1
|
Wang M, Xie Z, Wang T, Dong S, Ma Z, Zhang X, Li X, Yuan Y. Low-intensity transcranial ultrasound stimulation improves memory behavior in an ADHD rat model by modulating cortical functional network connectivity. Neuroimage 2024; 299:120841. [PMID: 39244077 DOI: 10.1016/j.neuroimage.2024.120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/09/2024] Open
Abstract
Working memory in attention deficit hyperactivity disorder (ADHD) is closely related to cortical functional network connectivity (CFNC), such as abnormal connections between the frontal, temporal, occipital cortices and with other brain regions. Low-intensity transcranial ultrasound stimulation (TUS) has the advantages of non-invasiveness, high spatial resolution, and high penetration depth and can improve ADHD memory behavior. However, how it modulates CFNC in ADHD and the CFNC mechanism that improves working memory behavior in ADHD remain unclear. In this study, we observed working memory impairment in ADHD rats, establishing a corresponding relationship between changes in CFNCs and the behavioral state during the working memory task. Specifically, we noted abnormalities in the information transmission and processing capabilities of CFNC in ADHD rats while performing working memory tasks. These abnormalities manifested in the network integration ability of specific areas, as well as the information flow and functional differentiation of CFNC. Furthermore, our findings indicate that TUS effectively enhances the working memory ability of ADHD rats by modulating information transmission, processing, and integration capabilities, along with adjusting the information flow and functional differentiation of CFNC. Additionally, we explain the CFNC mechanism through which TUS improves working memory in ADHD. In summary, these findings suggest that CFNCs are important in working memory behaviors in ADHD.
Collapse
Affiliation(s)
- Mengran Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Zhenyu Xie
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Teng Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Shuxun Dong
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Zhenfang Ma
- Department of Rehabilitation, Hebei General Hospital, Shijiazhuang 050000, China
| | - Xiangjian Zhang
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xin Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
2
|
Chen G, Guo Z, Chen P, Yang Z, Yan H, Sun S, Ma W, Zhang Y, Qi Z, Fang W, Jiang L, Tao Q, Wang Y. Bright light therapy-induced improvements of mood, cognitive functions and cerebellar functional connectivity in subthreshold depression: A randomized controlled trial. Int J Clin Health Psychol 2024; 24:100483. [PMID: 39101053 PMCID: PMC11296024 DOI: 10.1016/j.ijchp.2024.100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024] Open
Abstract
Background The efficacy of bright light therapy (BLT) in ameliorating depression has been validated. The present study is to investigate the changes of depressive symptoms, cognitive function and cerebellar functional connectivity (FC) following BLT in individuals with subthreshold depression (StD). Method Participants were randomly assigned to BLT group (N = 47) or placebo (N = 41) in this randomized controlled trial between March 2020 and June 2022. Depression severity and cognitive function were assessed, as well as resting-state functional MRI scan was conducted before and after 8-weeks treatment. Seed-based whole-brain static FC (sFC) and dynamic FC (dFC) analyses of the bilateral cerebellar subfields were conducted. Besides, a multivariate regression model examined whether baseline brain FC was associated with changes of depression severity and cognitive function during BLT treatment. Results After 8-week BLT treatment, individuals with StD showed improved depressive symptoms and attention/vigilance cognitive function. BLT also increased sFC between the right cerebellar lobule IX and left temporal pole, and decreased sFC within the cerebellum, and dFC between the right cerebellar lobule IX and left medial prefrontal cortex. Moreover, the fusion of sFC and dFC at baseline could predict the improvement of attention/vigilance in response to BLT. Conclusions The current study identified that BLT improved depressive symptoms and attention/vigilance, as well as changed cerebellum-DMN connectivity, especially in the cerebellar-frontotemporal and cerebellar internal FC. In addition, the fusion features of sFC and dFC at pre-treatment could serve as an imaging biomarker for the improvement of attention/vigilance cognitive function after BLT in StD.
Collapse
Affiliation(s)
- Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Zixuan Guo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Zibin Yang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Hong Yan
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Shilin Sun
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Wenhao Ma
- Department of Public Health and Preventive Medicine, School of Basic Medicine, Jinan University, Guangzhou 510632, China
- Division of Medical Psychology and Behavior Science, School of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Yuan Zhang
- Department of Public Health and Preventive Medicine, School of Basic Medicine, Jinan University, Guangzhou 510632, China
- Division of Medical Psychology and Behavior Science, School of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Wenjie Fang
- Department of Public Health and Preventive Medicine, School of Basic Medicine, Jinan University, Guangzhou 510632, China
- Division of Medical Psychology and Behavior Science, School of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Lijun Jiang
- Department of Public Health and Preventive Medicine, School of Basic Medicine, Jinan University, Guangzhou 510632, China
- Division of Medical Psychology and Behavior Science, School of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Qian Tao
- Department of Public Health and Preventive Medicine, School of Basic Medicine, Jinan University, Guangzhou 510632, China
- Division of Medical Psychology and Behavior Science, School of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
3
|
Zhang F, Li Y, Liu L, Liu Y, Wang P, Biswal BB. Corticostriatal causality analysis in children and adolescents with attention-deficit/hyperactivity disorder. Psychiatry Clin Neurosci 2024; 78:291-299. [PMID: 38444215 PMCID: PMC11469573 DOI: 10.1111/pcn.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 03/07/2024]
Abstract
AIM The effective connectivity between the striatum and cerebral cortex has not been fully investigated in attention-deficit/hyperactivity disorder (ADHD). Our objective was to explore the interaction effects between diagnosis and age on disrupted corticostriatal effective connectivity and to represent the modulation function of altered connectivity pathways in children and adolescents with ADHD. METHODS We performed Granger causality analysis on 300 participants from a publicly available Attention-Deficit/Hyperactivity Disorder-200 dataset. By computing the correlation coefficients between causal connections between striatal subregions and other cortical regions, we estimated the striatal inflow and outflow connection to represent intermodulation mechanisms in corticostriatal pathways. RESULTS Interactions between diagnosis and age were detected in the superior occipital gyrus within the visual network, medial prefrontal cortex, posterior cingulate gyrus, and inferior parietal lobule within the default mode network, which is positively correlated with hyperactivity/impulsivity severity in ADHD. Main effect of diagnosis exhibited a general higher cortico-striatal causal connectivity involving default mode network, frontoparietal network and somatomotor network in ADHD compared with comparisons. Results from high-order effective connectivity exhibited a disrupted information pathway involving the default mode-striatum-somatomotor-striatum-frontoparietal networks in ADHD. CONCLUSION The interactions detected in the visual-striatum-default mode networks pathway appears to be related to the potential distraction caused by long-term abnormal information input from the retina in ADHD. Higher causal connectivity and weakened intermodulation may indicate the pathophysiological process that distractions lead to the impairment of motion planning function and the inhibition/control of this unplanned motion signals in ADHD.
Collapse
Affiliation(s)
- Fanyu Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology. University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yilu Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology. University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lin Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology. University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yefen Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology. University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Pan Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology. University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Bharat B. Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology. University of Electronic Science and Technology of China, Chengdu 611731, China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
4
|
Ibrahim K, Iturmendi-Sabater I, Vasishth M, Barron DS, Guardavaccaro M, Funaro MC, Holmes A, McCarthy G, Eickhoff SB, Sukhodolsky DG. Neural circuit disruptions of eye gaze processing in autism spectrum disorder and schizophrenia: An activation likelihood estimation meta-analysis. Schizophr Res 2024; 264:298-313. [PMID: 38215566 PMCID: PMC10922721 DOI: 10.1016/j.schres.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND Impairment in social cognition, particularly eye gaze processing, is a shared feature common to autism spectrum disorder (ASD) and schizophrenia. However, it is unclear if a convergent neural mechanism also underlies gaze dysfunction in these conditions. The present study examined whether this shared eye gaze phenotype is reflected in a profile of convergent neurobiological dysfunction in ASD and schizophrenia. METHODS Activation likelihood estimation (ALE) meta-analyses were conducted on peak voxel coordinates across the whole brain to identify spatial convergence. Functional coactivation with regions emerging as significant was assessed using meta-analytic connectivity modeling. Functional decoding was also conducted. RESULTS Fifty-six experiments (n = 30 with schizophrenia and n = 26 with ASD) from 36 articles met inclusion criteria, which comprised 354 participants with ASD, 275 with schizophrenia and 613 healthy controls (1242 participants in total). In ASD, aberrant activation was found in the left amygdala relative to unaffected controls during gaze processing. In schizophrenia, aberrant activation was found in the right inferior frontal gyrus and supplementary motor area. Across ASD and schizophrenia, aberrant activation was found in the right inferior frontal gyrus and right fusiform gyrus during gaze processing. Functional decoding mapped the left amygdala to domains related to emotion processing and cognition, the right inferior frontal gyrus to cognition and perception, and the right fusiform gyrus to visual perception, spatial cognition, and emotion perception. These regions also showed meta-analytic connectivity to frontoparietal and frontotemporal circuitry. CONCLUSION Alterations in frontoparietal and frontotemporal circuitry emerged as neural markers of gaze impairments in ASD and schizophrenia. These findings have implications for advancing transdiagnostic biomarkers to inform targeted treatments for ASD and schizophrenia.
Collapse
Affiliation(s)
- Karim Ibrahim
- Yale University School of Medicine, Child Study Center, United States of America.
| | | | - Maya Vasishth
- Yale University School of Medicine, Child Study Center, United States of America
| | - Daniel S Barron
- Brigham and Women's Hospital, Department of Psychiatry, Anesthesiology and Pain Medicine, United States of America; Harvard Medical School, Department of Psychiatry, United States of America
| | | | - Melissa C Funaro
- Yale University, Harvey Cushing/John Hay Whitney Medical Library, United States of America
| | - Avram Holmes
- Yale University, Department of Psychology, United States of America; Yale University, Department of Psychiatry, United States of America; Yale University, Wu Tsai Institute, United States of America
| | - Gregory McCarthy
- Yale University, Department of Psychology, United States of America; Yale University, Wu Tsai Institute, United States of America
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Denis G Sukhodolsky
- Yale University School of Medicine, Child Study Center, United States of America
| |
Collapse
|
5
|
Kraaijenvanger EJ, Banaschewski T, Eickhoff SB, Holz NE. A coordinate-based meta-analysis of human amygdala connectivity alterations related to early life adversities. Sci Rep 2023; 13:16541. [PMID: 37783710 PMCID: PMC10545708 DOI: 10.1038/s41598-023-43057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
By affecting core neurobiological systems early in development, early life adversities (ELAs) might confer latent vulnerability to future psychopathologies. This coordinate-based meta-analysis aims to identify significant convergent alterations in functional connectivity of the amygdala related to ELAs across resting-state and task-based fMRI-studies. Five electronic databases were systematically searched until 22 October 2020, retrieving 49 eligible studies (n = 3162 participants). Convergent alterations in functional connectivity related to ELAs between the amygdala and the anterior cingulate cortex (ACC) and left hippocampus were found. Sub-analyses based on hemisphere and direction showed that connectivity seeded in the right amygdala was affected and, moreover, revealed that connectivity with ACC was decreased. Analyses based on paradigm and age showed that amygdala-ACC coupling was altered during resting state and that amygdala-left hippocampus connectivity was mostly affected during task-based paradigms and in adult participants. While both regions showed altered connectivity during emotion processing and following adverse social postnatal experiences such as maltreatment, amygdala-ACC coupling was mainly affected when ELAs were retrospectively assessed through self-report. We show that ELAs are associated with altered functional connectivity of the amygdala with the ACC and hippocampus. As such, ELAs may embed latent vulnerability to future psychopathologies by systematically affecting important neurocognitive systems.
Collapse
Affiliation(s)
- Eline J Kraaijenvanger
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Nathalie E Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany.
- Donders Institute, Radboud University, Nijmegen, The Netherlands.
- Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Musella KE, Weyandt LL. Attention-deficit hyperactivity disorder and youth's emotion dysregulation: A systematic review of fMRI studies. APPLIED NEUROPSYCHOLOGY. CHILD 2023; 12:353-366. [PMID: 36065486 DOI: 10.1080/21622965.2022.2119142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A number of adverse outcomes are associated with emotion dysregulation, and ADHD secondary to emotion dysregulation is a frequent comorbidity that may result in poorer performance and quality of life among youth. Recent neuroimaging research has observed significant functional differences in youth with ADHD compared to healthy controls. Therefore, the aims of this systematic review were to summarize the literature on functional connectivity of emotion dysregulation in youth with ADHD, identify methodological challenges and limitations, and provide directions for future research. Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines were followed to conduct a systematic review across three databases, and 13 studies were identified for inclusion. Across the studies, 14 primary regions were examined; 12 of the 13 studies identified a significant association between functional connectivity of emotion dysregulation and youth with ADHD. Although studies varied in the structures investigated, the most notable differences appeared in the prefrontal cortex, orbitofrontal cortex, amygdala, and ventral striatum in ADHD participants. Future research concerning this topic may help contribute to the understanding of this association by utilizing longitudinal research designs, controlling for psychiatric comorbidities and emotion dysregulation severity, inclusion of more diverse samples and ensuring that studies are adequately powered.
Collapse
Affiliation(s)
- Katharine E Musella
- Department of Psychology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Lisa L Weyandt
- Department of Psychology, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
7
|
Liu G, Lu W, Qiu J, Shi L. Identifying individuals with attention‐deficit/hyperactivity disorder based on multisite resting‐state functional magnetic resonance imaging: A radiomics analysis. Hum Brain Mapp 2023; 44:3433-3445. [PMID: 36971664 PMCID: PMC10171499 DOI: 10.1002/hbm.26290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/17/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, characterized by symptoms of age-inappropriate inattention, hyperactivity, and impulsivity. Apart from behavioral symptoms investigated by psychiatric methods, there is no standard biological test to diagnose ADHD. This study aimed to explore whether the radiomics features based on resting-state functional magnetic resonance (rs-fMRI) have more discriminative power for the diagnosis of ADHD. The rs-fMRI of 187 subjects with ADHD and 187 healthy controls were collected from 5 sites of ADHD-200 Consortium. A total of four preprocessed rs-fMRI images including regional homogeneity (ReHo), amplitude of low-frequency fluctuation (ALFF), voxel-mirrored homotopic connectivity (VMHC) and network degree centrality (DC) were used in this study. From each of the four images, we extracted 93 radiomics features within each of 116 automated anatomical labeling brain areas, resulting in a total of 43,152 features for each subject. After dimension reduction and feature selection, 19 radiomics features were retained (5 from ALFF, 9 from ReHo, 3 from VMHC and 2 from DC). By training and optimizing a support vector machine model using the retained features of training dataset, we achieved the accuracy of 76.3% and 77.0% (areas under curve = 0.811 and 0.797) in the training and testing datasets, respectively. Our findings demonstrate that radiomics can be a novel strategy for fully utilizing rs-fMRI information to distinguish ADHD from healthy controls. The rs-fMRI-based radiomics features have the potential to be neuroimaging biomarkers for ADHD.
Collapse
|
8
|
Sun JT, Hu B, Chen TQ, Chen ZH, Shang YX, Li YT, Wang R, Wang W. Internet addiction-induced brain structure and function alterations: a systematic review and meta-analysis of voxel-based morphometry and resting-state functional connectivity studies. Brain Imaging Behav 2023; 17:329-342. [PMID: 36899209 DOI: 10.1007/s11682-023-00762-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/12/2023]
Abstract
Internet addiction (IA) is a growing social concern and has been intensively studied in recent years. Previous imaging studies have shown that IA may impair brain structure and function, but with no robust conclusions. We conducted a systematic review and meta-analysis of neuroimaging studies in IA. Two separate meta-analyses were conducted for voxel-based morphometry (VBM) studies and resting-state functional connectivity (rsFC) studies. All meta-analyses were performed using two analysis methods activation likelihood estimation (ALE) and seed-based d mapping with permutation of subject images (SDM-PSI). The ALE analysis of VBM studies revealed less gray matter volume (GMV) in the supplementary motor area (SMA) (1176 mm3), anterior cingulate cortex (ACC) (one cluster size is 744 mm3 and the other is 688 mm3), and orbitofrontal cortex (OFC) (624 mm3) in subjects with IA. The SDM-PSI analysis showed less GMV in the ACC (56 voxels). The ALE analysis of rsFC studies showed stronger rsFC from posterior cingulate cortex (PCC) (880 mm3) or insula (712 mm3) to the whole brain in subjects with IA; however, the SDM-PSI analysis revealed no obvious rsFC alteration. These changes may underlie the core symptoms of IA, which include emotional regulation disorder, distraction, and impaired executive control. Our results reflect the common features of neuroimaging studies related to IA in recent years and may potentially help inform the development of more effective diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Jing-Ting Sun
- Department of Medical Technology, Middle section of Century Avenue, Shaanxi University of Chinese Medicine, 712046, Xianyang, Shaanxi, China.,Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China
| | - Bo Hu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China
| | - Tian-Qi Chen
- Institute of basic medicine, Fourth Military Medical University (Air Force Medical University, 169 Changle Road, 710032, Xi'an, Shaanxi, China
| | - Zhu-Hong Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China
| | - Yu-Xuan Shang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China
| | - Yu-Ting Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China
| | - Rui Wang
- Military medical center, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China.
| | - Wen Wang
- Department of Medical Technology, Middle section of Century Avenue, Shaanxi University of Chinese Medicine, 712046, Xianyang, Shaanxi, China. .,Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, Shaanxi, China.
| |
Collapse
|
9
|
Luo L, Chen L, Wang Y, Li Q, He N, Li Y, You W, Wang Y, Long F, Guo L, Luo K, Sweeney JA, Gong Q, Li F. Patterns of brain dynamic functional connectivity are linked with attention-deficit/hyperactivity disorder-related behavioral and cognitive dimensions. Psychol Med 2023; 53:1-12. [PMID: 36748350 PMCID: PMC10600939 DOI: 10.1017/s0033291723000089] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/20/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a clinically heterogeneous neurodevelopmental disorder defined by characteristic behavioral and cognitive features. Abnormal brain dynamic functional connectivity (dFC) has been associated with the disorder. The full spectrum of ADHD-related variation of brain dynamics and its association with behavioral and cognitive features remain to be established. METHODS We sought to identify patterns of brain dynamics linked to specific behavioral and cognitive dimensions using sparse canonical correlation analysis across a cohort of children with and without ADHD (122 children in total, 63 with ADHD). Then, using mediation analysis, we tested the hypothesis that cognitive deficits mediate the relationship between brain dynamics and ADHD-associated behaviors. RESULTS We identified four distinct patterns of dFC, each corresponding to a specific dimension of behavioral or cognitive function (r = 0.811-0.879). Specifically, the inattention/hyperactivity dimension was positively associated with dFC within the default mode network (DMN) and negatively associated with dFC between DMN and the sensorimotor network (SMN); the somatization dimension was positively associated with dFC within DMN and SMN; the inhibition and flexibility dimension and fluency and memory dimensions were both positively associated with dFC within DMN and between DMN and SMN, and negatively associated with dFC between DMN and the fronto-parietal network. Furthermore, we observed that cognitive functions of inhibition and flexibility mediated the relationship between brain dynamics and behavioral manifestations of inattention and hyperactivity. CONCLUSIONS These findings document the importance of distinct patterns of dynamic functional brain activity for different cardinal behavioral and cognitive features related to ADHD.
Collapse
Affiliation(s)
- Lekai Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China
| | - Lizhou Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Functional and Molecular Imaging Key Laboratory of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Yuxia Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China
| | - Qian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China
| | - Ning He
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Yuanyuan Li
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Wanfang You
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China
| | - Yaxuan Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China
| | - Fenghua Long
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China
| | - Lanting Guo
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - John A. Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, Fujian, P.R China
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, P.R. China
| |
Collapse
|
10
|
Functional connectivity based brain signatures of behavioral regulation in children with ADHD, DCD, and ADHD-DCD. Dev Psychopathol 2023; 35:85-94. [PMID: 34937602 DOI: 10.1017/s0954579421001449] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Behavioral regulation problems have been associated with daily-life and mental health challenges in children with neurodevelopmental conditions such as attention-deficit/hyperactivity disorder (ADHD) and developmental coordination disorder (DCD). Here, we investigated transdiagnostic brain signatures associated with behavioral regulation. Resting-state fMRI data were collected from 115 children (31 typically developing (TD), 35 ADHD, 21 DCD, 28 ADHD-DCD) aged 7-17 years. Behavioral regulation was measured using the Behavior Rating Inventory of Executive Function and was found to differ between children with ADHD (i.e., children with ADHD and ADHD-DCD) and without ADHD (i.e., TD children and children with DCD). Functional connectivity (FC) maps were computed for 10 regions of interest and FC maps were tested for correlations with behavioral regulation scores. Across the entire sample, greater behavioral regulation problems were associated with stronger negative FC within prefrontal pathways and visual reward pathways, as well as with weaker positive FC in frontostriatal reward pathways. These findings significantly increase our knowledge on FC in children with and without ADHD and highlight the potential of FC as brain-based signatures of behavioral regulation across children with differing neurodevelopmental conditions.
Collapse
|
11
|
Liu JL, Sun JT, Hu HL, Wang HY, Kang YX, Chen TQ, Chen ZH, Shang YX, Li YT, Hu B, Liu R. Structural and Functional Neural Alterations in Internet Addiction: A Study Protocol for Systematic Review and Meta-Analysis. Psychiatry Investig 2023; 20:69-74. [PMID: 36721888 PMCID: PMC9890045 DOI: 10.30773/pi.2021.0383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/04/2022] [Indexed: 01/26/2023] Open
Abstract
A growing number of neuroimaging studies have revealed abnormal brain structural and functional alterations in subjects with internet addiction (IA), however, with conflicting conclusions. We plan to conduct a systematic review and meta-analysis on the studies of voxelbased morphometry (VBM) and resting-state functional connectivity (rsFC), to reach a consolidated conclusion and point out the future direction in this field. A comprehensive search of rsFC and VBM studies of IA will be conducted in the PubMed, Cochrane Library, and Web of Science databases to retrieve studies published from the inception dates to August 2021. If the extracted data are feasible, activation likelihood estimation and seed-based d mapping methods will be used to meta-analyze the brain structural and functional changes in IA patients. This study will hopefully reach a consolidated conclusion on the impact of IA on human brain or point out the future direction in this field.
Collapse
Affiliation(s)
- Jun-Li Liu
- Xi'an Technological University, Xi'an, China
| | - Jing-Ting Sun
- Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui-Lin Hu
- Arizona State University, Tempe, AZ, USA
| | | | - Yun-Xi Kang
- Xi'an Technological University, Xi'an, China
| | - Tian-Qi Chen
- Institution of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhu-Hong Chen
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Xuan Shang
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Ting Li
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Bo Hu
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Rui Liu
- Department of Rehabilitation, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
12
|
Pan N, Wang S, Qin K, Li L, Chen Y, Zhang X, Lai H, Suo X, Long Y, Yu Y, Ji S, Radua J, Sweeney JA, Gong Q. Common and Distinct Neural Patterns of Attention-Deficit/Hyperactivity Disorder and Borderline Personality Disorder: A Multimodal Functional and Structural Meta-analysis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022:S2451-9022(22)00147-1. [PMID: 35714858 DOI: 10.1016/j.bpsc.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) and borderline personality disorder (BPD) have partially overlapping symptom profiles and are highly comorbid in adults. However, whether the behavioral similarities correspond to shared neurobiological substrates is not known. METHODS An overlapping meta-analysis of 58 ADHD and 66 BPD whole-brain articles incorporating observations from 3401 adult patients and 3238 healthy participants was performed by seed-based d mapping. Brain maps were subjected to meta-analytic connectivity modeling and data-driven functional decoding analyses to identify associated neural circuit alterations and relations to behavioral dimensions. RESULTS Both groups exhibited hypoactivated abnormalities in the left inferior parietal lobule, and altered clusters of the bilateral superior temporal gyrus were disjunctive in ADHD and BPD. No overlapping structural abnormalities were found. Multimodal alterations of ADHD were located in the right putamen and of BPD in the left orbitofrontal cortex. CONCLUSIONS The transdiagnostic neural bases of ADHD and BPD in temporoparietal circuitry may underlie overlapping problems of behavioral control, while disorder-specific substrates in frontostriatal circuitry may account for their distinguishing features in motor and emotion domains, respectively.
Collapse
Affiliation(s)
- Nanfang Pan
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Song Wang
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| | - Kun Qin
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Lei Li
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ying Chen
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xun Zhang
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Han Lai
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xueling Suo
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yajing Long
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yifan Yu
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Shiyu Ji
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Joaquim Radua
- Imaging of Mood- and Anxiety-Related Disorders Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain; Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - John A Sweeney
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China.
| |
Collapse
|
13
|
Li Y, Bi HY. Comparative research on neural dysfunction in children with dyslexia under different writing systems: A meta-analysis study. Neurosci Biobehav Rev 2022; 137:104650. [PMID: 35367220 DOI: 10.1016/j.neubiorev.2022.104650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022]
Abstract
Developmental dyslexia is a special learning disorder which is prevalent in all languages. A central question in dyslexia is whether the neural mechanism of their defects is universal or distinct in different writing systems. Using meta-analytic approach, we created meta-images using activation abnormalities in Chinese and alphabetic children with dyslexia to find convergence and divergence under different writing systems. The results revealed that dyslexic children have a universal attention-related dysfunction with hypoactivation in the left inferior frontal cortex (IFC) and the anterior cingulate cortex (ACC) under different writing systems, in spite of differences of degree and spatial extent in those regions. Alphabetic dyslexic children additionally showed hypoactivation in the left occipito-temporo-parietal regions. Chinese dyslexic children showed specific hyperactivation in the right postcentral gyrus, the left rectus, and the right middle temporal gyrus. The present meta-analysis for the first time showed both shared and distinct abnormalities in children with dyslexia under Chinese and alphabetic writing systems.
Collapse
Affiliation(s)
- YiZhen Li
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Yan Bi
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Schulze M, Aslan B, Stöcker T, Stirnberg R, Lux S, Philipsen A. Disentangling early versus late audiovisual integration in adult ADHD: a combined behavioural and resting-state connectivity study. J Psychiatry Neurosci 2021; 46:E528-E537. [PMID: 34548387 PMCID: PMC8526154 DOI: 10.1503/jpn.210017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/27/2021] [Accepted: 06/21/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Studies investigating sensory processing in attention-deficit/hyperactivity disorder (ADHD) have shown altered visual and auditory processing. However, evidence is lacking for audiovisual interplay - namely, multisensory integration. As well, neuronal dysregulation at rest (e.g., aberrant within- or between-network functional connectivity) may account for difficulties with integration across the senses in ADHD. We investigated whether sensory processing was altered at the multimodal level in adult ADHD and included resting-state functional connectivity to illustrate a possible overlap between deficient network connectivity and the ability to integrate stimuli. METHODS We tested 25 patients with ADHD and 24 healthy controls using 2 illusionary paradigms: the sound-induced flash illusion and the McGurk illusion. We applied the Mann-Whitney U test to assess statistical differences between groups. We acquired resting-state functional MRIs on a 3.0 T Siemens magnetic resonance scanner, using a highly accelerated 3-dimensional echo planar imaging sequence. RESULTS For the sound-induced flash illusion, susceptibility and reaction time were not different between the 2 groups. For the McGurk illusion, susceptibility was significantly lower for patients with ADHD, and reaction times were significantly longer. At a neuronal level, resting-state functional connectivity in the ADHD group was more highly regulated in polymodal regions that play a role in binding unimodal sensory inputs from different modalities and enabling sensory-to-cognition integration. LIMITATIONS We did not explicitly screen for autism spectrum disorder, which has high rates of comorbidity with ADHD and also involves impairments in multisensory integration. Although the patients were carefully screened by our outpatient department, we could not rule out the possibility of autism spectrum disorder in some participants. CONCLUSION Unimodal hypersensitivity seems to have no influence on the integration of basal stimuli, but it might have negative consequences for the multisensory integration of complex stimuli. This finding was supported by observations of higher resting-state functional connectivity between unimodal sensory areas and polymodal multisensory integration convergence zones for complex stimuli.
Collapse
Affiliation(s)
- Marcel Schulze
- From the Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany (Schulze, Aslan, Lux, Philipsen); Biopsychology and Cognitive Neuroscience, Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany (Schulze); the German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany (Stöcker, Stirnberg); and the Department of Physics and Astronomy, University of Bonn, Bonn, Germany (Stöcker)
| | | | | | | | | | | |
Collapse
|
15
|
Iravani B, Arshamian A, Fransson P, Kaboodvand N. Whole-brain modelling of resting state fMRI differentiates ADHD subtypes and facilitates stratified neuro-stimulation therapy. Neuroimage 2021; 231:117844. [PMID: 33577937 DOI: 10.1016/j.neuroimage.2021.117844] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 01/13/2023] Open
Abstract
Recent advances in non-linear computational and dynamical modelling have opened up the possibility to parametrize dynamic neural mechanisms that drive complex behavior. Importantly, building models of neuronal processes is of key importance to fully understand disorders of the brain as it may provide a quantitative platform that is capable of binding multiple neurophysiological processes to phenotype profiles. In this study, we apply a newly developed adaptive frequency-based model of whole-brain oscillations to resting-state fMRI data acquired from healthy controls and a cohort of attention deficit hyperactivity disorder (ADHD) subjects. As expected, we found that healthy control subjects differed from ADHD in terms of attractor dynamics. However, we also found a marked dichotomy in neural dynamics within the ADHD cohort. Next, we classified the ADHD group according to the level of distance of each individual's empirical network from the two model-based simulated networks. Critically, the model was mirrored in the empirical behavior data with the two ADHD subgroups displaying distinct behavioral phenotypes related to emotional instability (i.e., depression and hypomanic personality traits). Finally, we investigated the applicability and feasibility of our whole-brain model in a therapeutic setting by conducting in silico excitatory stimulations to parsimoniously mimic clinical neuro-stimulation paradigms in ADHD. We tested the effect of stimulating any individual brain region on the key network measures derived from the simulated brain network and its contribution in rectifying the brain dynamics to that of the healthy brain, separately for each ADHD subgroup. This showed that this was indeed possible for both subgroups. However, the current effect sizes were small suggesting that the stimulation protocol needs to be tailored at the individual level. These findings demonstrate the potential of this new modelling framework to unveil hidden neurophysiological profiles and establish tailored clinical interventions.
Collapse
Affiliation(s)
- Behzad Iravani
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Artin Arshamian
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Peter Fransson
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Neda Kaboodvand
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
16
|
Cortese S, Aoki YY, Itahashi T, Castellanos FX, Eickhoff SB. Systematic Review and Meta-analysis: Resting-State Functional Magnetic Resonance Imaging Studies of Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry 2021; 60:61-75. [PMID: 32946973 DOI: 10.1016/j.jaac.2020.08.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To conduct a meta-analysis of resting-state functional magnetic resonance imaging (R-fMRI) studies in children and adolescents with attention-deficit/hyperactivity disorder (ADHD) and in adults with ADHD to assess spatial convergence of findings from available studies. METHOD Based on a preregistered protocol in PROSPERO (CRD42019119553), a large set of databases were searched up to April 9, 2019, with no language or article type restrictions. Study authors were systematically contacted for additional unpublished information/data. Resting-state functional magnetic resonance imaging studies using seed-based connectivity (SBC) or any other method (non-SBC) reporting whole-brain results of group comparisons between participants with ADHD and typically developing controls were eligible. Voxelwise meta-analysis via activation likelihood estimation with cluster-level familywise error (voxel-level: p < .001; cluster-level: p < .05) was used. RESULTS Thirty studies (18 SBC and 12 non-SBC), comprising 1,978 participants (1,094 with ADHD; 884 controls) were retained. The meta-analysis focused on SBC studies found no significant spatial convergence of ADHD-related hyperconnectivity or hypoconnectivity across studies. This nonsignificant finding remained after integrating 12 non-SBC studies into the main analysis and in sensitivity analyses limited to studies including only children or only non-medication-naïve patients. CONCLUSION The lack of significant spatial convergence may be accounted for by heterogeneity in study participants, experimental procedures, and analytic flexibility as well as in ADHD pathophysiology. Alongside other neuroimaging meta-analyses in other psychiatric conditions, the present results should inform the conduct and publication of future neuroimaging studies of psychiatric disorders.
Collapse
Affiliation(s)
- Samuele Cortese
- Hassenfeld Children's Hospital at NYU Langone, New York; University of Southampton, Solent NHS Trust, Southampton, and University of Nottingham, United Kingdom
| | - Yuta Y Aoki
- Showa University, Tokyo, Japan; National Center for Child Health and Development, Tokyo, Japan.
| | | | - F Xavier Castellanos
- Hassenfeld Children's Hospital at NYU Langone, New York; Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
17
|
Yde Ohki CM, Grossmann L, Alber E, Dwivedi T, Berger G, Werling AM, Walitza S, Grünblatt E. The stress-Wnt-signaling axis: a hypothesis for attention-deficit hyperactivity disorder and therapy approaches. Transl Psychiatry 2020; 10:315. [PMID: 32948744 PMCID: PMC7501308 DOI: 10.1038/s41398-020-00999-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/27/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is one of the most common psychiatric neurodevelopmental disorders in children and adolescents. Although ADHD has been studied for nearly a century, the cause and pathophysiology of ADHD is yet largely unknown. However, findings from previous studies have resulted in the formation of a new hypothesis: Apart from the well-known multifactorial etiology of ADHD, recent evidence suggests that the interaction between genetic and environmental factors and especially Wnt- and mTOR-signaling pathways might have an important role in the pathophysiology of ADHD. The Wnt-signaling pathway is known to orchestrate cellular proliferation, polarity, and differentiation, and the mTOR pathway is involved in several significant processes of neurodevelopment and synaptic plasticity. As a result, dysregulations of these pathways in a time-dependent manner could lead to neurodevelopmental delays, resulting in ADHD phenotype. This review presents further evidence supporting our hypothesis by combining results from studies on ADHD and Wnt- or mTOR-signaling and the influence of genetics, methylphenidate treatment, Omega-3 supplementation, and stress.
Collapse
Affiliation(s)
- Cristine Marie Yde Ohki
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
| | - Leoni Grossmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
| | - Emma Alber
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
| | - Tanushree Dwivedi
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
| | - Gregor Berger
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
| | - Anna Maria Werling
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zürich, Switzerland.
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland.
| |
Collapse
|
18
|
Gasanov RF, Makarov IV, Emelina DA. [Cognitive deficit in children with hyperkinetic disorder]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:126-131. [PMID: 32323954 DOI: 10.17116/jnevro2020120031126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The review presents current data on the nature of cognitive deficit in children with hyperkinetic disorder, and possible pathophysiological mechanisms of the disease. Considering possible neurobiological components of hyperkinetic disorder, attention is given to pathological functional connections underlying specific clinical manifestations of the disease.
Collapse
Affiliation(s)
- R F Gasanov
- Bekhterev National Research Medical Center for Psychiatry and Neurology, St. Peterburg, Russia
| | - I V Makarov
- Bekhterev National Research Medical Center for Psychiatry and Neurology, St. Peterburg, Russia.,Mechnicov North-Western State Medical University, St. Peterburg, Russia
| | - D A Emelina
- Bekhterev National Research Medical Center for Psychiatry and Neurology, St. Peterburg, Russia
| |
Collapse
|
19
|
Tahmasian M, Sepehry AA, Samea F, Khodadadifar T, Soltaninejad Z, Javaheripour N, Khazaie H, Zarei M, Eickhoff SB, Eickhoff CR. Practical recommendations to conduct a neuroimaging meta-analysis for neuropsychiatric disorders. Hum Brain Mapp 2019; 40:5142-5154. [PMID: 31379049 PMCID: PMC6865620 DOI: 10.1002/hbm.24746] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 02/04/2023] Open
Abstract
Over the past decades, neuroimaging has become widely used to investigate structural and functional brain abnormality in neuropsychiatric disorders. The results of individual neuroimaging studies, however, are frequently inconsistent due to small and heterogeneous samples, analytical flexibility, and publication bias toward positive findings. To consolidate the emergent findings toward clinically useful insight, meta-analyses have been developed to integrate the results of studies and identify areas that are consistently involved in pathophysiology of particular neuropsychiatric disorders. However, it should be considered that the results of meta-analyses could also be divergent due to heterogeneity in search strategy, selection criteria, imaging modalities, behavioral tasks, number of experiments, data organization methods, and statistical analysis with different multiple comparison thresholds. Following an introduction to the problem and the concepts of quantitative summaries of neuroimaging findings, we propose practical recommendations for clinicians and researchers for conducting transparent and methodologically sound neuroimaging meta-analyses. This should help to consolidate the search for convergent regional brain abnormality in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Masoud Tahmasian
- Institute of Medical Science and TechnologyShahid Beheshti UniversityTehranIran
| | - Amir A. Sepehry
- Clinical and Counselling Psychology ProgramAdler UniversityVancouverBritish ColumbiaCanada
| | - Fateme Samea
- Institute of Cognitive and Brain SciencesShahid Beheshti UniversityTehranIran
| | - Tina Khodadadifar
- School of Cognitive SciencesInstitute for Research in Fundamental SciencesTehranIran
| | - Zahra Soltaninejad
- Institute of Cognitive and Brain SciencesShahid Beheshti UniversityTehranIran
| | | | - Habibolah Khazaie
- Sleep Disorders Research CenterKermanshah University of Medical SciencesKermanshahIran
| | - Mojtaba Zarei
- Institute of Medical Science and TechnologyShahid Beheshti UniversityTehranIran
| | - Simon B. Eickhoff
- Institute for Systems Neuroscience, Medical FacultyHeinrich‐Heine University DüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐1, INM‐7)Research Center JülichJülichGermany
| | - Claudia R. Eickhoff
- Institute of Neuroscience and Medicine (INM‐1, INM‐7)Research Center JülichJülichGermany
- Institute of Clinical Neuroscience and Medical PsychologyHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
20
|
Hoogman M, Muetzel R, Guimaraes JP, Shumskaya E, Mennes M, Zwiers MP, Jahanshad N, Sudre G, Mostert J, Wolfers T, Earl EA, Vila JCS, Vives-Gilabert Y, Khadka S, Novotny SE, Hartman CA, Heslenfeld DJ, Schweren LJ, Ambrosino S, Oranje B, de Zeeuw P, Chaim-Avancini TM, Rosa PGP, Zanetti MV, Malpas CB, Kohls G, von Polier GG, Seitz J, Biederman J, Doyle AE, Dale AM, van Erp TG, Epstein JN, Jernigan TL, Baur-Streubel R, Ziegler GC, Zierhut KC, Schrantee A, Høvik MF, Lundervold AJ, Kelly C, McCarthy H, Skokauskas N, O'Gorman Tuura RL, Calvo A, Lera-Miguel S, Nicolau R, Chantiluke KC, Christakou A, Vance A, Cercignani M, Gabel MC, Asherson P, Baumeister S, Brandeis D, Hohmann S, Bramati IE, Tovar-Moll F, Fallgatter AJ, Kardatzki B, Schwarz L, Anikin A, Baranov A, Gogberashvili T, Kapilushniy D, Solovieva A, El Marroun H, White T, Karkashadze G, Namazova-Baranova L, Ethofer T, Mattos P, Banaschewski T, Coghill D, Plessen KJ, Kuntsi J, Mehta MA, Paloyelis Y, Harrison NA, Bellgrove MA, Silk TJ, Cubillo AI, Rubia K, Lazaro L, Brem S, Walitza S, Frodl T, Zentis M, Castellanos FX, Yoncheva YN, Haavik J, Reneman L, Conzelmann A, Lesch KP, Pauli P, Reif A, Tamm L, Konrad K, Weiss EO, Busatto GF, Louza MR, Durston S, Hoekstra PJ, Oosterlaan J, Stevens MC, Ramos-Quiroga JA, Vilarroya O, Fair DA, Nigg JT, Thompson PM, Buitelaar JK, Faraone SV, Shaw P, Tiemeier H, Bralten J, Franke B. Brain Imaging of the Cortex in ADHD: A Coordinated Analysis of Large-Scale Clinical and Population-Based Samples. Am J Psychiatry 2019; 176:531-542. [PMID: 31014101 PMCID: PMC6879185 DOI: 10.1176/appi.ajp.2019.18091033] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Neuroimaging studies show structural alterations of various brain regions in children and adults with attention deficit hyperactivity disorder (ADHD), although nonreplications are frequent. The authors sought to identify cortical characteristics related to ADHD using large-scale studies. METHODS Cortical thickness and surface area (based on the Desikan-Killiany atlas) were compared between case subjects with ADHD (N=2,246) and control subjects (N=1,934) for children, adolescents, and adults separately in ENIGMA-ADHD, a consortium of 36 centers. To assess familial effects on cortical measures, case subjects, unaffected siblings, and control subjects in the NeuroIMAGE study (N=506) were compared. Associations of the attention scale from the Child Behavior Checklist with cortical measures were determined in a pediatric population sample (Generation-R, N=2,707). RESULTS In the ENIGMA-ADHD sample, lower surface area values were found in children with ADHD, mainly in frontal, cingulate, and temporal regions; the largest significant effect was for total surface area (Cohen's d=-0.21). Fusiform gyrus and temporal pole cortical thickness was also lower in children with ADHD. Neither surface area nor thickness differences were found in the adolescent or adult groups. Familial effects were seen for surface area in several regions. In an overlapping set of regions, surface area, but not thickness, was associated with attention problems in the Generation-R sample. CONCLUSIONS Subtle differences in cortical surface area are widespread in children but not adolescents and adults with ADHD, confirming involvement of the frontal cortex and highlighting regions deserving further attention. Notably, the alterations behave like endophenotypes in families and are linked to ADHD symptoms in the population, extending evidence that ADHD behaves as a continuous trait in the population. Future longitudinal studies should clarify individual lifespan trajectories that lead to nonsignificant findings in adolescent and adult groups despite the presence of an ADHD diagnosis.
Collapse
Affiliation(s)
- Martine Hoogman
- Department of Human Genetics, Radboud university medical center, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Ryan Muetzel
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Joao P. Guimaraes
- Department of Human Genetics, Radboud university medical center, Nijmegen, Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| | - Elena Shumskaya
- Department of Human Genetics, Radboud university medical center, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Maarten Mennes
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Marcel P. Zwiers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Gustavo Sudre
- National Human Genome Research Institute, Bethesda, MD, USA
| | - Jeanette Mostert
- Department of Human Genetics, Radboud university medical center, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Thomas Wolfers
- Department of Human Genetics, Radboud university medical center, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Eric A. Earl
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | | | | | - Sabin Khadka
- Olin Neuropsychiatry Research Center, Hartford Hospital, Hartford, CT, USA
| | | | - Catharina A. Hartman
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), Groningen, The Netherlands
| | - Dirk J. Heslenfeld
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lizanne J.S. Schweren
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, The Netherlands
| | - Sara Ambrosino
- NICHE Lab, Department of Psychiatry, UMC Utrecht Brain Center, Utrecht, The Netherlands
| | - Bob Oranje
- NICHE Lab, Department of Psychiatry, UMC Utrecht Brain Center, Utrecht, The Netherlands
| | - Patrick de Zeeuw
- NICHE Lab, Department of Psychiatry, UMC Utrecht Brain Center, Utrecht, The Netherlands
| | - Tiffany M. Chaim-Avancini
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Sao Paulo, Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Sao Paulo, Brazil
| | - Pedro G. P. Rosa
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Sao Paulo, Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Sao Paulo, Brazil
| | - Marcus V. Zanetti
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Sao Paulo, Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Sao Paulo, Brazil
| | - Charles B. Malpas
- Developmental Imaging Group, Murdoch Children's Research Institute, Melbourne, Australia
- Clinical Outcomes Research Unit (CORe), Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia
| | - Gregor Kohls
- Child Neuropsychology Section, University Hospital RWTH Aachen, Aachen, Germany
| | - Georg G. von Polier
- Child and Adolescent Psychiatry, University Hospital RWTH Aachen, Aachen, Germany
| | - Jochen Seitz
- Child and Adolescent Psychiatry, University Hospital RWTH Aachen, Aachen, Germany
| | - Joseph Biederman
- Clinical and Research Programs in Pediatric Psychopharmacology and Adult ADHD, Department of Psychiatry, Massachusetts General Hospital, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, USA
| | - Alysa E. Doyle
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, USA
| | - Anders M. Dale
- Departments of Neurosciences, Radiology, and Psychiatry, UC San Diego, USA
- Center for Multimodal Imaging and Genetics (CMIG), UC San Diego, CA, USA
| | - Theo G.M. van Erp
- Clinical and Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - Jeffrey N. Epstein
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | - Georg C. Ziegler
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | | | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam; the Netherlands
| | - Marie F. Høvik
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Astri J. Lundervold
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Clare Kelly
- School of Psychology and Department of Psychiatry at the School of Medicine, Trinity College Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
- Department of Child and Adolescent Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Hazel McCarthy
- Department of Psychiatry, Trinity College Dublin, Ireland
- Centre of Advanced Medical Imaging, St James's Hospital, Dublin, Ireland
| | - Norbert Skokauskas
- Department of Psychiatry, Trinity College Dublin, Ireland
- Institute of Mental Health, Norwegian University of Science and Technology, Norway
| | - Ruth L. O'Gorman Tuura
- Center for MR Research, University Children's Hospital, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switserland
| | - Anna Calvo
- Magnetic Resonance Image Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sara Lera-Miguel
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciencies, Hospital Clínic, Barcelona, Spain
| | - Rosa Nicolau
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciencies, Hospital Clínic, Barcelona, Spain
| | - Kaylita C. Chantiluke
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Anastasia Christakou
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- School of Psychology and Clinical Language Sciences, Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading, UK
| | - Alasdair Vance
- Department of Paediatrics, University of Melbourne, Australia
| | - Mara Cercignani
- Department of Neuroscience, Brighton and Sussex Medical School, Falmer, Brighton, UK
| | - Matt C. Gabel
- Department of Neuroscience, Brighton and Sussex Medical School, Falmer, Brighton, UK
| | - Philip Asherson
- Social, Genetic and Developmental Psychiatry Centre; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sarah Baumeister
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
| | | | - Fernanda Tovar-Moll
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Morphological Sciences Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andreas J. Fallgatter
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen, Germany
- LEAD Graduate School, University of Tuebingen, Germany
| | - Bernd Kardatzki
- Department of Biomedical Magnetic Resonance, University of Tuebingen, Tuebingen, Germany
| | - Lena Schwarz
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen, Germany
| | - Anatoly Anikin
- National Medical Research Center for Children's Health, Department of magnetic resonance imaging and densitometry, Moscow, Russia
| | - Alexandr Baranov
- National Medical Research Center for Children's Health, Moscow, Russia
| | - Tinatin Gogberashvili
- National Medical Research Center for Children's Health, Laboratory of Neurology and Cognitive Health, Moscow, Russia
| | - Dmitry Kapilushniy
- National Medical Research Center for Children's Health, Department of Information Technologies, Moscow, Russia
| | | | - Hanan El Marroun
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Paediatrics, Erasmus MC - Sophia, Rotterdam, the Netherlands
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Tonya White
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Radiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Georgii Karkashadze
- National Medical Research Center for Children's Health, Laboratory of Neurology and Cognitive Health, Moscow, Russia
| | | | - Thomas Ethofer
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tuebingen, Tuebingen, Germany
| | - Paulo Mattos
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
- Federal University of Rio de Janeiro, Brazil
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
| | - David Coghill
- Department of Paediatrics, University of Melbourne, Australia
- Departments of Psychiatry, University of Melbourne, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Australia
- Division of Neuroscience, University of Dundee, Dundee, UK
| | - Kerstin J. Plessen
- Child and Adolescent Mental Health Centre, Capital Region Copenhagen, Denmark
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, University Hospital Lausanne, Switzerland
| | - Jonna Kuntsi
- Social, Genetic and Developmental Psychiatry Centre; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mitul A. Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Neil A. Harrison
- Department of Neuroscience, Brighton and Sussex Medical School, Falmer, Brighton, UK
- Sussex Partnership NHS Foundation Trust, Swandean, East Sussex, UK
| | - Mark A. Bellgrove
- Monash Institute for Cognitive and Clinical Neurosciences (MICCN) and School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Tim J. Silk
- Department of Paediatrics, University of Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Australia
- Deakin University, School of Psychology, Geelong, Australia
| | - Ana I. Cubillo
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Luisa Lazaro
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciencies, Hospital Clínic, Barcelona, Spain
- Department of Medicine, University of Barcelona, Spain
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- University of Zurich and ETH Zurich, Neuroscience Center Zurich, Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Thomas Frodl
- Department of Psychiatry, Trinity College Dublin, Ireland
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Germany
| | | | - Francisco X. Castellanos
- Department of Child and Adolescent Psychiatry, NYU Langone Medical Center, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Yuliya N. Yoncheva
- Department of Child and Adolescent Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Jan Haavik
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam; the Netherlands
- Brain Imaging Center, Amsterdam University Medical Centers, Amsterdam; the Netherlands
| | - Annette Conzelmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Tübingen, Germany
- Department of Biological Psychology, Clinical Psychology and Psychotherapy, Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Paul Pauli
- Department of Biological Psychology, Clinical Psychology and Psychotherapy, Würzburg, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Leanne Tamm
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kerstin Konrad
- Child Neuropsychology Section, University Hospital RWTH Aachen, Aachen, Germany
- JARA Institute Molecular Neuroscience and Neuroimaging (INM-11), Institute for Neuroscience and Medicine, Research Center Jülich, Germany
| | - Eileen Oberwelland Weiss
- Translational Neuroscience, Child and Adolescent Psychiatry, University Hospital RWTH Aachen, Aachen, Germany
- Cognitive Neuroscience (INM-3), Institute for Neuroscience and Medicine, Research Center Jülich, Germany
| | - Geraldo F. Busatto
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Sao Paulo, Brazil
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mario R. Louza
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Sarah Durston
- NICHE Lab, Department of Psychiatry, UMC Utrecht Brain Center, Utrecht, The Netherlands
| | - Pieter J. Hoekstra
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), Groningen, The Netherlands
| | - Jaap Oosterlaan
- Clinical Neuropsychology Section, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Emma Children’s Hospital Amsterdam Medical Center, Amsterdam, The Netherlands
- Department of Pediatrics, VU Medical Center, Amsterdam, The Netherlands
| | - Michael C. Stevens
- Olin Neuropsychiatry Research Center, Hartford Hospital, Hartford, CT, USA
- Department of Psychiatry, Yale University School of Medicine, USA
| | - J. Antoni Ramos-Quiroga
- Department of Psychiatry and Forensic Medicine, Universitat Autonoma de Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d’Hebron, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
| | - Oscar Vilarroya
- Department of Psychiatry and Forensic Medicine, Universitat Autonoma de Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Damien A. Fair
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
- Department of Psychiatry, Oregon Health & Science University, Portland OR, USA
| | - Joel T. Nigg
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
- Department of Psychiatry, Oregon Health & Science University, Portland OR, USA
| | - Paul M. Thompson
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Jan K. Buitelaar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Karakter Child and Adolescent Psychiatry University Center, Nijmegen, The Netherlands
| | | | - Philip Shaw
- National Human Genome Research Institute, Bethesda, MD, USA
- National Institute of Mental Health, Bethesda, MD, USA
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Social and Behavioral Science, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Janita Bralten
- Department of Human Genetics, Radboud university medical center, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Barbara Franke
- Department of Human Genetics, Radboud university medical center, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
21
|
Wu ZM, Llera A, Hoogman M, Cao QJ, Zwiers MP, Bralten J, An L, Sun L, Yang L, Yang BR, Zang YF, Franke B, Beckmann CF, Mennes M, Wang YF. Linked anatomical and functional brain alterations in children with attention-deficit/hyperactivity disorder. NEUROIMAGE-CLINICAL 2019; 23:101851. [PMID: 31077980 PMCID: PMC6514365 DOI: 10.1016/j.nicl.2019.101851] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 01/08/2023]
Abstract
Objectives Neuroimaging studies have independently demonstrated brain anatomical and functional impairments in participants with ADHD. The aim of the current study was to explore the relationship between structural and functional brain alterations in ADHD through an integrated analysis of multimodal neuroimaging data. Methods We performed a multimodal analysis to integrate resting-state functional magnetic resonance imaging (MRI), structural MRI, and diffusion-weighted imaging data in a large, single-site sample of children with and without diagnosis for ADHD. The inferred subject contributions were fed into regression models to investigate the relationships between diagnosis, symptom severity, gender, and age. Results Compared with controls, children with ADHD diagnosis showed altered white matter microstructure in widespread white matter fiber tracts as well as greater gray matter volume (GMV) in bilateral frontal regions, smaller GMV in posterior regions, and altered functional connectivity (FC) in default mode and fronto-parietal networks. Age-related growth of GMV of bilateral occipital lobe, FC in frontal regions as well as age-related decline of GMV in medial regions seen in controls appeared reversed in children with ADHD. In the whole group, higher symptom severity was related to smaller GMV in widespread regions in bilateral frontal, parietal, and temporal lobes, as well as greater GMV in intracalcarine and temporal cortices. Conclusions Through a multimodal analysis approach we show that structural and functional alterations in brain regions known to be altered in subjects with ADHD from unimodal studies are linked across modalities. The brain alterations were related to clinical features of ADHD, including disorder status, age, and symptom severity. Multimodal imaging analysis provides new insights in interconnected imaging findings. Co-occurrence of structural and functional brain alterations were observed in ADHD. The identified multimodal alterations are related to clinical features of ADHD.
Collapse
Affiliation(s)
- Zhao-Min Wu
- Shenzhen Children's Hospital, China; Peking University Sixth Hospital, Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands.
| | - Alberto Llera
- Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Martine Hoogman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Qing-Jiu Cao
- Peking University Sixth Hospital, Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Marcel P Zwiers
- Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Li An
- Peking University Sixth Hospital, Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Li Sun
- Peking University Sixth Hospital, Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Li Yang
- Peking University Sixth Hospital, Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | | | - Yu-Feng Zang
- Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Maarten Mennes
- Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Yu-Feng Wang
- Peking University Sixth Hospital, Institute of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China.
| |
Collapse
|
22
|
Samea F, Soluki S, Nejati V, Zarei M, Cortese S, Eickhoff SB, Tahmasian M, Eickhoff CR. Brain alterations in children/adolescents with ADHD revisited: A neuroimaging meta-analysis of 96 structural and functional studies. Neurosci Biobehav Rev 2019; 100:1-8. [PMID: 30790635 PMCID: PMC7966818 DOI: 10.1016/j.neubiorev.2019.02.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/21/2019] [Accepted: 02/16/2019] [Indexed: 01/06/2023]
Abstract
The findings of neuroimaging studies in children/adolescents with ADHD, and even those of previous meta-analyses, are divergent. Here, Activation Likelihood Estimation meta-analysis, following the current best-practice guidelines, was conducted. We searched multiple databases and traced the references up to June 2018. Then, we extracted the reported coordinates reflecting group comparison between ADHD and healthy subjects from 96 eligible studies, containing 1914 unique participants. The analysis of pooled structural and functional, sub-analyses restricted to modality, and in-/decreased contrast did not yield any significant findings. However, further sub-analyses in the task-fMRI experiments (neutral stimuli only) led to aberrant activity in the left pallidum/putamen and decreased activity (male subjects only) in the left inferior frontal gyrus. The overall findings indicate a lack of regional convergence in children/adolescents with ADHD, which might be due to heterogeneous clinical populations, various experimental design, preprocessing, statistical procedures in individual publications. Our results highlight the need for further high-powered investigations, but may also indicate ADHD pathophysiology might rest in network interactions rather than just regional abnormality.
Collapse
Affiliation(s)
- Fateme Samea
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Solmaz Soluki
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Vahid Nejati
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran; Department of Psychology, Shahid Beheshti University, Tehran, Iran
| | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Samuele Cortese
- Center for Innovation in Mental Health, Academic Unit of Psychology, University of Southampton, Southampton, UK; Faculty of Medicine, Clinical and Experimental Sciences (CNS and Psychiatry), University of Southampton, Southampton, UK; Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK; Department of Child and Adolescent Psychiatry, NYU Langone Medical Center, New York, USA
| | - Simon B Eickhoff
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1, INM-7), Research Center Jülich, Jülich, Germany
| | - Masoud Tahmasian
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran.
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Center Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
23
|
Kiat JE, Long D, Belli RF. Attentional responses on an auditory oddball predict false memory susceptibility. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2018; 18:1000-1014. [PMID: 29926284 DOI: 10.3758/s13415-018-0618-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Attention and memory are highly integrated processes. Building on prior behavioral investigations, this study assesses the link between individual differences in low-level neural attentional responding and false memory susceptibility on the misinformation effect, a paradigm in which false event memories are induced via misleading post-event information. Twenty-four subjects completed the misinformation effect paradigm after which high-density (256-channel) EEG data was collected as they engaged in an auditory oddball task. Temporal-spatial decomposition was used to extract two attention-related components from the oddball data, the P3b and Classic Slow Wave. The P3b was utilized as an index of individual differences in salient target attentional responding while the slow wave was adopted as an index of variability in task-level sustained attention. Analyses of these components show a significant negative relationship between slow-wave responses to oddball non-targets and perceptual false memory endorsements, suggestive of a link between individual differences in levels of sustained attention and false memory susceptibility. These findings provide the first demonstrated link between individual differences in basic attentional responses and false memory. These results support prior behavioral work linking attention and false memory and highlight the integration between attentional processes and real-world episodic memory.
Collapse
Affiliation(s)
- John E Kiat
- Department of Psychology, University of Nebraska-Lincoln, 34 Burnett Hall, Lincoln, NE, 68588-0308, USA.
| | - Dianna Long
- Department of Psychology, University of Nebraska-Lincoln, 34 Burnett Hall, Lincoln, NE, 68588-0308, USA
| | - Robert F Belli
- Department of Psychology, University of Nebraska-Lincoln, 34 Burnett Hall, Lincoln, NE, 68588-0308, USA
| |
Collapse
|
24
|
Vigliecca NS. Neurocognitive Implications of Tangential Speech in Patients with Focal Brain Damage. Gerontology 2018. [DOI: 10.5772/intechopen.71904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
25
|
Age sensitive associations of adolescent substance use with amygdalar, ventral striatum, and frontal volumes in young adulthood. Drug Alcohol Depend 2018; 186:94-101. [PMID: 29558674 PMCID: PMC5911233 DOI: 10.1016/j.drugalcdep.2018.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/30/2018] [Accepted: 02/03/2018] [Indexed: 01/19/2023]
Abstract
INTRODUCTION This study evaluated an age sensitive model of substance use across adolescence to determine if substance use was associated with smaller volumes for an earlier developing brain region, the amygdala, a later developing region, the inferior frontal gyrus, and the ventral striatum. METHOD Participants (N = 110) were African American young adults who were members of a longitudinal cohort across childhood and adolescence. Measures of substance use were collected across early (ages 12-15 yrs.), middle (ages 16-18 yrs.), and later (ages 19-21 yrs.) adolescence; then, at age 25, a representative subset of the sample completed magnetic resonance imaging (MRI) that assessed regional brain volumes. RESULTS Higher levels of substance use during early adolescence, but not middle or later adolescence, were significantly associated with smaller amygdalar volume in young adulthood. Higher levels of substance use during middle adolescence, but not early or later adolescence, were significantly associated with smaller pars opercularis volume. Substance use was not associated with the pars triangularis or ventral striatum. CONCLUSION These findings support age sensitive associations between substance use and smaller gray matter volumes at age 25 and are consistent with literature supporting the differential nature of substance use and brain maturation across adolescence and into young adulthood.
Collapse
|
26
|
Yanes JA, Riedel MC, Ray KL, Kirkland AE, Bird RT, Boeving ER, Reid MA, Gonzalez R, Robinson JL, Laird AR, Sutherland MT. Neuroimaging meta-analysis of cannabis use studies reveals convergent functional alterations in brain regions supporting cognitive control and reward processing. J Psychopharmacol 2018; 32:283-295. [PMID: 29338547 PMCID: PMC5858977 DOI: 10.1177/0269881117744995] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lagging behind rapid changes to state laws, societal views, and medical practice is the scientific investigation of cannabis's impact on the human brain. While several brain imaging studies have contributed important insight into neurobiological alterations linked with cannabis use, our understanding remains limited. Here, we sought to delineate those brain regions that consistently demonstrate functional alterations among cannabis users versus non-users across neuroimaging studies using the activation likelihood estimation meta-analysis framework. In ancillary analyses, we characterized task-related brain networks that co-activate with cannabis-affected regions using data archived in a large neuroimaging repository, and then determined which psychological processes may be disrupted via functional decoding techniques. When considering convergent alterations among users, decreased activation was observed in the anterior cingulate cortex, which co-activated with frontal, parietal, and limbic areas and was linked with cognitive control processes. Similarly, decreased activation was observed in the dorsolateral prefrontal cortex, which co-activated with frontal and occipital areas and linked with attention-related processes. Conversely, increased activation among users was observed in the striatum, which co-activated with frontal, parietal, and other limbic areas and linked with reward processing. These meta-analytic outcomes indicate that cannabis use is linked with differential, region-specific effects across the brain.
Collapse
Affiliation(s)
- Julio A Yanes
- Department of Psychology, Auburn University, Auburn, AL, USA,Auburn University Magnetic Resonance Imaging Research Center, Auburn University, Auburn, AL, USA,Advanced Alabama Imaging Consortium, Alabama, USA
| | - Michael C Riedel
- Center for Imaging Science, Florida International University, Miami, FL, USA
| | - Kimberly L Ray
- Imaging Research Center, University of California Davis, Sacramento, CA, USA
| | - Anna E Kirkland
- Department of Psychology, Auburn University, Auburn, AL, USA,Auburn University Magnetic Resonance Imaging Research Center, Auburn University, Auburn, AL, USA,Advanced Alabama Imaging Consortium, Alabama, USA
| | - Ryan T Bird
- Department of Psychology, Auburn University, Auburn, AL, USA,Auburn University Magnetic Resonance Imaging Research Center, Auburn University, Auburn, AL, USA,Advanced Alabama Imaging Consortium, Alabama, USA
| | - Emily R Boeving
- Center for Imaging Science, Florida International University, Miami, FL, USA,Department of Psychology, Florida International University, Miami, FL, USA
| | - Meredith A Reid
- Auburn University Magnetic Resonance Imaging Research Center, Auburn University, Auburn, AL, USA,Advanced Alabama Imaging Consortium, Alabama, USA
| | - Raul Gonzalez
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Jennifer L Robinson
- Department of Psychology, Auburn University, Auburn, AL, USA,Auburn University Magnetic Resonance Imaging Research Center, Auburn University, Auburn, AL, USA,Advanced Alabama Imaging Consortium, Alabama, USA
| | - Angela R Laird
- Center for Imaging Science, Florida International University, Miami, FL, USA,Department of Physics, Florida International University, Miami, FL, USA
| | - Matthew T Sutherland
- Center for Imaging Science, Florida International University, Miami, FL, USA,Department of Psychology, Florida International University, Miami, FL, USA
| |
Collapse
|
27
|
Faraone SV. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev 2018; 87:255-270. [PMID: 29428394 DOI: 10.1016/j.neubiorev.2018.02.001] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 12/20/2022]
Abstract
Psychostimulants, including amphetamines and methylphenidate, are first-line pharmacotherapies for individuals with attention-deficit/hyperactivity disorder (ADHD). This review aims to educate physicians regarding differences in pharmacology and mechanisms of action between amphetamine and methylphenidate, thus enhancing physician understanding of psychostimulants and their use in managing individuals with ADHD who may have comorbid psychiatric conditions. A systematic literature review of PubMed was conducted in April 2017, focusing on cellular- and brain system-level effects of amphetamine and methylphenidate. The primary pharmacologic effect of both amphetamine and methylphenidate is to increase central dopamine and norepinephrine activity, which impacts executive and attentional function. Amphetamine actions include dopamine and norepinephrine transporter inhibition, vesicular monoamine transporter 2 (VMAT-2) inhibition, and monoamine oxidase activity inhibition. Methylphenidate actions include dopamine and norepinephrine transporter inhibition, agonist activity at the serotonin type 1A receptor, and redistribution of the VMAT-2. There is also evidence for interactions with glutamate and opioid systems. Clinical implications of these actions in individuals with ADHD with comorbid depression, anxiety, substance use disorder, and sleep disturbances are discussed.
Collapse
Affiliation(s)
- Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States; K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway.
| |
Collapse
|
28
|
Wolfers T, Arenas AL, Onnink AMH, Dammers J, Hoogman M, Zwiers MP, Buitelaar JK, Franke B, Marquand AF, Beckmann CF. Refinement by integration: aggregated effects of multimodal imaging markers on adult ADHD. J Psychiatry Neurosci 2017; 42:386-394. [PMID: 28832320 PMCID: PMC5662460 DOI: 10.1503/jpn.160240] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is biologically heterogeneous, with different biological predispositions - mediated through developmental processes - converging upon a common clinical phenotype. Brain imaging studies have variably shown altered brain structure, activity and connectivity in children and adults with ADHD. Recent methodological developments allow for the integration of information across imaging modalities, potentially yielding a more coherent view regarding the biology underlying the disorder. METHODS We analyzed a sample of adults with persistent ADHD and healthy controls using an advanced multimodal linked independent component analysis approach. Diffusion and structural MRI data were fused to form imaging markers reflecting independent components that explain variation across modalities. We included these markers as predictors into logistic regression models on adult ADHD and put those into context with predictions of estimated intelligence, age and sex. RESULTS We included 87 adults with ADHD and 93 controls in our analysis. Participants' courses associated with all imaging markers explained 27.86% of the variance in adult ADHD. No single imaging modality dominated this result. Instead, it was explained by aggregation of relatively small effects across several modalities and markers. One of the top markers for adult ADHD was multimodal and linked to morphological and microstructural effects within anterior temporal brain regions; another was linked to cortical thickness. Several markers were also influenced by estimated intelligence, age and/or sex. LIMITATIONS Although complex analytical approaches, such as the one applied here, provide insight into otherwise hidden mechanisms, they also increase the complexity of interpretations. CONCLUSION No dominant imaging modality or marker characterizes structural brain phenotypes in adults with ADHD, but we can refine our characterization of the disorder by the integration of small effects across modalities.
Collapse
Affiliation(s)
- Thomas Wolfers
- Correspondence to: T. Wolfers, Donders Centre for Cognitive Neuroimaging, Radboud University, PO Box 9101, 6500 HB Nijmegen, the Netherlands;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rubia K. Can Functional Decoding Elucidate Meta-analytic Brain Dysfunctions in Adult Attention-Deficit/Hyperactivity Disorder? Biol Psychiatry 2016; 80:890-892. [PMID: 27839558 DOI: 10.1016/j.biopsych.2016.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Katya Rubia
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|