiliation(s)
- María Amparo Assis
- Facultad de Ciencias Médicas, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero G4200, Argentina;
- Laboratorio de Biología Molecular, Inmunología y Microbiología, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero G4206, Argentina
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
- Correspondence:
| | - Pedro Gabriel Carranza
- Facultad de Ciencias Médicas, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero G4200, Argentina;
- Laboratorio de Biología Molecular, Inmunología y Microbiología, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero G4206, Argentina
- Facultad de Agronomía y Agroindustrias, Universidad Nacional de Santiago del Estero, Santiago del Estero G4206, Argentina
| | - Emilio Ambrosio
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| |
Collapse
|
13
|
Murray CH, Christian DT, Milovanovic M, Loweth JA, Hwang EK, Caccamise AJ, Funke JR, Wolf ME. mGlu5 function in the nucleus accumbens core during the incubation of methamphetamine craving. Neuropharmacology 2021; 186:108452. [PMID: 33444640 DOI: 10.1016/j.neuropharm.2021.108452] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
Many studies have demonstrated that negative allosteric modulators (NAM) of metabotropic glutamate receptor 5 (mGlu5) reduce cocaine and methamphetamine seeking in extinction-reinstatement animal models of addiction. Less is known about effects of mGlu5 NAMs in abstinence models, particularly for methamphetamine. We used the incubation of drug craving model, in which cue-induced craving progressively intensifies after withdrawal from drug self-administration, to conduct the first studies of the following aspects of mGlu5 function in the rat nucleus accumbens (NAc) core during abstinence from methamphetamine self-administration: 1) functionality of the major form of synaptic depression in NAc medium spiny neurons, which is induced postsynaptically via mGlu5 and expressed presynaptically via cannabinoid type 1 receptors (CB1Rs), 2) mGlu5 surface expression and physical associations between mGlu5, Homer proteins, and diacylglycerol lipase-α, and 3) the effect of systemic and intra-NAc core administration of the mGlu5 NAM 3-((2-methyl-4-)ethynyl)pyridine (MTEP) on expression of incubated methamphetamine craving. We found that mGlu5/CB1R-dependent synaptic depression was lost during the rising phase of methamphetamine incubation but then recovered, in contrast to its persistent impairment during the plateau phase of incubation of cocaine craving. Furthermore, whereas the cocaine-induced impairment was accompanied by reduced mGlu5 levels and mGlu5-Homer associations, this was not the case for methamphetamine. Systemic MTEP reduced incubated methamphetamine seeking, but also reduced inactive hole nose-pokes and locomotion, while intra-NAc core MTEP had no significant effects. These findings provide the first insight into the role of mGlu5 in the incubation of methamphetamine craving and reveal differences from incubation of cocaine craving.
Collapse
Affiliation(s)
- Conor H Murray
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Daniel T Christian
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| | - Mike Milovanovic
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| | - Jessica A Loweth
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| | - Eun-Kyung Hwang
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Aaron J Caccamise
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| | - Jonathan R Funke
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Marina E Wolf
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| |
Collapse
|
14
|
Wright KN, Wesson DW. The tubular striatum and nucleus accumbens distinctly represent reward-taking and reward-seeking. J Neurophysiol 2021; 125:166-183. [PMID: 33174477 PMCID: PMC8087377 DOI: 10.1152/jn.00495.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/16/2020] [Accepted: 11/08/2020] [Indexed: 01/14/2023] Open
Abstract
The ventral striatum regulates motivated behaviors that are essential for survival. The ventral striatum contains both the nucleus accumbens (NAc), which is well established to contribute to motivated behavior, and the adjacent tubular striatum (TuS), which is poorly understood in this context. We reasoned that these ventral striatal subregions may be uniquely specialized in their neural representation of goal-directed behavior. To test this, we simultaneously examined TuS and NAc single-unit activity as male mice engaged in a sucrose self-administration task, which included extinction and cue-induced reinstatement sessions. Although background levels of activity were comparable between regions, more TuS neurons were recruited upon reward-taking, and among recruited neurons, TuS neurons displayed greater changes in their firing during reward-taking and extinction than those in the NAc. Conversely, NAc neurons displayed greater changes in their firing during cue-reinstated reward-seeking. Interestingly, at least in the context of this behavioral paradigm, TuS neural activity predicted reward-seeking, whereas NAc activity did not. Together, by directly comparing their dynamics in several behavioral contexts, this work reveals that the NAc and TuS ventral striatum subregions distinctly represent reward-taking and reward-seeking.NEW & NOTEWORTHY The ventral striatum, considered the reward circuitry "hub," is composed of two regions: the NAc, which is well established for its role in reward processing, and the TuS, which has been largely excluded from such studies. This study provides a first step in directly contextualizing the TuS's activity in relation to that in the NAc and, by doing so, establishes a critical framework for future research seeking to better understand the brain basis for drug addiction.
Collapse
Affiliation(s)
- Katherine N Wright
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida
| |
Collapse
|
15
|
Schall TA, Wright WJ, Dong Y. Nucleus accumbens fast-spiking interneurons in motivational and addictive behaviors. Mol Psychiatry 2021; 26:234-246. [PMID: 32071384 PMCID: PMC7431371 DOI: 10.1038/s41380-020-0683-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/02/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023]
Abstract
The development of drug addiction is associated with functional adaptations within the reward circuitry, within which the nucleus accumbens (NAc) is anatomically positioned as an interface between motivational salience and behavioral output. The functional output of NAc is profoundly altered after exposure to drugs of abuse, and some of the functional changes continue to evolve during drug abstinence, contributing to numerous emotional and motivational alterations related drug taking, seeking, and relapse. As in most brain regions, the functional output of NAc is critically dependent on the dynamic interaction between excitation and inhibition. One of the most prominent sources of inhibition within the NAc arises from fast-spiking interneurons (FSIs). Each NAc FSI innervates hundreds of principal neurons, and orchestrates population activity through its powerful and sustained feedforward inhibition. While the role of NAc FSIs in the context of drug addiction remains poorly understood, emerging evidence suggests that FSIs and FSI-mediated local circuits are key targets for drugs of abuse to tilt the functional output of NAc toward a motivational state favoring drug seeking and relapse. In this review, we discuss recent findings and our conceptualization about NAc FSI-mediated regulation of motivated and cocaine-induced behaviors. We hope that the conceptual framework proposed in this review may provide a useful guidance for ongoing and future studies to determine how FSIs influence the function of NAc and related reward circuits, ultimately leading to addictive behaviors.
Collapse
Affiliation(s)
- Terra A Schall
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - William J Wright
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Yan Dong
- Departments of Neuroscience and Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
16
|
Caffino L, Verheij MMM, Roversi K, Targa G, Mottarlini F, Popik P, Nikiforuk A, Golebiowska J, Fumagalli F, Homberg JR. Hypersensitivity to amphetamine's psychomotor and reinforcing effects in serotonin transporter knockout rats: Glutamate in the nucleus accumbens. Br J Pharmacol 2020; 177:4532-4547. [PMID: 32721055 PMCID: PMC7484509 DOI: 10.1111/bph.15211] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
Background and Purpose Amphetamine (AMPH) use disorder is a serious health concern, but, surprisingly, little is known about the vulnerability to the moderate and compulsive use of this psychostimulant and its underlying mechanisms. Previous research showed that inherited serotonin transporter (SERT) down‐regulation increases the motor response to cocaine, as well as moderate (as measured during daily 1‐h self‐administration sessions) and compulsive (as measured during daily 6‐h self‐administration sessions) intake of this psychostimulant. Here, we sought to investigate whether these findings generalize to AMPH and the underlying mechanisms in the nucleus accumbens. Experimental Approach In serotonin transporter knockout (SERT−/−) and wild‐type control (SERT+/+) rats, we assessed the locomotor response to acute AMPH and i.v. AMPH self‐administration under short access (ShA: 1‐h daily sessions) and long access (LgA: 6‐h daily sessions) conditions. Twenty‐four hours after AMPH self‐administration, we analysed the expression of glutamate system components in the nucleus accumbens shell and core. Key Results We found that SERT−/− animals displayed an increased AMPH‐induced locomotor response and increased AMPH self‐administration under LgA but not ShA conditions. Further, we observed changes in the vesicular and glial glutamate transporters, NMDA and AMPA receptor subunits, and their respective postsynaptic scaffolding proteins as function of SERT genotype and AMPH exposure (baseline, ShA, and LgA), specifically in the nucleus accumbens shell. Conclusion and Implications We demonstrate that SERT gene deletion increases the psychomotor and reinforcing effects of AMPH and that the latter is potentially mediated, at least in part, by homeostatic changes in the glutamatergic synapse of the nucleus accumbens shell and/or core.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Michel M M Verheij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Karine Roversi
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Piotr Popik
- Department of Behavioural Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Agnieska Nikiforuk
- Department of Behavioural Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Golebiowska
- Department of Behavioural Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Role of nucleus accumbens core but not shell in incubation of methamphetamine craving after voluntary abstinence. Neuropsychopharmacology 2020; 45:256-265. [PMID: 31422417 PMCID: PMC6901530 DOI: 10.1038/s41386-019-0479-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022]
Abstract
We recently introduced an animal model to study incubation of drug craving after prolonged voluntary abstinence, mimicking the human condition of relapse after successful contingency management treatment. Here we studied the role of the nucleus accumbens (NAc) in this model. We trained rats to self-administer a palatable solution (sucrose 1% + maltodextrin 1%, 6 h/day, 6 days) and methamphetamine (6 h/day, 12 days). We then evaluated relapse to methamphetamine seeking after 1 and 15 days of voluntary abstinence, achieved via a discrete choice procedure between the palatable solution and methamphetamine (14 days). We used RNAscope in-situ hybridization to quantify the colabeling of the neuronal activity marker Fos, and dopamine Drd1- and Drd2-expressing medium spiny neurons (MSNs) in NAc core and shell during the incubation tests. Next, we determined the effect of pharmacological inactivation of NAc core and shell by either GABAA and GABAB agonists (muscimol + baclofen, 50 + 50 ng/side), Drd1-Drd2 antagonist (flupenthixol, 10 µg/side), or the selective Drd1 or Drd2 antagonists (SCH39166, 1.0 µg/side or raclopride, 1.0 µg/side) during the relapse tests. Incubated methamphetamine seeking after voluntary abstinence was associated with a selective increase of Fos expression in the NAc core, but not shell, and Fos was colabeled with both Drd1- and Drd2-MSNs. NAc core, but not shell, injections of muscimol + baclofen, flupenthixol, SCH39166, and raclopride reduced methamphetamine seeking after 15 days of abstinence. Together, our results suggest that dopamine transmission through Drd1 and Drd2 in NAc core is critical to the incubation of methamphetamine craving after voluntary abstinence.
Collapse
|
18
|
Sanchez V, Bakhti-Suroosh A, Chen A, Brunzell DH, Erisir A, Lynch WJ. Exercise during abstinence normalizes ultrastructural synaptic plasticity associated with nicotine-seeking following extended access self-administration. Eur J Neurosci 2019; 50:2707-2721. [PMID: 30888721 PMCID: PMC6742551 DOI: 10.1111/ejn.14408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 12/16/2022]
Abstract
Nicotine-craving progressively increases, or incubates, over abstinence following extended access self-administration. While not yet examined for nicotine, the incubation of cocaine-seeking is accompanied by changes in synaptic plasticity in the nucleus accumbens. Here, we determined whether such changes also accompany enhanced nicotine-seeking following extended access self-administration and abstinence, and whether exercise, a potential intervention for nicotine addiction, may exert its efficacy by normalizing these changes. Given that in humans, tobacco/nicotine use begins during adolescence, we used an adolescent-onset model. Nicotine-seeking was assessed in male rats following extended access nicotine or saline self-administration (23-hr/day, 10 days) and 10 days of abstinence, conditions known to induce the incubation of nicotine-seeking, using a within-session extinction/cue-induced reinstatement procedure. A subset of rats had 2-hr/day access to a running wheel during abstinence. Ultrastructural alterations of synapses in the nucleus accumbens core and shell were examined using electron microscopy. Nicotine-seeking was elevated following extended access self-administration and abstinence (in sedentary group), and levels of seeking were associated with an increase in the density of asymmetric (excitatory) and symmetric (inhibitory) synapses onto dendrites in the core, as well as longer asymmetric synapses onto spines, a marker of synaptic potentiation, in both the core and shell. Exercise normalized each of these changes; however, in the shell, exercise and nicotine similarly increased the synapse length. Together, these findings indicate an association between nicotine-seeking and synaptic plasticity in the nucleus accumbens, particularly the core, and indicate that the efficacy of exercise to reduce nicotine-seeking may be mediated by reversing these adaptations.
Collapse
Affiliation(s)
- Victoria Sanchez
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| | - Anousheh Bakhti-Suroosh
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| | - Andrew Chen
- Department of Psychology, University of Virginia, Charlottesville, Virginia
| | - Darlene H Brunzell
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville, Virginia
| | - Wendy J Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
19
|
Kawa AB, Valenta AC, Kennedy RT, Robinson TE. Incentive and dopamine sensitization produced by intermittent but not long access cocaine self-administration. Eur J Neurosci 2019; 50:2663-2682. [PMID: 30968487 PMCID: PMC6742545 DOI: 10.1111/ejn.14418] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/21/2019] [Accepted: 04/03/2019] [Indexed: 12/31/2022]
Abstract
The temporal pattern of drug use (pharmacokinetics) has a profound effect on the ability of self-administered cocaine to produce addiction-like behavior in rodents, and to change the brain. To further address this issue, we compared the effects of long access (LgA) cocaine self-administration, which is widely used to model the transition to addiction, with intermittent access (IntA), which is thought to better reflect the pattern of drug use in humans, on the ability of a single, self-administered injection of cocaine to increase dopamine (DA) overflow in the core of the nucleus accumbens (using in vivo microdialysis), and to produce addiction-like behavior. IntA experience was more effective than LgA in producing addiction-like behavior-a drug experience-dependent increase in motivation for cocaine assessed using behavioral economic procedures, and cue-induced reinstatement-despite much less total drug consumption. There were no group differences in basal levels of DA in dialysate [DA], but a single self-administered IV injection of cocaine increased [DA] in the core of the nucleus accumbens to a greater extent in rats with prior IntA experience than those with LgA or limited access experience, and the latter two groups did not differ. Furthermore, high motivation for cocaine was associated with a high [DA] response. Thus, IntA, but not LgA, produced both incentive and DA sensitization. This is consistent with the notion that a hyper-responsive dopaminergic system may contribute to the transition from casual patterns of drug use to the problematic patterns that define addiction.
Collapse
Affiliation(s)
- Alex B. Kawa
- Department of Psychology (Biopsychology Program), University of Michigan, Ann Arbor, MI, USA
| | - Alec C. Valenta
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Terry E. Robinson
- Department of Psychology (Biopsychology Program), University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Guillem K, Ahmed SH. Preference for Cocaine is Represented in the Orbitofrontal Cortex by an Increased Proportion of Cocaine Use-Coding Neurons. Cereb Cortex 2019; 28:819-832. [PMID: 28057724 DOI: 10.1093/cercor/bhw398] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/13/2016] [Indexed: 11/13/2022] Open
Abstract
Cocaine addiction is a harmful preference for drug use over and at the expense of other nondrug-related activities. Here we identify in the rat orbitofrontal cortex (OFC) a mechanism that explains individual preferences between cocaine use and an alternative, nondrug action. OFC neuronal activity was recorded while rats performed each of these 2 actions separately or while they chose between them. First, we found that these actions are encoded by 2 nonoverlapping neuronal populations and that the relative size of the cocaine population represented individual preferences. A larger relative size was only observed in cocaine-preferring individuals. Second, OFC neurons encoding a given individual's preferred action progressively fired more than other action-coding neurons few seconds before the preferred action was actually chosen, suggesting a prechoice neuronal competition for action selection. In cocaine-preferring rats, this manifested by a prechoice ramping-up activity in favor of the cocaine population. Finally, pharmacological manipulation of prechoice activity in favor of the cocaine population caused nondrug-preferring rats to shift their choice to cocaine. Overall, this study suggests that an individual preference for cocaine is represented in the OFC by a population size bias that systematically advantages cocaine use-coding neurons during prechoice competition for action selection.
Collapse
Affiliation(s)
- Karine Guillem
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France
| | - Serge H Ahmed
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France
| |
Collapse
|
21
|
Sex differences in incentive-sensitization produced by intermittent access cocaine self-administration. Psychopharmacology (Berl) 2019; 236:625-639. [PMID: 30368583 PMCID: PMC6401254 DOI: 10.1007/s00213-018-5091-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/21/2018] [Indexed: 10/28/2022]
Abstract
RATIONALE Intermittent Access (IntA) cocaine self-administration, which models intermittent patterns of cocaine use in humans during the transition to addiction, is especially effective in producing incentive-sensitization and other addiction-like behavior in male rats. However, female rats show more robust psychomotor sensitization than males, and following initial use, women develop problematic patterns of drug use more readily than men. We hypothesized, therefore, that female rats might be more susceptible to the incentive-sensitization produced by IntA experience. OBJECTIVE To assess changes in motivation for cocaine, using a behavioral economic indicator of cocaine demand ("elasticity" of demand curves), and other addiction-like behavior, as a function of IntA cocaine self-administration experience in male and female rats. RESULTS IntA experience produced a progressive increase in motivation for cocaine in both males and females, as indicated by a decrease in the elasticity of cocaine demand curves, and this persisted undiminished following 14 days of abstinence. However, IntA produced a more rapid and greater increase in motivation for cocaine (incentive-sensitization) in females than males. Females also consumed more cocaine than males, although this did not predict changes in motivation. On the other hand, there were no sex differences in the preferred level of cocaine consumption when cost was low (Q0), nor in cocaine- or cue-induced reinstatement of drug-seeking behavior. CONCLUSIONS The observation that females are more susceptible to incentive-sensitization when intermittently exposed to cocaine may provide a mechanism for the more rapid development of problematic drug use in females ("telescoping effect") reported in clinical studies.
Collapse
|
22
|
Subthalamic nucleus high frequency stimulation prevents and reverses escalated cocaine use. Mol Psychiatry 2018; 23:2266-2276. [PMID: 29880881 PMCID: PMC8276917 DOI: 10.1038/s41380-018-0080-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 03/07/2018] [Accepted: 04/04/2018] [Indexed: 01/10/2023]
Abstract
One of the key features of addiction is the escalated drug intake. The neural mechanisms involved in the transition to addiction remain to be elucidated. Since abnormal neuronal activity within the subthalamic nucleus (STN) stands as potential general neuromarker common to impulse control spectrum deficits, as observed in obsessive-compulsive disorders, the present study recorded and manipulated STN neuronal activity during the initial transition to addiction (i.e., escalation) and post-abstinence relapse (i.e., re-escalation) in rats with extended drug access. We found that low-frequency (theta and beta bands) neuronal oscillations in the STN increase with escalation of cocaine intake and that either lesion or high-frequency stimulation prevents the escalation of cocaine intake. STN-HFS also reduces re-escalation after prolonged, but not short, protracted abstinence, suggesting that STN-HFS is an effective prevention for relapse when baseline rates of self-administration have been re-established. Thus, STN dysfunctions may represent an underlying mechanism for cocaine addiction and therefore a promising target for the treatment of addiction.
Collapse
|
23
|
Schwendt M, Shallcross J, Hadad NA, Namba MD, Hiller H, Wu L, Krause EG, Knackstedt LA. A novel rat model of comorbid PTSD and addiction reveals intersections between stress susceptibility and enhanced cocaine seeking with a role for mGlu5 receptors. Transl Psychiatry 2018; 8:209. [PMID: 30291225 PMCID: PMC6173705 DOI: 10.1038/s41398-018-0265-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/22/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
PTSD is highly comorbid with cocaine use disorder (CUD), and cocaine users with PTSD + CUD are more resistant to treatment. Here we sought to develop a rat model of PTSD + CUD in order to identify the neurobiological changes underlying such comorbidity and screen potential medications for reducing cocaine seeking in the PTSD population. We utilized a predator scent stress model of PTSD, wherein rats received a single exposure to the fox pheromone 2,5-dihydro-2,4,5-trimethylthiazoline (TMT). One week after TMT exposure, stress-susceptible (susceptible), intermediate, and resilient phenotypes were detected and were consistent with behavioral, corticosterone, and gene expression profiles 3 weeks post TMT. We assessed phenotypic differences in cocaine self-administration, extinction, and cue-primed reinstatement. Susceptible rats exhibited deficits in extinction learning and increased cue-primed reinstatement that was not prevented by Ceftriaxone, an antibiotic that consistently attenuates the reinstatement of cocaine seeking. TMT-exposed resilient rats displayed increased mGlu5 gene expression in the amygdala and medial prefrontal cortex and did not display the enhanced cocaine seeking observed in susceptible rats. Combined treatment with the mGlu5 positive allosteric modulator 3-Cyano-N-(1,3-diphenyl-1 H-pyrazol-5-yl)benzamide (CDPPB), fear extinction, and ceftriaxone prevented the reinstatement of cocaine seeking in susceptible rats with fear extinction an important mediating condition. These results highlight the need for animal models of PTSD to consider stress-responsivity, as only a subset of trauma-exposed individuals develop PTSD and these individuals likely exhibit distinct neurobiological changes compared with trauma-exposed populations who are resilient to stress. This work further identifies glutamate homeostasis and mGlu5 as a target for treating relapse in comorbid PTSD-cocaine addiction.
Collapse
Affiliation(s)
- Marek Schwendt
- Psychology Department, University of Florida, Gainesville, FL, 32611, USA. .,Center for Addiction Research and Education, University of Florida, Gainesville, FL, 32610, USA.
| | - John Shallcross
- 0000 0004 1936 8091grid.15276.37Psychology Department, University of Florida, Gainesville, FL 32611 USA
| | - Natalie A. Hadad
- 0000 0004 1936 8091grid.15276.37Psychology Department, University of Florida, Gainesville, FL 32611 USA
| | - Mark D. Namba
- 0000 0004 1936 8091grid.15276.37Psychology Department, University of Florida, Gainesville, FL 32611 USA
| | - Helmut Hiller
- 0000 0004 1936 8091grid.15276.37Department of Pharmacodynamics, University of Florida, Gainesville, FL 32610 USA
| | - Lizhen Wu
- 0000 0004 1936 8091grid.15276.37Psychology Department, University of Florida, Gainesville, FL 32611 USA
| | - Eric G. Krause
- 0000 0004 1936 8091grid.15276.37Department of Pharmacodynamics, University of Florida, Gainesville, FL 32610 USA
| | - Lori A. Knackstedt
- 0000 0004 1936 8091grid.15276.37Psychology Department, University of Florida, Gainesville, FL 32611 USA ,0000 0004 1936 8091grid.15276.37Center for Addiction Research and Education, University of Florida, Gainesville, FL 32610 USA
| |
Collapse
|
24
|
Reed SJ, Lafferty CK, Mendoza JA, Yang AK, Davidson TJ, Grosenick L, Deisseroth K, Britt JP. Coordinated Reductions in Excitatory Input to the Nucleus Accumbens Underlie Food Consumption. Neuron 2018; 99:1260-1273.e4. [DOI: 10.1016/j.neuron.2018.07.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 06/14/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022]
|
25
|
Jordan CJ, Andersen SL. Working memory and salivary brain-derived neurotrophic factor as developmental predictors of cocaine seeking in male and female rats. Addict Biol 2018; 23:868-879. [PMID: 28857460 DOI: 10.1111/adb.12535] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/02/2017] [Accepted: 06/12/2017] [Indexed: 12/24/2022]
Abstract
Poor working memory is linked to future risk-taking behaviors. Lifelong risk of habitual drug use is highest in individuals who initiate use in early adolescence. We sought to determine in rats whether juvenile traits, specifically poor working memory and low salivary brain-derived neurotrophic factor (BDNF), are related to elevated cocaine taking and relapse in adolescence and adulthood. On postnatal day (P) 20, working memory was assessed using the novel object recognition task in male and female rats. Saliva was assayed at P20 for BDNF before cocaine self-administration on P28 [0.75 or 0.25 mg/kg/infusion for 30 days under a fixed-ratio (FR) 1 to FR5 schedule] and on P94 before relapse after 30-day abstinence in adulthood. A separate cohort of P28 male rats was assayed for object discrimination and BDNF in saliva and the medial prefrontal cortex and dorsolateral striatum. Novel object discrimination correlated positively with salivary BDNF on P20 and dorsolateral striatum levels, but negatively with medial prefrontal cortex BDNF in male rats. In female rats, P20 salivary BDNF negatively correlated with object discrimination. Salivary BDNF positively correlated across age in male rats. Male rats earned more cocaine (0.75 mg/kg) at FR5 and responded more at relapse than did female rats. These elevated relapse rates in male rats were significantly associated with P20 object discrimination and salivary BDNF. Relapse after 0.75 and 0.25 mg/kg in female rats correlated only with object discrimination. In conclusion, poor working memory and low salivary BDNF in juvenile male rats may represent biomarkers for later cocaine use. Further research is needed to identify biomarkers for risk in male rats.
Collapse
Affiliation(s)
- Chloe J. Jordan
- Department of Psychiatry; McLean Hospital, Harvard Medical School; Belmont MA USA
| | - Susan L. Andersen
- Department of Psychiatry; McLean Hospital, Harvard Medical School; Belmont MA USA
| |
Collapse
|
26
|
Incubation of Accumbal Neuronal Reactivity to Cocaine Cues During Abstinence Predicts Individual Vulnerability to Relapse. Neuropsychopharmacology 2018; 43:1059-1065. [PMID: 28920590 PMCID: PMC5854799 DOI: 10.1038/npp.2017.224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 01/02/2023]
Abstract
An important goal for the treatment of cocaine addiction is to identify neuromarkers that can predict individual vulnerability to relapse after abstinence. There is some evidence that individual reactivity to cue-induced craving may predict subsequent relapse after a period of abstinence. Here we sought to identify the neuronal correlates of this predictive relationship in rats. Rats were trained to self-administer cocaine (6 h) for 16 days to induce escalation of cocaine intake. Then rats underwent a 1-month period of forced abstinence after which they were re-exposed to cocaine self-administration (6 h) for 8 additional days to induce re-escalation of cocaine intake. We recorded nucleus accumbens (NAc) neuronal responses to drug conditioned stimuli (CS) 1 day before and after 1 month of abstinence from cocaine intake escalation. Rats were ranked according to their individual percentage of CS responsive neurons recorded during the last day of abstinence and split by the median into two groups. We found evidence for a robust, incubation-like increase in NAc reactivity to cocaine cues after abstinence only in a subset of individuals (High CS rats). Importantly, compared with other rats that did not present an incubation of NAc reactivity to cocaine cues (Low CS rats), High CS rats were faster to re-escalate their intake of cocaine after abstinence. In addition, after re-escalation, they worked harder and were less sensitive to risk of punishment than Low CS rats, indicating a strengthened motivation to seek and/or take the drug in that group of rats. Overall, these findings indicate that incubation of NAc neuronal reactivity to cocaine cues during abstinence may constitute a predictive neuromarker for individual vulnerability to relapse.
Collapse
|
27
|
Beloate LN, Coolen LM. Influences of social reward experience on behavioral responses to drugs of abuse: Review of shared and divergent neural plasticity mechanisms for sexual reward and drugs of abuse. Neurosci Biobehav Rev 2017; 83:356-372. [DOI: 10.1016/j.neubiorev.2017.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 10/25/2022]
|
28
|
Circuit and Synaptic Plasticity Mechanisms of Drug Relapse. J Neurosci 2017; 37:10867-10876. [PMID: 29118216 DOI: 10.1523/jneurosci.1821-17.2017] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 01/09/2023] Open
Abstract
High rates of relapse to drug use during abstinence is a defining feature of human drug addiction. This clinical scenario has been studied at the preclinical level using different animal models in which relapse to drug seeking is assessed after cessation of operant drug self-administration in rodents and monkeys. In our Society for Neuroscience (SFN) session entitled "Circuit and Synaptic Plasticity Mechanisms of Drug Relapse," we will discuss new developments of our understanding of circuits and synaptic plasticity mechanisms of drug relapse from studies combining established and novel animal models with state-of-the-art cellular, electrophysiology, anatomical, chemogenetic, and optogenetic methods. We will also discuss the translational implications of these new developments. In the mini-review that introduces our SFN session, we summarize results from our laboratories on behavioral, cellular, and circuit mechanisms of drug relapse within the context of our session.
Collapse
|
29
|
Bobadilla AC, Heinsbroek JA, Gipson CD, Griffin WC, Fowler CD, Kenny PJ, Kalivas PW. Corticostriatal plasticity, neuronal ensembles, and regulation of drug-seeking behavior. PROGRESS IN BRAIN RESEARCH 2017; 235:93-112. [PMID: 29054293 DOI: 10.1016/bs.pbr.2017.07.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The idea that interconnected neuronal ensembles code for specific behaviors has been around for decades; however, recent technical improvements allow studying these networks and their causal role in initiating and maintaining behavior. In particular, the role of ensembles in drug-seeking behaviors in the context of addiction is being actively investigated. Concurrent with breakthroughs in quantifying ensembles, research has identified a role for synaptic glutamate spillover during relapse. In particular, the transient relapse-associated changes in glutamatergic synapses on accumbens neurons, as well as in adjacent astroglia and extracellular matrix, are key elements of the synaptic plasticity encoded by drug use and the metaplasticity induced by drug-associated cues that precipitate drug-seeking behaviors. Here, we briefly review the recent discoveries related to ensembles in the addiction field and then endeavor to link these discoveries with drug-induced striatal plasticity and cue-induced metaplasticity toward deeper neurobiological understandings of drug seeking.
Collapse
Affiliation(s)
| | | | | | | | | | - Paul J Kenny
- Icahn School of Medicine at Mount Sinai, Icahn, New York, NY, United States
| | - Peter W Kalivas
- Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
30
|
Nucleus accumbens feedforward inhibition circuit promotes cocaine self-administration. Proc Natl Acad Sci U S A 2017; 114:E8750-E8759. [PMID: 28973852 DOI: 10.1073/pnas.1707822114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The basolateral amygdala (BLA) sends excitatory projections to the nucleus accumbens (NAc) and regulates motivated behaviors partially by activating NAc medium spiny neurons (MSNs). Here, we characterized a feedforward inhibition circuit, through which BLA-evoked activation of NAc shell (NAcSh) MSNs was fine-tuned by GABAergic monosynaptic innervation from adjacent fast-spiking interneurons (FSIs). Specifically, BLA-to-NAcSh projections predominantly innervated NAcSh FSIs compared with MSNs and triggered action potentials in FSIs preceding BLA-mediated activation of MSNs. Due to these anatomical and temporal properties, activation of the BLA-to-NAcSh projection resulted in a rapid FSI-mediated inhibition of MSNs, timing-contingently dictating BLA-evoked activation of MSNs. Cocaine self-administration selectively and persistently up-regulated the presynaptic release probability of BLA-to-FSI synapses, entailing enhanced FSI-mediated feedforward inhibition of MSNs upon BLA activation. Experimentally enhancing the BLA-to-FSI transmission in vivo expedited the acquisition of cocaine self-administration. These results reveal a previously unidentified role of an FSI-embedded circuit in regulating NAc-based drug seeking and taking.
Collapse
|
31
|
Liu X, Zhong P, Vickstrom C, Li Y, Liu QS. PDE4 Inhibition Restores the Balance Between Excitation and Inhibition in VTA Dopamine Neurons Disrupted by Repeated In Vivo Cocaine Exposure. Neuropsychopharmacology 2017; 42:1991-1999. [PMID: 28497801 PMCID: PMC5561351 DOI: 10.1038/npp.2017.96] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/26/2017] [Accepted: 05/09/2017] [Indexed: 01/01/2023]
Abstract
Phosphodiesterase type 4 (PDE4) is a family of enzymes that selectively degrade intracellular cAMP. PDE4 inhibitors have been shown to regulate the rewarding and reinforcing effects of cocaine, but the underlying mechanisms remain poorly understood. Here we show that pretreatments with the PDE4 inhibitor rolipram attenuated cocaine-induced locomotor sensitization in mice. Repeated cocaine exposure in vivo caused a decrease in inhibitory postsynaptic currents (IPSCs) and an increase in the AMPAR/NMDAR ratio in ventral tegmental area (VTA) dopamine neurons in midbrain slices ex vivo. Cocaine exposure disrupted the balance between excitation and inhibition as shown by an increase in the excitation to inhibition (E/I) ratio. Rolipram pretreatments in vivo prevented cocaine-induced reductions in GABAergic inhibition but did not further increase cocaine-induced potentiation of excitation, leading to the restoration of a balance between excitation and inhibition and normalization of the E/I ratio. In support of this idea, we found that repeated cocaine exposure led to an increase in the single-unit action potential firing rate in vivo in VTA dopamine neurons, which was blocked by rolipram pretreatments. These results suggest that repeated cocaine exposure in vivo disrupts the balance between excitation and inhibition in VTA dopamine neurons, while PDE4 inhibition reestablishes the balance between excitation and inhibition through distinct mechanisms.
Collapse
Affiliation(s)
- Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Peng Zhong
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Casey Vickstrom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yan Li
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA,Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA, Tel: +(414) 955-8877, Fax: +(414) 955-6545, E-mail:
| |
Collapse
|
32
|
Cocaine Self-Administration Produces Long-Lasting Alterations in Dopamine Transporter Responses to Cocaine. J Neurosci 2017; 36:7807-16. [PMID: 27466327 DOI: 10.1523/jneurosci.4652-15.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/11/2016] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED Cocaine addiction is a debilitating neuropsychiatric disorder characterized by uncontrolled cocaine intake, which is thought to be driven, at least in part, by cocaine-induced deficits in dopamine system function. A decreased ability of cocaine to elevate dopamine levels has been repeatedly observed as a consequence of cocaine use in humans, and preclinical work has highlighted tolerance to cocaine's effects as a primary determinant in the development of aberrant cocaine taking behaviors. Here we determined that cocaine self-administration in rats produced tolerance to the dopamine transporter-inhibiting effects of cocaine in the nucleus accumbens core, which was normalized following a 14 or 60 d abstinence period; however, although these rats appeared to be similar to controls, a single self-administered infusion of cocaine at the end of abstinence, even after 60 d, fully reinstated tolerance to cocaine's effects. A single cocaine infusion in a naive rat had no effect on cocaine potency, demonstrating that cocaine self-administration leaves the dopamine transporter in a "primed" state, which allows for cocaine-induced plasticity to be reinstated by a subthreshold cocaine exposure. Further, reinstatement of cocaine tolerance was accompanied by decreased cocaine-induced locomotion and escalated cocaine intake despite extended abstinence from cocaine. These data demonstrate that cocaine leaves a long-lasting imprint on the dopamine system that is activated by re-exposure to cocaine. Further, these results provide a potential mechanism for severe cocaine binge episodes, which occur even after sustained abstinence from cocaine, and suggest that treatments aimed at transporter sites may be efficacious in promoting binge termination following relapse. SIGNIFICANCE STATEMENT Tolerance is a DSM-V criterion for substance abuse disorders. Abusers consistently show reduced subjective effects of cocaine concomitant with reduced effects of cocaine at its main site of action, the dopamine transporter (DAT). Preclinical literature has shown that reduced cocaine potency at the DAT increases cocaine taking, highlighting the key role of tolerance in addiction. Addiction is characterized by cycles of abstinence, often for many months, followed by relapse, making it important to determine possible interactions between abstinence and subsequent drug re-exposure. Using a rodent model of cocaine abuse, we found long-lasting, possibly permanent, cocaine-induced alterations to the DAT, whereby cocaine tolerance is reinstated by minimal drug exposure, even after recovery of DAT function over prolonged abstinence periods.
Collapse
|
33
|
Adhikary S, Caprioli D, Venniro M, Kallenberger P, Shaham Y, Bossert JM. Incubation of extinction responding and cue-induced reinstatement, but not context- or drug priming-induced reinstatement, after withdrawal from methamphetamine. Addict Biol 2017; 22:977-990. [PMID: 26989042 DOI: 10.1111/adb.12386] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/13/2016] [Accepted: 02/11/2016] [Indexed: 12/18/2022]
Abstract
In rats trained to self-administer methamphetamine, extinction responding in the presence of drug-associated contextual and discrete cues progressively increases after withdrawal (incubation of methamphetamine craving). The conditioning factors underlying this incubation are unknown. Here, we studied incubation of methamphetamine craving under different experimental conditions to identify factors contributing to this incubation. We also determined whether the rats' response to methamphetamine priming incubates after withdrawal. We trained rats to self-administer methamphetamine in a distinct context (context A) for 14 days (6 hours/day). Lever presses were paired with a discrete light cue. We then tested groups of rats in context A or a different non-drug context (context B) after 1 day, 1 week or 1 month for extinction responding with or without the discrete cue. Subsequently, we tested the rats for reinstatement of drug seeking induced by exposure to contextual, discrete cue, or drug priming (0, 0.25 and 0.5 mg/kg). Operant responding in the extinction sessions in contexts A or B was higher after 1 week and 1 month of withdrawal than after 1 day; this effect was context-independent. Independent of the withdrawal period, operant responding in the extinction sessions was higher when responding led to contingent delivery of the discrete cue. After extinction, discrete cue-induced reinstatement, but not context- or drug priming-induced reinstatement, progressively increased after withdrawal. Together, incubation of methamphetamine craving, as assessed in extinction tests, is primarily mediated by time-dependent increases in non-reinforced operant responding, and this effect is potentiated by exposure to discrete, but not contextual, cues.
Collapse
Affiliation(s)
- Sweta Adhikary
- Behavioral Neuroscience Research Branch; Intramural Research Program, NIDA, NIH; Baltimore MD USA
| | - Daniele Caprioli
- Behavioral Neuroscience Research Branch; Intramural Research Program, NIDA, NIH; Baltimore MD USA
| | - Marco Venniro
- Behavioral Neuroscience Research Branch; Intramural Research Program, NIDA, NIH; Baltimore MD USA
| | - Paige Kallenberger
- Behavioral Neuroscience Research Branch; Intramural Research Program, NIDA, NIH; Baltimore MD USA
| | - Yavin Shaham
- Behavioral Neuroscience Research Branch; Intramural Research Program, NIDA, NIH; Baltimore MD USA
| | - Jennifer M. Bossert
- Behavioral Neuroscience Research Branch; Intramural Research Program, NIDA, NIH; Baltimore MD USA
| |
Collapse
|
34
|
Hammad AM, Alasmari F, Althobaiti YS, Sari Y. Modulatory effects of Ampicillin/Sulbactam on glial glutamate transporters and metabotropic glutamate receptor 1 as well as reinstatement to cocaine-seeking behavior. Behav Brain Res 2017. [PMID: 28624317 DOI: 10.1016/j.bbr.2017.06.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glutamatergic system has an important role in cocaine-seeking behavior. Studies have reported that chronic exposure to cocaine induces downregulation of glutamate transporter-1 (GLT-1) and cystine/glutamate exchanger (xCT) in the central reward brain regions. Ceftriaxone, a β-lactam antibiotic, restored GLT-1 expression and consequently reduced cue-induced reinstatement of cocaine-seeking behavior. In this study, we investigated the reinstatement to cocaine (20mg/kg, i.p.) seeking behavior using a conditioned place preference (CPP) paradigm in male alcohol-preferring (P) rats. In addition, we investigated the effects of Ampicillin/Sulbactam (AMP/SUL) (200mg/kg, i.p.), a β-lactam antibiotic, on cocaine-induced reinstatement. We also investigated the effects of AMP/SUL on the expression of glial glutamate transporters and metabotropic glutamate receptor 1 (mGluR1) in the nucleus accumbens (NAc) core and shell and the dorsomedial prefrontal cortex (dmPFC). We found that AMP/SUL treatment reduced cocaine-triggered reinstatement. This effect was associated with a decrease in locomotor activity. Moreover, GLT-1 and xCT were downregulated in the NAc core and shell, but not in the dmPFC, following cocaine-primed reinstatement. However, cocaine exposure increased the expression of mGluR1 in the NAc core, but not in the NAc shell or dmPFC. Importantly, AMP/SUL treatment normalized GLT-1 and xCT expression in the NAc core and shell; however, the drug normalized mGluR1 expression in the NAc core only. Additionally, AMP/SUL increased the expression of GLT-1 and xCT in the dmPFC as compared to the water naïve group. These findings demonstrated that glial glutamate transporters and mGluR1 in the mesocorticolimbic area could be potential therapeutic targets for the attenuation of reinstatement to cocaine-seeking behavior.
Collapse
Affiliation(s)
- Alaa M Hammad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Fawaz Alasmari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Yusuf S Althobaiti
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
35
|
Christian DT, Wang X, Chen EL, Sehgal LK, Ghassemlou MN, Miao JJ, Estepanian D, Araghi CH, Stutzmann GE, Wolf ME. Dynamic Alterations of Rat Nucleus Accumbens Dendritic Spines over 2 Months of Abstinence from Extended-Access Cocaine Self-Administration. Neuropsychopharmacology 2017; 42:748-756. [PMID: 27555380 PMCID: PMC5240181 DOI: 10.1038/npp.2016.168] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/25/2016] [Accepted: 08/16/2016] [Indexed: 11/09/2022]
Abstract
Chronic cocaine exposure influences the density and morphology of dendritic spines on medium spiny neurons (MSNs) in the nucleus accumbens (NAc), a critical brain region for cocaine craving. However, the relationship between spine plasticity and craving remains unclear. To study this relationship, we trained rats to self-administer cocaine using an extended-access regimen (6 h per day, 10 days); controls self-administered saline. Previously, a time-dependent intensification (incubation) of cue-induced cocaine craving has been demonstrated after withdrawal from this regimen; furthermore, Ca2+-permeable AMPA receptors (CP-AMPARs) increase in the NAc core after ~1 month of withdrawal and thereafter mediate the expression of incubated craving. Although neither craving nor CP-AMPAR levels were measured in the present study, we killed rats at four withdrawal day (WD) time-points (WD14, WD25, WD36, or WD60) selected to span the rising phase of incubation and the transition from low to high CP-AMPAR levels. MSNs were iontophoretically filled with Lucifer yellow and spines were analyzed with NeuronStudio software. Compared with saline controls, cocaine rats showed no changes in spine density or morphology in the NAc core on WD14 or WD25. On WD36, approximately the withdrawal time when stable elevation of CP-AMPAR levels is detected, the cocaine group exhibited increased density of thin spines in the NAc core. By WD60, however, this effect had reversed: the density of thin spines was lower in cocaine rats compared with saline rats. In contrast, craving and CP-AMPAR levels remain high on WD60. We also assessed spine density on WD36 in the dorsolateral striatum, a region that is not implicated in incubation of cocaine craving and does not undergo CP-AMPAR plasticity. Here, the cocaine group exhibited a small leftward shift in the distribution of spine densities plotted as a cumulative distribution, opposite to the effect found in the NAc core. Overall, our results demonstrate changes in NAc core spines over 2 months of withdrawal but no simple relationship between the time dependency of these spine changes and the previously demonstrated time course of incubation of cocaine craving. However, they raise the possibility that CP-AMPAR accumulation in the NAc core occurs in a population of thin spines that emerges after ~1 month of withdrawal.
Collapse
Affiliation(s)
- Daniel T Christian
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Xiaoting Wang
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Eugenia L Chen
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Lakshya K Sehgal
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Michael N Ghassemlou
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Julia J Miao
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Derenik Estepanian
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Cameron H Araghi
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Grace E Stutzmann
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Marina E Wolf
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA,Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA, Tel: +1 847 578 8659, Fax: +1 847 578 8515, E-mail:
| |
Collapse
|
36
|
Abstract
Classic hallucinogens share pharmacology as serotonin 5-HT2A, 5-HT2B, and 5-HT2C receptor agonists. Unique among most other Schedule 1 drugs, they are generally non-addictive and can be effective tools in the treatment of addiction. Mechanisms underlying these attributes are largely unknown. However, many preclinical studies show that 5-HT2C agonists counteract the addictive effects of drugs from several classes, suggesting this pharmacological property of classic hallucinogens may be significant. Drawing from a comprehensive analysis of preclinical behavior, neuroanatomy, and neurochemistry studies, this review builds rationale for this hypothesis, and also proposes a testable, neurobiological framework. 5-HT2C agonists work, in part, by modulating dopamine neuron activity in the ventral tegmental area-nucleus accumbens (NAc) reward pathway. We argue that activation of 5-HT2C receptors on NAc shell, GABAergic, medium spiny neurons inhibits potassium Kv1.x channels, thereby enhancing inhibitory activity via intrinsic mechanisms. Together with experiments that show that addictive drugs, such as cocaine, potentiate Kv1.x channels, thereby suppressing NAc shell GABAergic activity, this hypothesis provides a mechanism by which classic hallucinogen-mediated stimulation of 5-HT2C receptors could thwart addiction. It also provides a potential reason for the non-addictive nature of classic hallucinogens.
Collapse
Affiliation(s)
- Clinton E Canal
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, USA
| | - Kevin S Murnane
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, USA
| |
Collapse
|
37
|
Kasper JM, McCue DL, Milton AJ, Szwed A, Sampson CM, Huang M, Carlton S, Meltzer HY, Cunningham KA, Hommel JD. Gamma-Aminobutyric Acidergic Projections From the Dorsal Raphe to the Nucleus Accumbens Are Regulated by Neuromedin U. Biol Psychiatry 2016; 80:878-887. [PMID: 27105831 PMCID: PMC5016225 DOI: 10.1016/j.biopsych.2016.02.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/17/2016] [Accepted: 02/26/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND Neuromedin U (NMU) is a neuropeptide enriched in the nucleus accumbens shell (NAcSh), a brain region associated with reward. While NMU and its receptor, NMU receptor 2 (NMUR2), have been studied for the ability to regulate food reward, NMU has not been studied in the context of drugs of abuse (e.g., cocaine). Furthermore, the neuroanatomical pathways that express NMUR2 and its ultrastructural localization are unknown. METHODS Immunohistochemistry was used to determine the synaptic localization of NMUR2 in the NAcSh and characterize which neurons express this receptor (n = 17). The functional outcome of NMU on NMUR2 was examined using microdialysis (n = 16). The behavioral effects of NMU microinjection directly to the NAcSh were investigated using cocaine-evoked locomotion (n = 93). The specific effects of NMUR2 knockdown on cocaine-evoked locomotion were evaluated using viral-mediated RNA interference (n = 40). RESULTS NMUR2 is localized to presynaptic gamma-aminobutyric acidergic nerve terminals in the NAcSh originating from the dorsal raphe nucleus. Furthermore, NMU microinjection to the NAcSh decreased local gamma-aminobutyric acid concentrations. Next, we evaluated the effects of NMU microinjection on behavioral sensitization to cocaine. When repeatedly administered throughout the sensitization regimen, NMU attenuated cocaine-evoked hyperactivity. Additionally, small hairpin RNA-mediated knockdown of presynaptic NMUR2 in the NAcSh using a retrograde viral vector potentiated cocaine sensitization. CONCLUSIONS Together, these data reveal that NMUR2 modulates a novel gamma-aminobutyric acidergic pathway from the dorsal raphe nucleus to the NAcSh to influence behavioral responses to cocaine.
Collapse
Affiliation(s)
- James M. Kasper
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - David L. McCue
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Adrianna J. Milton
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Angelia Szwed
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Catherine M. Sampson
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Mei Huang
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, Illinois, 60611, USA
| | - Susan Carlton
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Herbert Y. Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, Illinois, 60611, USA
| | - Kathryn A. Cunningham
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Jonathan D. Hommel
- Center for Addiction Research, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555, USA,Correspondence: , Jonathan D. Hommel, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0615
| |
Collapse
|
38
|
Scheyer AF, Loweth JA, Christian DT, Uejima J, Rabei R, Le T, Dolubizno H, Stefanik MT, Murray CH, Sakas C, Wolf ME. AMPA Receptor Plasticity in Accumbens Core Contributes to Incubation of Methamphetamine Craving. Biol Psychiatry 2016; 80:661-670. [PMID: 27264310 PMCID: PMC5050076 DOI: 10.1016/j.biopsych.2016.04.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND The incubation of cue-induced drug craving in rodents provides a model of persistent vulnerability to craving and relapse in human addicts. After prolonged withdrawal, incubated cocaine craving depends on strengthening of nucleus accumbens (NAc) core synapses through incorporation of Ca2+-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (CP-AMPARs). Through metabotropic glutamate receptor 1 (mGluR1)-mediated synaptic depression, mGluR1 positive allosteric modulators remove CP-AMPARs from these synapses and thereby reduce cocaine craving. This study aimed to determine if similar plasticity accompanies incubation of methamphetamine craving. METHODS Rats self-administered saline or methamphetamine under extended-access conditions. Cue-induced seeking tests demonstrated incubation of methamphetamine craving. After withdrawal periods ranging from 1 to >40 days, rats underwent one of the following procedures: 1) whole-cell patch clamp recordings to characterize AMPAR transmission, 2) intra-NAc core injection of the CP-AMPAR antagonist 1-naphthyl acetyl spermine followed by a seeking test, or 3) systemic administration of a mGluR1 positive allosteric modulator followed by a seeking test. RESULTS Incubation of methamphetamine craving was associated with CP-AMPAR accumulation in NAc core, and both effects were maximal after ~1 week of withdrawal. Expression of incubated craving was decreased by intra-NAc core 1-naphthyl acetyl spermine injection or systemic mGluR1 positive allosteric modulator administration. CONCLUSIONS These results are the first to demonstrate a role for the NAc in the incubation of methamphetamine craving and describe adaptations in synaptic transmission associated with this model. They establish that incubation of craving and associated CP-AMPAR plasticity occur much more rapidly during withdrawal from methamphetamine compared with cocaine. However, a common mGluR1-based therapeutic strategy may be helpful for recovering cocaine and methamphetamine addicts.
Collapse
|
39
|
Luís C, Cannella N, Spanagel R, Köhr G. Persistent strengthening of the prefrontal cortex - nucleus accumbens pathway during incubation of cocaine-seeking behavior. Neurobiol Learn Mem 2016; 138:281-290. [PMID: 27720809 DOI: 10.1016/j.nlm.2016.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/09/2016] [Accepted: 10/04/2016] [Indexed: 12/22/2022]
Abstract
High rates of relapse after prolonged abstinence are often triggered by exposure to drug-associated cues that induce drug craving. Incubation of drug craving is a phenomenon that consists of time-dependent increases in cue-induced drug craving during withdrawal. Plasticity mechanisms in the nucleus accumbens (NAc) underlie drug-seeking responses and involve changes in excitatory synaptic transmission's efficacy. In particular, the prefrontal cortex (PFC) glutamatergic input to the NAc core has been well characterized regarding cocaine-evoked plasticity following non-contingent versus contingent exposure to cocaine or alternatively after protracted abstinence. Still, the synaptic strength during the course of withdrawal compared to drug-naïve condition is unknown, since electrophysiological characterizations are mainly performed in brain slices or focus on distinct time points during cocaine-evoked plasticity in vivo. Here we used an incubation paradigm, in which rats had extended accessed to cocaine self-administration, and underwent cue-induced reinstatement at withdrawal day 1 and 30. Longitudinal in vivo field potential recordings in awake rats showed that chronic contingent exposure to cocaine strengthened the prelimbic PFC to NAc core pathway when compared to pre-cocaine condition. This strengthening was associated with decreased paired-pulse ratios (PPR), indicative of presynaptic enhancement of glutamate release, which persisted throughout withdrawal. Moreover, both field potential increase and PPR reduction after chronic cocaine exposure correlated with the number of cocaine infusions received during training. The present results together with previous findings of withdrawal-dependent postsynaptic enhancement of the PFC-NAc core pathway, suggest an additional presynaptic strengthening that is initiated during self-administration and maintained throughout abstinence in drug-seeking rats. These cocaine-driven neuroadaptations may provide a neural substrate for maladaptive processing of cues that can ultimately trigger craving and relapse.
Collapse
Affiliation(s)
- Catarina Luís
- Physiology of Neural Networks, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany; Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany
| | - Nazzareno Cannella
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany
| | - Georg Köhr
- Physiology of Neural Networks, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany; Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany.
| |
Collapse
|
40
|
Wakabayashi KT, Spekterman L, Kiyatkin EA. Experience-dependent escalation of glucose drinking and the development of glucose preference over fructose - association with glucose entry into the brain. Eur J Neurosci 2016; 43:1422-30. [PMID: 26613356 PMCID: PMC4884167 DOI: 10.1111/ejn.13137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 01/12/2023]
Abstract
Glucose, a primary metabolic substrate for cellular activity, must be delivered to the brain for normal neural functions. Glucose is also a unique reinforcer; in addition to its rewarding sensory properties and metabolic effects, which all natural sugars have, glucose crosses the blood-brain barrier and acts on glucoreceptors expressed on multiple brain cells. To clarify the role of this direct glucose action in the brain, we compared the neural and behavioural effects of glucose with those induced by fructose, a sweeter yet metabolically equivalent sugar. First, by using enzyme-based biosensors in freely moving rats, we confirmed that glucose rapidly increased in the nucleus accumbens in a dose-dependent manner after its intravenous delivery. In contrast, fructose induced a minimal response only after a large-dose injection. Second, we showed that naive rats during unrestricted access consumed larger volumes of glucose than fructose solution; the difference appeared with a definite latency during the initial exposure and strongly increased during subsequent tests. When rats with equal sugar experience were presented with either glucose or fructose in alternating order, the consumption of both substances was initially equal, but only the consumption of glucose increased during subsequent sessions. Finally, rats with equal glucose-fructose experience developed a strong preference for glucose over fructose during a two-bottle choice procedure; the effect appeared with a definite latency during the initial test and greatly amplified during subsequent tests. Our results suggest that direct entry of glucose in the brain and its subsequent effects on brain cells could be critical for the experience-dependent escalation of glucose consumption and the development of glucose preference over fructose.
Collapse
Affiliation(s)
- Ken T. Wakabayashi
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Laurence Spekterman
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Eugene A. Kiyatkin
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| |
Collapse
|
41
|
Abstract
Although it is challenging for individuals with cocaine addiction to achieve abstinence, the greatest difficulty is avoiding relapse to drug taking, which is often triggered by cues associated with prior cocaine use. This vulnerability to relapse persists for long periods (months to years) after abstinence is achieved. Here, I discuss rodent studies of cue-induced cocaine craving during abstinence, with a focus on neuronal plasticity in the reward circuitry that maintains high levels of craving. Such work has the potential to identify new therapeutic targets and to further our understanding of experience-dependent plasticity in the adult brain under normal circumstances and in the context of addiction.
Collapse
Affiliation(s)
- Marina E Wolf
- The Chicago Medical School at Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois 60064, USA
| |
Collapse
|
42
|
Surface expression of GABAA receptors in the rat nucleus accumbens is increased in early but not late withdrawal from extended-access cocaine self-administration. Brain Res 2016; 1642:336-343. [PMID: 27060767 DOI: 10.1016/j.brainres.2016.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 02/08/2023]
Abstract
It is well established that cocaine-induced changes in glutamate receptor expression in the nucleus accumbens (NAc) play a significant role in animal models of cocaine addiction. Far less is known about cocaine-induced changes in GABA transmission, despite its importance in regulating NAc output via local interneurons and medium spiny neuron (MSN) axon collaterals (GABA 'microcircuit'). Here we investigated whether GABAA receptor surface or total expression is altered following an extended-access cocaine self-administration regimen that produces a time-dependent intensification (incubation) of cue-induced cocaine craving in association with strengthening of AMPA receptor (AMPAR) transmission onto MSN. Rats self-administered cocaine or saline (control condition) 6h/day for 10 days. NAc tissue was obtained and surface proteins biotinylated on three withdrawal days (WD) chosen to span incubation of craving and associated AMPAR plasticity: WD2, WD25 and WD48. Immunoblotting was used to measure total and surface expression of three GABAA receptor subunits (α1, α2, and α4) that are strongly expressed in the NAc. We found a transient increase in surface, but not total, expression of the α2 subunit on WD2 from cocaine self-administration, an effect that was no longer observed by WD25. The expression of α1 and α4 subunits was not altered at these withdrawal times. On WD48, when AMPAR transmission is significantly potentiated, we did not find any alteration in GABAA receptor surface or total expression. Our findings suggest that the strengthening of AMPAR-mediated glutamate transmission in the NAc is not accompanied by compensatory strengthening of GABAergic transmission through insertion of additional GABAA receptors.
Collapse
|
43
|
The Roles of Dopamine and α1-Adrenergic Receptors in Cocaine Preferences in Female and Male Rats. Neuropsychopharmacology 2015; 40:2696-704. [PMID: 25900120 PMCID: PMC4864645 DOI: 10.1038/npp.2015.116] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 01/16/2023]
Abstract
Cocaine dependence is characterized by compulsive drug taking and reduced involvement in social, occupational, or recreational activities. Unraveling the diverse mechanisms contributing to the loss-of-interest in these 'non-drug' pursuits is essential for understanding the neurobiology of addiction and could provide additional targets for treating addiction. The study objectives were to examine changes in cocaine-induced dopamine (DA) overflow in the nucleus accumbens (NAc) over the course of self-administration and determine the roles of α1- and β-adrenergic receptors (AR) in the loss-of-interest in food rewards following the development of an addicted phenotype in male and female rats. Subjects were given access to cocaine and palatable food pellets in a choice self-administration paradigm to identify 'addicted' cocaine-preferring (CP) individuals and resistant pellet-preferring (PP) individuals based on their patterns of self-administration over 7 weeks. Cocaine-induced DA overflow in the NAc was examined with microdialysis early and late during self-administration (weeks 2 and 7). Subjects were treated in counter-balanced order with propranolol (β-AR antagonist), terazosin (α1-AR antagonist), or vehicle for an additional 3 weeks of self-administration. CP rats displayed increased motivation for cocaine and attenuated motivation for pellets following the development of cocaine preferences. In females, the estrous cycle affected pellet, but not cocaine, self-administration. CP rats displayed attenuated cocaine-induced DA overflow in the NAc. Propranolol enhanced cocaine reinforcement and reduced pellet intake, whereas terazosin enhanced motivation for pellets and reversed preferences in a subset of CP rats. The implications of these results for the treatment of addiction are discussed.
Collapse
|
44
|
Li X, Caprioli D, Marchant NJ. Recent updates on incubation of drug craving: a mini-review. Addict Biol 2015; 20:872-6. [PMID: 25440081 DOI: 10.1111/adb.12205] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cue-induced drug craving progressively increases after prolonged withdrawal from drug self-administration in laboratory animals, a behavioral phenomenon termed 'incubation of drug craving.' Studies over the years have revealed several important neural mechanisms contributing to incubation of drug craving. In this mini-review, we first discuss three excellent Addiction Biology publications on incubation of drug craving in both human and laboratory animals. We then review several key publications from the past year on behavioral and mechanistic findings related to incubation of drug craving.
Collapse
Affiliation(s)
- Xuan Li
- Behavioral Neuroscience Research Branch; Intramural Research Program; NIDA, NIH, DHHS; Baltimore MD USA
| | - Daniele Caprioli
- Behavioral Neuroscience Research Branch; Intramural Research Program; NIDA, NIH, DHHS; Baltimore MD USA
| | - Nathan J. Marchant
- Behavioral Neuroscience Research Branch; Intramural Research Program; NIDA, NIH, DHHS; Baltimore MD USA
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Australia
| |
Collapse
|
45
|
Abstract
Drug-associated cues have profound effects on an addict's emotional state and drug-seeking behavior. Although this influence must involve the motivational neural system that initiates and encodes the drug-seeking act, surprisingly little is known about the nature of such physiological events and their motivational consequences. Three experiments investigated the effect of a cocaine-predictive stimulus on dopamine signaling, neuronal activity, and reinstatement of cocaine seeking. In all experiments, rats were divided into two groups (paired and unpaired), and trained to self-administer cocaine in the presence of a tone that signaled the immediate availability of the drug. For rats in the paired group, self-administration sessions were preceded by a taste cue that signaled delayed drug availability. Assessments of hedonic responses indicated that this delay cue became aversive during training. Both the self-administration behavior and the immediate cue were subsequently extinguished in the absence of cocaine. After extinction of self-administration behavior, the presentation of the aversive delay cue reinstated drug seeking. In vivo electrophysiology and voltammetry recordings in the nucleus accumbens measured the neural responses to both the delay and immediate drug cues after extinction. Interestingly, the presentation of the delay cue simultaneously decreased dopamine signaling and increased excitatory encoding of the immediate cue. Most importantly, the delay cue selectively enhanced the baseline activity of neurons that would later encode drug seeking. Together these observations reveal how cocaine cues can modulate not only affective state, but also the neurochemical and downstream neurophysiological environment of striatal circuits in a manner that promotes drug seeking.
Collapse
|
46
|
Abstract
Exposure to drugs of abuse, such as cocaine, leads to plastic changes in the activity of brain circuits, and a prevailing view is that these changes play a part in drug addiction. Notably, there has been intense focus on drug-induced changes in synaptic excitability and much less attention on intrinsic excitability factors (that is, excitability factors that are remote from the synapse). Accumulating evidence now suggests that intrinsic factors such as K+ channels are not only altered by cocaine but may also contribute to the shaping of the addiction phenotype.
Collapse
|
47
|
Cruz FC, Javier Rubio F, Hope BT. Using c-fos to study neuronal ensembles in corticostriatal circuitry of addiction. Brain Res 2014; 1628:157-73. [PMID: 25446457 DOI: 10.1016/j.brainres.2014.11.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/27/2014] [Accepted: 11/01/2014] [Indexed: 01/02/2023]
Abstract
Learned associations between drugs and environment play an important role in addiction and are thought to be encoded within specific patterns of sparsely distributed neurons called neuronal ensembles. This hypothesis is supported by correlational data from in vivo electrophysiology and cellular imaging studies in relapse models in rodents. In particular, cellular imaging with the immediate early gene c-fos and its protein product Fos has been used to identify sparsely distributed neurons that were strongly activated during conditioned drug behaviors such as drug self-administration and context- and cue-induced reinstatement of drug seeking. Here we review how Fos and the c-fos promoter have been employed to demonstrate causal roles for Fos-expressing neuronal ensembles in prefrontal cortex and nucleus accumbens in conditioned drug behaviors. This work has allowed identification of unique molecular and electrophysiological alterations within Fos-expressing neuronal ensembles that may contribute to the development and expression of learned associations in addiction.
Collapse
Affiliation(s)
- Fabio C Cruz
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, United States
| | - F Javier Rubio
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, United States
| | - Bruce T Hope
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, United States.
| |
Collapse
|
48
|
Role of nucleus accumbens shell neuronal ensembles in context-induced reinstatement of cocaine-seeking. J Neurosci 2014; 34:7437-46. [PMID: 24872549 DOI: 10.1523/jneurosci.0238-14.2014] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Environmental contexts previously associated with drug use provoke relapse to drug use in humans and reinstatement of drug seeking in animal models of drug relapse. We examined whether context-induced reinstatement of cocaine seeking is mediated by activation of context-selected nucleus accumbens neurons. We trained rats to self-administer cocaine in Context A and extinguished their lever-pressing in a distinct Context B. On test day, reexposure to the cocaine-associated Context A reinstated cocaine seeking and increased expression of the neural activity marker Fos in 3.3% of accumbens shell and 1.6% of accumbens core neurons. To assess a causal role for these activated neurons, we used the Daun02 inactivation procedure to selectively inactivate these neurons. We trained c-fos-lacZ transgenic rats to self-administer cocaine in Context A and extinguished their lever-pressing in Context B. On induction day, we exposed rats to either Context A or a novel Context C for 30 min and injected Daun02 or vehicle into accumbens shell or core 60 min later. On test day, 3 d after induction day, the ability of Context A to reinstate cocaine seeking and increase neuronal activity in accumbens shell was attenuated when Daun02 was previously injected after exposure to Context A. Daun02 injections after exposure to the novel Context C had no effect on context-induced reinstatement of cocaine seeking despite much greater numbers of Fos-expressing neurons induced by Context C. Daun02 injections in accumbens core had no effect. Our data suggest that context-induced reinstatement of cocaine seeking is mediated by activation of context-selected accumbens shell but not core neuronal ensembles.
Collapse
|
49
|
West EA, Saddoris MP, Kerfoot EC, Carelli RM. Prelimbic and infralimbic cortical regions differentially encode cocaine-associated stimuli and cocaine-seeking before and following abstinence. Eur J Neurosci 2014; 39:1891-902. [PMID: 24690012 PMCID: PMC4260329 DOI: 10.1111/ejn.12578] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/21/2014] [Accepted: 03/03/2014] [Indexed: 01/12/2023]
Abstract
Cocaine stimuli often trigger relapse of drug-taking, even following periods of prolonged abstinence. Here, electrophysiological recordings were made in rats (n = 29) to determine how neurons in the prelimbic (PrL) or infralimbic (IL) regions of the medial prefrontal cortex (mPFC) encode cocaine-associated stimuli and cocaine-seeking, and whether this processing is differentially altered after 1 month of cocaine abstinence. After self-administration training, neurons (n = 308) in the mPFC were recorded during a single test session conducted either the next day or 1 month later. Test sessions consisted of three phases during which (i) the tone-houselight stimulus previously paired with cocaine infusion during self-administration was randomly presented by the experimenter, (ii) rats responded on the lever previously associated with cocaine during extinction and (iii) the tone-houselight was presented randomly between cocaine-reinforced responding during resumption of cocaine self-administration. PrL neurons showed enhanced encoding of the cocaine stimulus and drug-seeking behavior (under extinction and self-administration) following 30 days of abstinence. In contrast, although IL neurons encoded cocaine cues and cocaine-seeking, there were no pronounced changes in IL responsiveness following 30 days of abstinence. Importantly, cue-related changes do not represent a generalised stimulus-evoked discharge as PrL and IL neurons in control animals (n = 4) exhibited negligible recruitment by the tone-houselight stimulus. The results support the view that, following abstinence, neural encoding in the PrL but not IL may play a key role in enhanced cocaine-seeking, particularly following re-exposure to cocaine-associated cues.
Collapse
Affiliation(s)
- Elizabeth A. West
- Department of Psychology, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599
| | - Michael P. Saddoris
- Department of Psychology, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599
| | - Erin C. Kerfoot
- Department of Psychology, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599
| | - Regina M. Carelli
- Department of Psychology, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599
- Neuroscience Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|