1
|
Lloret-Torres ME, Barreto-Estrada JL. LF-DBS of the ventral striatum shortens persistence for morphine place preference and modulates BDNF expression in the hippocampus. Behav Brain Res 2025; 477:115300. [PMID: 39490421 PMCID: PMC11574767 DOI: 10.1016/j.bbr.2024.115300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) represents a promising therapy for treatment-refractory patients with substance-use disorders. We previously found that low-frequency (LF) DBS aimed to the VC/VS during extinction training strengthens the extinction memory for morphine seeking under a partial extinction protocol. OBJECTIVES/HYPOTHESIS In this study, animals were tested in a full extinction protocol to determine whether LF-DBS applied during extinction facilitates extinction while preventing drug reinstatement, and study the molecular mechanisms underlying the effects of LF-DBS, METHODS/RESULTS: We used a full extinction CPP paradigm combined with LF-DBS to assess behavior. Western blots for the pro-extinction molecule, brain-derived neurotrophic factor (BDNF) were then performed in corticomesolimbic regions of the brain. Lastly, to determine whether changes in BDNF expression elicited by LF-DBS were specific to the VS/NAc afferents from the hippocampus, amygdala, and medial prefrontal cortex, we performed BDNF-like immunohistochemistry, combined with the retrograde tracer cholera toxin B (CtB). RESULTS We showed a significant reduction in the number of days required to fully extinguish morphine CPP in animals exposed to LF-DBS during extinction training accompanied by a significant increase in BDNF expression in the hippocampus. However, LF-DBS applied during extinction did not prevent drug reinstatement. Lastly, no changes in BDNF/CtB double-labeled cells were found in VS/NAc projecting cells after one-day exposure to LF-DBS. CONCLUSION(S) These data suggest that LF-DBS can facilitate extinction of morphine CPP by decreasing drug seeking through potential synaptic plasticity changes in the hippocampus to strengthen extinction memories.
Collapse
Affiliation(s)
- Mario E Lloret-Torres
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico
| | - Jennifer L Barreto-Estrada
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico.
| |
Collapse
|
2
|
Fattahi M, Rahimpour M, Riahi E. Opioid reward and deep brain stimulation of the lateral hypothalamic area. VITAMINS AND HORMONES 2024; 127:245-281. [PMID: 39864943 DOI: 10.1016/bs.vh.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Opioid use disorder (OUD) is considered a global health issue that affects various aspects of patients' lives and poses a considerable burden on society. Due to the high prevalence of remissions and relapses, novel therapeutic approaches are required to manage OUD. Deep brain stimulation (DBS) is one of the most promising clinical breakthroughs in translational neuroscience. It involves stereotactically implanting electrodes inside the brain and transmitting electrical pulses to targeted areas. To date, the nucleus accumbens has been recognized as the most successful DBS target for treating different types of drug addiction. Nevertheless, further preclinical research is required to determine the optimal brain target and stimulation parameters. On the other hand, the lateral hypothalamic area (LHA) plays a crucial role in many motivated behaviors including food intake and drug-seeking. Additionally, it projects widely throughout the brain to reward-related areas like the ventral tegmental area. Therefore, this chapter reviews studies investigating the potential positive effects of DBS administration in the LHA in animal models of opioid dependence and other pathological conditions. Findings reveal that LHA has the potential to be targeted for DBS application to treat a wide variety of disorders such as opioid dependence, obesity, and sleep disorders without significant adverse events. However, in the context of opioid dependence, more studies are needed, based on more valid animal models of addiction, including self-administration paradigms and varying stimulation patterns, to indicate that LHA is a safe and effective target for DBS in subjects with refractory opioid dependence.
Collapse
Affiliation(s)
- Mojdeh Fattahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Milad Rahimpour
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Huang S, Liu X, Li Z, Si Y, Yang L, Deng J, Luo Y, Xue YX, Lu L. Memory Reconsolidation Updating in Substance Addiction: Applications, Mechanisms, and Future Prospects for Clinical Therapeutics. Neurosci Bull 2024:10.1007/s12264-024-01294-z. [PMID: 39264570 DOI: 10.1007/s12264-024-01294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/09/2024] [Indexed: 09/13/2024] Open
Abstract
Persistent and maladaptive drug-related memories represent a key component in drug addiction. Converging evidence from both preclinical and clinical studies has demonstrated the potential efficacy of the memory reconsolidation updating procedure (MRUP), a non-pharmacological strategy intertwining two distinct memory processes: reconsolidation and extinction-alternatively termed "the memory retrieval-extinction procedure". This procedure presents a promising approach to attenuate, if not erase, entrenched drug memories and prevent relapse. The present review delineates the applications, molecular underpinnings, and operational boundaries of MRUP in the context of various forms of substance dependence. Furthermore, we critically examine the methodological limitations of MRUP, postulating potential refinement to optimize its therapeutic efficacy. In addition, we also look at the potential integration of MRUP and neurostimulation treatments in the domain of substance addiction. Overall, existing studies underscore the significant potential of MRUP, suggesting that interventions predicated on it could herald a promising avenue to enhance clinical outcomes in substance addiction therapy.
Collapse
Affiliation(s)
- Shihao Huang
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, China
| | - Zhonghao Li
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Yue Si
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Liping Yang
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Jiahui Deng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, China
| | - Yixiao Luo
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Yan-Xue Xue
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Lin Lu
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Zhang L, Meng S, Huang E, Di T, Ding Z, Huang S, Chen W, Zhang J, Zhao S, Yuwen T, Chen Y, Xue Y, Wang F, Shi J, Shi Y. High frequency deep brain stimulation of the dorsal raphe nucleus prevents methamphetamine priming-induced reinstatement of drug seeking in rats. Transl Psychiatry 2024; 14:190. [PMID: 38622130 PMCID: PMC11018621 DOI: 10.1038/s41398-024-02895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
Drug addiction represents a multifaceted and recurrent brain disorder that possesses the capability to create persistent and ineradicable pathological memory. Deep brain stimulation (DBS) has shown a therapeutic potential for neuropsychological disorders, while the precise stimulation targets and therapeutic parameters for addiction remain deficient. Among the crucial brain regions implicated in drug addiction, the dorsal raphe nucleus (DRN) has been found to exert an essential role in the manifestation of addiction memory. Thus, we investigated the effects of DRN DBS in the treatment of addiction and whether it might produce side effects by a series of behavioral assessments, including methamphetamine priming-induced reinstatement of drug seeking behaviors, food-induced conditioned place preference (CPP), open field test and elevated plus-maze test, and examined brain activity and connectivity after DBS of DRN. We found that high-frequency DBS of the DRN significantly lowered the CPP scores and the number of active-nosepokes in the methamphetamine-primed CPP test and the self-administration model. Moreover, both high-frequency and sham DBS group rats were able to establish significant food-induced place preference, and no significant difference was observed in the open field test and in the elevated plus-maze test between the two groups. Immunofluorescence staining and functional magnetic resonance imaging revealed that high-frequency DBS of the DRN could alter the activity and functional connectivity of brain regions related to addiction. These results indicate that high-frequency DBS of the DRN effectively inhibits methamphetamine priming-induced relapse and seeking behaviors in rats and provides a new target for the treatment of drug addiction.
Collapse
Affiliation(s)
- Libo Zhang
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Shiqiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Enze Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Tianqi Di
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Zengbo Ding
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Shihao Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Wenjun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Jiayi Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Shenghong Zhao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Ting Yuwen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Yang Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Feng Wang
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
| | - Jie Shi
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen-PKU-HKUST Medical Center, Shenzhen, China.
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China.
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| | - Yu Shi
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen-PKU-HKUST Medical Center, Shenzhen, China.
| |
Collapse
|
5
|
Zhang KK, Matin R, Gorodetsky C, Ibrahim GM, Gouveia FV. Systematic review of rodent studies of deep brain stimulation for the treatment of neurological, developmental and neuropsychiatric disorders. Transl Psychiatry 2024; 14:186. [PMID: 38605027 PMCID: PMC11009311 DOI: 10.1038/s41398-023-02727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 04/13/2024] Open
Abstract
Deep brain stimulation (DBS) modulates local and widespread connectivity in dysfunctional networks. Positive results are observed in several patient populations; however, the precise mechanisms underlying treatment remain unknown. Translational DBS studies aim to answer these questions and provide knowledge for advancing the field. Here, we systematically review the literature on DBS studies involving models of neurological, developmental and neuropsychiatric disorders to provide a synthesis of the current scientific landscape surrounding this topic. A systematic analysis of the literature was performed following PRISMA guidelines. 407 original articles were included. Data extraction focused on study characteristics, including stimulation protocol, behavioural outcomes, and mechanisms of action. The number of articles published increased over the years, including 16 rat models and 13 mouse models of transgenic or healthy animals exposed to external factors to induce symptoms. Most studies targeted telencephalic structures with varying stimulation settings. Positive behavioural outcomes were reported in 85.8% of the included studies. In models of psychiatric and neurodevelopmental disorders, DBS-induced effects were associated with changes in monoamines and neuronal activity along the mesocorticolimbic circuit. For movement disorders, DBS improves symptoms via modulation of the striatal dopaminergic system. In dementia and epilepsy models, changes to cellular and molecular aspects of the hippocampus were shown to underlie symptom improvement. Despite limitations in translating findings from preclinical to clinical settings, rodent studies have contributed substantially to our current knowledge of the pathophysiology of disease and DBS mechanisms. Direct inhibition/excitation of neural activity, whereby DBS modulates pathological oscillatory activity within brain networks, is among the major theories of its mechanism. However, there remain fundamental questions on mechanisms, optimal targets and parameters that need to be better understood to improve this therapy and provide more individualized treatment according to the patient's predominant symptoms.
Collapse
Affiliation(s)
- Kristina K Zhang
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rafi Matin
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - George M Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
6
|
Nikbakhtzadeh M, Ashabi G, Saadatyar R, Doostmohammadi J, Nekoonam S, Keshavarz M, Riahi E. Restoring the firing activity of ventral tegmental area neurons by lateral hypothalamic deep brain stimulation following morphine administration in rats: LH DBS and the spiking activity of VTA neurons. Physiol Behav 2023; 267:114209. [PMID: 37105347 DOI: 10.1016/j.physbeh.2023.114209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
We have previously shown that high-frequency deep brain stimulation (DBS) of the lateral hypothalamus (LH) compromises morphine-induced addiction-like behavior in rats. The exact mechanism underlying this effect is not known. Here, we investigated the assumption that DBS in the LH influences the firing activity of neurons in the ventral tegmental area (VTA). To that end, male Wistar rats received morphine (5 mg/kg; s.c.) for three days and underwent extracellular single unit recording under general anesthesia one day later. During the recording, the rats received an intraoperative injection of morphine (5 mg/kg; s.c.) plus DBS in the LH (130 Hz pulse frequency, 150 μA amplitude, and 100 μs pulse width). One group of animals also received preoperative DBS after each morphine injection before the recording. The spiking frequency of VTA neurons was measured at three successive phases: (1) baseline (5-15 min); (2) DBS-on (morphine + DBS for 30 min); and (3) After-DBS (over 30 min after termination of DBS). Results showed that morphine suppressed the firing activity of a large population of non-DA neurons, whereas it activated most DA neurons. Intraoperative DBS reversed morphine suppression of non-DA firing, but did not alter the excitatory effect of morphine on DA neurons firing. With repeated preoperative application of DBS, non-DA neurons returned to the morphine-induced suppressive state, but DA neurons released from the excitatory effect of morphine. It is concluded that the development of morphine reward is associated with a hypoactivity of VTA non-DA neurons and a hyperactivity of DA neurons, and that DBS modulation of the spiking activity may contribute to the blockade of morphine addiction-like behavior.
Collapse
Affiliation(s)
- Marjan Nikbakhtzadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Saadatyar
- Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Jafar Doostmohammadi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saied Nekoonam
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoor Keshavarz
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Eskandari K, Fattahi M, Riahi E, Khosrowabadi R, Haghparast A. A wide range of Deep Brain Stimulation of the nucleus accumbens shell time independently reduces the extinction period and prevents the reinstatement of methamphetamine-seeking behavior in rats. Life Sci 2023; 319:121503. [PMID: 36804308 DOI: 10.1016/j.lfs.2023.121503] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Methamphetamine (METH) addiction is a significant public health issue, and standard medical therapies are often not curative. Deep Brain Stimulation (DBS) has recently shown the potential to cure addiction by modulating neural activity in specific brain circuits. Recent studies have revealed that the nucleus accumbens shell (NAcSh) could serve as a promising target in treating addiction. Therefore, the present study aimed to investigate the therapeutic effects of NAcSh high- or low-frequency stimulation (HFS or LFS) in the different time points of application on the extinction and reinstatement of the METH-conditioned place preference (CPP). LFS or HFS (10 or 130 Hz, 150-200 μA, 100 μs) was delivered to the NAcSh for 30 min non-simultaneous (in a distinct non-drug environment) or simultaneous (in a drug-paired context) of the drug-free extinction sessions. The obtained results showed that both non-simultaneous and simultaneous treatments by HFS and LFS notably reduced the extinction period of METH-induced CPP. Furthermore, the data indicated that both non-synchronous and synchronous HFS prevented METH-primed reinstatement, while only the LFS synchronized group could block the reinstatement of METH-seeking behavior. The results also demonstrated that HFS was more effective than LFS in attenuating METH-primed reinstatement, and applying HFS synchronous was significantly more effective than HFS non-synchronous in reducing the relapse of drug-seeking. In conclusion, the current study's results suggest that DBS of the NAcSh in a wide range of frequencies (LFS and HFS) could affect addiction-related behaviors. However, it should be considered that the frequency and timing of DBS administration are among the critical determining factors.
Collapse
Affiliation(s)
- Kiarash Eskandari
- School of Medicine, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojdeh Fattahi
- School of Medicine, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Abbas Haghparast
- School of Medicine, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Fattahi M, Eskandari K, Riahi E, Khosrowabadi R, Haghparast A. Distinct suppressing effects of deep brain stimulation in the orbitofrontal cortex on the development, extinction, and reinstatement of methamphetamine-seeking behaviors. Life Sci 2023; 322:121613. [PMID: 36948388 DOI: 10.1016/j.lfs.2023.121613] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
AIMS The orbitofrontal cortex (OFC) is implicated in compulsive drug-seeking and relapse, the characteristics that result in addiction treatment failure. Structural and functional impairments within the OFC have been detected in many substance use disorders (SUDs). Deep brain stimulation (DBS) is proposed as a promising therapeutic option in treating SUDs. Therefore, the present study aimed to investigate the potential efficacy of DBS application on the various stages of the methamphetamine-conditioned place preference (CPP) paradigm in rats. MAIN METHODS Electrodes were implanted unilaterally in the rat's right OFC. DBS in the form of high- or low-frequency stimulation (HFS: 130 Hz, LFS: 13 Hz) was applied during the 5-day conditioning phase (a daily 30-min session) or extinction period (30-min session, daily, ten days) of methamphetamine-induced CPP in two separate sets of experiments. Following extinction, place preference was reinstated by injecting a priming dose of methamphetamine (0.25 mg/kg). KEY FINDINGS The HFS and LFS significantly decreased the methamphetamine place preference when applied over the conditioning period. In the extinction experiment, only HFS could remarkably accelerate the extinction of reward-context associations and even reduce the methamphetamine-induced reinstatement of seeking behaviors. SIGNIFICANCE Conclusively, DBS administration in the OFC demonstrated some positive results, including suppressing effects on the development, maintenance, and relapse of methamphetamine-seeking behavior. These findings encourage conducting more preclinical studies to strongly suggest a wide range of DBS applications in cortical areas such as OFC as an efficient treatment modality for psychostimulant use disorder.
Collapse
Affiliation(s)
- Mojdeh Fattahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiarash Eskandari
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Deep brain stimulation of the lateral hypothalamus to block morphine reward: Does the intensity of stimulation matter? Behav Brain Res 2023; 437:114159. [PMID: 36241071 DOI: 10.1016/j.bbr.2022.114159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/09/2022] [Accepted: 10/09/2022] [Indexed: 11/13/2022]
Abstract
It has been shown that high-frequency deep brain stimulation (DBS) of the lateral hypothalamus (LH) prevents morphine-induced conditioned place preference (CPP) in rats. However, our previous study demonstrated that the application of DBS at 150 µA did not block morphine CPP in all rats. Here, we investigated the possibility to completely block morphine CPP by increasing the intensity of LH DBS. Morphine reward was assessed by the CPP paradigm in male Wistar rats. DBS was applied in the LH during the conditioning trials with morphine (5 mg/kg, S.C.) at 130 Hz pulse frequency, 100 µs pulse duration, and either 150 µA or 200 µA pulse amplitude. Results showed that repeated morphine injections produced a robust CPP that was blocked partially by DBS at 150 µA and completely by DBS at 200 µA. Response rate was 47% with 150-µA and 100% with 200-µA stimulation. DBS treatment was not associated with changes in motor activity. In conclusion, the development of morphine reward was modulated by LH DBS in an intensity-dependent manner.
Collapse
|
10
|
Eskandari K, Fattahi M, Yazdanian H, Haghparast A. Is Deep Brain Stimulation an Effective Treatment for Psychostimulant Dependency? A Preclinical and Clinical Systematic Review. Neurochem Res 2022; 48:1255-1268. [PMID: 36445490 DOI: 10.1007/s11064-022-03818-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022]
Abstract
Addiction to psychostimulants significantly affects public health. Standard medical therapy is often not curative. Deep brain stimulation (DBS) is a promising treatment that has attracted much attention for addiction treatment in recent years. The present review aimed to systematically identify the positive and adverse effects of DBS in human and animal models to evaluate the feasibility of DBS as a treatment for psychostimulant abuse. The current study also examined the possible mechanisms underlying the therapeutic effects of DBS. In February 2022, a comprehensive search of four databases, including Web of Science, PubMed, Cochrane, and Scopus, was carried out to identify all reports that DBS was a treatment for psychostimulant addiction. The selected studies were extracted, summarized, and evaluated using the appropriate methodological quality assessment tools. The results indicated that DBS could reduce relapse and the desire for the drug in human and animal subjects without any severe side effects. The underlying mechanisms of DBS are complex and likely vary from region to region in terms of stimulation parameters and patterns. DBS seems a promising therapeutic option. However, clinical experiences are currently limited to several uncontrolled case reports. Further studies with controlled, double-blind designs are needed. In addition, more research on animals and humans is required to investigate the precise role of DBS and its mechanisms to achieve optimal stimulation parameters and develop new, less invasive methods.
Collapse
|
11
|
Yuen J, Kouzani AZ, Berk M, Tye SJ, Rusheen AE, Blaha CD, Bennet KE, Lee KH, Shin H, Kim JH, Oh Y. Deep Brain Stimulation for Addictive Disorders-Where Are We Now? Neurotherapeutics 2022; 19:1193-1215. [PMID: 35411483 PMCID: PMC9587163 DOI: 10.1007/s13311-022-01229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 10/18/2022] Open
Abstract
In the face of a global epidemic of drug addiction, neglecting to develop new effective therapies will perpetuate the staggering human and economic costs of substance use. This review aims to summarize and evaluate the preclinical and clinical studies of deep brain stimulation (DBS) as a novel therapy for refractory addiction, in hopes to engage and inform future research in this promising novel treatment avenue. An electronic database search (MEDLINE, EMBASE, Cochrane library) was performed using keywords and predefined inclusion criteria between 1974 and 6/18/2021 (registered on Open Science Registry). Selected articles were reviewed in full text and key details were summarized and analyzed to understand DBS' therapeutic potential and possible mechanisms of action. The search yielded 25 animal and 22 human studies. Animal studies showed that DBS of targets such as nucleus accumbens (NAc), insula, and subthalamic nucleus reduces drug use and seeking. All human studies were case series/reports (level 4/5 evidence), mostly targeting the NAc with generally positive outcomes. From the limited evidence in the literature, DBS, particularly of the NAc, appears to be a reasonable last resort option for refractory addictive disorders. We propose that future research in objective electrophysiological (e.g., local field potentials) and neurochemical (e.g., extracellular dopamine levels) biomarkers would assist monitoring the progress of treatment and developing a closed-loop DBS system. Preclinical literature also highlighted the prefrontal cortex as a promising DBS target, which should be explored in human research.
Collapse
Affiliation(s)
- Jason Yuen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong VIC 3216, Australia
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong VIC 3216, Australia
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong VIC 3216, Australia
| | - Susannah J Tye
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Psychiatry, Emory University, Atlanta, GA, 30322, USA
| | - Aaron E Rusheen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Charles D Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kevin E Bennet
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hojin Shin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jee Hyun Kim
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong VIC 3216, Australia.
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
12
|
Deep brain stimulation for opioid use disorder: A systematic review of preclinical and clinical evidence. Brain Res Bull 2022; 187:39-48. [PMID: 35777703 DOI: 10.1016/j.brainresbull.2022.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 12/09/2022]
Abstract
Opioid use disorder (OUD) is a chronic and complex disease characterized by repeated relapses and remissions. Deep brain stimulation (DBS) has been discussed again and again as a potentially helpful neuromodulatory procedure in this context. In this review, for the first time, we intended to systematically identify the positive and negative effects of DBS in human and animal models of opioid dependence to assess the viability of DBS as a treatment of OUD. Eligible studies were incorporated by a comprehensive literature search and evaluated through proper methodological quality assessment tools. Findings showed that the nucleus accumbens was the most stimulated brain target in human and animal studies, and DBS was applied chiefly in the form of high-frequency stimulation (HFS). DBS administration effectively reduced opioid craving and consumption in human and animal subjects dependent on opioids. DBS represents a valuable alternative strategy for treating intractable opioid addiction. Based on our systematic literature analysis, research efforts in this field should be continued.
Collapse
|
13
|
Kallupi M, Kononoff J, Melas PA, Qvist JS, de Guglielmo G, Kandel ER, George O. Deep brain stimulation of the nucleus accumbens shell attenuates cocaine withdrawal but increases cocaine self-administration, cocaine-induced locomotor activity, and GluR1/GluA1 in the central nucleus of the amygdala in male cocaine-dependent rats. Brain Stimul 2022; 15:13-22. [PMID: 34742997 PMCID: PMC8816878 DOI: 10.1016/j.brs.2021.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/21/2021] [Accepted: 11/01/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cocaine addiction is a major public health problem. Despite decades of intense research, no effective treatments are available. Both preclinical and clinical studies strongly suggest that deep brain stimulation of the nucleus accumbens (NAcc) is a viable target for the treatment of cocaine use disorder (CUD). OBJECTIVE Although previous studies have shown that DBS of the NAcc decreases cocaine seeking and reinstatement, the effects of DBS on cocaine intake in cocaine-dependent animals have not yet been investigated. METHODS Rats were made cocaine dependent by allowing them to self-administer cocaine in extended access conditions (6 h/day, 0.5 mg/kg/infusion). The effects of monophasic bilateral high-frequency DBS (60 μs pulse width and 130 Hz frequency) stimulation with a constant current of 150 μA of the NAcc shell on cocaine intake was then evaluated. Furthermore, cocaine-induced locomotor activity, irritability-like behavior during cocaine abstinence, and the levels of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits 1 and 2 (GluR1/GluA1 and GluR2/GluA2) after DBS were investigated. RESULTS Contrary to our expectations, DBS of the NAcc shell induced a slight increase in cocaine self-administration, and increased cocaine-induced locomotion after extended access of cocaine self-administration. In addition, DBS decreased irritability-like behavior 18 h into cocaine withdrawal. Finally, DBS increased both cytosolic and synaptosomal levels of GluR1, but not GluR2, in the central nucleus of the amygdala but not in other brain regions. CONCLUSIONS These preclinical results with cocaine-dependent animals support the use of high-frequency DBS of the NAcc shell as a therapeutic approach for the treatment of the negative emotional state that emerges during cocaine abstinence, but also demonstrate that DBS does not decrease cocaine intake in active, long-term cocaine users. These data, together with the existing evidence that DBS of the NAcc shell reduces the reinstatement of cocaine seeking in abstinent animals, suggest that NAcc shell DBS may be beneficial for the treatment of the negative emotional states and craving during abstinence, although it may worsen cocaine use if individuals continue drug use.
Collapse
Affiliation(s)
- Marsida Kallupi
- Department of Psychiatry, University of California, San Diego School of Medicine, San Diego, CA 92093, USA,Department of Neuroscience, The Scripps Research Institute, 10550 N.Torrey Pines Rd, La Jolla, CA 92037, USA,Correspondence to: and
| | - Jenni Kononoff
- Department of Neuroscience, The Scripps Research Institute, 10550 N.Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Philippe A. Melas
- Department of Neuroscience, Columbia University, New York, NY 10032, USA,Mortimer B. Zuckerman Mind Brain Behavior Institute, Jerome L. Greene Science Center, New York, NY 10027, USA,Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, 17176, Sweden
| | - Johanna S. Qvist
- Department of Neuroscience, Columbia University, New York, NY 10032, USA,Mortimer B. Zuckerman Mind Brain Behavior Institute, Jerome L. Greene Science Center, New York, NY 10027, USA
| | - Giordano de Guglielmo
- Department of Psychiatry, University of California, San Diego School of Medicine, San Diego, CA 92093, USA,Department of Neuroscience, The Scripps Research Institute, 10550 N.Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Eric R. Kandel
- Department of Neuroscience, Columbia University, New York, NY 10032, USA,Mortimer B. Zuckerman Mind Brain Behavior Institute, Jerome L. Greene Science Center, New York, NY 10027, USA,Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Olivier George
- Department of Psychiatry, University of California, San Diego School of Medicine, San Diego, CA 92093, USA,Department of Neuroscience, The Scripps Research Institute, 10550 N.Torrey Pines Rd, La Jolla, CA 92037, USA,Correspondence to: and
| |
Collapse
|
14
|
Zhang C, Mai S. A Deep Brain Stimulation System with Low Power Consumption and Wide Output Range. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6349-6352. [PMID: 34892565 DOI: 10.1109/embc46164.2021.9630531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Deep brain stimulation (DBS) therapy has been widely used in clinical practice for the treatment of neurological diseases and has achieved significant therapeutic effect. In this paper, aiming at the social problem of drug addiction, we design an electrical stimulation system which can be used in animal experiments, carry out the memory extinction experiment of addiction in rats, and explore the effective electrical stimulation parameters. The DBS system consists of a rechargeable battery and a PCB stimulation circuit composed of discrete devices. In animal experiments, the power consumption of the circuit is 0.36mW in the electrical stimulation stage. Theoretically, the circuit can work continuously for more than 100 days with a 3.7V 250mAh lithium battery. The stimulation circuit is highly programmable and the output stimulation current ranges from 100μA to 5000μA with a 20μA current resolution.
Collapse
|
15
|
Antidepressant-Like Properties of Intrastriatal Botulinum Neurotoxin-A Injection in a Unilateral 6-OHDA Rat Model of Parkinson's Disease. Toxins (Basel) 2021; 13:toxins13070505. [PMID: 34357977 PMCID: PMC8310221 DOI: 10.3390/toxins13070505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s patients often suffer from depression and anxiety, for which there are no optimal treatments. Hemiparkinsonian (hemi-PD) rats were used to test whether intrastriatal Botulinum neurotoxin-A (BoNT-A) application could also have antidepressant-like properties in addition to the known improvement of motor performance. To quantify depression- and anxiety-like behavior, the forced swim test, tail suspension test, open field test, and elevated plus maze test were applied to hemi-PD rats injected with BoNT-A or vehicle. Furthermore, we correlated the results in the forced swim test, open field test, and elevated plus maze test with the rotational behavior induced by apomorphine and amphetamine. Hemi-PD rats did not show significant anxiety-like behavior as compared with Sham 6-OHDA- + Sham BoNT-A-injected as well as with non-injected rats. However, hemi-PD rats demonstrated increased depression-like behaviors compared with Sham- or non-injected rats; this was seen by increased struggling frequency and increased immobility frequency. Hemi-PD rats intrastriatally injected with BoNT-A exhibited reduced depression-like behavior compared with the respective vehicle-receiving hemi-PD animals. The significant effects of intrastriatally applied BoNT-A seen in the forced swim test are reminiscent of those found after various antidepressant drug therapies. Our data correspond with the efficacy of BoNT-A treatment of glabellar frown lines in treating patients with major depression and suggest that also intrastriatal injected BoNT-A may have some antidepressant-like effect on hemi-PD.
Collapse
|
16
|
Zhang L, Meng S, Chen W, Chen Y, Huang E, Zhang G, Liang Y, Ding Z, Xue Y, Chen Y, Shi J, Shi Y. High-Frequency Deep Brain Stimulation of the Substantia Nigra Pars Reticulata Facilitates Extinction and Prevents Reinstatement of Methamphetamine-Induced Conditioned Place Preference. Front Pharmacol 2021; 12:705813. [PMID: 34276387 PMCID: PMC8277946 DOI: 10.3389/fphar.2021.705813] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
Persistent and stable drug memories lead to a high rate of relapse among addicts. A number of studies have found that intervention in addiction-related memories can effectively prevent relapse. Deep brain stimulation (DBS) exhibits distinct therapeutic effects and advantages in the treatment of neurological and psychiatric disorders. In addition, recent studies have also found that the substantia nigra pars reticulata (SNr) could serve as a promising target in the treatment of addiction. Therefore, the present study aimed to investigate the effect of DBS of the SNr on the reinstatement of drug-seeking behaviors. Electrodes were bilaterally implanted into the SNr of rats before training of methamphetamine-induced conditioned place preference (CPP). High-frequency (HF) or low-frequency (LF) DBS was then applied to the SNr during the drug-free extinction sessions. We found that HF DBS, during the extinction sessions, facilitated extinction of methamphetamine-induced CPP and prevented drug-primed reinstatement, while LF DBS impaired the extinction. Both HF and LF DBS did not affect locomotor activity or induce anxiety-like behaviors of rats. Finally, HF DBS had no effect on the formation of methamphetamine-induced CPP. In conclusion, our results suggest that HF DBS of the SNr could promote extinction and prevent reinstatement of methamphetamine-induced CPP, and the SNr may serve as a potential therapeutic target in the treatment of drug addiction.
Collapse
Affiliation(s)
- Libo Zhang
- Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Shiqiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Wenjun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Enze Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Guipeng Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yisen Liang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Zengbo Ding
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yun Chen
- Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jie Shi
- Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yu Shi
- Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
17
|
Subthalamic low-frequency oscillations predict vulnerability to cocaine addiction. Proc Natl Acad Sci U S A 2021; 118:2024121118. [PMID: 33785599 DOI: 10.1073/pnas.2024121118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Identifying vulnerable individuals before they transition to a compulsive pattern of drug seeking and taking is a key challenge in addiction to develop efficient prevention strategies. Oscillatory activity within the subthalamic nucleus (STN) has been associated with compulsive-related disorders. To study compulsive cocaine-seeking behavior, a core component of drug addiction, we have used a rat model in which cocaine seeking despite a foot-shock contingency only emerges in some vulnerable individuals having escalated their cocaine intake. We show that abnormal oscillatory activity within the alpha/theta and low-beta bands during the escalation of cocaine intake phase predicts the subsequent emergence of compulsive-like seeking behavior. In fact, mimicking STN pathological activity in noncompulsive rats during cocaine escalation turns them into compulsive ones. We also find that 30 Hz, but not 130 Hz, STN deep brain stimulation (DBS) reduces pathological cocaine seeking in compulsive individuals. Our results identify an early electrical signature of future compulsive-like cocaine-seeking behavior and further advocates the use of frequency-dependent STN DBS for the treatment of addiction.
Collapse
|
18
|
Bouton ME, Maren S, McNally GP. BEHAVIORAL AND NEUROBIOLOGICAL MECHANISMS OF PAVLOVIAN AND INSTRUMENTAL EXTINCTION LEARNING. Physiol Rev 2021; 101:611-681. [PMID: 32970967 PMCID: PMC8428921 DOI: 10.1152/physrev.00016.2020] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This article reviews the behavioral neuroscience of extinction, the phenomenon in which a behavior that has been acquired through Pavlovian or instrumental (operant) learning decreases in strength when the outcome that reinforced it is removed. Behavioral research indicates that neither Pavlovian nor operant extinction depends substantially on erasure of the original learning but instead depends on new inhibitory learning that is primarily expressed in the context in which it is learned, as exemplified by the renewal effect. Although the nature of the inhibition may differ in Pavlovian and operant extinction, in either case the decline in responding may depend on both generalization decrement and the correction of prediction error. At the neural level, Pavlovian extinction requires a tripartite neural circuit involving the amygdala, prefrontal cortex, and hippocampus. Synaptic plasticity in the amygdala is essential for extinction learning, and prefrontal cortical inhibition of amygdala neurons encoding fear memories is involved in extinction retrieval. Hippocampal-prefrontal circuits mediate fear relapse phenomena, including renewal. Instrumental extinction involves distinct ensembles in corticostriatal, striatopallidal, and striatohypothalamic circuits as well as their thalamic returns for inhibitory (extinction) and excitatory (renewal and other relapse phenomena) control over operant responding. The field has made significant progress in recent decades, although a fully integrated biobehavioral understanding still awaits.
Collapse
Affiliation(s)
- Mark E Bouton
- Department of Psychological Science, University of Vermont, Burlington, Vermont
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Gavan P McNally
- School of Psychology, University of New South Wales, Sydney, Australia
| |
Collapse
|
19
|
Minbashi Moeini M, Sadr SS, Riahi E. Deep Brain Stimulation of the Lateral Hypothalamus Facilitates Extinction and Prevents Reinstatement of Morphine Place Preference in Rats. Neuromodulation 2021; 24:240-247. [PMID: 33496024 DOI: 10.1111/ner.13320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES We have previously shown that high-frequency (HF) deep brain stimulation (DBS) of the lateral hypothalamus (LH) during the acquisition phase of morphine-induced conditioned place preference (CPP) abolished the development of morphine reward. In the present study, we investigated the effect of DBS in the LH during the extinction phase of morphine CPP. MATERIALS AND METHODS Rats were implanted with electrodes in the LH and went through conditioning trials for morphine CPP (40 min each, for three days), followed by extinction trials (20 min, for nine days). DBS-like stimulation (square pulses at 13 or 130 Hz, 200 μA, 100 μsec) was applied during the extinction trials. RESULTS Rats that received HF-DBS (130 Hz) accomplished extinction of morphine place preference by day 5 of the phase, whereas those in sham-stimulation or low-frequency-DBS (LF-DBS, 13 Hz) groups reached the criterion for extinction at day 8. One day later, rats received a priming injection of morphine (2 mg/kg) to reinstate the extinguished preference. While rats in the sham-DBS and LF-DBS relapsed into the state of preferring morphine-associated context, those in the HF-DBS group did not show such preference. Rats were then proceeded into an additional phase of extinction training (20 min, once daily, three to five days) with DBS, followed by restraint stress-induced reinstatement test. Again, sham-DBS and LF-DBS had no effect on relapse to the morphine place preferring state, but HF-DBS completely prevented the relapse. CONCLUSION HF-DBS facilitated extinction of morphine place preference and disrupted drug priming- and stress-induced renewal of morphine place preference.
Collapse
Affiliation(s)
- Moein Minbashi Moeini
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Shahabeddin Sadr
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Xie C, Prasad AA. Probiotics Treatment Improves Hippocampal Dependent Cognition in a Rodent Model of Parkinson's Disease. Microorganisms 2020; 8:microorganisms8111661. [PMID: 33120961 PMCID: PMC7692862 DOI: 10.3390/microorganisms8111661] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is a neurological disorder with motor dysfunction and a number of psychiatric symptoms. Symptoms such as anxiety and cognitive deficits emerge prior to motor symptoms and persist over time. There are limited treatments targeting PD psychiatric symptoms. Emerging studies reveal that the gut microbe is altered in PD patients. Here we assessed the effect of a probiotic treatment in a rat model of PD. We used the neurotoxin (6-hydroxydopamine, 6-OHDA) in a preclinical PD model to examine the impact of a probiotic treatment (Lacticaseibacillus rhamnosus HA-114) on anxiety and memory. Rats underwent either sham surgery or received 6-OHDA bilaterally into the striatum. Three weeks post-surgery, rats were divided into three experimental groups: a sham group that received probiotics, a 6-OHDA group that received probiotics, and the third group of 6-OHDA received the placebo formula. All rats had access to either placebo or probiotics formula for 6 weeks. All groups were assessed for anxiety-like behaviour using the elevated plus maze. Cognition was assessed for both non-hippocampal and hippocampal dependent tasks using the novel object recognition and novel place recognition. We report that the 6-OHDA lesion induced anxiety-like behaviour and deficits in hippocampal dependent cognition. Interestingly, the probiotics treatment had no impact on anxiety-like behaviour but selectively improved hippocampal dependent cognition deficits. Together, the results presented here highlight the utility of animal models in examining the neuropsychiatric symptoms of PD and the potential of probiotics as adjunctive treatment for non-motor symptoms of PD.
Collapse
|
21
|
Chang H, Gao C, Sun K, Xiao L, Li X, Jiang S, Zhu C, Sun T, Jin Z, Wang F. Continuous High Frequency Deep Brain Stimulation of the Rat Anterior Insula Attenuates the Relapse Post Withdrawal and Strengthens the Extinction of Morphine Seeking. Front Psychiatry 2020; 11:577155. [PMID: 33173522 PMCID: PMC7591677 DOI: 10.3389/fpsyt.2020.577155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation (DBS) modulates the neuronal activity in specific brain circuits and has been recently considered as a promising intervention for refractory addiction. The insula cortex is the hub of interoception and is known to be involved in different aspects of substance use disorder. In the present study, we investigate the effects of continuous high frequency DBS in the anterior insula (AI) on drug-seeking behaviors and examined the molecular mechanisms of DBS action in morphine-addicted rats. Sprague-Dawley rats were trained to the morphine-conditioned place preference (CPP, day 1-8) followed by bilaterally implanted with DBS electrodes in the AI (Day 10) and recovery (Day 10-15). Continuous high-frequency (HF) -DBS (130 Hz, 150 μA, 90 μs) was applied during withdrawal (Day 16-30) or extinction sessions. CPP tests were conducted on days 16, 30, 40 during withdrawal session and several rats were used for proteomic analysis on day 30. Following the complete extinction, morphine-CPP was reinstated by a priming dose of morphine infusion (2 mg/kg). The open field and novel objective recognition tests were also performed to evaluate the DBS side effect on the locomotion and recognition memory. Continuous HF-DBS in the AI attenuated the expression of morphine-CPP post-withdrawal (Day 30), but morphine addictive behavior relapsed 10 days after the cessation of DBS (Day 40). Continuous HF-DBS reduced the period to full extinction of morphine-CPP and blocked morphine priming-induced recurrence of morphine addiction. HF-DBS in the AI had no obvious effect on the locomotor activity and novel objective recognition and did not cause anxiety-like behavior. In addition, our proteomic analysis identified eight morphine-regulated proteins in the AI and their expression levels were reversely changed by HF-DBS. Continuous HF-DBS in the bilateral anterior insula prevents the relapse of morphine place preference after withdrawal, facilitates its extinction, blocks the reinstatement induced by morphine priming and reverses the expression of morphine-regulated proteins. Our findings suggest that manipulation of insular activity by DBS could be a potential intervention to treat substance use disorder, although future research is warranted.
Collapse
Affiliation(s)
- Haigang Chang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Caibin Gao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Kuisheng Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Lifei Xiao
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Xinxiao Li
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Shucai Jiang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Changliang Zhu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Zhe Jin
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Feng Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
22
|
Hasegawa H, Selway R, Gnoni V, Beniczky S, Williams SCR, Kryger M, Ferini-Strambi L, Goadsby P, Leschziner GD, Ashkan K, Rosenzweig I. The subcortical belly of sleep: New possibilities in neuromodulation of basal ganglia? Sleep Med Rev 2020; 52:101317. [PMID: 32446196 PMCID: PMC7679363 DOI: 10.1016/j.smrv.2020.101317] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/22/2020] [Accepted: 03/09/2020] [Indexed: 12/30/2022]
Abstract
Early studies posited a relationship between sleep and the basal ganglia, but this relationship has received little attention recently. It is timely to revisit this relationship, given new insights into the functional anatomy of the basal ganglia and the physiology of sleep, which has been made possible by modern techniques such as chemogenetic and optogenetic mapping of neural circuits in rodents and intracranial recording, functional imaging, and a better understanding of human sleep disorders. We discuss the functional anatomy of the basal ganglia, and review evidence implicating their role in sleep. Whilst these studies are in their infancy, we suggest that the basal ganglia may play an integral role in the sleep-wake cycle, specifically by contributing to a thalamo-cortical-basal ganglia oscillatory network in slow-wave sleep which facilitates neural plasticity, and an active state during REM sleep which enables the enactment of cognitive and emotional networks. A better understanding of sleep mechanisms may pave the way for more effective neuromodulation strategies for sleep and basal ganglia disorders.
Collapse
Affiliation(s)
- Harutomo Hasegawa
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), UK; Department of Neurosurgery, King's College Hospital, London, UK
| | - Richard Selway
- Department of Neurosurgery, King's College Hospital, London, UK
| | - Valentina Gnoni
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), UK; Sleep Disorders Centre, Guy's and St Thomas' Hospital, London, UK
| | - Sandor Beniczky
- Danish Epilepsy Centre, Dianalund, Denmark; Aarhus University Hospital, Aarhus, Denmark
| | | | - Meir Kryger
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Connecticut, USA
| | | | - Peter Goadsby
- NIHR-Wellcome Trust Clinical Research Facility, SLaM Biomedical Research Centre, King's College London, London, UK
| | - Guy D Leschziner
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), UK; Sleep Disorders Centre, Guy's and St Thomas' Hospital, London, UK; Department of Neurology, Guy's and St Thomas' Hospital (GSTT) & Clinical Neurosciences, KCL, UK
| | | | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), UK; Sleep Disorders Centre, Guy's and St Thomas' Hospital, London, UK.
| |
Collapse
|
23
|
Martínez-Rivera FJ, Sánchez-Navarro MJ, Huertas-Pérez CI, Greenberg BD, Rasmussen SA, Quirk GJ. Prolonged avoidance training exacerbates OCD-like behaviors in a rodent model. Transl Psychiatry 2020; 10:212. [PMID: 32620740 PMCID: PMC7334221 DOI: 10.1038/s41398-020-00892-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 01/12/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is characterized by compulsive behaviors that often resemble avoidance of perceived danger. OCD can be treated with exposure-with-response prevention (ERP) therapy in which patients are exposed to triggers but are encouraged to refrain from compulsions, to extinguish compulsive responses. The compulsions of OCD are strengthened by many repeated exposures to triggers, but little is known about the effects of extended repetition of avoidance behaviors on extinction. Here we assessed the extent to which overtraining of active avoidance affects subsequent extinction-with-response prevention (Ext-RP) as a rodent model of ERP, in which rats are extinguished to triggers, while the avoidance option is prevented. Male rats conditioned for 8d or 20d produced similar avoidance behavior to a tone paired with a shock, however, the 20d group showed a severe impairment of extinction during Ext-RP, as well as heightened anxiety. Furthermore, the majority of overtrained (20d) rats (75%) exhibited persistent avoidance following Ext-RP. In the 8d group, only a minority of rats (37%) exhibited persistent avoidance, and this was associated with elevated activity (c-Fos) in the prelimbic cortex and nucleus accumbens. In the 20d group, the minority of non-persistent rats (25%) showed elevated activity in the insular-orbital cortex and paraventricular thalamus. Lastly, extending the duration of Ext-RP prevented the deleterious effects of overtraining on extinction and avoidance. These rodent findings suggest that repeated expression of compulsion-like behaviors biases individuals toward persistent avoidance and alters avoidance circuits, thereby reducing the effectiveness of current extinction-based therapies.
Collapse
Affiliation(s)
- Freddyson J Martínez-Rivera
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, 00936, USA.
- Nash family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Marcos J Sánchez-Navarro
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, 00936, USA
| | - Carlos I Huertas-Pérez
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, 00936, USA
| | - Benjamin D Greenberg
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University and Butler Hospital and the Providence VA Medical Center, Providence, RI, 02906, USA
| | - Steven A Rasmussen
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University and Butler Hospital and the Providence VA Medical Center, Providence, RI, 02906, USA
| | - Gregory J Quirk
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, 00936, USA
| |
Collapse
|
24
|
Fakhrieh‐Asl G, Sadr SS, Karimian SM, Riahi E. Deep brain stimulation of the orbitofrontal cortex prevents the development and reinstatement of morphine place preference. Addict Biol 2020; 25:e12780. [PMID: 31210397 DOI: 10.1111/adb.12780] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/27/2019] [Accepted: 05/02/2019] [Indexed: 02/04/2023]
Abstract
The orbitofrontal cortex (OFC) is involved in compulsive drug seeking and drug relapse. Its involvement in cue-, context-, and stress-induced reinstatement of drug seeking has also been confirmed in animal models. Deep brain stimulation (DBS) was proposed to be an effective intervention for patients with treatment-refractory addiction. Therefore, in the present study, we investigated the potential efficacy of DBS in the OFC for controlling addictive-like behaviors in rats. Rats were bilaterally implanted with electrodes in the OFC and trained to the morphine conditioned place preference (CPP; 3, 5, and 7 mg/kg). High-frequency (HF; 130 Hz) or low-frequency (LF; 13 Hz) DBS-like stimulation was applied during the conditioning (40 minutes, once daily, 3 days) or extinction (20 minutes, once daily, 6-10 days) trials. Following the extinction, morphine preference was reinstated by a priming dose of morphine (2 mg/kg). When applied during the conditioning phase, HF-DBS significantly decreased preference for the morphine-associated context. HF-DBS during the extinction phase of morphine CPP reduced the number of days to full extinction of morphine preference and prevented morphine priming-induced recurrence of morphine preference. LF-DBS did not change any of these addictive behaviors. HF-DBS had no significant effect on novel object recognition memory. In conclusion, HF-DBS of the OFC prevented morphine preference, facilitated extinction of morphine preference, and blocked drug priming-induced reinstatement of morphine seeking. These findings may indicate a potential applicability of DBS in the treatment of relapse to drug use. Further studies will be necessary to assess the translatability of these findings to the clinic.
Collapse
Affiliation(s)
- Golnaz Fakhrieh‐Asl
- Electrophysiology Research Center, Neuroscience Institute Tehran University of Medical Sciences Tehran Iran
- Department of Physiology, School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Seyed Shahabeddin Sadr
- Electrophysiology Research Center, Neuroscience Institute Tehran University of Medical Sciences Tehran Iran
- Department of Physiology, School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Seyed Morteza Karimian
- Department of Physiology, School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Esmail Riahi
- Department of Physiology, School of Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
25
|
Interactions between prelimbic cortex and basolateral amygdala contribute to morphine-induced conditioned taste aversion in conditioning and extinction. Neurobiol Learn Mem 2020; 172:107248. [DOI: 10.1016/j.nlm.2020.107248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
|
26
|
Ma L, Chen W, Yu D, Han Y. Brain-Wide Mapping of Afferent Inputs to Accumbens Nucleus Core Subdomains and Accumbens Nucleus Subnuclei. Front Syst Neurosci 2020; 14:15. [PMID: 32317941 PMCID: PMC7150367 DOI: 10.3389/fnsys.2020.00015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
The nucleus accumbens (NAc) is the ventral part of the striatum and the interface between cognition, emotion, and action. It is composed of three major subnuclei: i.e., NAc core (NAcC), lateral shell (NAcLS), and medial shell (NAcMS), which exhibit functional heterogeneity. Thus, determining the synaptic inputs of the subregions of the NAc is important for understanding the circuit mechanisms involved in regulating different functions. Here, we simultaneously labeled subregions of the NAc with cholera toxin subunit B conjugated with multicolor Alexa Fluor, then imaged serial sections of the whole brain with a fully automated slide scanning system. Using the interactive WholeBrain framework, we characterized brain-wide inputs to the NAcC subdomains, including the rostral, caudal, dorsal, and ventral subdomains (i.e., rNAcC, cNAcC, dNAcC, and vNAcC, respectively) and the NAc subnuclei. We found diverse brain regions, distributed from the cerebrum to brain stem, projecting to the NAc. Of the 57 brain regions projecting to the NAcC, the anterior olfactory nucleus (AON) exhibited the greatest inputs. The input neurons of rNAcC and cNAcC are two distinct populations but share similar distribution over the same upstream brain regions, whereas the input neurons of dNAcC and vNAcC exhibit slightly different distributions over the same upstream regions. Of the 55 brain regions projecting to the NAcLS, the piriform area contributed most of the inputs. Of the 72 brain regions projecting to the NAcMS, the lateral septal nucleus contributed most of the inputs. The input neurons of NAcC and NAcLS share similar distributions, whereas the NAcMS exhibited brain-wide distinct distribution. Thus, the NAcC subdomains appeared to share the same upstream brain regions, although with distinct input neuron populations and slight differences in the input proportions, whereas the NAcMS subnuclei received distinct inputs from multiple upstream brain regions. These results lay an anatomical foundation for understanding the different functions of NAcC subdomains and NAc subnuclei.
Collapse
Affiliation(s)
- Liping Ma
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wenqi Chen
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Danfang Yu
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.,Department of Neurology, Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Yunyun Han
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Serafini RA, Pryce KD, Zachariou V. The Mesolimbic Dopamine System in Chronic Pain and Associated Affective Comorbidities. Biol Psychiatry 2020; 87:64-73. [PMID: 31806085 PMCID: PMC6954000 DOI: 10.1016/j.biopsych.2019.10.018] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022]
Abstract
Chronic pain is a complex neuropsychiatric disorder characterized by sensory, cognitive, and affective symptoms. Over the past 2 decades, researchers have made significant progress toward understanding the impact of mesolimbic dopamine circuitry in acute and chronic pain. These efforts have provided insights into the circuits and intracellular pathways in the brain reward center that are implicated in sensory and affective manifestations of chronic pain. Studies have also identified novel therapeutic targets as well as factors that affect treatment responsiveness. Dysregulation of dopamine function in the brain reward center may further promote comorbid mood disorders and vulnerability to addiction. This review discusses recent clinical and preclinical findings on the neuroanatomical and neurochemical adaptations triggered by prolonged pain states in the brain reward pathway. Furthermore, this discussion highlights evidence of mechanisms underlying comorbidities among pain, depression, and addiction.
Collapse
Affiliation(s)
- Randal A Serafini
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kerri D Pryce
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
28
|
Wang TR, Moosa S, Dallapiazza RF, Elias WJ, Lynch WJ. Deep brain stimulation for the treatment of drug addiction. Neurosurg Focus 2019; 45:E11. [PMID: 30064320 DOI: 10.3171/2018.5.focus18163] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drug addiction represents a significant public health concern that has high rates of relapse despite optimal medical therapy and rehabilitation support. New therapies are needed, and deep brain stimulation (DBS) may be an effective treatment. The past 15 years have seen numerous animal DBS studies for addiction to various drugs of abuse, with most reporting decreases in drug-seeking behavior with stimulation. The most common target for stimulation has been the nucleus accumbens, a key structure in the mesolimbic reward pathway. In addiction, the mesolimbic reward pathway undergoes a series of neuroplastic changes. Chief among them is a relative hypofunctioning of the prefrontal cortex, which is thought to lead to the diminished impulse control that is characteristic of drug addiction. The prefrontal cortex, as well as other targets involved in drug addiction such as the lateral habenula, hypothalamus, insula, and subthalamic nucleus have also been stimulated in animals, with encouraging results. Although animal studies have largely shown promising results, current DBS studies for drug addiction primarily use stimulation during active drug use. More data are needed on the effect of DBS during withdrawal in preventing future relapse. The published human experience for DBS for drug addiction is currently limited to several promising case series or case reports that are not controlled. Further animal and human work is needed to determine what role DBS can play in the treatment of drug addiction.
Collapse
Affiliation(s)
- Tony R Wang
- 1Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia
| | - Shayan Moosa
- 1Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia
| | - Robert F Dallapiazza
- 2Division of Neurosurgery, Toronto Western Hospital University Health Network, Toronto, Ontario, Canada; and
| | - W Jeffrey Elias
- 1Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia
| | - Wendy J Lynch
- 3Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
29
|
Martínez-Rivera FJ, Martínez NA, Martínez M, Ayala-Pagán RN, Silva WI, Barreto-Estrada JL. Neuroplasticity transcript profile of the ventral striatum in the extinction of opioid-induced conditioned place preference. Neurobiol Learn Mem 2019; 163:107031. [PMID: 31173919 PMCID: PMC6689252 DOI: 10.1016/j.nlm.2019.107031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/27/2019] [Accepted: 06/03/2019] [Indexed: 01/03/2023]
Abstract
Persistent drug-seeking behavior has been associated with deficits in neural circuits that regulate the extinction of addictive behaviors. Although there is extensive data that associates addiction phases with neuroplasticity changes in the reward circuit, little is known about the underlying mechanisms of extinction learning of opioid associated cues. Here, we combined morphine-conditioned place preference (CPP) with real-time polymerase chain reaction (RT-PCR) to identify the effects of extinction training on the expression of genes (mRNAs) associated with synaptic plasticity and opioid receptors in the ventral striatum/nucleus accumbens (VS/NAc). Following morphine extinction training, we identified two animal subgroups showing either extinction (low CPP) or extinction-resistance (high CPP). A third group were conditioned to morphine but did not receive extinction training (sham-extinction; high CPP). RT-PCR results showed that brain derived neurotrophic factor (Bdnf) was upregulated in rats showing successful extinction. Conversely, the lack of extinction training (sham-extinction) upregulated genes associated with kinases (Camk2g), neurotrophins (Ngfr), synaptic connectivity factors (Ephb2), glutamate neurotransmission (Grm8) and opioid receptors (μ1, Δ1). To further identify genes modulated by morphine itself, comparisons with their saline-counterparts were performed. Results revealed that Bdnf was consistently upregulated in the extinction group. Alternatively, widespread gene modulation was observed in the group with lack of extinction training (i.e. Drd2, Cnr1, Creb, μ1, Δ1) and the group showing extinction resistance (i.e. Crem, Rheb, Tnfa). Together, our study builds on the identification of putative genetic markers for the extinction learning of drug-associated cues.
Collapse
Affiliation(s)
- Freddyson J Martínez-Rivera
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA
| | - Namyr A Martínez
- Department of Physiology and Biophysics, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; Molecular Sciences Building, University of Puerto Rico, San Juan, PR 00926, USA
| | - Magdiel Martínez
- Department of Physiology and Biophysics, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; Molecular Sciences Building, University of Puerto Rico, San Juan, PR 00926, USA
| | - Roxsana N Ayala-Pagán
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA
| | - Walter I Silva
- Department of Physiology and Biophysics, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; Molecular Sciences Building, University of Puerto Rico, San Juan, PR 00926, USA
| | - Jennifer L Barreto-Estrada
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA.
| |
Collapse
|
30
|
Fattahi M, Ashabi G, Karimian SM, Riahi E. Preventing morphine reinforcement with high-frequency deep brain stimulation of the lateral hypothalamic area. Addict Biol 2019; 24:685-695. [PMID: 29737638 DOI: 10.1111/adb.12634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/03/2018] [Accepted: 04/17/2018] [Indexed: 12/31/2022]
Abstract
Deep brain stimulation (DBS) has been proposed as a promising intervention for patients with treatment-refractory substance use disorder. Here, we investigated if high-frequency DBS in the lateral hypothalamic area (LHA) could affect drug-induced reinforcement. Rats were bilaterally implanted with bipolar stimulation electrodes in the LHA and trained to the morphine conditioned place preference. DBS (monophasic square pulses, 130 Hz, 100-microsecond pulse duration and 150 μA) was applied during the morphine-pairing trials (30 minutes daily for 4 days) or drug-free postconditioning test (15 minutes) to determine its effect on the acquisition or expression of morphine reward, respectively. LHA DBS during morphine-conditioning trials blocked subsequent preference for the drug-associated context. In contrast, DBS in the postconditioning phase failed to inhibit expression of morphine-induced conditioned place preference. These results were further controlled by ruling out significant changes by DBS in physical performance and anxiety-like behavior as measured by an open field test and by precluding anhedonia-like behavior as measured by sucrose consumption test. Our results suggest that LHA DBS can prevent development of morphine reward without diminishing the motivation for naturally rewarding stimuli. Therefore, the LHA could be a potential target for research in the field of DBS-based treatment of intractable substance use disorder. Further studies will be necessary to assess the translatability of these findings to the clinic.
Collapse
Affiliation(s)
- Mojdeh Fattahi
- Department of Physiology, School of MedicineTehran University of Medical Sciences Tehran Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of MedicineTehran University of Medical Sciences Tehran Iran
| | - Seyed Morteza Karimian
- Department of Physiology, School of MedicineTehran University of Medical Sciences Tehran Iran
| | - Esmail Riahi
- Department of Physiology, School of MedicineTehran University of Medical Sciences Tehran Iran
| |
Collapse
|
31
|
Castro DC, Bruchas MR. A Motivational and Neuropeptidergic Hub: Anatomical and Functional Diversity within the Nucleus Accumbens Shell. Neuron 2019; 102:529-552. [PMID: 31071288 PMCID: PMC6528838 DOI: 10.1016/j.neuron.2019.03.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 01/14/2023]
Abstract
The mesocorticolimbic pathway is canonically known as the "reward pathway." Embedded within the center of this circuit is the striatum, a massive and complex network hub that synthesizes motivation, affect, learning, cognition, stress, and sensorimotor information. Although striatal subregions collectively share many anatomical and functional similarities, it has become increasingly clear that it is an extraordinarily heterogeneous region. In particular, the nucleus accumbens (NAc) medial shell has repeatedly demonstrated that the rules dictated by more dorsal aspects of the striatum do not apply or are even reversed in functional logic. These discrepancies are perhaps most easily captured when isolating the functions of various neuromodulatory peptide systems within the striatum. Endogenous peptides are thought to play a critical role in modulating striatal signals to either amplify or dampen evoked behaviors. Here we describe the anatomical-functional backdrop upon which several neuropeptides act within the NAc to modulate behavior, with a specific emphasis on nucleus accumbens medial shell and stress responsivity. Additionally, we propose that, as the field continues to dissect fast neurotransmitter systems within the NAc, we must also provide considerable contextual weight to the roles local peptides play in modulating these circuits to more comprehensively understand how this important subregion gates motivated behaviors.
Collapse
Affiliation(s)
- Daniel C Castro
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Michael R Bruchas
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
32
|
Qu L, Ge S, Li N, Wang W, Yang K, Wu P, Wang X, Shi J. Clinical evaluation of deep brain stimulation of nucleus accumbens/anterior limb of internal capsule for opioid relapse prevention: protocol of a multicentre, prospective and double-blinded study. BMJ Open 2019; 9:e023516. [PMID: 30765398 PMCID: PMC6398661 DOI: 10.1136/bmjopen-2018-023516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Deep brain stimulation (DBS) is a new potential surgical treatment for opioid dependence. However, the implement of DBS treatment in addicted patients is currently controversial due to the significant associated risks. The aim of this study was mainly to investigate the therapeutic efficacy and safety of bilateral DBS of nucleus accumbens and the anterior limb of the internal capsule (NAc/ALIC-DBS) in patients with refractory opioid dependence (ROD). METHODS AND ANALYSIS 60 patients with ROD will be enrolled in this multicentre, prospective, double-blinded study, and will be followed up for 25 weeks (6 months) after surgery. Patients with ROD (semisynthetic opioids) who meet the criteria for NAc/ALIC-DBS surgery will be allocated to either the early stimulation group or the late stimulation group (control group) based on the randomised ID number. The primary outcome was defined as the abstinence rate at 25 weeks after DBS stimulation on, which will be confirmed by an opiate urine tests. The secondary outcomes include changes in the Visual Analogue Scale (VAS) score for craving for opioid drugs, body weight, as well as psychological evaluation measured using the 17-item Hamilton Depression Rating Scale, the Hamilton Anxiety Rating Scale, the Pittsburgh Sleep Quality Index, Fagerstrom test for nicotine dependence assessment, social disability screening schedule, the Activity of Daily Living Scale, the 36-item Short Form-Health Survey and safety profiles of both groups. ETHICS AND DISSEMINATION The study received ethical approval from the medical ethical committee of Tangdu Hospital, The Fourth Military Medical University, Xi'an, China. The results of this study will be published in a peer-reviewed journal and presented at international conferences. TRIAL REGISTRATION NUMBER NCT03424616; Pre-results.
Collapse
Affiliation(s)
- Liang Qu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Shunnan Ge
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Nan Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Kaijun Yang
- Department of Neurosurgery, Southern Hospital, Southern Medical University, Guangzhou, China
| | - Ping Wu
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Xuelian Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, Beijing, China
| |
Collapse
|
33
|
Martínez-Rivera FJ, Bravo-Rivera C, Velázquez-Díaz CD, Montesinos-Cartagena M, Quirk GJ. Prefrontal circuits signaling active avoidance retrieval and extinction. Psychopharmacology (Berl) 2019; 236:399-406. [PMID: 30259076 PMCID: PMC6461357 DOI: 10.1007/s00213-018-5012-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Neurons in PL and IL project densely to two areas implicated in active avoidance: the basolateral amygdala (BLA) and the ventral striatum (VS). We therefore combined c-Fos immunohistochemistry with retrograde tracers to characterize signaling in platform-mediated active avoidance. METHODS Male rats were infused with retrograde tracers (CTB, FB) into basolateral amygdala and ventral striatum and conditioned to avoid tone-signaled footshocks by stepping onto a nearby platform. In a subsequent test session, rats received either 2 unreinforced tones (avoidance retrieval) or 15 unreinforced tones (avoidance extinction) followed by analysis of c-Fos combined with fluorescent imaging of retrograde tracers. RESULTS Retrieval of avoidance did not activate IL neurons, but did activate PL neurons projecting to BLA, and to a lesser extent VS. Extinction of avoidance activated IL neurons projecting to both BLA and VS, as well as PL neurons projecting to VS. CONCLUSIONS Our observation that avoidance retrieval is signaled by PL projections to BLA suggests that PL may modulate VS indirectly via BLA, and agrees with other findings implicating BLA in active avoidance. Less expected was the signaling of extinction via PL inputs to VS, which may converge with IL inputs to VS to inhibit expression of avoidance.
Collapse
Affiliation(s)
- Freddyson J Martínez-Rivera
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, University of Puerto Rico, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico.
| | - Christian Bravo-Rivera
- Neuroscience Division, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Coraly D Velázquez-Díaz
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, University of Puerto Rico, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| | - Marlian Montesinos-Cartagena
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, University of Puerto Rico, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| | - Gregory J Quirk
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, University of Puerto Rico, P.O. Box 365067, San Juan, 00936-5067, Puerto Rico
| |
Collapse
|
34
|
D'Souza MS. Brain and Cognition for Addiction Medicine: From Prevention to Recovery Neural Substrates for Treatment of Psychostimulant-Induced Cognitive Deficits. Front Psychiatry 2019; 10:509. [PMID: 31396113 PMCID: PMC6667748 DOI: 10.3389/fpsyt.2019.00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/28/2019] [Indexed: 01/10/2023] Open
Abstract
Addiction to psychostimulants like cocaine, methamphetamine, and nicotine poses a continuing medical and social challenge both in the United States and all over the world. Despite a desire to quit drug use, return to drug use after a period of abstinence is a common problem among individuals dependent on psychostimulants. Recovery for psychostimulant drug-dependent individuals is particularly challenging because psychostimulant drugs induce significant changes in brain regions associated with cognitive functions leading to cognitive deficits. These cognitive deficits include impairments in learning/memory, poor decision making, and impaired control of behavioral output. Importantly, these drug-induced cognitive deficits often impact adherence to addiction treatment programs and predispose abstinent addicts to drug use relapse. Additionally, these cognitive deficits impact effective social and professional rehabilitation of abstinent addicts. The goal of this paper is to review neural substrates based on animal studies that could be pharmacologically targeted to reverse psychostimulant-induced cognitive deficits such as impulsivity and impairment in learning and memory. Further, the review will discuss neural substrates that could be used to facilitate extinction learning and thus reduce emotional and behavioral responses to drug-associated cues. Moreover, the review will discuss some non-pharmacological approaches that could be used either alone or in combination with pharmacological compounds to treat the above-mentioned cognitive deficits. Psychostimulant addiction treatment, which includes treatment for cognitive deficits, will help promote abstinence and allow for better rehabilitation and integration of abstinent individuals into society.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, Ada, OH, United States
| |
Collapse
|
35
|
Efficacy of Invasive and Non-Invasive Brain Modulation Interventions for Addiction. Neuropsychol Rev 2018; 29:116-138. [PMID: 30536145 PMCID: PMC6499746 DOI: 10.1007/s11065-018-9393-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 11/08/2018] [Indexed: 12/14/2022]
Abstract
It is important to find new treatments for addiction due to high relapse rates despite current interventions and due to expansion of the field with non-substance related addictive behaviors. Neuromodulation may provide a new type of treatment for addiction since it can directly target abnormalities in neurocircuits. We review literature on five neuromodulation techniques investigated for efficacy in substance related and behavioral addictions: transcranial direct current stimulation (tDCS), (repetitive) transcranial magnetic stimulation (rTMS), EEG, fMRI neurofeedback and deep brain stimulation (DBS) and additionally report on effects of these interventions on addiction-related cognitive processes. While rTMS and tDCS, mostly applied at the dorsolateral prefrontal cortex, show reductions in immediate craving for various addictive substances, placebo-responses are high and long-term outcomes are understudied. The lack in well-designed EEG-neurofeedback studies despite decades of investigation impedes conclusions about its efficacy. Studies investigating fMRI neurofeedback are new and show initial promising effects on craving, but future trials are needed to investigate long-term and behavioral effects. Case studies report prolonged abstinence of opioids or alcohol with ventral striatal DBS but difficulties with patient inclusion may hinder larger, controlled trials. DBS in neuropsychiatric patients modulates brain circuits involved in reward processing, extinction and negative-reinforcement that are also relevant for addiction. To establish the potential of neuromodulation for addiction, more randomized controlled trials are needed that also investigate treatment duration required for long-term abstinence and potential synergy with other addiction interventions. Finally, future advancement may be expected from tailoring neuromodulation techniques to specific patient (neurocognitive) profiles.
Collapse
|
36
|
Barthélemy EJ, Park KB, Johnson W. Neurosurgery and Sustainable Development Goals. World Neurosurg 2018; 120:143-152. [DOI: 10.1016/j.wneu.2018.08.070] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/09/2018] [Accepted: 08/11/2018] [Indexed: 12/14/2022]
|
37
|
Gibson GD, Millan EZ, McNally GP. The nucleus accumbens shell in reinstatement and extinction of drug seeking. Eur J Neurosci 2018; 50:2014-2022. [PMID: 30044017 DOI: 10.1111/ejn.14084] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/05/2018] [Accepted: 07/17/2018] [Indexed: 12/31/2022]
Abstract
The contexts where drugs are self-administered have important control over relapse and extinction of drug-seeking behavior. The nucleus accumbens shell (AcbSh) is essential to this contextual control over drug-seeking behavior. It has been consistently implicated in both the expression of context-induced reinstatement and the expression of extinction, across a variety of drug classes and other rewards. Here, we review the evidence linking AcbSh to the extinction and reinstatement of drug seeking. We consider whether this dual role can be linked to known heterogeneities in AcbSh cell types, their major afferents, and their major efferents. We show that although these heterogeneities are each important and can determine extinction vs. reinstatement, they do not seem adequate to explain the body of findings from the behavioral literature. Rather, we suggest that this functional specialization of AcbSh may be more profitably viewed in terms of the segregation and compartmentalization of AcbSh channels.
Collapse
Affiliation(s)
| | - E Zayra Millan
- School of Psychology, UNSW Sydney, Sydney, 2052, NSW, Australia
| | - Gavan P McNally
- School of Psychology, UNSW Sydney, Sydney, 2052, NSW, Australia
| |
Collapse
|
38
|
Bina RW, Langevin JP. Closed Loop Deep Brain Stimulation for PTSD, Addiction, and Disorders of Affective Facial Interpretation: Review and Discussion of Potential Biomarkers and Stimulation Paradigms. Front Neurosci 2018; 12:300. [PMID: 29780303 PMCID: PMC5945819 DOI: 10.3389/fnins.2018.00300] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/18/2018] [Indexed: 01/06/2023] Open
Abstract
The treatment of psychiatric diseases with Deep Brain Stimulation (DBS) is becoming more of a reality as studies proliferate the indications and targets for therapies. Opinions on the initial failures of DBS trials for some psychiatric diseases point to a certain lack of finesse in using an Open Loop DBS (OLDBS) system in these dynamic, cyclical pathologies. OLDBS delivers monomorphic input into dysfunctional brain circuits with modulation of that input via human interface at discrete time points with no interim modulation or adaptation to the changing circuit dynamics. Closed Loop DBS (CLDBS) promises dynamic, intrinsic circuit modulation based on individual physiologic biomarkers of dysfunction. Discussed here are several psychiatric diseases which may be amenable to CLDBS paradigms as the neurophysiologic dysfunction is stochastic and not static. Post-Traumatic Stress Disorder (PTSD) has several peripheral and central physiologic and neurologic changes preceding stereotyped hyper-activation behavioral responses. Biomarkers for CLDBS potentially include skin conductance changes indicating changes in the sympathetic nervous system, changes in serum and central neurotransmitter concentrations, and limbic circuit activation. Chemical dependency and addiction have been demonstrated to be improved with both ablation and DBS of the Nucleus Accumbens and as a serendipitous side effect of movement disorder treatment. Potential peripheral biomarkers are similar to those proposed for PTSD with possible use of environmental and geolocation based cues, peripheral signs of physiologic arousal, and individual changes in central circuit patterns. Non-substance addiction disorders have also been serendipitously treated in patients with OLDBS for movement disorders. As more is learned about these behavioral addictions, DBS targets and effectors will be identified. Finally, discussed is the use of facial recognition software to modulate activation of inappropriate responses for psychiatric diseases in which misinterpretation of social cues feature prominently. These include Autism Spectrum Disorder, PTSD, and Schizophrenia-all of which have a common feature of dysfunctional interpretation of facial affective clues. Technological advances and improvements in circuit-based, individual-specific, real-time adaptable modulation, forecast functional neurosurgery treatments for heretofore treatment-resistant behavioral diseases.
Collapse
Affiliation(s)
- Robert W Bina
- Division of Neurosurgery, Banner University Medical Center, Tucson, AZ, United States
| | - Jean-Phillipe Langevin
- Neurosurgery Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
39
|
Creed M. Current and emerging neuromodulation therapies for addiction: insight from pre-clinical studies. Curr Opin Neurobiol 2018. [PMID: 29524847 DOI: 10.1016/j.conb.2018.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neuromodulation therapies such as deep brain stimulation or transcranial magnetic stimulation have shown promise in reducing symptoms of addiction when applied to the prefontal cortex, nucleus accumbens or subthalamic nucleus. Pre-clinical investigations implicate modulation of the cortico-basal ganglia network in these therapeutic effects, and this mechanistic understanding is necessary to optimize stimulation paradigms. Recently, the principle that neuromodulation can reverse drug-evoked synaptic plasticity and reduce behavioral symptoms of addiction has inspired novel stimulation paradigms that have long-term effects in animal models. Pre-clinical studies have also raised the possibility that tailoring neuromodulation protocols can modulate distinct symptoms of addiction. Combining mechanistic knowledge of circuit dysfunction with emerging technologies for non-invasive neuromodulation holds promise for developing therapies for addiction and related disorders.
Collapse
Affiliation(s)
- Meaghan Creed
- University of Maryland School of Medicine, Department of Pharmacology, 655 West Baltimore Street, Bressler Research Building, 4-021, Baltimore, MD 21201, USA.
| |
Collapse
|
40
|
Fattahi M, Riahi E. Does High-Frequency Deep Brain Stimulation in Dorsal Regions of the Ventral Striatum Impair Extinction of Morphine-Induced Place Preference? Biol Psychiatry 2018; 83:e19. [PMID: 28673443 DOI: 10.1016/j.biopsych.2017.03.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/07/2017] [Indexed: 11/18/2022]
Affiliation(s)
- Mojdeh Fattahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Martínez-Rivera FJ, Barreto-Estrada JL. Reply to: Does High-Frequency Deep Brain Stimulation in Dorsal Regions of the Ventral Striatum Impair Extinction of Morphine-Induced Place Preference? Biol Psychiatry 2018; 83:e21. [PMID: 28673441 PMCID: PMC5880642 DOI: 10.1016/j.biopsych.2017.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 11/19/2022]
Affiliation(s)
- Freddyson J Martínez-Rivera
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Jennifer L Barreto-Estrada
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico.
| |
Collapse
|
42
|
RETRACTED: Exploring the mechanism by which accumbal deep brain stimulation attenuates morphine-induced reinstatement through manganese-enhanced MRI and pharmacological intervention. Exp Neurol 2017; 290:29-40. [PMID: 28038985 DOI: 10.1016/j.expneurol.2016.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 11/22/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted at the request of the authors.
The authors have requested to retract this paper as the corresponding author had not sought the prior agreement of his co-authors to submit the paper for publication.
Collapse
|
43
|
Creed M, Bonci A, Leggio L. Modulating Morphine Context-Induced Drug Memory With Deep Brain Stimulation: More Research Questions by Lowering Stimulation Frequencies? Biol Psychiatry 2016; 80:647-649. [PMID: 27697154 PMCID: PMC5111800 DOI: 10.1016/j.biopsych.2016.08.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 01/03/2023]
Affiliation(s)
| | | | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, Maryland; Center for Alcohol and Addiction Studies, Brown University, Providence, Rhode Island.
| |
Collapse
|
44
|
Perry CJ, Lawrence AJ. Addiction, cognitive decline and therapy: seeking ways to escape a vicious cycle. GENES BRAIN AND BEHAVIOR 2016; 16:205-218. [DOI: 10.1111/gbb.12325] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/14/2016] [Accepted: 08/25/2016] [Indexed: 12/31/2022]
Affiliation(s)
- C. J. Perry
- Behavioural Neuroscience Division; The Florey Institute of Neuroscience and Mental Health; Melbourne VIC Australia
- Florey Department of Neuroscience and Mental Health; University of Melbourne; Melbourne VIC Australia
| | - A. J. Lawrence
- Behavioural Neuroscience Division; The Florey Institute of Neuroscience and Mental Health; Melbourne VIC Australia
- Florey Department of Neuroscience and Mental Health; University of Melbourne; Melbourne VIC Australia
| |
Collapse
|