1
|
Pierrefiche O. [Epigenetic changes in alcohol addiction and therapeutic perspectives]. ANNALES PHARMACEUTIQUES FRANÇAISES 2024:S0003-4509(24)00142-1. [PMID: 39374866 DOI: 10.1016/j.pharma.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/26/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
Alcohol consumption is a major public health issue. Patients with Alcohol Use Disorder (AUD) can benefit from five treatments that preferentially target membrane receptors, and whose efficacy is generally modest. However, a large body of experimental evidence points to an important role for epigenetics in the effects of alcohol consumption, and epidrugs that modify the epigenome offer an interesting alternative to current therapeutic options. This article reviews the most striking experimental evidence obtained at different ages in animal models, before comparing it with data obtained in humans and concluding on the relevance of using epidrugs. Finally, a new therapeutic option is suggested between psychedelics, recent molecules of interest, and epigenetic factors in alcohol intake.
Collapse
Affiliation(s)
- Olivier Pierrefiche
- Inserm UMR1247, groupe de recherche sur l'alcool et les pharmacodépendances, centre universitaire de recherche en santé, université Picardie Jules-Verne, chemin du Thil, Amiens, France.
| |
Collapse
|
2
|
Fanfarillo F, Ferraguti G, Lucarelli M, Fuso A, Ceccanti M, Terracina S, Micangeli G, Tarani L, Fiore M. The Impact of Alcohol-Induced Epigenetic Modifications in the Treatment of Alcohol use Disorders. Curr Med Chem 2024; 31:5837-5855. [PMID: 37828672 DOI: 10.2174/0109298673256937231004093143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/07/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Alcohol use disorders are responsible for 5.9% of all death annually and 5.1% of the global disease burden. It has been suggested that alcohol abuse can modify gene expression through epigenetic processes, namely DNA and histone methylation, histone acetylation, and microRNA expression. The alcohol influence on epigenetic mechanisms leads to molecular adaptation of a wide number of brain circuits, including the hypothalamus-hypophysis-adrenal axis, the prefrontal cortex, the mesolimbic-dopamine pathways and the endogenous opioid pathways. Epigenetic regulation represents an important level of alcohol-induced molecular adaptation in the brain. It has been demonstrated that acute and chronic alcohol exposure can induce opposite modifications in epigenetic mechanisms: acute alcohol exposure increases histone acetylation, decreases histone methylation and inhibits DNA methyltransferase activity, while chronic alcohol exposure induces hypermethylation of DNA. Some studies investigated the chromatin status during the withdrawal period and the craving period and showed that craving was associated with low methylation status, while the withdrawal period was associated with elevated activity of histone deacetylase and decreased histone acetylation. Given the effects exerted by ethanol consumption on epigenetic mechanisms, chromatin structure modifiers, such as histone deacetylase inhibitors and DNA methyltransferase inhibitors, might represent a new potential strategy to treat alcohol use disorder. Further investigations on molecular modifications induced by ethanol might be helpful to develop new therapies for alcoholism and drug addiction targeting epigenetic processes.
Collapse
Affiliation(s)
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell'Alcolismo e le sue Complicanze, Sapienza University of Rome, Rome, Italy
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Ginevra Micangeli
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| |
Collapse
|
3
|
Kaya-Akyüzlü D. Genetics and Epigenetics of Alcohol Use Disorder. THE PALGRAVE ENCYCLOPEDIA OF DISABILITY 2024:1-12. [DOI: 10.1007/978-3-031-40858-8_203-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/23/2024]
|
4
|
Azargoonjahromi A. The role of epigenetics in anxiety disorders. Mol Biol Rep 2023; 50:9625-9636. [PMID: 37804465 DOI: 10.1007/s11033-023-08787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/30/2023] [Indexed: 10/09/2023]
Abstract
Anxiety disorders (ADs) are extremely common psychiatric conditions that frequently co-occur with other physical and mental disorders. The pathophysiology of ADs is multifaceted and involves intricate connections among biological elements, environmental stimuli, and psychological mechanisms. Recent discoveries have highlighted the significance of epigenetics in bridging the gap between multiple risk factors that contribute to ADs and expanding our understanding of the pathomechanisms underlying ADs. Epigenetics is the study of how changes in the environment and behavior can have an impact on gene function. Indeed, researchers have found that epigenetic mechanisms can affect how genes are activated or inactivated, as well as whether they are expressed. Such mechanisms may also affect how ADs form and are protected. That is, the bulk of pharmacological trials evaluating epigenetic treatments for the treatment of ADs have used histone deacetylase inhibitors (HDACi), yielding promising outcomes in both preclinical and clinical studies. This review will provide an outline of how epigenetic pathways can be used to treat ADs or lessen their risk. It will also present the findings from preclinical and clinical trials that are currently available on the use of epigenetic drugs to treat ADs.
Collapse
|
5
|
Coelho A, Lima-Bastos S, Gobira P, Lisboa S. Endocannabinoid signaling and epigenetics modifications in the neurobiology of stress-related disorders. Neuronal Signal 2023; 7:NS20220034. [PMID: 37520658 PMCID: PMC10372471 DOI: 10.1042/ns20220034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Stress exposure is associated with psychiatric conditions, such as depression, anxiety, and post-traumatic stress disorder (PTSD). It is also a vulnerability factor to developing or reinstating substance use disorder. Stress causes several changes in the neuro-immune-endocrine axis, potentially resulting in prolonged dysfunction and diseases. Changes in several transmitters, including serotonin, dopamine, glutamate, gamma-aminobutyric acid (GABA), glucocorticoids, and cytokines, are associated with psychiatric disorders or behavioral alterations in preclinical studies. Complex and interacting mechanisms make it very difficult to understand the physiopathology of psychiatry conditions; therefore, studying regulatory mechanisms that impact these alterations is a good approach. In the last decades, the impact of stress on biology through epigenetic markers, which directly impact gene expression, is under intense investigation; these mechanisms are associated with behavioral alterations in animal models after stress or drug exposure, for example. The endocannabinoid (eCB) system modulates stress response, reward circuits, and other physiological functions, including hypothalamus-pituitary-adrenal axis activation and immune response. eCBs, for example, act retrogradely at presynaptic neurons, limiting the release of neurotransmitters, a mechanism implicated in the antidepressant and anxiolytic effects after stress. Epigenetic mechanisms can impact the expression of eCB system molecules, which in turn can regulate epigenetic mechanisms. This review will present evidence of how the eCB system and epigenetic mechanisms interact and the consequences of this interaction in modulating behavioral changes after stress exposure in preclinical studies or psychiatric conditions. Moreover, evidence that correlates the involvement of the eCB system and epigenetic mechanisms in drug abuse contexts will be discussed.
Collapse
Affiliation(s)
- Arthur A. Coelho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Brazil
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Sávio Lima-Bastos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Brazil
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Pedro H. Gobira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Sabrina F. Lisboa
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| |
Collapse
|
6
|
Amini J, Beyer C, Zendedel A, Sanadgol N. MAPK Is a Mutual Pathway Targeted by Anxiety-Related miRNAs, and E2F5 Is a Putative Target for Anxiolytic miRNAs. Biomolecules 2023; 13:biom13030544. [PMID: 36979479 PMCID: PMC10046777 DOI: 10.3390/biom13030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Anxiety-related disorders (ARDs) are chronic neuropsychological diseases and the sixth leading cause of disability in the world. As dysregulation of microRNAs (miRs) are observed in the pathological course of neuropsychiatric disorders, the present study aimed to introduce miRs that underlie anxiety processing in the brain. First, we collected the experimentally confirmed anxiety-related miRNAs (ARmiRs), predicted their target transcripts, and introduced critical cellular pathways with key commune hub genes. As a result, we have found nine anxiolytic and ten anxiogenic ARmiRs. The anxiolytic miRs frequently target the mRNA of Acyl-CoA synthetase long-chain family member 4 (Acsl4), AFF4-AF4/FMR2 family member 4 (Aff4), and Krüppel like transcription factor 4 (Klf4) genes, where miR-34b-5p and miR-34c-5p interact with all of them. Moreover, the anxiogenic miRs frequently target the mRNA of nine genes; among them, only two miR (miR-142-5p and miR-218-5p) have no interaction with the mRNA of trinucleotide repeat-containing adaptor 6B (Tnrc6b), and miR-124-3p interacts with all of them where MAPK is the main signaling pathway affected by both anxiolytic and anxiogenic miR. In addition, the anxiolytic miR commonly target E2F transcription factor 5 (E2F5) in the TGF-β signaling pathway, and the anxiogenic miR commonly target Ataxin 1 (Atxn1), WASP-like actin nucleation promoting factor (Wasl), and Solute Carrier Family 17 Member 6 (Slc17a6) genes in the notch signaling, adherence junction, and synaptic vesicle cycle pathways, respectively. Taken together, we conclude that the most important anxiolytic (miR-34c, Let-7d, and miR-17) and anxiogenic (miR-19b, miR-92a, and 218) miR, as hub epigenetic modulators, potentially influence the pathophysiology of anxiety, primarily via interaction with the MAPK signaling pathway. Moreover, the role of E2F5 as a novel putative target for anxiolytic miRNAs in ARDs disorders deserves further exploration.
Collapse
Affiliation(s)
- Javad Amini
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
- Correspondence:
| |
Collapse
|
7
|
Li Q, Zhang J, Gao Z, Zhang Y, Gu J. Gut microbiota-induced microRNA-206-3p increases anxiety-like behaviors by inhibiting expression of Cited2 and STK39. Microb Pathog 2023; 176:106008. [PMID: 36736544 DOI: 10.1016/j.micpath.2023.106008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Anxiety disorder is highly prevalent worldwide and represents a chronic and functionally disabling condition, with high levels of psychological stress characterized by cognitive and physiological symptoms. The purpose of this study is to evaluate the clinical significance of gut microbiota regulating microRNA (miR)-206-3p as a biomarker in the anxiety-like behaviors. METHODS Initially, bioinformatics analysis was performed to predict the related factors for gut microbiota affecting anxiety-like behaviors. Next, the anxiety-like behaviors in mice were measured by multiple experiments. Western blot analysis, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA) were utilized to measure the levels of 5-hydroxytryptamine (5-HT), brain derived neurotrophic factor (BDNF), and neutrophil expressed (NE) in brain tissues and serum and cAMP responsive element binding protein 1 (CREB) phosphorylation in brain tissues of germ-free (GF) mice. Dual-luciferase reporter gene assay was employed to verify the relationship between miR-206-3p and Cbp/p300 interacting transactivator with Glu/Asp rich carboxy-terminal domain 2 (Cited2)/serine/threonine kinase 39 (STK39). Ectopic expression and depletion experiments of miR-206-3p were conducted to determine the expression of miR-206-3p and mRNA and protein levels of Cited2, and STK39 in HT22 cells and brain tissues. Finally, transmission electron microscope (TEM) was used to observe the effects of miR-206-3p on hippocampal mitochondria and synapses. RESULTS Gut microbiota could elevate miR-206-3p expression in brain tissues to increase the anxiety-like behaviors. GF mice displayed the increased levels of 5-HT, BDNF, and NE in brain tissues and serum and CREB phosphorylation in brain tissues. Cited2/STK39 was identified as the target genes of miR-206-3p. Upregulated miR-206-3p increased anxiety-like behaviors by promoting degeneration of mitochondria and synapses in hippocampus via downregulation of Cited2 and STK39. CONCLUSIONS In conclusion, the key findings of the current study demonstrate that gut microbiota aggravated anxiety-like behaviors via the miR-206-3p/Cited2/STK39 axis.
Collapse
Affiliation(s)
- Qian Li
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China.
| | - Jie Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Zhitao Gao
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Yujuan Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Jingyang Gu
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| |
Collapse
|
8
|
Seyednejad SA, Sartor GC. Noncoding RNA therapeutics for substance use disorder. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10807. [PMID: 36601439 PMCID: PMC9808746 DOI: 10.3389/adar.2022.10807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although noncoding RNAs (ncRNAs) have been shown to regulate maladaptive neuroadaptations that drive compulsive drug use, ncRNA-targeting therapeutics for substance use disorder (SUD) have yet to be clinically tested. Recent advances in RNA-based drugs have improved many therapeutic issues related to immune response, specificity, and delivery, leading to multiple successful clinical trials for other diseases. As the need for safe and effective treatments for SUD continues to grow, novel nucleic acid-based therapeutics represent an appealing approach to target ncRNA mechanisms in SUD. Here, we review ncRNA processes implicated in SUD, discuss recent therapeutic approaches for targeting ncRNAs, and highlight potential opportunities and challenges of ncRNA-targeting therapeutics for SUD.
Collapse
Affiliation(s)
- Seyed Afshin Seyednejad
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for the Brain and Cognitive Sciences (CT IBACS), Storrs, CT, United States
| | - Gregory C. Sartor
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
- Connecticut Institute for the Brain and Cognitive Sciences (CT IBACS), Storrs, CT, United States
| |
Collapse
|
9
|
Barney TM, Vore AS, Deak T. Acute Ethanol Challenge Differentially Regulates Expression of Growth Factors and miRNA Expression Profile of Whole Tissue of the Dorsal Hippocampus. Front Neurosci 2022; 16:884197. [PMID: 35706690 PMCID: PMC9189295 DOI: 10.3389/fnins.2022.884197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 02/02/2023] Open
Abstract
Acute ethanol exposure produces rapid alterations in neuroimmune gene expression that are both time- and cytokine-dependent. Interestingly, adolescent rats, who often consume binge-like quantities of alcohol, displayed reduced neuroimmune responses to acute ethanol challenge. However, it is not known whether growth factors, a related group of signaling factors, respond to ethanol similarly in adults and adolescents. Therefore, Experiment 1 aimed to assess the growth factor response to ethanol in both adolescents and adults. To test this, adolescent (P29-P34) and adult (P70-P80) Sprague Dawley rats of both sexes were injected with either ethanol (3.5 g/kg) or saline, and brains were harvested 3 h post-injection for assessment of growth factor, cytokine, or miRNA expression. As expected, acute ethanol challenge significantly increased IL-6 and IκBα expression in the hippocampus and amygdala, replicating our prior findings. Acute ethanol significantly decreased BDNF and increased FGF2 regardless of age condition. PDGF was unresponsive to ethanol, but showed heightened expression among adolescent males. Because recent work has focused on the PDE4 inhibitor ibudilast for treatment in alcohol use disorder, Experiment 2 tested whether ibudilast would alter ethanol-evoked gene expression changes in cytokines and growth factors in the CNS. Ibudilast (9.0 mg/kg s.c.) administration 1 h prior to ethanol had no effect on ethanol-induced changes in cytokine or growth factor changes in the hippocampus or amygdala. To further explore molecular alterations evoked by acute ethanol challenge in the adult rat hippocampus, Experiment 3 tested whether acute ethanol would change the miRNA expression profile of the dorsal hippocampus using RNASeq, which revealed a rapid suppression of 12 miRNA species 3 h after acute ethanol challenge. Of the miRNA affected by ethanol, the majority were related to inflammation or cell survival and proliferation factors, including FGF2, MAPK, NFκB, and VEGF. Overall, these findings suggest that ethanol-induced, rapid alterations in neuroimmune gene expression were (i) muted among adolescents; (ii) independent of PDE4 signaling; and (iii) accompanied by changes in several growth factors (increased FGF2, decreased BDNF). In addition, ethanol decreased expression of multiple miRNA species, suggesting a dynamic molecular profile of changes in the hippocampus within a few short hours after acute ethanol challenge. Together, these findings may provide important insight into the molecular consequences of heavy drinking in humans.
Collapse
|
10
|
Kyzar EJ, Bohnsack JP, Pandey SC. Current and Future Perspectives of Noncoding RNAs in Brain Function and Neuropsychiatric Disease. Biol Psychiatry 2022; 91:183-193. [PMID: 34742545 PMCID: PMC8959010 DOI: 10.1016/j.biopsych.2021.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
Noncoding RNAs (ncRNAs) represent the majority of the transcriptome and play important roles in regulating neuronal functions. ncRNAs are exceptionally diverse in both structure and function and include enhancer RNAs, long ncRNAs, and microRNAs, all of which demonstrate specific temporal and regional expression in the brain. Here, we review recent studies demonstrating that ncRNAs modulate chromatin structure, act as chaperone molecules, and contribute to synaptic remodeling and behavior. In addition, we discuss ncRNA function within the context of neuropsychiatric diseases, particularly focusing on addiction and schizophrenia, and the recent methodological developments that allow for better understanding of ncRNA function in the brain. Overall, ncRNAs represent an underrecognized molecular contributor to complex neuronal processes underlying neuropsychiatric disorders.
Collapse
Affiliation(s)
- Evan J Kyzar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois; Department of Psychiatry, Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, New York
| | - John Peyton Bohnsack
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown Veterans Affairs Medical Center, University of Illinois at Chicago, Chicago, Illinois; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
11
|
Krishnan HR, Zhang H, Chen Y, Bohnsack JP, Shieh AW, Kusumo H, Drnevich J, Liu C, Grayson DR, Maienschein-Cline M, Pandey SC. Unraveling the epigenomic and transcriptomic interplay during alcohol-induced anxiolysis. Mol Psychiatry 2022; 27:4624-4632. [PMID: 36089615 PMCID: PMC9734037 DOI: 10.1038/s41380-022-01732-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022]
Abstract
Positive effects of alcohol drinking such as anxiolysis and euphoria appear to be a crucial factor in the initiation and maintenance of alcohol use disorder (AUD). However, the mechanisms that lead from chromatin reorganization to transcriptomic changes after acute ethanol exposure remain unknown. Here, we used Assay for Transposase-Accessible Chromatin followed by high throughput sequencing (ATAC-seq) and RNA-seq to investigate epigenomic and transcriptomic changes that underlie anxiolytic effects of acute ethanol using an animal model. Analysis of ATAC-seq data revealed an overall open or permissive chromatin state that was associated with transcriptomic changes in the amygdala after acute ethanol exposure. We identified a candidate gene, Hif3a (Hypoxia-inducible factor 3, alpha subunit), that had 'open' chromatin regions (ATAC-seq peaks), associated with significantly increased active epigenetic histone acetylation marks and decreased DNA methylation at these regions. The mRNA levels of Hif3a were increased by acute ethanol exposure, but decreased in the amygdala during withdrawal after chronic ethanol exposure. Knockdown of Hif3a expression in the central nucleus of amygdala attenuated acute ethanol-induced increases in Hif3a mRNA levels and blocked anxiolysis in rats. These data indicate that chromatin accessibility and transcriptomic signatures in the amygdala after acute ethanol exposure underlie anxiolysis and possibly prime the chromatin for the development of AUD.
Collapse
Affiliation(s)
- Harish R. Krishnan
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.280892.90000 0004 0419 4711Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612 USA
| | - Huaibo Zhang
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.280892.90000 0004 0419 4711Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612 USA
| | - Ying Chen
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - John Peyton Bohnsack
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Annie W. Shieh
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.411023.50000 0000 9159 4457Present Address: Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210 USA
| | - Handojo Kusumo
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.280892.90000 0004 0419 4711Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612 USA
| | - Jenny Drnevich
- grid.35403.310000 0004 1936 9991High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL 61801 USA
| | - Chunyu Liu
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.411023.50000 0000 9159 4457Present Address: Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210 USA
| | - Dennis R. Grayson
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Mark Maienschein-Cline
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.185648.60000 0001 2175 0319Research Informatics Core, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Subhash C. Pandey
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.280892.90000 0004 0419 4711Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612 USA
| |
Collapse
|
12
|
Wu L, Zhang Y, Ren J. Epigenetic modification in alcohol use disorder and alcoholic cardiomyopathy: From pathophysiology to therapeutic opportunities. Metabolism 2021; 125:154909. [PMID: 34627873 DOI: 10.1016/j.metabol.2021.154909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023]
Abstract
Alcohol consumption prompts detrimental psychological, pathophysiological and health issues, representing one of the major causes of death worldwide. Alcohol use disorder (AUD), which is characterized by compulsive alcohol intake and loss of control over alcohol usage, arises from a complex interplay between genetic and environmental factors. More importantly, long-term abuse of alcohol is often tied with unfavorable cardiac remodeling and contractile alterations, a cadre of cardiac responses collectively known as alcoholic cardiomyopathy (ACM). Recent evidence has denoted a pivotal role for ethanol-triggered epigenetic modifications, the interface between genome and environmental cues, in the organismal and cellular responses to ethanol exposure. To-date, three major epigenetic mechanisms (DNA methylation, histone modifications, and RNA-based mechanisms) have been identified for the onset and development of AUD and ACM. Importantly, these epigenetic changes induced by alcohol may be detectable in the blood, thus offering diagnostic, therapeutic, and prognostic promises of epigenetic markers for AUD and alcoholic complications. In addition, several epigenetic drugs have shown efficacies in the management of alcohol abuse, loss of control for alcohol usage, relapse, drinking-related anxiety and behavior in withdrawal. In this context, medications targeting epigenetic modifications may hold promises for pharmaceutical management of AUD and ACM.
Collapse
Affiliation(s)
- Lin Wu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai 200032, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
13
|
Rodriguez FD. Targeting Epigenetic Mechanisms to Treat Alcohol Use Disorders (AUD). Curr Pharm Des 2021; 27:3252-3272. [PMID: 33535943 PMCID: PMC8778698 DOI: 10.2174/1381612827666210203142539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/08/2020] [Indexed: 12/04/2022]
Abstract
BACKGROUND The impact of abusive alcohol consumption on human health is remarkable. According to the World Health Organization (WHO), approximately 3.3 million people die annually because of harmful alcohol consumption (the figure represents around 5.9% of global deaths). Alcohol Use Disorder (AUD) is a chronic disease where individuals exhibit compulsive alcohol drinking and present negative emotional states when they do not drink. In the most severe manifestations of AUD, the individuals lose control over intake despite a decided will to stop drinking. Given the multiple faces and the specific forms of this disease, the term AUD often appears in the plural (AUDs). Since only a few approved pharmacological treatments are available to treat AUD and they do not apply to all individuals or AUD forms, the search for compounds that may help to eliminate the burden of the disease and complement other therapeutical approaches is necessary. METHODS This work reviews recent research focused on the involvement of epigenetic mechanisms in the pathophysiology of AUD. Excessive drinking leads to chronic and compulsive consumption that eventually damages the organism. The central nervous system is a key target and is the focus of this study. The search for the genetic and epigenetic mechanisms behind the intricated dysregulation induced by ethanol will aid researchers in establishing new therapy approaches. CONCLUSION Recent findings in the field of epigenetics are essential and offer new windows for observation and research. The study of small molecules that inhibit key epienzymes involved in nucleosome architecture dynamics is necessary in order to prove their action and specificity in the laboratory and to test their effectivity and safety in clinical trials with selected patients bearing defined alterations caused by ethanol.
Collapse
Affiliation(s)
- F. David Rodriguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, University of Salamanca and Group GIR BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
| |
Collapse
|
14
|
Sharma R, Mishra V, Parikh M, Soni A, Sahota P, Thakkar M. Antisense-induced knockdown of cAMP response element-binding protein downregulates Per1 gene expression in the shell region of nucleus accumbens resulting in reduced alcohol consumption in mice. Alcohol Clin Exp Res 2021; 45:1940-1949. [PMID: 34424532 PMCID: PMC8602740 DOI: 10.1111/acer.14687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION We recently showed that circadian genes expressed in the shell region of nucleus accumbens (NAcSh) play a key role in alcohol consumption, though, the molecular mechanism of those effects is unclear. Because CREB-binding protein (CBP) promotes Per1 gene expression, we hypothesized that alcohol consumption would increase CBP expression in the NAcSh and antisense-induced knockdown of CBP would reduce Per1 expression and result in a reduction in alcohol consumption. METHODS To test our hypothesis, we performed two experiments. The Drinking-in-the-dark (DID) paradigm was used to evaluate alcohol consumption in male C57BL/6J mice. In Experiment 1 we examined the effects of alcohol consumption on CBP gene expression in the NAcSh. Control animals were exposed to, sucrose [10% (w/v) taste and calorie] and water (consummatory behavior). In Experiment 2 examined the effects of CBP gene silencing on the expression of the Per1 gene in the NAcSh and alcohol consumption in mice exposed to alcohol using the DID paradigm. CBP gene silencing was achieved by local infusion of two doses of either CBP antisense oligodeoxynucleotides (AS-ODNs; Antisense group) or nonsense ODNs (NS-ODNs; Nonsense group) bilaterally microinjected into the NAcSh within 24 h before alcohol consumption on Day 4 of the DID paradigm. The microinfusion sites were verified by cresyl violet staining. RESULTS Compared to sucrose, alcohol consumption, under the DID paradigm, significantly increased the expression of CBP in the NAcSh. Compared to Controls, bilateral infusion of CBP AS-ODNs significantly reduced the expression of Per1 in the NAcSh and alcohol consumption without affecting the amount of sucrose consumed. CONCLUSIONS Our results suggest that CBP is an upstream regulator of Per1 expression in the NAcSh and may act via Per1 to modulate alcohol consumption.
Collapse
Affiliation(s)
- Rishi Sharma
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri, USA
| | - Vaibhav Mishra
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri, USA
| | - Meet Parikh
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri, USA
| | - Anshul Soni
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri, USA
| | - Pradeep Sahota
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri, USA
| | - Mahesh Thakkar
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
15
|
Iwasaki H, Ichihara Y, Morino K, Lemecha M, Sugawara L, Sawano T, Miake J, Sakurai H, Nishi E, Maegawa H, Imamura T. MicroRNA-494-3p inhibits formation of fast oxidative muscle fibres by targeting E1A-binding protein p300 in human-induced pluripotent stem cells. Sci Rep 2021; 11:1161. [PMID: 33441918 PMCID: PMC7806978 DOI: 10.1038/s41598-020-80742-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/17/2020] [Indexed: 01/29/2023] Open
Abstract
MYOD-induced microRNA-494-3p expression inhibits fast oxidative myotube formation by downregulating myosin heavy chain 2 (MYH2) in human induced pluripotent stem cells (hiPSCs) during skeletal myogenesis. However, the molecular mechanisms regulating MYH2 expression via miR-494-3p remain unknown. Here, using bioinformatic analyses, we show that miR-494-3p potentially targets the transcript of the E1A-binding protein p300 at its 3'-untranslated region (UTR). Myogenesis in hiPSCs with the Tet/ON-myogenic differentiation 1 (MYOD1) gene (MyoD-hiPSCs) was induced by culturing them in doxycycline-supplemented differentiation medium for 7 days. p300 protein expression decreased after transient induction of miR-494-3p during myogenesis. miR-494-3p mimics decreased the levels of p300 and its downstream targets MYOD and MYH2 and myotube formation efficiency. p300 knockdown decreased myotube formation efficiency, MYH2 expression, and basal oxygen consumption rate. The binding of miR-494-3p to the wild type p300 3'-UTR, but not the mutated site, was confirmed using luciferase assay. Overexpression of p300 rescued the miR-494-3p mimic-induced phenotype in MyoD-hiPSCs. Moreover, miR-494-3p mimic reduced the levels of p300, MYOD, and MYH2 in skeletal muscles in mice. Thus, miR-494-3p might modulate MYH2 expression and fast oxidative myotube formation by directly regulating p300 levels during skeletal myogenesis in MyoD-hiPSCs and murine skeletal muscle tissues.
Collapse
Affiliation(s)
- Hirotaka Iwasaki
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan
| | - Yoshinori Ichihara
- Division of Pharmacology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Katsutaro Morino
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Tsukinowa, Seta, Otsu, Shiga, 520-2192, Japan.
| | - Mengistu Lemecha
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Tsukinowa, Seta, Otsu, Shiga, 520-2192, Japan
- Department of Molecular and Cellular Biology, City of Hope, Los Angeles, USA
| | - Lucia Sugawara
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Tsukinowa, Seta, Otsu, Shiga, 520-2192, Japan
| | - Tatsuya Sawano
- Division of Pharmacology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Junichiro Miake
- Division of Pharmacology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan
| | - Hiroshi Maegawa
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Tsukinowa, Seta, Otsu, Shiga, 520-2192, Japan
| | - Takeshi Imamura
- Division of Pharmacology, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
16
|
Gatta E, Grayson DR, Auta J, Saudagar V, Dong E, Chen Y, Krishnan HR, Drnevich J, Pandey SC, Guidotti A. Genome-wide methylation in alcohol use disorder subjects: implications for an epigenetic regulation of the cortico-limbic glucocorticoid receptors (NR3C1). Mol Psychiatry 2021; 26:1029-1041. [PMID: 31239533 PMCID: PMC6930366 DOI: 10.1038/s41380-019-0449-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/20/2019] [Accepted: 04/11/2019] [Indexed: 01/23/2023]
Abstract
Environmental factors, including substance abuse and stress, cause long-lasting changes in the regulation of gene expression in the brain via epigenetic mechanisms, such as DNA methylation. We examined genome-wide DNA methylation patterns in the prefrontal cortex (PFC, BA10) of 25 pairs of control and individuals with alcohol use disorder (AUD), using the Infinium® MethylationEPIC BeadChip. We identified 5254 differentially methylated CpGs (pnominal < 0.005). Bioinformatic analyses highlighted biological processes containing genes related to stress adaptation, including the glucocorticoid receptor (encoded by NR3C1). Considering that alcohol is a stressor, we focused our attention on differentially methylated regions of the NR3C1 gene and validated the differential methylation of several genes in the NR3C1 network. Chronic alcohol drinking results in a significant increased methylation of the NR3C1 exon variant 1H, with a particular increase in the levels of 5-hydroxymethylcytosine over 5-methylcytosine. These changes in DNA methylation were associated with reduced NR3C1 mRNA and protein expression levels in PFC, as well as other cortico-limbic regions of AUD subjects when compared with controls. Furthermore, we show that the expression of several stress-responsive genes (e.g., CRF, POMC, and FKBP5) is altered in the PFC of AUD subjects. These stress-response genes were also changed in the hippocampus, a region that is highly susceptible to stress. These data suggest that alcohol-dependent aberrant DNA methylation of NR3C1 and consequent changes in other stress-related genes might be fundamental in the pathophysiology of AUD and lay the groundwork for treatments targeting the epigenetic mechanisms regulating NR3C1 in AUD.
Collapse
Affiliation(s)
- Eleonora Gatta
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL USA
| | - Dennis R. Grayson
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL USA
| | - James Auta
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL USA
| | - Vikram Saudagar
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL USA
| | - Erbo Dong
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL USA
| | - Ying Chen
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL USA
| | - Harish R. Krishnan
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL USA
| | - Jenny Drnevich
- grid.35403.310000 0004 1936 9991High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL USA
| | - Subhash C. Pandey
- grid.185648.60000 0001 2175 0319Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL USA ,grid.280892.9Jesse Brown VA Medical Center, Chicago, IL 60612 USA
| | - Alessandro Guidotti
- Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
17
|
Xiao J, Wu C, He Y, Guo M, Peng Z, Liu Y, Liu L, Dong L, Guo Z, Zhang R, Zhang M. Rice Bran Phenolic Extract Confers Protective Effects against Alcoholic Liver Disease in Mice by Alleviating Mitochondrial Dysfunction via the PGC-1α-TFAM Pathway Mediated by microRNA-494-3p. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12284-12294. [PMID: 33094608 DOI: 10.1021/acs.jafc.0c04539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The initiation and development of alcoholic liver disease (ALD) is mediated, at least partly, by mitochondria dysfunction, which is regulated by PPARγ coactivator-1α (PGC-1α) via mitochondria transcription factor A (TFAM). Then, PGC-1α expression was regulated by several microRNAs. This research investigated the hepatoprotective effects of the rice bran phenolic extract (RBPE) on mice fed with an ethanol-containing diet via the microRNAs-PGC-1α-TFAM signal pathway. RBPE treatment protected against alcoholic liver injury, as indicated by decreased serum aminotransferase activities and hepatic triglyceride accumulation, together with alleviated oxidative stress in serum and the liver. RBPE treatment alleviated ethanol-induced mitochondrial dysfunction through altering the membrane potential, mtDNA content, and respiratory chain complex enzyme activities in mitochondria, resulting in increased hepatic ATP production. Decreased cytoplasmic cytochrome c contents, caspase-3 activity, and Bax/Bcl-2 ratio were detected in the liver of RBPE-treated mice, indicating that the RBPE might inhibit ethanol-induced hepatocellular apoptosis. Furthermore, ethanol-induced decreases in the mRNA and protein expression of PGC-1α and TFAM were remarkably alleviated in RBPE-treated mice. RBPE treatment to ethanol-fed mice could also downregulate the expression of microRNA-494-3p, which regulates PGC-1α expression directly. Therefore, the RBPE might exert protection against ALD by alleviating mitochondrial dysfunction and the resulting hepatocyte apoptosis via the PGC-1α-TFAM signal pathway mediated by microRNA-494-3p.
Collapse
Affiliation(s)
- Juan Xiao
- College of Food Science and Engineering, Hainan University/Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Chengjunhong Wu
- College of Food Science and Engineering, Hainan University/Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Yangeng He
- College of Food Science and Engineering, Hainan University/Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Mengyun Guo
- College of Food Science and Engineering, Hainan University/Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Ziting Peng
- College of Food Science and Engineering, Hainan University/Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Yuxin Liu
- College of Food Science and Engineering, Hainan University/Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Lei Liu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhiqiang Guo
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key laboratory of Agricultural Products Processing, Guangzhou 510610, China
| |
Collapse
|
18
|
Epigenetic and non-coding regulation of alcohol abuse and addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:63-86. [PMID: 33461665 DOI: 10.1016/bs.irn.2020.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alcohol use disorder is a chronic debilitated condition adversely affecting the lives of millions of individuals throughout the modern world. Individuals suffering from an alcohol use disorder diagnosis frequently have serious cooccurring conditions, which often further exacerbates problematic drinking behavior. Comprehending the biochemical processes underlying the progression and perpetuation of disease is essential for mitigating maladaptive behavior in order to restore both physiological and psychological health. The range of cellular and biological systems contributing to, and affected by, alcohol use disorder and other comorbid disorders necessitates a fundamental grasp of intricate functional relationships that govern molecular biology. Epigenetic factors are recognized as essential mediators of cellular behavior, orchestrating a symphony of gene expression changes within multicellular environments that are ultimately responsible for directing human behavior. Understanding the epigenetic and transcriptional regulatory mechanisms involved in the pathogenesis of disease is important for improving available pharmacotherapies and reducing the incidence of alcohol abuse and cooccurring conditions.
Collapse
|
19
|
Mathies LD, Lindsay JH, Handal AP, Blackwell GG, Davies AG, Bettinger JC. SWI/SNF complexes act through CBP-1 histone acetyltransferase to regulate acute functional tolerance to alcohol. BMC Genomics 2020; 21:646. [PMID: 32957927 PMCID: PMC7507291 DOI: 10.1186/s12864-020-07059-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/10/2020] [Indexed: 01/19/2023] Open
Abstract
Background SWI/SNF chromatin remodeling genes are required for normal acute responses to alcohol in C. elegans and are associated with alcohol use disorder in two human populations. In an effort to discover the downstream genes that are mediating this effect, we identified SWI/SNF-regulated genes in C. elegans. Results To identify SWI/SNF-regulated genes in adults, we compared mRNA expression in wild type and swsn-1(os22ts) worms under conditions that produce inactive swsn-1 in mature cells. To identify SWI/SNF-regulated genes in neurons, we compared gene expression in swsn-9(ok1354) null mutant worms that harbor a neuronal rescue or a control construct. RNA sequencing was performed to an average depth of 25 million reads per sample using 50-base, paired-end reads. We found that 6813 transcripts were significantly differentially expressed between swsn-1(os22ts) mutants and wild-type worms and 2412 transcripts were significantly differentially expressed between swsn-9(ok1354) mutants and swsn-9(ok1354) mutants with neuronal rescue. We examined the intersection between these two datasets and identified 603 genes that were differentially expressed in the same direction in both comparisons; we defined these as SWI/SNF-regulated genes in neurons and in adults. Among the differentially expressed genes was cbp-1, a C. elegans homolog of the mammalian CBP/p300 family of histone acetyltransferases. CBP has been implicated in the epigenetic regulation in response to alcohol in animal models and a polymorphism in the human CBP gene, CREBBP, has been associated with alcohol-related phenotypes. We found that cbp-1 is required for the development of acute functional tolerance to alcohol in C. elegans. Conclusions We identified 603 transcripts that were regulated by two different SWI/SNF complex subunits in adults and in neurons. The SWI/SNF-regulated genes were highly enriched for genes involved in membrane rafts, suggesting an important role for this membrane microdomain in the acute alcohol response. Among the differentially expressed genes was cbp-1; CBP-1 homologs have been implicated in alcohol responses across phyla and we found that C. elegans cbp-1 was required for the acute alcohol response in worms.
Collapse
Affiliation(s)
- Laura D Mathies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA, 23298, USA.
| | - Jonathan H Lindsay
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA, 23298, USA
| | - Amal P Handal
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA, 23298, USA
| | - GinaMari G Blackwell
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA, 23298, USA
| | - Andrew G Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA, 23298, USA
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA, 23298, USA
| |
Collapse
|
20
|
Dulman RS, Wandling GM, Pandey SC. Epigenetic mechanisms underlying pathobiology of alcohol use disorder. CURRENT PATHOBIOLOGY REPORTS 2020; 8:61-73. [PMID: 33747641 DOI: 10.1007/s40139-020-00210-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purpose of review Chronic alcohol use is a worldwide problem with multifaceted consequences including multiplying medical costs and sequelae, societal effects like drunk driving and assault, and lost economic productivity. These large-scale outcomes are driven by the consumption of ethanol, a small permeable molecule that has myriad effects in the human body, particularly in the liver and brain. In this review, we have summarized effects of acute and chronic alcohol consumption on epigenetic mechanisms that may drive pathobiology of Alcohol Use Disorder (AUD) while identifying areas of need for future research. Recent findings Epigenetics has emerged as an interesting field of biology at the intersection of genetics and the environment, and ethanol in particular has been identified as a potent modulator of the epigenome with various effects on DNA methylation, histone modifications, and non-coding RNAs. These changes alter chromatin dynamics and regulate gene expression that contribute to behavioral and physiological changes leading to the development of AUD psychopathology and cancer pathology. Summary Evidence and discussion presented here from preclinical results and available translational studies have increased our knowledge of the epigenetic effects of alcohol consumption. These studies have identified targets that can be used to develop better therapies to reduce chronic alcohol abuse and mitigate its societal burden and pathophysiology.
Collapse
Affiliation(s)
- Russell S Dulman
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Gabriela M Wandling
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
21
|
MicroRNA-137 Drives Epigenetic Reprogramming in the Adult Amygdala and Behavioral Changes after Adolescent Alcohol Exposure. eNeuro 2019; 6:ENEURO.0401-19.2019. [PMID: 31740576 PMCID: PMC6917896 DOI: 10.1523/eneuro.0401-19.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
Adolescent binge drinking is a serious public health concern and a risk factor for alcohol use disorder (AUD) and comorbid anxiety in adulthood. Chromatin remodeling mediated by epigenetic enzymes including lysine-specific demethylase 1 (LSD1) due to adolescent alcohol exposure may play a role in adult psychopathology. The mechanism by which adolescent alcohol exposure mechanistically regulates epigenetic reprogramming and behavioral changes in adulthood is unknown. We investigated the role of microRNA-137 (miR-137), which is crucial for normal neurodevelopment and targets LSD1, in adolescent intermittent ethanol (AIE) exposure-induced anxiety-like and alcohol-drinking behaviors and related epigenetic reprogramming in the amygdala in adulthood. Adolescent rats were exposed to 2 g/kg ethanol (2 d on/off; AIE) or adolescent intermittent saline (AIS) during postnatal days (PND)28-PND41 and allowed to grow to adulthood for analysis of behavior, miRNA expression, and epigenetic measures in the amygdala. Interestingly, miR-137 was increased and its target genes Lsd1 and Lsd1 + 8a were decreased in the AIE adult amygdala. Infusion of miR-137 antagomir directly into the central nucleus of the amygdala (CeA) rescues AIE-induced alcohol-drinking and anxiety-like behaviors via normalization of decreased Lsd1 expression, decreased LSD1 occupancy, and decreased Bdnf IV expression due to increased H3K9 dimethylation in AIE adult rats. Further, concomitant Lsd1 small interfering RNA (siRNA) infusion into the CeA prevents the miR-137-mediated reversal of AIE-induced adult anxiety and chromatin remodeling at the Bdnf IV promoter. These novel results highlight miR-137 as a potential therapeutic target for anxiety and AUD susceptibility after adolescent alcohol exposure in adulthood.
Collapse
|
22
|
Zhao H, Li G, Zhang S, Li F, Wang R, Tao Z, Ma Q, Han Z, Yan F, Fan J, Li L, Ji X, Luo Y. Inhibition of histone deacetylase 3 by MiR-494 alleviates neuronal loss and improves neurological recovery in experimental stroke. J Cereb Blood Flow Metab 2019; 39:2392-2405. [PMID: 31510852 PMCID: PMC6893973 DOI: 10.1177/0271678x19875201] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HDAC3 is an essential negative regulator of neuronal plasticity and memory formation. Although a chemical inhibitor has been invented, little is known about its endogenous modulators. We explored whether miR-494 affects HDAC3-mediated neuronal injury following acute ischemic stroke. A substantial increase in plasma miR-494 was detected in AIS patients and was positively associated with the mRS at one year after symptom onset. The miR-494 levels were transiently increased in the infarcted brain tissue of mice. In contrast, miR-494 levels were reduced in neurons but increased in the medium after OGD. Intracerebroventricular injection of miR-494 agomir reduced neuronal apoptosis and infarct volume at the acute stage of MCAO, promoted axonal plasticity and long-term outcomes at the recovery stage, suppressed neuronal ataxin-3 and HDAC3 expression and increased acetyl-H3K9 levels in the ipsilateral hemisphere. In vitro studies confirmed that miR-494 posttranslationally inhibited HDAC3 in neurons and prevented OGD-induced neuronal axonal injury. The HDAC3 inhibitor increased acetyl-H3K9 levels and reversed miR-494 antagomir-aggravated acute cerebral ischemic injury, as well as brain atrophy and long-term functional recovery. These results suggest that miR-494 may serve as a predictive biomarker of functional outcomes in AIS patients and a potential therapeutic target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Haiping Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Guangwen Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Sijia Zhang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Fangfang Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Zhen Tao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Qingfeng Ma
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ziping Han
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Feng Yan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Lingzhi Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Xunming Ji
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Crews FT, Robinson DL, Chandler LJ, Ehlers CL, Mulholland PJ, Pandey SC, Rodd ZA, Spear LP, Swartzwelder HS, Vetreno RP. Mechanisms of Persistent Neurobiological Changes Following Adolescent Alcohol Exposure: NADIA Consortium Findings. Alcohol Clin Exp Res 2019; 43:1806-1822. [PMID: 31335972 PMCID: PMC6758927 DOI: 10.1111/acer.14154] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
The Neurobiology of Adolescent Drinking in Adulthood (NADIA) Consortium has focused on the impact of adolescent binge drinking on brain development, particularly on effects that persist into adulthood. Adolescent binge drinking is common, and while many factors contribute to human brain development and alcohol use during adolescence, animal models are critical for understanding the specific consequences of alcohol exposure during this developmental period and the underlying mechanisms. Using adolescent intermittent ethanol (AIE) exposure models, NADIA investigators identified long-lasting AIE-induced changes in adult behavior that are consistent with observations in humans, such as increased alcohol drinking, increased anxiety (particularly social anxiety), increased impulsivity, reduced behavioral flexibility, impaired memory, disrupted sleep, and altered responses to alcohol. These behavioral changes are associated with multiple molecular, cellular, and physiological alterations in the brain that persist long after AIE exposure. At the molecular level, AIE results in long-lasting changes in neuroimmune/trophic factor balance and epigenetic-microRNA (miRNA) signaling across glia and neurons. At the cellular level, AIE history is associated in adulthood with reduced expression of cholinergic, serotonergic, and dopaminergic neuron markers, attenuated cortical thickness, decreased neurogenesis, and altered dendritic spine and glial morphology. This constellation of molecular and cellular adaptations to AIE likely contributes to observed alterations in neurophysiology, measured by synaptic physiology, EEG patterns, and functional connectivity. Many of these AIE-induced brain changes replicate findings seen in postmortem brains of humans with alcohol use disorder (AUD). NADIA researchers are now elucidating mechanisms of these adaptations. Emerging data demonstrate that exercise, antiinflammatory drugs, anticholinesterases, histone deacetylase inhibitors, and other pharmacological compounds are able to prevent (administered during AIE) and/or reverse (given after AIE) AIE-induced pathology in adulthood. These studies support hypotheses that adolescent binge drinking increases risk of adult hazardous drinking and influences brain development, and may provide insight into novel therapeutic targets for AIE-induced neuropathology and AUDs.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - L Judson Chandler
- Department of Neuroscience, Charleston Alcohol Research Center, Charleston, South Carolina
| | - Cindy L Ehlers
- Department of Neurosciences, The Scripps Research Institute, La Jolla, California
| | - Patrick J Mulholland
- Department of Neuroscience, Charleston Alcohol Research Center, Charleston, South Carolina
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois
| | - Zachary A Rodd
- Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Linda P Spear
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, New York
| | - H Scott Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
24
|
Kołosowska K, Gawryluk A, Wisłowska-Stanek A, Liguz-Lęcznar M, Hetmańczyk K, Ługowska A, Sobolewska A, Skórzewska A, Gryz M, Lehner M. Stress changes amphetamine response, D2 receptor expression and epigenetic regulation in low-anxiety rats. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:256-268. [PMID: 31022425 DOI: 10.1016/j.pnpbp.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 11/17/2022]
Abstract
The aim of this study was to assess the influence of chronic restraint stress on amphetamine (AMPH)-related appetitive 50-kHz ultrasonic vocalisations (USVs) in rats differing in freezing duration in a contextual fear test (CFT), i.e. HR (high-anxiety responsive) and LR (low-anxiety responsive) rats. The LR and the HR rats, previously exposed to an AMPH binge experience, differed in sensitivity to AMPH's rewarding effects, measured as appetitive vocalisations. Moreover, chronic restraint stress attenuated AMPH-related appetitive vocalisations in the LR rats but had no influence on the HR rats' behaviour. To specify, the restraint LR rats vocalised appetitively less in the AMPH-associated context and after an AMPH challenge than the control LR rats. This phenomenon was associated with a decrease in the mRNA level for D2 dopamine receptor in the amygdala and its protein expression in the basal amygdala (BA) and opposite changes in the nucleus accumbens (NAc) - an increase in the mRNA level for D2 dopamine receptor and its protein expression in the NAc shell, compared to control conditions. Moreover, we observed that chronic restraint stress influenced epigenetic regulation in the LR and the HR rats differently. The contrasting changes were observed in the dentate gyrus (DG) of the hippocampus - the LR rats presented a decrease, but the HR rats showed an increase in H3K9 trimethylation. The restraint LR rats also showed higher miR-494 and miR-34c levels in the NAc than the control LR group. Our study provides behavioural and biochemical data concerning the role of differences in fear-conditioned response in stress vulnerability and AMPH-associated appetitive behaviour. The LR rats were less sensitive to the rewarding effects of AMPH when previously exposed to chronic stress that was accompanied by changes in D2 dopamine receptor expression and epigenetic regulation in mesolimbic areas.
Collapse
Affiliation(s)
- Karolina Kołosowska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland.
| | - Aleksandra Gawryluk
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Aleksandra Wisłowska-Stanek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre For Preclinical Research and Technology (CePT), 1B Banacha Street, 02-097 Warsaw, Poland
| | - Monika Liguz-Lęcznar
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Katarzyna Hetmańczyk
- Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Marek Gryz
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| |
Collapse
|
25
|
Dulman RS, Auta J, Teppen T, Pandey SC. Acute Ethanol Produces Ataxia and Induces Fmr1 Expression via Histone Modifications in the Rat Cerebellum. Alcohol Clin Exp Res 2019; 43:1191-1198. [PMID: 30969437 DOI: 10.1111/acer.14044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/04/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The cerebellum is fundamental for motor coordination and therefore crucial in ethanol (EtOH)-induced ataxia. EtOH contributes to cerebellar pathophysiology. Fragile-X mental retardation protein (FMRP) is a complex regulator of RNA and synaptic plasticity implicated in fragile-X tremor and ataxia syndrome, a phenotype featuring increased Fmr1 mRNA expression. Recent studies have implicated glutamatergic targets of FMRP in hereditary cerebellar ataxias including the main cerebellar excitatory amino acid (Eaa1) transporter and a subtype of metabotropic glutamate receptor (Grm5). However, EtOH-induced changes in cerebellar Fmr1 expression and its epigenetic regulation have not been investigated. Here, we examined the effects of acute EtOH exposure on ataxic behavior, gene expression, and epigenetic regulation of the Fmr1 gene and its glutamatergic targets in the rat cerebellum. METHODS Male adult Sprague Dawley rats received acute EtOH (2 g/kg) intraperitoneally 1 hour prior to ataxic behavioral testing on the accelerating rotarod and were sacrificed immediately thereafter. Cerebellar tissues were analyzed for gene expression and epigenetic regulation of the Fmr1 gene and its glutamatergic targets in the rat cerebellum using real-time quantitative polymerase chain reaction (PCR) and chromatin immunoprecipitation. RESULTS Acute EtOH exposure caused marked ataxia on the accelerating rotarod test compared with saline-treated controls. This ataxic response was associated with increases in mRNA levels of Fmr1, postsynaptic density 95 (Psd95), Eaa1, and Grm5 in the cerebellum. In addition, we found increased H3K27 acetylation both at the promoter region of Fmr1 and at a proposed cyclic adenosine monophosphate (cAMP) response-element binding (CREB) site downstream of the Fmr1 transcription start site. Furthermore, acute EtOH exposure significantly increased Creb1 and the histone acetyltransferases (HAT) CREB binding protein (Cbp), and p300 mRNA transcripts. CONCLUSIONS Overall, EtOH regulates cerebellar Fmr1 expression most likely via HAT-mediated increase in histone acetylation. We propose that FMRP regulation of glutamatergic transcripts plays an important role in disrupting the excitatory-inhibitory balance in the cerebellum underlying EtOH-induced ataxia.
Collapse
Affiliation(s)
- Russell S Dulman
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, Illinois
| | - James Auta
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, Illinois
| | - Tara Teppen
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Subhash C Pandey
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, Illinois.,Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
26
|
Zhao Q, Xiong Y, Xu J, Chen S, Li P, Huang Y, Wang Y, Chen WX, Wang B. Host MicroRNA hsa-miR-494-3p Promotes EV71 Replication by Directly Targeting PTEN. Front Cell Infect Microbiol 2018; 8:278. [PMID: 30234021 PMCID: PMC6130220 DOI: 10.3389/fcimb.2018.00278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 07/25/2018] [Indexed: 11/13/2022] Open
Abstract
Many cellular processes are driven by spatially and temporally regulated microRNAs (miRNAs)-dependent signaling events. Substantial evidence collected over the years indicates that miRNAs are pivotal regulators that contribute to the initiation and development of EV71-related disorders. Importantly, so far, no clinical trial has been undertaken to address the effect of miRNAs on EV71-related diseases. In this study, we show that EV71 infection results in up-regulation of hsa-miR-494-3p levels, and that EV71-induced hsa-miR-494-3p impacts PI3K/Akt signaling pathway by targeting PTEN. However, very little is known about the relationship between hsa-miR-494-3p and EV71 infection. The overall goal of the study is to get a better insight into whether or not hsa-miR-494-3p is involved in the EV71 infection. We found that the EV71 infection induces cellular apoptosis, and that this process can be counteracted by the over-expression of hsa-miR-494-3p mimics. We also present evidence that cell lines deficient in hsa-miR-494-3p are more sensitive to EV71-induced cell death than the corresponding control cells. Collectively, these findings confirm and extend the pervious observation suggesting that disturbances in miRNAs expression can influence EV71 propagation. In addition, they lend strong support to the ideas that hsa-miR-494-3p-mediated signaling pathway plays an important role in the EV71 replication, and that this may have profound implications on our views on EV71-related diseases.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Xiong
- Department of Laboratory Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jingru Xu
- Institute of Microbiology, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Shuang Chen
- Institute of Microbiology, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Pu Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunying Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei-Xian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Zhang H, Kyzar EJ, Bohnsack JP, Kokare DM, Teppen T, Pandey SC. Adolescent alcohol exposure epigenetically regulates CREB signaling in the adult amygdala. Sci Rep 2018; 8:10376. [PMID: 29991681 PMCID: PMC6039491 DOI: 10.1038/s41598-018-28415-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Binge alcohol drinking in adolescence leads to increased risk for alcohol use and other psychiatric disorders in adulthood. The transcription factor cAMP-response element binding (CREB) protein is involved in the neuronal response to adult ethanol exposure, but its role in the enduring effects of adolescent alcohol exposure in adulthood is unknown. We exposed male rats to adolescent intermittent ethanol (AIE) or saline (AIS) during post-natal days 28-41 and evaluated the epigenetic regulation of CREB dynamics in the adult amygdala. A subset of these adult rats was exposed to an acute ethanol challenge. AIE decreased CREB, phosphorylated CREB, CREB-binding protein (CBP) and p300 protein levels in adult amygdaloid brain structures. AIE exposure also causes deficits in Creb1, Cbp, and p300 mRNA expression in the amygdala of AIE adult rats which are normalized after acute ethanol exposure. Interestingly, occupancy of acetylated histone H3K9/14 proteins at specific locations in the Creb1, Cbp, and p300 gene promoter regions was decreased in the amygdala of AIE adult rats and was normalized by acute ethanol exposure. These results suggest that AIE exposure epigenetically reduces CREB and other related transcriptional activators in the amygdala in adulthood that may be associated with the behavioral effects of adolescent alcohol exposure.
Collapse
Affiliation(s)
- Huaibo Zhang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, 60612, USA
| | - Evan J Kyzar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, 60612, USA
| | - John Peyton Bohnsack
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Dadasaheb M Kokare
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Tara Teppen
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, 60612, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612, USA.
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, 60612, USA.
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, 60612, USA.
| |
Collapse
|
28
|
Long-term ethanol exposure: Temporal pattern of microRNA expression and associated mRNA gene networks in mouse brain. PLoS One 2018; 13:e0190841. [PMID: 29315347 PMCID: PMC5760035 DOI: 10.1371/journal.pone.0190841] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/20/2017] [Indexed: 01/05/2023] Open
Abstract
Long-term alcohol use can result in lasting changes in brain function, ultimately leading to alcohol dependence. These functional alterations arise from dysregulation of complex gene networks, and growing evidence implicates microRNAs as key regulators of these networks. We examined time- and brain region-dependent changes in microRNA expression after chronic intermittent ethanol (CIE) exposure in C57BL/6J mice. Animals were sacrificed at 0, 8, and 120h following the last exposure to four weekly cycles of CIE vapor and we measured microRNA expression in prefrontal cortex (PFC), nucleus accumbens (NAC), and amygdala (AMY). The number of detected (395–419) and differentially expressed (DE, 42–47) microRNAs was similar within each brain region. However, the DE microRNAs were distinct among brain regions and across time within each brain region. DE microRNAs were linked with their DE mRNA targets across each brain region. In all brain regions, the greatest number of DE mRNA targets occurred at the 0 or 8h time points and these changes were associated with microRNAs DE at 0 or 8h. Two separate approaches (discrete temporal association and hierarchical clustering) were combined with pathway analysis to further characterize the temporal relationships between DE microRNAs and their 120h DE targets. We focused on targets dysregulated at 120h as this time point represents a state of protracted withdrawal known to promote an increase in subsequent ethanol consumption. Discrete temporal association analysis identified networks with highly connected genes including ERK1/2 (mouse equivalent Mapk3, Mapk1), Bcl2 (in AMY networks) and Srf (in PFC networks). Similarly, the cluster-based analysis identified hub genes that include Bcl2 (in AMY networks) and Srf in PFC networks, demonstrating robust microRNA-mRNA network alterations in response to CIE exposure. In contrast, datasets utilizing targets from 0 and 8h microRNAs identified NF-kB-centered networks (in NAC and PFC), and Smad3-centered networks (in AMY). These results demonstrate that CIE exposure results in dynamic and complex temporal changes in microRNA-mRNA gene network structure.
Collapse
|
29
|
Emerging roles for ncRNAs in alcohol use disorders. Alcohol 2017; 60:31-39. [PMID: 28438526 DOI: 10.1016/j.alcohol.2017.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 12/21/2022]
Abstract
Chronic alcohol exposure produces widespread neuroadaptations and alterations in gene expression in human alcoholics and animal models. Technological advances in the past decade have increasingly highlighted the role of non-protein-coding RNAs (ncRNAs) in the regulation of gene expression and function. These recently characterized molecules were discovered to mediate diverse processes in the central nervous system, from normal development and physiology to regulation of disease, including alcoholism and other psychiatric disorders. This review will investigate the recent studies in human alcoholics and rodent models that have profiled different classes of ncRNAs and their dynamic alcohol-dependent regulation in brain.
Collapse
|
30
|
Ghezzi A, Li X, Lew LK, Wijesekera TP, Atkinson NS. Alcohol-Induced Neuroadaptation Is Orchestrated by the Histone Acetyltransferase CBP. Front Mol Neurosci 2017; 10:103. [PMID: 28442993 PMCID: PMC5387060 DOI: 10.3389/fnmol.2017.00103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/24/2017] [Indexed: 12/19/2022] Open
Abstract
Homeostatic neural adaptations to alcohol underlie the production of alcohol tolerance and the associated symptoms of withdrawal. These adaptations have been shown to persist for relatively long periods of time and are believed to be of central importance in promoting the addictive state. In Drosophila, a single exposure to alcohol results in long-lasting alcohol tolerance and symptoms of withdrawal following alcohol clearance. These persistent adaptations involve mechanisms such as long-lasting changes in gene expression and perhaps epigenetic restructuring of chromosomal regions. Histone modifications have emerged as important modulators of gene expression and are thought to orchestrate and maintain the expression of multi-gene networks. Previously genes that contribute to tolerance were identified as those that show alcohol-induced changes in histone H4 acetylation following a single alcohol exposure. However, the molecular mediator of the acetylation process that orchestrates their expression remains unknown. Here we show that the Drosophila ortholog of mammalian CBP, nejire, is the histone acetyltransferase involved in regulatory changes producing tolerance—alcohol induces nejire expression, nejire mutations suppress tolerance, and transgenic nejire induction mimics tolerance in alcohol-naive animals. Moreover, we observed that a loss-of-function mutation in the alcohol tolerance gene slo epistatically suppresses the effects of CBP induction on alcohol resistance, linking nejire to a well-established alcohol tolerance gene network. We propose that CBP is a central regulator of the network of genes underlying an alcohol adaptation.
Collapse
Affiliation(s)
- Alfredo Ghezzi
- Department of Biology, University of Puerto Rico, Río Piedras CampusSan Juan, Puerto Rico
| | - Xiaolei Li
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research, The University of Texas at AustinAustin, TX, USA
| | - Linda K Lew
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research, The University of Texas at AustinAustin, TX, USA
| | - Thilini P Wijesekera
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research, The University of Texas at AustinAustin, TX, USA
| | - Nigel S Atkinson
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research, The University of Texas at AustinAustin, TX, USA
| |
Collapse
|
31
|
Pandey SC, Kyzar EJ, Zhang H. Epigenetic basis of the dark side of alcohol addiction. Neuropharmacology 2017; 122:74-84. [PMID: 28174112 DOI: 10.1016/j.neuropharm.2017.02.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 02/02/2017] [Indexed: 12/13/2022]
Abstract
Alcoholism is a complex brain disease characterized by three distinct stages of the addiction cycle that manifest as neuroadaptive changes in the brain. One such stage of the addiction cycle is alcohol withdrawal and the negative affective states that promote drinking and maintain addiction. Repeated alcohol use, genetic predisposition to alcoholism and anxiety, and alcohol exposure during crucial developmental periods all contribute to the development of alcohol-induced withdrawal and negative affective symptoms. Epigenetic modifications within the amygdala have provided a molecular basis of these negative affective symptoms, also known as the dark side of addiction. Here, we propose that allostatic change within the epigenome in the amygdala is a prime mechanism of the biological basis of negative affective states resulting from, and contributing to, alcoholism. Acute alcohol exposure produces an anxiolytic response which is associated with the opening of chromatin due to increased histone acetylation, increased CREB binding protein (CBP) levels, and histone deacetylase (HDAC) inhibition. After chronic ethanol exposure, these changes return to baseline along with anxiety-like behaviors. However, during withdrawal, histone acetylation decreases due to increased HDAC activity and decreased CBP levels in the amygdala circuitry leading to the development of anxiety-like behaviors. Additionally, innately higher expression of the HDAC2 isoform leads to a deficit in global and gene-specific histone acetylation in the amygdala that is associated with a decrease in the expression of several synaptic plasticity-associated genes and maintaining heightened anxiety-like behavior and excessive alcohol intake. Adolescent alcohol exposure also leads to higher expression of HDAC2 and a deficit in histone acetylation leading to decreased expression of synaptic plasticity-associated genes and high anxiety and drinking behavior in adulthood. All these studies indicate that the epigenome can undergo allostatic reprogramming in the amygdaloid circuitry during various stages of alcohol exposure. Furthermore, opening the chromatin by inhibiting HDACs using pharmacological or genetic manipulations can lead to the attenuation of anxiety as well as alcohol intake. Chromatin remodeling provides a clear biological basis for the negative affective states seen during alcohol addiction and presents opportunities for novel drug development and treatment options. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA.
| | - Evan J Kyzar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Huaibo Zhang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| |
Collapse
|
32
|
Bartlett AA, Singh R, Hunter RG. Anxiety and Epigenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:145-166. [PMID: 28523545 DOI: 10.1007/978-3-319-53889-1_8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anxiety disorders are highly prevalent psychiatric disorders often comorbid with depression and substance abuse. Twin studies have shown that anxiety disorders are moderately heritable. Yet, genome-wide association studies (GWASs) have failed to identify gene(s) significantly associated with diagnosis suggesting a strong role for environmental factors and the epigenome. A number of anxiety disorder subtypes are considered "stress related." A large focus of research has been on the epigenetic and anxiety-like behavioral consequences of stress. Animal models of anxiety-related disorders have provided strong evidence for the role of stress on the epigenetic control of the hypothalamic-pituitary-adrenal (HPA) axis and of stress-responsive brain regions. Neuroepigenetics may continue to explain individual variation in susceptibility to environmental perturbations and consequently anxious behavior. Behavioral and pharmacological interventions aimed at targeting epigenetic marks associated with anxiety may prove fruitful in developing treatments.
Collapse
Affiliation(s)
- Andrew A Bartlett
- Department of Psychology, University of Massachusetts, 100 Morrissey Blvd, Boston, MA, 02125, USA
| | - Rumani Singh
- Department of Psychology, University of Massachusetts, 100 Morrissey Blvd, Boston, MA, 02125, USA
| | - Richard G Hunter
- Department of Psychology, University of Massachusetts, 100 Morrissey Blvd, Boston, MA, 02125, USA.
| |
Collapse
|
33
|
Kyzar EJ, Floreani C, Teppen TL, Pandey SC. Adolescent Alcohol Exposure: Burden of Epigenetic Reprogramming, Synaptic Remodeling, and Adult Psychopathology. Front Neurosci 2016; 10:222. [PMID: 27303256 PMCID: PMC4885838 DOI: 10.3389/fnins.2016.00222] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/06/2016] [Indexed: 12/22/2022] Open
Abstract
Adolescence represents a crucial phase of synaptic maturation characterized by molecular changes in the developing brain that shape normal behavioral patterns. Epigenetic mechanisms play an important role in these neuromaturation processes. Perturbations of normal epigenetic programming during adolescence by ethanol can disrupt these molecular events, leading to synaptic remodeling and abnormal adult behaviors. Repeated exposure to binge levels of alcohol increases the risk for alcohol use disorder (AUD) and comorbid psychopathology including anxiety in adulthood. Recent studies in the field clearly suggest that adolescent alcohol exposure causes widespread and persistent changes in epigenetic, neurotrophic, and neuroimmune pathways in the brain. These changes are manifested by altered synaptic remodeling and neurogenesis in key brain regions leading to adult psychopathology such as anxiety and alcoholism. This review details the molecular mechanisms underlying adolescent alcohol exposure-induced changes in synaptic plasticity and the development of alcohol addiction-related phenotypes in adulthood.
Collapse
Affiliation(s)
- Evan J Kyzar
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at ChicagoChicago, IL, USA; Jesse Brown Veterans Affairs Medical CenterChicago, IL, USA
| | - Christina Floreani
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at ChicagoChicago, IL, USA; Jesse Brown Veterans Affairs Medical CenterChicago, IL, USA
| | - Tara L Teppen
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at ChicagoChicago, IL, USA; Jesse Brown Veterans Affairs Medical CenterChicago, IL, USA
| | - Subhash C Pandey
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at ChicagoChicago, IL, USA; Jesse Brown Veterans Affairs Medical CenterChicago, IL, USA; Anatomy and Cell Biology, University of Illinois at ChicagoChicago, IL, USA
| |
Collapse
|