1
|
Mengelkoch S, Alley JC, Cole SW, Slavich GM. Transcriptional evidence of HPA axis dysregulation in adolescent females: Unique contributions of chronic early-life stressor exposure and maternal depression history. J Affect Disord 2025; 371:245-252. [PMID: 39532234 DOI: 10.1016/j.jad.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/12/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Depression risk increases dramatically for adolescent females following the pubertal transition. Although chronic early-life stressor exposure and a maternal history of depression are established risk factors for depression onset in this population, we know little about the biological mechanisms underlying these associations. METHOD To investigate, we examined how chronic early-life stressor exposure and maternal depression history were associated with stress-related gene expression patterns, using a high-risk family design in 48 psychiatrically healthy adolescent females, 20 of whom had a mother with a lifetime history of depression. Lifetime chronic stressor exposure was assessed using the STRAIN and gene expression patterns were estimated using transcriptional profiling of whole blood. RESULTS Consistent with hypotheses, we found that adolescent females with greater chronic stressor exposure had higher NR3C1 expression levels compared to those with less chronic stressor exposure. Additionally, youth with a depressed mother had lower levels of FKBP5 expression compared to those without a depressed mother. Levels of FKBP5 expression, in turn, interacted with chronic stressor exposure to predict NR3C1 expression. Specifically, for those with low chronic stressor exposure, levels of FKBP5 and NR3C1 expression were strongly interrelated, whereas for those with high chronic stressor exposure, NR3C1 expression was high regardless of levels of FKBP5 expression. LIMITATIONS This study was correlational, the sample size was limited, and additional research is needed to elucidate the underlying mechanisms and predict who subsequently develops depression. CONCLUSIONS Notwithstanding these limitations, these data indicate that having low FKBP5 expression, alongside high NR3C1 expression, may be a potential preclinical marker of depression risk in adolescent females that warrants additional investigation.
Collapse
Affiliation(s)
- Summer Mengelkoch
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA.
| | - Jenna C Alley
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA.
| | - Steven W Cole
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Wang R, Zhu B, Yu X, Tan W, Shi Q. Childhood violence exposure and anxiety and depression of children and adolescents. J Affect Disord 2025; 369:608-614. [PMID: 39406297 DOI: 10.1016/j.jad.2024.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Mental disorders constitute a global public health problem worldwide and occurs in childhood and lasts to adulthood. The purpose of this study was to explore the association between childhood violence exposure and currently diagnosed depression and anxiety in children and adolescents and investigate whether the association differs by sex and age. METHODS This cross-sectional study used data from 2017 to 2021 National Survey of Children's Health (NSCH). Childhood violence exposure and anxiety or depression of children were reported from caregivers. Logistic regression analyses and subgroup analyses were conducted to assess the association between the childhood violence exposure and anxiety and depression. RESULTS This study included 113,400 participants aged 6 to 17 years (weighted mean [SD] age, 11.5 [3.4] years; 54,539 females [weighted proportions, 48.9 %]). 9603 of them (weighted proportions, 9.0 %) had childhood violence exposure. Childhood violence exposure was associated with higher risks of anxiety (adjusted risk difference: 7.8 %, 95%CI: 6.3-9.3 %; adjusted OR: 2.11, 95%CI: 1.87-2.39) and depression (adjusted risk difference: 6.2 %, 95%CI: 5.1-7.4 %; adjusted OR: 2.94, 95%CI: 2.54-3.41) after full adjustment. Stratified analyses demonstrated that the association appeared to be stronger in younger children and the association between violence exposure and anxiety was stronger in females than in males. CONCLUSION In this cross-sectional study, childhood violence exposure was significantly associated with higher risks of anxiety and depression. The associations appeared to be stronger in younger and female children. Differences in sex and age-specific associations highlight the importance of building age-specific and sex-specific patterns of childhood violence prevention and intervention.
Collapse
Affiliation(s)
- Ran Wang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bingxue Zhu
- Department of Clinical Nutrition, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xiaodan Yu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; MOE-Shanghai Key Lab of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Weiqiang Tan
- Department of Surgery, Xiangan Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China.
| | - Qiqi Shi
- Department of Pediatric Cardiothoracic Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
3
|
Isgate SB, Budge KE, Byrnes EM, Vassoler FM. Paternal Morphine Alters Offspring Circulating Beta-Endorphin and Corticosterone Responses to Oxycodone and Cocaine. Neuropharmacology 2024; 265:110271. [PMID: 39694232 DOI: 10.1016/j.neuropharm.2024.110271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND The opioid epidemic is leading to increased opioid use in adolescent populations. A growing body of evidence suggests that taking opioids during adolescence can disrupt normal development and impact future offspring. This study investigates the impact of paternal morphine exposure during adolescence on the hypothalamic-pituitary-adrenal (HPA) axis and release of endorphins in the offspring. METHODS Male rats were administered morphine once a day from postnatal day (PND)30-39 using an increasing dosing regimen (5-25mg/kg/day increasing every other day). They were mated during adulthood to drug naïve females. Their offspring were assessed for circulating beta-endorphin (βE) and corticosterone levels on PND30 (a timepoint prior to puberty in both sexes) in response to an acute injection of saline, oxycodone (1 mg/kg, i.p.) or cocaine (10 mg/kg, i.p.). At PND60, naïve littermates were catheterized so that a within-subjects design could be implemented to measure βE and corticosterone in response to saline, oxycodone, or cocaine. RESULTS In males, βE levels in the plasma were increased in Mor-F1 males compared to Sal-F1 males regardless of the acute injection. This elevation was observed at PND30 and PND60. There were no differences in female circulating βE. In terms of corticosterone, male Mor-F1 offspring had blunted corticosterone at PND30, but elevated corticosterone in response to oxycodone at PND60. The females also tended towards lower corticosterone prior to puberty but had significantly elevated levels of circulating corticosterone following an acute cocaine injection. CONCLUSION Paternal morphine exposure during adolescence induces sex- and drug-specific changes in secreted hormone responses in offspring. The alterations in βE and corticosterone levels suggest mechanisms through which adolescent opioid exposure can impact endocrine functions of future offspring. These findings contribute to the understanding of intergenerational transmission of substance use effects.
Collapse
Affiliation(s)
- Sara B Isgate
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - Kerri E Budge
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - Elizabeth M Byrnes
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - Fair M Vassoler
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA.
| |
Collapse
|
4
|
Wei B, Shi Y, Yu X, Cai Y, Zhao Y, Song Y, Zhao Z, Huo M, Li L, Gao Q, Yu D, Wang B, Sun M. GR/P300 Regulates MKP1 Signaling Pathway and Mediates Depression-like Behavior in Prenatally Stressed Offspring. Mol Neurobiol 2024; 61:10613-10628. [PMID: 38769227 DOI: 10.1007/s12035-024-04244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Accumulating evidence suggests that prenatal stress (PNS) increases offspring susceptibility to depression, but the underlying mechanisms remain unclear. We constructed a mouse model of prenatal stress by spatially restraining pregnant mice from 09:00-11:00 daily on Days 5-20 of gestation. In this study, western blot analysis, quantitative real-time PCR (qRT‒PCR), immunofluorescence, immunoprecipitation, chromatin immunoprecipitation (ChIP), and mifepristone rescue assays were used to investigate alterations in the GR/P300-MKP1 and downstream ERK/CREB/TRKB pathways in the brains of prenatally stressed offspring to determine the pathogenesis of the reduced neurogenesis and depression-like behaviors in offspring induced by PNS. We found that prenatal stress leads to reduced hippocampal neurogenesis and depression-like behavior in offspring. Prenatal stress causes high levels of glucocorticoids to enter the fetus and activate the hypothalamic‒pituitary‒adrenal (HPA) axis, resulting in decreased hippocampal glucocorticoid receptor (GR) levels in offspring. Furthermore, the nuclear translocation of GR and P300 (an acetylation modifying enzyme) complex in the hippocampus of PNS offspring increased significantly. This GR/P300 complex upregulates MKP1, which is a negative regulator of the ERK/CREB/TRKB signaling pathway associated with depression. Interestingly, treatment with a GR antagonist (mifepristone, RU486) increased hippocampal GR levels and decreased MKP1 expression, thereby ameliorating abnormal neurogenesis and depression-like behavior in PNS offspring. In conclusion, our study suggested that the regulation of the MKP1 signaling pathway by GR/P300 is involved in depression-like behavior in prenatal stress-exposed offspring and provides new insights and ideas for the fetal hypothesis of mental health.
Collapse
Affiliation(s)
- Bin Wei
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250000, Shandong, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Yajun Shi
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Xi Yu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Yongle Cai
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Yan Zhao
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Yueyang Song
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Zejun Zhao
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Ming Huo
- Reproductive Medicine Center, The First Hospital of Lanzhou University, LanzhouGansu, 730000, China
| | - Lingjun Li
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Qinqin Gao
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Dongyi Yu
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250000, Shandong, China
| | - Bin Wang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China.
| | - Miao Sun
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China.
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China.
| |
Collapse
|
5
|
Roca G, Sabate S, Serrano A, Benito MC, Pérez M, Revuelta M, Lorenzo A, Busquets J, Rodríguez G, Sanz D, Jiménez A, Parera A, de la Gala F, Montes A. Sex Differences in Chronic Postsurgical Pain after Open Thoracotomy. J Cardiothorac Vasc Anesth 2024; 38:3134-3142. [PMID: 39322441 DOI: 10.1053/j.jvca.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
STUDY OBJECTIVE To determine the incidence of chronic postsurgical pain (CPSP) in women after open thoracotomy. Secondary objectives were to compare relevant patient and procedural variables between women and men. DESIGN Observational cohort study. SETTING Ten university-affiliated hospitals. SUBJECTS Ninety-six women and 137 men. INTERVENTIONS Scheduled open thoracotomy. MEASUREMENTS Pain histories, psychological measures, and perceived health status and catastrophizing scores were obtained. The diagnosis of chronic postsurgical pain was by physical examination at 4 months. Standard preoperative, intraoperative, and postoperative data were also recorded. MAIN RESULTS The chronic postsurgical pain incidence was significantly higher in women (53.1%) than in men (38.0%) (p = 0.023). At baseline, women had significantly worse scores on psychological measures (perception of mental state [p = 0.01], depression [p = 0.006], and catastrophizing [p < 0.001]). Women also reported more preoperative pain in the operative area (p = 0.011) and other areas (p = 0.030). CONCLUSION These findings show that the incidence of physician-diagnosed chronic postsurgical pain is higher in women than in men after surgeries involving thoracotomy. Sex and gender should be included in future clinical research on pain in surgical settings.
Collapse
Affiliation(s)
- Gisela Roca
- Pain Unit, Department of Anesthesiology, Hospital Universitari Germans Trias i Pujol, Universitat Autónoma de Barcelona, Badalona, Spain
| | - Sergi Sabate
- Department of Anesthesiology, Pain Unit, Hospital Universitari de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Ancor Serrano
- Pain Unit, Department of Anesthesiology, Hospital Universitari Bellvitge, Universitat de Barcelona, Hospitalet del Llobregat, Spain
| | - María Carmen Benito
- Pain Unit, Department of Anesthesiology, Hospital General Universitario Gregorio Marañon, Universidad Complutense de Madrid, Madrid, Spain
| | - María Pérez
- Pain Unit, Department of Anesthesiology, Hospital Clinico Universitario de Valladolid, Universidad de Valladolid, Valladolid, Spain
| | - Miren Revuelta
- Department of Anesthesiology, Pain Unit, Hospital Universitari de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Ana Lorenzo
- Pain Unit, Department of Anesthesiology, Hospital General Universitario Gregorio Marañon, Universidad Complutense de Madrid, Madrid, Spain
| | - Jordi Busquets
- Pain Unit, Department of Anesthesiology, Hospital Universitari Germans Trias i Pujol, Universitat Autónoma de Barcelona, Badalona, Spain
| | - Gema Rodríguez
- Pain Unit, Department of Anesthesiology, Hospital Clinico Universitario de Valladolid, Universidad de Valladolid, Valladolid, Spain
| | - David Sanz
- Pain Unit, Department of Anesthesiology, Hospital General Universitario Gregorio Marañon, Universidad Complutense de Madrid, Madrid, Spain
| | - Anabel Jiménez
- Pain Unit, Department of Anesthesiology, Hospital Universitari Germans Trias i Pujol, Universitat Autónoma de Barcelona, Badalona, Spain
| | - Ana Parera
- Department of Anesthesiology, Pain Unit, Hospital Universitari de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Francisco de la Gala
- Pain Unit, Department of Anesthesiology, Hospital General Universitario Gregorio Marañon, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio Montes
- Department of Anesthesiology, Parc de Salut MAR, Institut Municipal d'Investigació Médica, Universitat Autónoma de Barcelona, Spain.
| |
Collapse
|
6
|
McElhany K, Aggarwal S, Wood G, Beauchamp J. Protective and harmful social and psychological factors associated with mood and anxiety disorders in perimenopausal women: A narrative review. Maturitas 2024; 190:108118. [PMID: 39317031 DOI: 10.1016/j.maturitas.2024.108118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/12/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Perimenopause is often called a window of vulnerability for the development or exacerbation of mood and anxiety disorders. Evidence points to social and psychological factors contributing to the onset of mood and anxiety disorders or the symptoms of depression and anxiety during perimenopause. Therefore, the purpose of this narrative review was to synthesize the findings of studies examining associations between social and psychological factors and the development of mood and anxiety disorders and the symptoms of depression and anxiety during perimenopause. PsychINFO, Ovid MEDLINE, and CINAHL were searched for studies (published between January 2014 and November 2023) assessing the social and psychological factors associated with perimenopausal mood and anxiety disorders and the symptoms of depression and anxiety. These factors were categorized as either protective or harmful. Study quality was assessed using STROBE guidelines. The search yielded 17 studies. Social support was identified as a social factor protective against perimenopausal depression and anxiety. Resiliency characteristics were reported to be protective psychological factors associated with fewer depressive symptoms. Mental health history, family history of major depressive disorder, trait anxiety and neuroticism, stressful life events, adverse childhood events, and chronic stress were categorized as harmful psychological factors associated with depression during perimenopause. Limited research has been conducted to understand factors associated with perimenopausal anxiety. The identification of these social and psychological factors associated with mood and anxiety disorders during perimenopause will help lead to earlier detection of women at risk and the development of multifaceted interventions.
Collapse
Affiliation(s)
- Kayla McElhany
- Cizik School of Nursing, The University of Texas Health Science Center at Houston, 6901 Bertner Avenue, Suite 580D, Houston, TX 77030-3901, United States of America.
| | - Seema Aggarwal
- Cizik School of Nursing, The University of Texas Health Science Center at Houston, 6901 Bertner Avenue, Suite 580D, Houston, TX 77030-3901, United States of America; Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, United States of America
| | - Geri Wood
- Cizik School of Nursing, The University of Texas Health Science Center at Houston, 6901 Bertner Avenue, Suite 580D, Houston, TX 77030-3901, United States of America
| | - Jennifer Beauchamp
- Cizik School of Nursing, The University of Texas Health Science Center at Houston, 6901 Bertner Avenue, Suite 580D, Houston, TX 77030-3901, United States of America; Institute for Stroke and Cerebrovascular Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, United States of America
| |
Collapse
|
7
|
Chen G, Liu Q, Chen J, Cai G, Tan C, Zhao Y, Hu Q, Yang X, Xu G, Lan Y. Long COVID patients' brain activation is suppressed during walking and severer symptoms lead to stronger suppression. Eur Arch Psychiatry Clin Neurosci 2024; 274:1887-1901. [PMID: 39212724 DOI: 10.1007/s00406-024-01870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
This research aims to study the factors contributing to Long COVID and its effects on motor and cognitive brain regions using population surveys and brain imaging. The goal is to provide new insights into the neurological effects of the illness and establish a basis for addressing neuropsychiatric symptoms associated with Long COVID. Study 1 used a cross-sectional design to collect data on demographic characteristics and factors related to Long COVID symptoms in 551 participants. In Study 2, subjects with Long COVID and SARS-CoV-2 uninfected individuals underwent fNIRS monitoring while performing various tasks. Study 1 found that gender, age, BMI, Days since the first SARS-CoV-2 infection, and Symptoms at first onset influenced Long COVID performance. Study 2 demonstrated that individuals in the SARS-CoV-2 uninfected group exhibited greater activation of cognitive function-related brain regions than those in the Long COVID group while performing a level walking task. Furthermore, individuals in the Long COVID group without functional impairment displayed higher activation of brain regions associated with motor function during a weight-bearing walking task than those with functional impairment. Among individuals with Long COVID, those with mild symptoms at onset exhibited increased activation of brain regions linked to motor and cognitive function relative to those with moderate symptoms at onset. Individuals with Long COVID exhibited decreased activation in brain regions associated with cognitive and motor function compared to SARS-CoV-2 uninfected individuals. Moreover, those with more severe initial symptoms or functional impairment displayed heightened inhibition in these brain regions.
Collapse
Affiliation(s)
- Gengbin Chen
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Postgraduate Research Institute, Guangzhou Sport University, Guangzhou, China
| | - Quan Liu
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Postgraduate Research Institute, Guangzhou Sport University, Guangzhou, China
| | - Jialin Chen
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Postgraduate Research Institute, Guangzhou Sport University, Guangzhou, China
| | - Guiyuan Cai
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chunqiu Tan
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Postgraduate Research Institute, Guangzhou Sport University, Guangzhou, China
| | - Yinchun Zhao
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Postgraduate Research Institute, Guangzhou Sport University, Guangzhou, China
| | - Qixing Hu
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Postgraduate Research Institute, Guangzhou Sport University, Guangzhou, China
| | - Xueru Yang
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Postgraduate Research Institute, Guangzhou Sport University, Guangzhou, China
| | - Guangqing Xu
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan Road II, Guangzhou, 510080, P. R. China.
| | - Yue Lan
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
- Guangzhou Key Laboratory of Aging Frailty and Neurorehabilitation, 1st Panfu Rd, Guangzhou,, Guangdong, China.
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Dai Q, Kyuragi Y, Zakia H, Oishi N, Yao L, Zhang Z, Wang L, Yang J, Murai T, Fujiwara H. Psychological resilience is positively correlated with Habenula volume. J Affect Disord 2024; 365:178-184. [PMID: 39151760 DOI: 10.1016/j.jad.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/02/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Psychological resilience is defined as the process and outcome of individuals' successful adaptation to challenging life experiences. The Habenula (Hb) is known to be involved in the stress response; however, the relationship between Hb volume and resilience in humans remains unclear. This study investigated the correlation among resilience, Hb volume, and depressive tendencies in adults. METHODS Hb volumes were assessed using deep learning techniques applied to 110 healthy participants. Resilience and depression were evaluated using the Connor-Davidson Resilience Scale and Beck Depression Inventory-II, respectively. We examined the relationship between Hb volume and resilience and assessed the mediating effects of resilience on the relationship between Hb volume and depressive tendencies. RESULTS Correlation analysis revealed a positive correlation between resilience and Hb volume (partial r = 0.176, p = 0.001), which was more pronounced in women (partial r = 0.353, p = 0.003). Hb volumes on the left and right sides exhibited significant lateralization (LI = 0.031, 95 % CI = [0.016, 0.046]). Despite Hb asymmetry, lateralization was not significantly associated with resilience. The mediation analysis shows significant indirect effect of resilience on the relationship between Hb volume and depressive tendencies (β = -0.093, 95%CI = [-0.189, -0.019]). CONCLUSION This study found that populations with lower resilience have smaller Hb volume. Previous research has shown that Hb volume decreased with the increasing severity of depression symptoms in patients. Our findings support this view and extend it to a population that has not been clinically diagnosed with depression. Additionally, we found that psychological resilience can be predicted by Hb volume and may serve as a mediating factor indirectly affecting depressive tendencies, even in healthy individuals. LIMITATIONS Due to its cross-sectional design, this study was unable to analyze dynamic changes in Hb volume during the process of resilience adaptation.
Collapse
Affiliation(s)
- Qi Dai
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | - Yusuke Kyuragi
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | - Halwa Zakia
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | - Naoya Oishi
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | - Lichang Yao
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | - Zhilin Zhang
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan; Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Luyao Wang
- School of Life Science, Shanghai University, Shanghai, China
| | - Jiajia Yang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Japan
| | - Toshiya Murai
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | - Hironobu Fujiwara
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan; Artificial Intelligence Ethics and Society Team, RIKEN Center for Advanced Intelligence Project, Saitama, Japan; The General Research Division, Osaka University Research Center on Ethical, Legal and Social Issues, Kyoto, Japan.
| |
Collapse
|
9
|
Wen Z, Wang H, Liang Q, Liu L, Zhang W, Zhang X. Mediating effect of social support and resilience between loneliness and depression in older adults: A systematic review and meta-analytic structural equation modeling. J Affect Disord 2024; 365:246-257. [PMID: 39147150 DOI: 10.1016/j.jad.2024.08.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Loneliness is a powerful stressor for depression in older adults, and resilience and social support may mediate this relationship, while the evidence is limited. Hence, our study aims to explore the mediating role of social support and resilience between loneliness and depression and to test possible moderators. METHODS We searched 12 databases without language and publish time restrictions and obtained the correlation coefficients. This review constructed two-stage meta-analytical structural equality modeling (MASEA) to test the mediating effect of social support and resilience. Additionally, use one-stage MASEA to test the moderator effect of women proportion, published year, and country of study. RESULTS This study included 53 studies and 40, 929 older adults. Loneliness directly affected depression (β = 0.28, 95 % CI: 0.20, 0.36). Social support (β = 0.06, 95 % CI: 0.02, 0.09) and resilience (β = 0.15, 95 % CI: 0.12, 0.18) mediated the relationship. The proportion of women in the sample was moderator (χ2(5) = 11.10, p = 0.05). When the proportion exceeded 60 %, the path coefficient of loneliness and social support (β = -0.45, SE = 0.055) was larger than that of the subgroup below 60 % (β = -0.32, SE = 0.041). LIMITATIONS It was indefinite whether the evidence would be supported in longitudinal designs. Influenced by the original research data, it is impossible to calculate the model parameters of gender discrepancy. CONCLUSIONS Health aging policy-makers adopting social support and resilience intervention will help strengthen the coping skills of older adults confronting loneliness and reduce the risk of depression.
Collapse
Affiliation(s)
- Zhifei Wen
- Department of Dermatological, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Wang
- Dean Office, Si Chuan Nursing Vocational College, Chengdu, China
| | - Qingfang Liang
- School of Nursing, Chengdu university of Traditional Chinese Medicine, Chengdu, China
| | - Linfeng Liu
- Dean Office, Si Chuan Nursing Vocational College, Chengdu, China
| | - Wen Zhang
- Dean Office, Si Chuan Nursing Vocational College, Chengdu, China
| | - Xiangeng Zhang
- Dean Office, Si Chuan Nursing Vocational College, Chengdu, China.
| |
Collapse
|
10
|
Limo L, Nicholson K, Stranges S, Gomaa NA. Age and sex differences in the association of dental visits with inadequate oral health and multimorbidity: Findings from the Canadian Longitudinal Study on Aging (CLSA). BMC Public Health 2024; 24:2968. [PMID: 39455960 PMCID: PMC11515213 DOI: 10.1186/s12889-024-20412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Dental attendance is important for the prevention, diagnosis, and treatment of oral diseases. In this study, we aimed to assess the extent of the association between dental visits, inadequate oral health, and multimorbidity (MM), and whether this association differs by age and sex. METHODS We conducted a cross-sectional analysis of the first follow-up wave (2018) of the Canadian Longitudinal Study on Aging (CLSA). Poor self-reported oral health (SROH), oral health problems, and edentulism were used to indicate inadequate oral health. MM was defined as having 2 or more chronic conditions out of cancer, cardiovascular diseases, chronic respiratory diseases, diabetes, and mental illnesses. Dental visiting was determined as the number of visits to a dental professional within the past 12 months. Covariates included socioeconomic, behavioural factors, and the availability of dental insurance. We constructed multivariable Poisson and logistic regression models with interactions terms and estimated the relative excess risk due to interaction prevalence ratio (RERIPR) to assess the effect measure modification of age and sex on the associations of interest. We conducted sensitivity analyses and estimated E-values for unmeasured confounding. RESULTS In this sample (n = 44,815), dental visiting was inversely associated with inadequate oral health and MM in adjusted models, reducing the odds/prevalence of poor SROH (OR 0.41, 95% CI 0.34, 0.51), oral health problems (PR 0.89, 95% CI 0.79, 0.94), edentulism (OR 0.10, 95% CI 0.06, 0.15), and MM (PR 0.86, 95% CI 0.79, 0.92). These associations were stronger in older age and females. CONCLUSION Dental visiting may contribute to better oral health and reduced chronic diseases in the middle-aged and older population. Our findings suggest the need for age and sex-specific targeted interventions to optimize oral and overall health.
Collapse
Affiliation(s)
- Luis Limo
- Divisions of Dental Public Health and Oral Medicine, Schulich School of Medicine & Dentistry, Western University, #0071-1511 Richmond St. Dental Sciences Building, London, ON, ON, N6A 3K7, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Kathryn Nicholson
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Saverio Stranges
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- Department of Family Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
- London Health Sciences Centre, London, ON, Canada
| | - Noha A Gomaa
- Divisions of Dental Public Health and Oral Medicine, Schulich School of Medicine & Dentistry, Western University, #0071-1511 Richmond St. Dental Sciences Building, London, ON, ON, N6A 3K7, Canada.
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.
- London Health Sciences Centre, London, ON, Canada.
| |
Collapse
|
11
|
Kosak LA, Harandian K, Bacon SL, Archambault I, Correale L, Pagani LS. Early Socio-Emotional Difficulty as a Childhood Barrier to the Expected Benefits of Active Play: Associated Risks for School Engagement in Adolescence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1353. [PMID: 39457326 PMCID: PMC11507831 DOI: 10.3390/ijerph21101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Active play allows children to develop social and cognitive skills, which could lead to higher school engagement. Little is known about the role of child socioemotional difficulty in these associations. This study aims to examine the interaction between active play and socioemotional difficulty in childhood and their prospective association with academic engagement in adolescence. The participants were 4537 children (51.1% boys) who were longitudinally followed, between ages 6 and 14 years, from the National Longitudinal Study on Children and Youth (NLSCY), Canada. Active play (weekly organized sport and unstructured physical activity outside of school hours) and child behavior (hyperactivity, anxiety, and relational difficulties) were reported by mothers for their children at age 6 years. Academic engagement was self-reported at age 14 years. Unstructured physical activity predicted lower subsequent school engagement for boys (β = -0.057, p < 0.05). Boys with high anxiety symptoms and high relational aggression who participated in more unstructured physical activity in childhood were subsequently less engaged in school (respectively, β = -0.066, p < 0.05 and β = -0.062, p < 0.05). Girls who partook in more organized sports showed lower school engagement in adolescence when they had high anxiety symptoms (β = -0.067, p < 0.05). Although past studies have highlighted the contribution of active play to school engagement, certain socioemotional difficulties could impede the child's ability to reap its benefits.
Collapse
Affiliation(s)
- Laurie-Anne Kosak
- School of Psycho-Education, University of Montreal, Montreal, QC H2V 2S9, Canada; (L.-A.K.); (K.H.); (I.A.)
- School Environment Research Group, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Kianoush Harandian
- School of Psycho-Education, University of Montreal, Montreal, QC H2V 2S9, Canada; (L.-A.K.); (K.H.); (I.A.)
- School Environment Research Group, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Simon L. Bacon
- Montreal Behavioural Medicine Centre (MBMC), Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’Île-de-Montréal (CIUSSS-NIM), Montreal, QC H4J 1C5, Canada;
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Isabelle Archambault
- School of Psycho-Education, University of Montreal, Montreal, QC H2V 2S9, Canada; (L.-A.K.); (K.H.); (I.A.)
- School Environment Research Group, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Luca Correale
- Sports Science Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Linda S. Pagani
- School of Psycho-Education, University of Montreal, Montreal, QC H2V 2S9, Canada; (L.-A.K.); (K.H.); (I.A.)
- School Environment Research Group, University of Montreal, Montreal, QC H3C 3J7, Canada
- Sainte-Justine’s Hospital Research Center, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
12
|
Qu G, Shu L, Liu H, Ma S, Han T, Zhang H, Huang C, Wang J, Yang L, Sun Y. Association Between Adverse Childhood Experiences and Academic Performance Among Children and Adolescents: A Global Meta-Analysis. TRAUMA, VIOLENCE & ABUSE 2024; 25:3332-3345. [PMID: 38651820 DOI: 10.1177/15248380241246758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
This study was conducted to quantify the association of adverse childhood experiences (ACEs) and the academic performance of children and adolescents. The literature was systematically searched in six electronic databases, and a meta-analysis was conducted. Twenty studies with a total of 1,196,631 children and adolescents from five countries were included. Meta-analysis showed that ACE score was positively associated with poor academic achievement, grade repetition, and special education support. Compared with children and adolescents without any ACE, those with one or more ACE had a significantly higher risk of poor academic achievement (pooled odds ratio [OR]: 1.45, 95% confidence interval [CI] [1.13, 1.85], I2 = 82.6%) and grade repetition (pooled OR: 1.36, 95% CI [1.29, 1.43], I2 = 71.0%). Moreover, all types of ACEs were positively associated with poor academic achievement and grade repetition. In addition, there was a significant dose-response relationship between the ACE score and the risk of poor academic achievement. This study supported that ACE had a significant impact on the academic performance of children and adolescents. Based on these findings, we recommend that early screening of ACEs for children and adolescent is critical and appropriate support and prevention in education should be developed for those with ACEs. Further studies are needed to further explore the long-term effect of ACEs on education and its gender differences.
Collapse
Affiliation(s)
| | - Liqin Shu
- Anhui Province Maternity and Child Health Hospital (Affiliated Maternity and Child Health Hospital of Anhui Medical University), Hefei, China
| | | | - Shaodi Ma
- Anhui Medical University, Hefei, China
| | | | | | - Christy Huang
- Touro University Nevada College of Osteopathic Medicine, Henderson, USA
| | - Jun Wang
- Anhui Medical University, Hefei, China
| | | | | |
Collapse
|
13
|
Muir J, Iyer ES, Tse YC, Sorensen J, Wu S, Eid RS, Cvetkovska V, Wassef K, Gostlin S, Vitaro P, Spencer NJ, Bagot RC. Sex-biased neural encoding of threat discrimination in nucleus accumbens afferents drives suppression of reward behavior. Nat Neurosci 2024; 27:1966-1976. [PMID: 39237654 DOI: 10.1038/s41593-024-01748-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
Learning to predict threat is essential, but equally important-yet often overlooked-is learning about the absence of threat. Here, by recording neural activity in two nucleus accumbens (NAc) glutamatergic afferents during aversive and neutral cues, we reveal sex-biased encoding of threat cue discrimination. In male mice, NAc afferents from the ventral hippocampus are preferentially activated by threat cues. In female mice, these ventral hippocampus-NAc projections are activated by both threat and nonthreat cues, whereas NAc afferents from medial prefrontal cortex are more strongly recruited by footshock and reliably discriminate threat from nonthreat. Chemogenetic pathway-specific inhibition identifies a double dissociation between ventral hippocampus-NAc and medial prefrontal cortex-NAc projections in cue-mediated suppression of reward-motivated behavior in male and female mice, despite similar synaptic connectivity. We suggest that these sex biases may reflect sex differences in behavioral strategies that may have relevance for understanding sex differences in risk of psychiatric disorders.
Collapse
Affiliation(s)
- Jessie Muir
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
| | - Eshaan S Iyer
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
| | - Yiu-Chung Tse
- Department of Psychology, McGill University, Montréal, Quebec, Canada
| | - Julian Sorensen
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Serena Wu
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
| | - Rand S Eid
- Department of Psychology, McGill University, Montréal, Quebec, Canada
| | | | - Karen Wassef
- Department of Psychology, McGill University, Montréal, Quebec, Canada
| | - Sarah Gostlin
- Department of Psychology, McGill University, Montréal, Quebec, Canada
| | - Peter Vitaro
- Department of Psychology, McGill University, Montréal, Quebec, Canada
| | - Nick J Spencer
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Rosemary C Bagot
- Department of Psychology, McGill University, Montréal, Quebec, Canada.
- Ludmer Centre for Neuroinformatics and Mental Health, Montréal, Quebec, Canada.
| |
Collapse
|
14
|
Zhang A, Zhou L, Meng Y, Ji Q, Ye M, Liu Q, Tan W, Zheng Y, Hu Z, Liu M, Xu X, Karlsson IK, Hägg S, Zhan Y. Association between psychological resilience and all-cause mortality in the Health and Retirement Study. BMJ MENTAL HEALTH 2024; 27:e301064. [PMID: 39227169 PMCID: PMC11409260 DOI: 10.1136/bmjment-2024-301064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Psychological resilience refers to an individual's ability to cope with and adapt to challenging life circumstances and events. OBJECTIVE This study aims to explore the association between psychological resilience and all-cause mortality in a national cohort of US older adults by a cross-sectional study. METHODS The Health and Retirement Study (2006-2008) included 10 569 participants aged ≥50. Mortality outcomes were determined using records up to May 2021. Multivariable Cox proportional hazards models were used to analyse the associations between psychological resilience and all-cause mortality. Restricted cubic splines were applied to examine the association between psychological resilience and mortality risk. FINDINGS During the follow-up period, 3489 all-cause deaths were recorded. The analysis revealed an almost linear association between psychological resilience and mortality risk. Higher levels of psychological resilience were associated with a reduced risk of all-cause mortality in models adjusting for attained age, sex, race and body mass index (HR=0.750 per 1 SD increase in psychological resilience; 95% CI 0.726, 0.775). This association remained statistically significant after further adjustment for self-reported diabetes, heart disease, stroke, cancer and hypertension (HR=0.786; 95% CI 0.760, 0.813). The relationship persisted even after accounting for smoking and other health-related behaviours (HR=0.813; 95% CI 0.802, 0.860). CONCLUSIONS This cohort study highlights the association between psychological resilience and all-cause mortality in older adults in the USA. CLINICAL IMPLICATIONS Psychological resilience emerges as a protective factor against mortality, emphasising its importance in maintaining health and well-being.
Collapse
Affiliation(s)
- Aijie Zhang
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Liqiong Zhou
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yaxian Meng
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qianqian Ji
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Meijie Ye
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qi Liu
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Weiri Tan
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yeqi Zheng
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhao Hu
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Miao Liu
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaowei Xu
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ida K Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Yiqiang Zhan
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
15
|
Karakose S, Luchetti M, Stephan Y, Sutin AR, Terracciano A. Life Events and Incident Dementia: A Prospective Study of 493,787 Individuals Over 16 Years. J Gerontol B Psychol Sci Soc Sci 2024; 79:gbae114. [PMID: 38943474 PMCID: PMC11304962 DOI: 10.1093/geronb/gbae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Indexed: 07/01/2024] Open
Abstract
OBJECTIVES Life events can be stressful and have a detrimental impact on health, but evidence is inconclusive regarding life events and dementia risk. The present study tests whether life events are associated with incident dementia, whether experiencing multiple events has cumulative effects, and whether the associations vary across age, sex, race/ethnicity, socioeconomic status, and genetic vulnerability. METHODS UK Biobank participants (N = 493,787) reported on 6 life events that occurred within the past 2 years: serious illness, injury, assault to yourself or close relative, death of a spouse/partner or close relative, marital separation/divorce, and financial problems. Incident all-cause dementia was ascertained through health records from the UK National Health Service over a 16-year follow-up. RESULTS Serious illness, injury, or assault to yourself, marital separation/divorce, and financial difficulties were associated with a higher risk of dementia; serious illness, injury, or assault of a close relative was associated with a lower risk of dementia. When combined, experiencing 3-4 events was associated with a more than 2-fold increase in dementia risk. The association for marital separation/divorce was stronger within the first 5 years of follow-up (consistent with reverse causality). Death of a spouse/partner or close relative was mostly unrelated to dementia risk. With few exceptions, the associations were similar across age, sex, race/ethnicity, socioeconomic status, and apolipoprotein E e4 status groups. DISCUSSION Severe illness, injury, or personal assault, marital separation or divorce, and financial hardships may raise risk of dementia, particularly when these events occur together.
Collapse
Affiliation(s)
- Selin Karakose
- Department of Geriatrics, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Martina Luchetti
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, Florida, USA
| | | | - Angelina R Sutin
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Antonio Terracciano
- Department of Geriatrics, Florida State University College of Medicine, Tallahassee, Florida, USA
| |
Collapse
|
16
|
Uccella L, Mascherona I, Semini S, Uccella S. Exploring resilience among hospital workers: a Bayesian approach. Front Public Health 2024; 12:1403721. [PMID: 39267645 PMCID: PMC11390436 DOI: 10.3389/fpubh.2024.1403721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Background and importance Healthcare professionals face significant workloads, as their roles are among the most demanding and stressful. Resilience serves as a crucial factor in helping them cope with the challenges encountered in their work environment and effectively manage stress. Assessing the level of resilience among healthcare workers and identifying potential variations across different groups is essential for effective public health management, preventing burnout, and ultimately enhancing patient care. Objective To assess the resilience of various categories of workers operating within a tertiary care multisite hospital and understanding if there are any differences in resilience, based on their characteristics, the type of department they work in, and personality traits. Design setting and participants This was a cross-sectional study conducted in January 2024 at EOC, a multi-site tertiary care hospital located in Southern Switzerland. 1,197 hospital workers answered an online survey which included: (1) an ad hoc questionnaire on personal and job characteristics, well-being-related activities, satisfaction level regarding communication, collaboration, support, and training opportunities in the workplace, (2) the Connor-Davidson Resilience Scale 10-Item on resilience, and (3) the Big Five Personality Inventory 10-item on personality traits. Outcome measures and analysis Proportion of resilient and highly resilient individuals within the various categories of workers were analyzed with Bayesian approach and Bayesian robust regression. Main results Being part of the hospitality staff, working as a doctor, and having a male sex were associated to the highest scores of resilience. Surgery and emergency departments had the highest proportion of highly resilient individuals. Male sex, older age, seniority, higher hierarchical rank, engagement in physical activities, relaxation or mindfulness practices, religiosity, perception of good collaboration, communication, support, and physical activity correlated with higher resilience skills. Conclusion This cross-sectional study found that physicians and hospitality staff within our multi-site Swiss hospital are more resilient compared to other categories of hospital workers, and among departments, those working in surgery and Emergency Medicine. Enhancing our comprehension of resilience is crucial for more precise management of healthcare systems and the development of employment policies aimed at sustaining the capacity of healthcare systems to serve patients effectively, while also mitigating shortages of healthcare professionals.
Collapse
Affiliation(s)
- Laura Uccella
- Department of Emergency, EOC, Ospedale Regionale di Lugano, Bellinzona, Switzerland
| | - Ilenia Mascherona
- Department of Emergency, EOC, Ospedale Regionale di Lugano, Bellinzona, Switzerland
| | - Sebastiano Semini
- Department of Emergency, EOC, Ospedale Regionale di Lugano, Bellinzona, Switzerland
| | - Sara Uccella
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Child Neuropsychiatry Unit, IRCCS Giannina Gaslini, Genoa, Italy
| |
Collapse
|
17
|
Navarrete J, Schneider KN, Smith BM, Goodwin NL, Zhang YY, Salazar AS, Gonzalez YE, Anumolu P, Gross E, Tsai VS, Heshmati M, Golden SA. Individual Differences in Volitional Social Self-Administration and Motivation in Male and Female Mice Following Social Stress. Biol Psychiatry 2024; 96:309-321. [PMID: 38244753 PMCID: PMC11255129 DOI: 10.1016/j.biopsych.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/18/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND A key challenge in developing treatments for neuropsychiatric illness is the disconnect between preclinical models and the complexity of human social behavior. We integrate voluntary social self-administration into a rodent model of social stress as a platform for the identification of fundamental brain and behavior mechanisms underlying stress-induced individual differences in social motivation. METHODS Here, we introduced an operant social stress procedure in male and female mice composed of 3 phases: 1) social self-administration training, 2) social stress exposure concurrent with reinforced self-administration testing, and 3) poststress operant testing under nonreinforced and reinforced conditions. We used social-defeat and witness-defeat stress in male and female mice. RESULTS Social defeat attenuated social reward seeking in males but not females, whereas witness defeat had no effect in males but promoted seeking behavior in females. We resolved social stress-induced changes to social motivation by aggregating z-scored operant metrics into a cumulative social index score to describe the spectrum of individual differences exhibited during operant social stress. Clustering does not adequately describe the relative distributions of social motivation following stress and is better described as a nonbinary behavioral distribution defined by the social index score, capturing a dynamic range of stress-related alterations in social motivation inclusive of sex as a biological variable. CONCLUSIONS We demonstrated that operant social stress can detect stable individual differences in stress-induced changes to social motivation. The inclusion of volitional behavior in social procedures may enhance the understanding of behavioral adaptations that promote stress resiliency and their mechanisms under more naturalistic conditions.
Collapse
Affiliation(s)
- Jovana Navarrete
- Department of Biological Structure, University of Washington, Seattle, Washington; Graduate Program in Neuroscience, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington
| | - Kevin N Schneider
- Department of Biological Structure, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington
| | - Briana M Smith
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Nastacia L Goodwin
- Department of Biological Structure, University of Washington, Seattle, Washington; Graduate Program in Neuroscience, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington
| | - Yizhe Y Zhang
- Department of Biological Structure, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington
| | - Axelle S Salazar
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Yahir E Gonzalez
- Department of Biological Structure, University of Washington, Seattle, Washington; Undergraduate Neuroscience Program, University of Washington, Seattle, Washington
| | - Pranav Anumolu
- Department of Biological Structure, University of Washington, Seattle, Washington; Undergraduate Neuroscience Program, University of Washington, Seattle, Washington
| | - Ethan Gross
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Valerie S Tsai
- Department of Biological Structure, University of Washington, Seattle, Washington; Undergraduate Neuroscience Program, University of Washington, Seattle, Washington
| | - Mitra Heshmati
- Department of Biological Structure, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Sam A Golden
- Department of Biological Structure, University of Washington, Seattle, Washington; Graduate Program in Neuroscience, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington.
| |
Collapse
|
18
|
Ala S, Ramos-Campos F, Relva IC. Symptoms of Post-Traumatic Stress and Mental Health in a Sample of University Students: The Mediating Role of Resilience and Psychological Well-Being. Eur J Investig Health Psychol Educ 2024; 14:2262-2281. [PMID: 39194945 DOI: 10.3390/ejihpe14080151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
The COVID-19 pandemic has been one of the most stressful events in recent times across the world. The long-term effect of these experiences raises several concerns, including the development of post-traumatic stress symptomatology. However, little is known about the psychological processes that mediate this association. The aim of this study was to explore the association of emotional exhaustion and anxiety in post-traumatic stress symptomatology, and the mediating role of resilience and psychological well-being in university students. A total of 526 university students of both sexes participated in this study, and they were aged between 17 and 62 years old. Symptoms of anxiety and emotional exhaustion were significantly higher in females, in contrast, males showed on average more resilience and psychological well-being. Additionally, participants with COVID-19 infection had higher levels of emotional exhaustion, anxiety, and PTSD. The results indicated that the variables were correlated with each other (p < 0.001). A conceptual model was confirmed that describes anxiety and emotional exhaustion as predictors, post-traumatic stress symptomatology as an outcome variable, and resilience and psychological well-being as mediators. Resilience and psychological well-being can be important protective factors for adaptive responses in stressful situations. The findings obtained in this study will provide a theoretical basis for designing targeted interventions to improve psychological health, whether for crisis intervention, the process of adapting to higher education, or for recovery plans from psychological trauma.
Collapse
Affiliation(s)
- Sílvia Ala
- Department of Social Sciences, Life and Public Health Polytechnic Institute of Bragança, School of Health, 5300-121 Bragança, Portugal
- Research Group on Neuroscience and Psychiatric Illnesses in Instituto de Investigation Sanitaria Galicia Sur, 36213 Vigo, Spain
- Department of Personality, Assessment and Psychological Treatments, Faculty of Psychology, University of Salamanca, 37005 Salamanca, Spain
| | - Francisco Ramos-Campos
- Department of Personality, Assessment and Psychological Treatments, Faculty of Psychology, University of Salamanca, 37005 Salamanca, Spain
| | - Inês Carvalho Relva
- Department of Education and Psychology, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Centre for Research and Intervention in Education (CIIE), University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
19
|
Cattaneo A, Begni V, Zonca V, Riva MA. Early life adversities, psychopathologies and novel pharmacological strategies. Pharmacol Ther 2024; 260:108686. [PMID: 38969307 DOI: 10.1016/j.pharmthera.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Exposure to adversities during early life stages (early life adversities - ELA), ranging from pregnancy to adolescence, represents a major risk factor for the vulnerability to mental disorders. Hence, it is important to understand the molecular and functional underpinning of such relationship, in order to develop strategies aimed at reducing the psychopathologic burden associated with ELA, which may eventually lead to a significant improvement in clinical practice. In this review, we will initially recapitulate clinical and preclinical evidence supporting the link between ELA and psychopathology and we will primarily discuss the main biological mechanisms that have been described as potential mediators of the effects of ELA on the psychopathologic risk, including the role for genetic factors as well as sex differences. The knowledge emerging from these studies may be instrumental for the development of novel therapeutic strategies aimed not only at correcting the deficits that emerge from ELA exposure, but also in preventing the manifestation of a full-blown psychopathologic condition. With this respect, we will specifically focus on adolescence as a key time frame for disease onset as well as for early therapeutic intervention. We believe that incorporating clinical and preclinical research data in the context of early life adversities can be instrumental to elucidate the mechanisms contributing to the risk for psychopathology or that may promote resilience. This will ultimately allow the identification of 'at risk' individuals who may benefit from specific forms of interventions that, by interfering with disease trajectories, could result in more benign clinical outcomes.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Valentina Zonca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
20
|
Conrad CD, Peay DN, Acuña AM, Whittaker K, Donnay ME. Corticosterone disrupts spatial working memory during retention testing when highly taxed, which positively correlates with depressive-like behavior in middle-aged, ovariectomized female rats. Horm Behav 2024; 164:105600. [PMID: 39003890 PMCID: PMC11330725 DOI: 10.1016/j.yhbeh.2024.105600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Major Depressive Disorder affects 8.4 % of the U.S. population, particularly women during perimenopause. This study implemented a chronic corticosterone manipulation (CORT, a major rodent stress hormone) using middle-aged, ovariectomized female rats to investigate depressive-like behavior, anxiety-like symptoms, and cognitive ability. CORT (400 μg/ml, in drinking water) was administered for four weeks before behavioral testing began and continued throughout all behavioral assessments. Compared to vehicle-treated rats, CORT significantly intensified depressive-like behaviors: CORT decreased sucrose preference, enhanced immobility on the forced swim test, and decreased sociability on a choice task between a novel conspecific female rat and an inanimate object. Moreover, CORT enhanced anxiety-like behavior on a marble bury task by reducing time investigating tabasco-topped marbles. No effects were observed on novelty suppressed feeding or the elevated plus maze. For spatial working memory using an 8-arm radial arm maze, CORT did not alter acquisition but disrupted performance during retention. CORT enhanced the errors committed during the highest working memory load following a delay and during the last trial requiring the most items to remember; this cognitive metric positively correlated with a composite depressive-like score to reveal that as depressive-like symptoms increased, cognitive performance worsened. This protocol allowed for the inclusion of multiple behavioral assessments without stopping the CORT treatment needed to produce a MDD phenotype and to assess a battery of behaviors. Moreover, that when middle-age was targeted, chronic CORT produced a depressive-like phenotype in ovariectomized females, who also comorbidly expressed aspects of anxiety and cognitive dysfunction.
Collapse
Affiliation(s)
- Cheryl D Conrad
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States.
| | - Dylan N Peay
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| | - Amanda M Acuña
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| | - Kennedy Whittaker
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| | - Megan E Donnay
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| |
Collapse
|
21
|
Ortiz-Valladares M, Peregrino-Ramírez C, Pedraza-Medina R, Guzmán-Muñiz J. Differential effects of perigestational consumption of sucrose-sweetened beverages on anxiety and depression-related behaviors in adult offspring: Sex disparity in a mouse model. Int J Dev Neurosci 2024; 84:434-445. [PMID: 38813650 DOI: 10.1002/jdn.10347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
Consumption of sucrose-sweetened drinks (SSDs) during pregnancy and breastfeeding can lead to various health and metabolism issues, but the potential impact on neurodevelopment and long-term effects remains unclear. This study aims to examine how maternal consumption of SSDs during gestation and lactation influences anxiety and depression-related behavior in adult offspring. Adult female CD-1 mice were randomly assigned to a control group (CG) or a sucrose group (SG) 2 weeks before gestation. The SG had 2 h of access to an SSD (15% w/w, 0.6 kcal/ml) for 2 weeks before mating, during pregnancy, and throughout lactation, totaling 8 weeks. Adult offspring were then evaluated for depressive-related behaviors and anxiety-related behaviors. Our findings reveal that perigestational consumption of SSDs does not lead to offspring presenting behaviors related to depression, but it does increase swimming behavior. However, maternal consumption of SSDs could impact the fighting response due to a diminished motivational component. In contrast, perigestational consumption of SSDs has apparent effects on anxiety-related behavior. Furthermore, female offspring appeared to be particularly vulnerable, exhibiting a higher anxiety index compared with controls. These findings indicate that females could be more vulnerable to the effects of maternal consumption of SSDs, being more susceptible to the presence of anxiety-related behaviors.
Collapse
Affiliation(s)
| | | | - Ricardo Pedraza-Medina
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Mexico
- Medical Science Postgraduate Program, School of Medicine, University of Colima, Colima, Mexico
| | - Jorge Guzmán-Muñiz
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Mexico
| |
Collapse
|
22
|
Brissos S, Balanzá-Martínez V. Long-acting antipsychotic treatments: focus on women with schizophrenia. Ther Adv Psychopharmacol 2024; 14:20451253241263715. [PMID: 39091697 PMCID: PMC11292690 DOI: 10.1177/20451253241263715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 06/05/2024] [Indexed: 08/04/2024] Open
Abstract
Effective management of schizophrenia (SZ) requires long-term treatment with antipsychotics (APs) to prevent clinical relapse, attain remission and improve patients' personal and social functioning, and quality of life. Although APs remain the cornerstone treatment for patients with SZ, despite their potential benefits, long-acting injectable APs (LAI-APs) remain underused, most notably in women with SZ. The efficacy and tolerability of APs differ significantly between men and women, and some of these differences are more noticeable depending on the patient's age and the stage of the disorder. Although sex differences may influence treatment outcomes in SZ, their pertinence has been insufficiently addressed, especially regarding the use of LAI-APs. Some biological and social experiences, such as pregnancy, lactation, contraception and menopause, are specific to women, but these remain under-researched issues. Implications of this disorder in parenting are also of special pertinence regarding women; therefore, taking sex differences into account when treating SZ patients is now recommended, and improving personalized approaches has been proposed as a priority in the management of psychosis. In this narrative, critical review, we address some aspects specific to sex and their implications for the clinical management of women with SZ, with a special focus on the potential role of LAI-AP treatments.
Collapse
Affiliation(s)
- Sofia Brissos
- Centro Hospitalar Psiquiátrico de Lisboa, Av. Brasil 53, Lisbon 1700, Portugal
| | - Vicent Balanzá-Martínez
- Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, CIBERSAM, INCLIVA, University of Valencia, Valencia, Spain
| |
Collapse
|
23
|
Forys BJ, Winstanley CA, Kingstone A, Todd RM. Short-Term Memory Capacity Predicts Willingness to Expend Cognitive Effort for Reward. eNeuro 2024; 11:ENEURO.0068-24.2024. [PMID: 38866500 PMCID: PMC11218033 DOI: 10.1523/eneuro.0068-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
We must often decide whether the effort required for a task is worth the reward. Past rodent work suggests that willingness to deploy cognitive effort can be driven by individual differences in perceived reward value, depression, or chronic stress. However, many factors driving cognitive effort deployment-such as short-term memory ability-cannot easily be captured in rodents. Furthermore, we do not fully understand how individual differences in short-term memory ability, depression, chronic stress, and reward anticipation impact cognitive effort deployment for reward. Here, we examined whether these factors predict cognitive effort deployment for higher reward in an online visual short-term memory task. Undergraduate participants were grouped into high and low effort groups (n HighEffort = 348, n LowEffort = 81; n Female = 332, n Male = 92, M Age = 20.37, Range Age = 16-42) based on decisions in this task. After completing a monetary incentive task to measure reward anticipation, participants completed short-term memory task trials where they could choose to encode either fewer (low effort/reward) or more (high effort/reward) squares before reporting whether or not the color of a target square matched the square previously in that location. We found that only greater short-term memory ability predicted whether participants chose a much higher proportion of high versus low effort trials. Drift diffusion modeling showed that high effort group participants were more biased than low effort group participants toward selecting high effort trials. Our findings highlight the role of individual differences in cognitive effort ability in explaining cognitive effort deployment choices.
Collapse
Affiliation(s)
- Brandon J Forys
- Department of Psychology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Catharine A Winstanley
- Department of Psychology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Alan Kingstone
- Department of Psychology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Rebecca M Todd
- Department of Psychology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
24
|
Schwandt ML, Cullins E, Ramchandani VA. The role of resilience in the relationship between stress and alcohol. Neurobiol Stress 2024; 31:100644. [PMID: 38827175 PMCID: PMC11140813 DOI: 10.1016/j.ynstr.2024.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/12/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024] Open
Abstract
Stress plays a well-documented role in alcohol consumption and the risk for developing alcohol use disorder. The concept of resilience - coping with and successfully adapting to stressful life experiences - has received increasing attention in the field of addiction research in recent decades, and there has been an accumulation of evidence for resilience as a protective factor against problematic alcohol consumption, risk for alcohol use disorder, disorder severity, and relapse. The conceptual and methodological approaches used in the generation of this evidence vary considerably across investigations, however. In light of this, we carried out this review in order to provide a more thorough understanding of the meaning and scope of resilience, what factors contribute to resilience, how it is measured, and how it relates to alcohol-associated phenotypes. Implications for treatment through the use of resilience-building interventions are likewise discussed, as well as implications for future research on the role of resilience in the etiology and clinical outcomes of alcohol use disorder.
Collapse
Affiliation(s)
- Melanie L. Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Eva Cullins
- Human Psychopharmacology Laboratory, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Vijay A. Ramchandani
- Human Psychopharmacology Laboratory, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| |
Collapse
|
25
|
Minshall BL, Skipper RA, Riddle CA, Wasylyshyn CF, Claflin DI, Quinn JJ. Sex differences in acute early life stress-enhanced fear learning in adult rats. Dev Psychobiol 2024; 66:e22511. [PMID: 38837722 DOI: 10.1002/dev.22511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Patients diagnosed with posttraumatic stress disorder (PTSD) present with a spectrum of debilitating anxiety symptoms resulting from exposure to trauma. Women are twice as likely to be diagnosed with anxiety and PTSD compared to men; however, the reason for this vulnerability remains unknown. We conducted four experiments where we first demonstrated a female vulnerability to stress-enhanced fear learning (SEFL) with a moderate, acute early life stress (aELS) exposure (4 footshocks in a single session), compared to a more intense aELS exposure (15 footshocks in a single session) where males and females demonstrated comparable SEFL. Next, we demonstrated that this female vulnerability does not result from differences in footshock reactivity or contextual fear conditioning during the aELS exposure. Finally, using gonadectomy or sham surgeries in adult male and female rats, we showed that circulating levels of gonadal steroid hormones at the time of adult fear conditioning do not explain the female vulnerability to SEFL. Additional research is needed to determine whether this vulnerability can be explained by organizational effects of gonadal steroid hormones or differences in sex chromosome gene expression. Doing so is critical for a better understanding of increased female vulnerability to certain psychiatric diseases.
Collapse
Affiliation(s)
- Brianna L Minshall
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, USA
| | - Rachel A Skipper
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, USA
| | - Collin A Riddle
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, USA
| | - Catherine F Wasylyshyn
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, USA
| | - Dragana I Claflin
- Department of Psychology, Wright State University, Dayton, Ohio, USA
| | - Jennifer J Quinn
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, USA
| |
Collapse
|
26
|
Dubol M, Stiernman L, Sundström-Poromaa I, Bixo M, Comasco E. Cortical morphology variations during the menstrual cycle in individuals with and without premenstrual dysphoric disorder. J Affect Disord 2024; 355:470-477. [PMID: 38552916 DOI: 10.1016/j.jad.2024.03.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/16/2024] [Accepted: 03/23/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Premenstrual dysphoric disorder (PMDD) is hypothesized to stem from maladaptive neural sensitivity to ovarian steroid hormone fluctuations. Recently, we found thinner cortices in individuals with PMDD, compared to healthy controls, during the symptomatic phase. Here, we aimed at investigating whether such differences illustrate state-like characteristics specific to the symptomatic phase, or trait-like features defining PMDD. METHODS Patients and controls were scanned using structural magnetic resonance imaging during the mid-follicular and late-luteal phase of the menstrual cycle. Group-by-phase interaction effects on cortical architecture metrics (cortical thickness, gyrification index, cortical complexity, and sulcal depth) were assessed using surface-based morphometry. RESULTS Independently of menstrual cycle phase, a main effect of diagnostic group on surface metrics was found, primarily illustrating thinner cortices (0.3 < Cohen's d > 1.1) and lower gyrification indices (0.4 < Cohen's d > 1.0) in patients compared to controls. Furthermore, menstrual cycle-specific effects were detected across all participants, depicting a decrease in cortical thickness (0.4 < Cohen's d > 1.7) and region-dependent changes in cortical folding metrics (0.4 < Cohen's d > 2.2) from the mid-follicular to the late luteal phase. LIMITATIONS Small effects (d = 0.3) require a larger sample size to be accurately characterized. CONCLUSIONS These findings provide initial evidence of trait-like cortical characteristics of the brain of individuals with premenstrual dysphoric disorder, together with indications of menstrual cycle-related variations in cortical architecture in patients and controls. Further investigations exploring whether these differences constitute stable vulnerability markers or develop over the years may help understand PMDD etiology.
Collapse
Affiliation(s)
- Manon Dubol
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Sweden
| | | | | | - Marie Bixo
- Department of Clinical Sciences, Umeå University, Sweden
| | - Erika Comasco
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Sweden.
| |
Collapse
|
27
|
Schwabe L. Memory Under Stress: From Adaptation to Disorder. Biol Psychiatry 2024:S0006-3223(24)01385-4. [PMID: 38880463 DOI: 10.1016/j.biopsych.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/02/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Stressful events are ubiquitous in everyday life. Exposure to these stressors initiates the temporally orchestrated release of a multitude of hormones, peptides, and neurotransmitters that target brain areas that have been critically implicated in learning and memory. This review summarizes recent insights on the profound impact of stress on 4 fundamental processes of memory: memory formation, memory contextualization, memory retrieval, and memory flexibility. Stress mediators instigate dynamic alterations in these processes, thereby facilitating efficient responding under stress and the creation of a decontextualized memory representation that can effectively aid coping with novel future threats. While they are generally adaptive, the same stress-related changes may contribute to the rigid behaviors, uncontrollable intrusions, and generalized fear responding seen in anxiety disorders and posttraumatic stress disorder. Drawing on recent discoveries in cognitive neuroscience and psychiatry, this review discusses how stress-induced alterations in memory processes can simultaneously foster adaptation to stressors and fuel psychopathology. The transition from adaptive to maladaptive changes in the impact of stress on memory hinges on the nuanced interplay of stressor characteristics and individual predispositions. Thus, taking individual differences in the cognitive response to stressors into account is essential for any successful treatment of stress-related mental disorders.
Collapse
Affiliation(s)
- Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, Universität Hamburg, Hamburg, Germany.
| |
Collapse
|
28
|
Davis LL, Hamner MB. Post-traumatic stress disorder: the role of the amygdala and potential therapeutic interventions - a review. Front Psychiatry 2024; 15:1356563. [PMID: 38903645 PMCID: PMC11187309 DOI: 10.3389/fpsyt.2024.1356563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Post-traumatic stress disorder (PTSD) is a psychiatric disorder triggered by exposure to a life-threatening or sexually violent traumatic event, and is characterized by symptoms involving intrusive re-experiencing, persistent avoidance of associated stimuli, emotional and cognitive disturbances, and hyperarousal for long periods after the trauma has occurred. These debilitating symptoms induce occupational and social impairments that contribute to a significant clinical burden for PTSD patients, and substantial socioeconomic costs, reaching approximately $20,000 dollars per individual with PTSD each year in the US. Despite increased translational research focus in the field of PTSD, the development of novel, effective pharmacotherapies for its treatment remains an important unmet clinical need. Observations In this review, we summarize the evidence implicating dysfunctional activity of the amygdala in the pathophysiology of PTSD. We identify the transient receptor potential canonical (TRPC) ion channels as promising drug targets given their distribution in the amygdala, and evidence from animal studies demonstrating their role in fear response modulation. We discuss the evidence-based pharmacotherapy and psychotherapy treatment approaches for PTSD. Discussion In view of the prevalence and economic burden associated with PTSD, further investigation is warranted into novel treatment approaches based on our knowledge of the involvement of brain circuitry and the role of the amygdala in PTSD, as well as the potential added value of combined pharmacotherapy and psychotherapy to better manage PTSD symptoms.
Collapse
Affiliation(s)
- Lori L. Davis
- Mental Health Service, Birmingham VA Health Care System, Birmingham, AL, United States
- Department of Psychiatry, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, United States
- Department of Psychiatry, University of Alabama College of Community Health Science, Tuscaloosa, AL, United States
| | - Mark B. Hamner
- Department of Veterans Affairs, Ralph H. Johnson VA Medical Center, Charleston, SC, United States
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
29
|
Cánepa ET, Berardino BG. Epigenetic mechanisms linking early-life adversities and mental health. Biochem J 2024; 481:615-642. [PMID: 38722301 DOI: 10.1042/bcj20230306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/15/2024]
Abstract
Early-life adversities, whether prenatal or postnatal exposure, have been linked to adverse mental health outcomes later in life increasing the risk of several psychiatric disorders. Research on its neurobiological consequences demonstrated an association between exposure to adversities and persistent alterations in the structure, function, and connectivity of the brain. Consistent evidence supports the idea that regulation of gene expression through epigenetic mechanisms are involved in embedding the impact of early-life experiences in the genome and mediate between social environments and later behavioral phenotypes. In addition, studies from rodent models and humans suggest that these experiences and the acquired risk factors can be transmitted through epigenetic mechanisms to offspring and the following generations potentially contributing to a cycle of disease or disease risk. However, one of the important aspects of epigenetic mechanisms, unlike genetic sequences that are fixed and unchangeable, is that although the epigenetic markings are long-lasting, they are nevertheless potentially reversible. In this review, we summarize our current understanding of the epigenetic mechanisms involved in the mental health consequences derived from early-life exposure to malnutrition, maltreatment and poverty, adversities with huge and pervasive impact on mental health. We also discuss the evidence about transgenerational epigenetic inheritance in mammals and experimental data suggesting that suitable social and pharmacological interventions could reverse adverse epigenetic modifications induced by early-life negative social experiences. In this regard, these studies must be accompanied by efforts to determine the causes that promote these adversities and that result in health inequity in the population.
Collapse
Affiliation(s)
- Eduardo T Cánepa
- Laboratorio de Neuroepigenética y Adversidades Tempranas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Bruno G Berardino
- Laboratorio de Neuroepigenética y Adversidades Tempranas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IQUIBICEN, CONICET, Buenos Aires, Argentina
| |
Collapse
|
30
|
Nievergelt CM, Maihofer AX, Atkinson EG, Chen CY, Choi KW, Coleman JRI, Daskalakis NP, Duncan LE, Polimanti R, Aaronson C, Amstadter AB, Andersen SB, Andreassen OA, Arbisi PA, Ashley-Koch AE, Austin SB, Avdibegoviç E, Babić D, Bacanu SA, Baker DG, Batzler A, Beckham JC, Belangero S, Benjet C, Bergner C, Bierer LM, Biernacka JM, Bierut LJ, Bisson JI, Boks MP, Bolger EA, Brandolino A, Breen G, Bressan RA, Bryant RA, Bustamante AC, Bybjerg-Grauholm J, Bækvad-Hansen M, Børglum AD, Børte S, Cahn L, Calabrese JR, Caldas-de-Almeida JM, Chatzinakos C, Cheema S, Clouston SAP, Colodro-Conde L, Coombes BJ, Cruz-Fuentes CS, Dale AM, Dalvie S, Davis LK, Deckert J, Delahanty DL, Dennis MF, Desarnaud F, DiPietro CP, Disner SG, Docherty AR, Domschke K, Dyb G, Kulenović AD, Edenberg HJ, Evans A, Fabbri C, Fani N, Farrer LA, Feder A, Feeny NC, Flory JD, Forbes D, Franz CE, Galea S, Garrett ME, Gelaye B, Gelernter J, Geuze E, Gillespie CF, Goleva SB, Gordon SD, Goçi A, Grasser LR, Guindalini C, Haas M, Hagenaars S, Hauser MA, Heath AC, Hemmings SMJ, Hesselbrock V, Hickie IB, Hogan K, Hougaard DM, Huang H, Huckins LM, Hveem K, Jakovljević M, Javanbakht A, Jenkins GD, Johnson J, Jones I, Jovanovic T, Karstoft KI, Kaufman ML, Kennedy JL, Kessler RC, Khan A, Kimbrel NA, King AP, Koen N, Kotov R, Kranzler HR, Krebs K, Kremen WS, Kuan PF, Lawford BR, Lebois LAM, Lehto K, Levey DF, Lewis C, Liberzon I, Linnstaedt SD, Logue MW, Lori A, Lu Y, Luft BJ, Lupton MK, Luykx JJ, Makotkine I, Maples-Keller JL, Marchese S, Marmar C, Martin NG, Martínez-Levy GA, McAloney K, McFarlane A, McLaughlin KA, McLean SA, Medland SE, Mehta D, Meyers J, Michopoulos V, Mikita EA, Milani L, Milberg W, Miller MW, Morey RA, Morris CP, Mors O, Mortensen PB, Mufford MS, Nelson EC, Nordentoft M, Norman SB, Nugent NR, O'Donnell M, Orcutt HK, Pan PM, Panizzon MS, Pathak GA, Peters ES, Peterson AL, Peverill M, Pietrzak RH, Polusny MA, Porjesz B, Powers A, Qin XJ, Ratanatharathorn A, Risbrough VB, Roberts AL, Rothbaum AO, Rothbaum BO, Roy-Byrne P, Ruggiero KJ, Rung A, Runz H, Rutten BPF, de Viteri SS, Salum GA, Sampson L, Sanchez SE, Santoro M, Seah C, Seedat S, Seng JS, Shabalin A, Sheerin CM, Silove D, Smith AK, Smoller JW, Sponheim SR, Stein DJ, Stensland S, Stevens JS, Sumner JA, Teicher MH, Thompson WK, Tiwari AK, Trapido E, Uddin M, Ursano RJ, Valdimarsdóttir U, Van Hooff M, Vermetten E, Vinkers CH, Voisey J, Wang Y, Wang Z, Waszczuk M, Weber H, Wendt FR, Werge T, Williams MA, Williamson DE, Winsvold BS, Winternitz S, Wolf C, Wolf EJ, Xia Y, Xiong Y, Yehuda R, Young KA, Young RM, Zai CC, Zai GC, Zervas M, Zhao H, Zoellner LA, Zwart JA, deRoon-Cassini T, van Rooij SJH, van den Heuvel LL, Stein MB, Ressler KJ, Koenen KC. Genome-wide association analyses identify 95 risk loci and provide insights into the neurobiology of post-traumatic stress disorder. Nat Genet 2024; 56:792-808. [PMID: 38637617 PMCID: PMC11396662 DOI: 10.1038/s41588-024-01707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 03/05/2024] [Indexed: 04/20/2024]
Abstract
Post-traumatic stress disorder (PTSD) genetics are characterized by lower discoverability than most other psychiatric disorders. The contribution to biological understanding from previous genetic studies has thus been limited. We performed a multi-ancestry meta-analysis of genome-wide association studies across 1,222,882 individuals of European ancestry (137,136 cases) and 58,051 admixed individuals with African and Native American ancestry (13,624 cases). We identified 95 genome-wide significant loci (80 new). Convergent multi-omic approaches identified 43 potential causal genes, broadly classified as neurotransmitter and ion channel synaptic modulators (for example, GRIA1, GRM8 and CACNA1E), developmental, axon guidance and transcription factors (for example, FOXP2, EFNA5 and DCC), synaptic structure and function genes (for example, PCLO, NCAM1 and PDE4B) and endocrine or immune regulators (for example, ESR1, TRAF3 and TANK). Additional top genes influence stress, immune, fear and threat-related processes, previously hypothesized to underlie PTSD neurobiology. These findings strengthen our understanding of neurobiological systems relevant to PTSD pathophysiology, while also opening new areas for investigation.
Collapse
Affiliation(s)
- Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA.
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA.
| | - Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - Elizabeth G Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Chia-Yen Chen
- Biogen Inc.,Translational Sciences, Cambridge, MA, USA
| | - Karmel W Choi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Jonathan R I Coleman
- King's College London, National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Nikolaos P Daskalakis
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Center of Excellence in Depression and Anxiety Disorders, Belmont, MA, USA
| | - Laramie E Duncan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Renato Polimanti
- VA Connecticut Healthcare Center, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Cindy Aaronson
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Ananda B Amstadter
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, USA
| | - Soren B Andersen
- The Danish Veteran Centre, Research and Knowledge Centre, Ringsted, Denmark
| | - Ole A Andreassen
- Oslo University Hospital, Division of Mental Health and Addiction, Oslo, Norway
- University of Oslo, Institute of Clinical Medicine, Oslo, Norway
| | - Paul A Arbisi
- Minneapolis VA Health Care System, Mental Health Service Line, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | | | - S Bryn Austin
- Boston Children's Hospital, Division of Adolescent and Young Adult Medicine, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Esmina Avdibegoviç
- Department of Psychiatry, University Clinical Center of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Dragan Babić
- Department of Psychiatry, University Clinical Center of Mostar, Mostar, Bosnia and Herzegovina
| | - Silviu-Alin Bacanu
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Dewleen G Baker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, USA
| | - Anthony Batzler
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jean C Beckham
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Research, Durham VA Health Care System, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, USA
| | - Sintia Belangero
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Psychiatry, Universidade Federal de São Paulo, Laboratory of Integrative Neuroscience, São Paulo, Brazil
| | - Corina Benjet
- Instituto Nacional de Psiquiatraía Ramón de la Fuente Muñiz, Center for Global Mental Health, Mexico City, Mexico
| | - Carisa Bergner
- Medical College of Wisconsin, Comprehensive Injury Center, Milwaukee, WI, USA
| | - Linda M Bierer
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Joanna M Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Jonathan I Bisson
- Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric Genetics and Genomics, Cardiff, UK
| | - Marco P Boks
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elizabeth A Bolger
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Amber Brandolino
- Department of Surgery, Division of Trauma & Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gerome Breen
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- King's College London, NIHR Maudsley BRC, London, UK
| | - Rodrigo Affonseca Bressan
- Department of Psychiatry, Universidade Federal de São Paulo, Laboratory of Integrative Neuroscience, São Paulo, Brazil
- Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Richard A Bryant
- University of New South Wales, School of Psychology, Sydney, New South Wales, Australia
| | - Angela C Bustamante
- Department of Internal Medicine, University of Michigan Medical School, Division of Pulmonary and Critical Care Medicine, Ann Arbor, MI, USA
| | - Jonas Bybjerg-Grauholm
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Marie Bækvad-Hansen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Aarhus University, Centre for Integrative Sequencing, iSEQ, Aarhus, Denmark
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
| | - Sigrid Børte
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, K. G. Jebsen Center for Genetic Epidemiology, Trondheim, Norway
- Oslo University Hospital, Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo, Norway
| | - Leah Cahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Joseph R Calabrese
- Case Western Reserve University, School of Medicine, Cleveland, OH, USA
- Department of Psychiatry, University Hospitals, Cleveland, OH, USA
| | | | - Chris Chatzinakos
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Division of Depression and Anxiety Disorders, Belmont, MA, USA
| | - Sheraz Cheema
- University of Toronto, CanPath National Coordinating Center, Toronto, Ontario, Canada
| | - Sean A P Clouston
- Stony Brook University, Family, Population, and Preventive Medicine, Stony Brook, NY, USA
- Stony Brook University, Public Health, Stony Brook, NY, USA
| | - Lucía Colodro-Conde
- QIMR Berghofer Medical Research Institute, Mental Health & Neuroscience Program, Brisbane, Queensland, Australia
| | - Brandon J Coombes
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Carlos S Cruz-Fuentes
- Department of Genetics, Instituto Nacional de Psiquiatraía Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Anders M Dale
- Department of Radiology, Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Shareefa Dalvie
- Department of Pathology, University of Cape Town, Division of Human Genetics, Cape Town, South Africa
| | - Lea K Davis
- Vanderbilt University Medical Center, Vanderbilt Genetics Institute, Nashville, TN, USA
| | - Jürgen Deckert
- University Hospital of Würzburg, Center of Mental Health, Psychiatry, Psychosomatics and Psychotherapy, Würzburg, Denmark
| | | | - Michelle F Dennis
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Research, Durham VA Health Care System, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, USA
| | - Frank Desarnaud
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Christopher P DiPietro
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- McLean Hospital, Division of Depression and Anxiety Disorders, Belmont, MA, USA
| | - Seth G Disner
- Minneapolis VA Health Care System, Research Service Line, Minneapolis, MN, USA
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Anna R Docherty
- Huntsman Mental Health Institute, Salt Lake City, UT, USA
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Katharina Domschke
- University of Freiburg, Faculty of Medicine, Centre for Basics in Neuromodulation, Freiburg, Denmark
- Department of Psychiatry and Psychotherapy, University of Freiburg, Faculty of Medicine, Freiburg, Denmark
| | - Grete Dyb
- University of Oslo, Institute of Clinical Medicine, Oslo, Norway
- Norwegian Centre for Violence and Traumatic Stress Studies, Oslo, Norway
| | - Alma Džubur Kulenović
- Department of Psychiatry, University Clinical Center of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Howard J Edenberg
- Indiana University School of Medicine, Biochemistry and Molecular Biology, Indianapolis, IN, USA
- Indiana University School of Medicine, Medical and Molecular Genetics, Indianapolis, IN, USA
| | - Alexandra Evans
- Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric Genetics and Genomics, Cardiff, UK
| | - Chiara Fabbri
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Adriana Feder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Norah C Feeny
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Janine D Flory
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - David Forbes
- Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - Carol E Franz
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Sandro Galea
- Boston University School of Public Health, Boston, MA, USA
| | - Melanie E Garrett
- Duke University, Duke Molecular Physiology Institute, Durham, NC, USA
| | - Bizu Gelaye
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joel Gelernter
- VA Connecticut Healthcare Center, Psychiatry Service, West Haven, CT, USA
- Department of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Elbert Geuze
- Netherlands Ministry of Defence, Brain Research and Innovation Centre, Utrecht, The Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Charles F Gillespie
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Slavina B Goleva
- Vanderbilt University Medical Center, Vanderbilt Genetics Institute, Nashville, TN, USA
- National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, USA
| | - Scott D Gordon
- QIMR Berghofer Medical Research Institute, Mental Health & Neuroscience Program, Brisbane, Queensland, Australia
| | - Aferdita Goçi
- Department of Psychiatry, University Clinical Centre of Kosovo, Prishtina, Kosovo
| | - Lana Ruvolo Grasser
- Wayne State University School of Medicine, Psychiatry and Behavioral Neurosciencess, Detroit, MI, USA
| | - Camila Guindalini
- Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, Queensland, Australia
| | - Magali Haas
- Cohen Veterans Bioscience, New York City, NY, USA
| | - Saskia Hagenaars
- King's College London, National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Michael A Hauser
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Andrew C Heath
- Department of Genetics, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- SAMRC Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Victor Hesselbrock
- University of Connecticut School of Medicine, Psychiatry, Farmington, CT, USA
| | - Ian B Hickie
- University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia
| | - Kelleigh Hogan
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - David Michael Hougaard
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Hailiang Huang
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Analytic and Translational Genetics Unit, Boston, MA, USA
| | - Laura M Huckins
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Kristian Hveem
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, K. G. Jebsen Center for Genetic Epidemiology, Trondheim, Norway
| | - Miro Jakovljević
- Department of Psychiatry, University Hospital Center of Zagreb, Zagreb, Croatia
| | - Arash Javanbakht
- Wayne State University School of Medicine, Psychiatry and Behavioral Neurosciencess, Detroit, MI, USA
| | - Gregory D Jenkins
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jessica Johnson
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Ian Jones
- Cardiff University, National Centre for Mental Health, Cardiff University Centre for Psychiatric Genetics and Genomics, Cardiff, UK
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Karen-Inge Karstoft
- The Danish Veteran Centre, Research and Knowledge Centre, Ringsted, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Milissa L Kaufman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - James L Kennedy
- Centre for Addiction and Mental Health, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Tanenbaum Centre for Pharmacogenetics, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Alaptagin Khan
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Nathan A Kimbrel
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, USA
- Durham VA Health Care System, Mental Health Service Line, Durham, NC, USA
| | - Anthony P King
- The Ohio State University, College of Medicine, Institute for Behavioral Medicine Research, Columbus, OH, USA
| | - Nastassja Koen
- University of Cape Town, Department of Psychiatry & Neuroscience Institute, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, South Africa
| | - Roman Kotov
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - Henry R Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kristi Krebs
- University of Tartu, Institute of Genomics, Estonian Genome Center, Tartu, Estonia
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Pei-Fen Kuan
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Bruce R Lawford
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Center of Excellence in Depression and Anxiety Disorders, Belmont, MA, USA
| | - Kelli Lehto
- University of Tartu, Institute of Genomics, Estonian Genome Center, Tartu, Estonia
| | - Daniel F Levey
- VA Connecticut Healthcare Center, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Catrin Lewis
- Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric Genetics and Genomics, Cardiff, UK
| | - Israel Liberzon
- Department of Psychiatry and Behavioral Sciences, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Sarah D Linnstaedt
- Department of Anesthesiology, UNC Institute for Trauma Recovery, Chapel Hill, NC, USA
| | - Mark W Logue
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Boston University School of Medicine, Psychiatry, Biomedical Genetics, Boston, MA, USA
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Yi Lu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Benjamin J Luft
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Michelle K Lupton
- QIMR Berghofer Medical Research Institute, Mental Health & Neuroscience Program, Brisbane, Queensland, Australia
| | - Jurjen J Luykx
- Department of Psychiatry, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Iouri Makotkine
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | | - Shelby Marchese
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Marmar
- New York University, Grossman School of Medicine, New York City, NY, USA
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Genetics, Brisbane, Queensland, Australia
| | - Gabriela A Martínez-Levy
- Department of Genetics, Instituto Nacional de Psiquiatraía Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Kerrie McAloney
- QIMR Berghofer Medical Research Institute, Mental Health & Neuroscience Program, Brisbane, Queensland, Australia
| | - Alexander McFarlane
- University of Adelaide, Discipline of Psychiatry, Adelaide, South Australia, Australia
| | | | - Samuel A McLean
- Department of Anesthesiology, UNC Institute for Trauma Recovery, Chapel Hill, NC, USA
- Department of Emergency Medicine, UNC Institute for Trauma Recovery, Chapel Hill, NC, USA
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Mental Health & Neuroscience Program, Brisbane, Queensland, Australia
| | - Divya Mehta
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
- Queensland University of Technology, Centre for Genomics and Personalised Health, Kelvin Grove, Queensland, Australia
| | - Jacquelyn Meyers
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Elizabeth A Mikita
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - Lili Milani
- University of Tartu, Institute of Genomics, Estonian Genome Center, Tartu, Estonia
| | | | - Mark W Miller
- Boston University School of Medicine, Psychiatry, Biomedical Genetics, Boston, MA, USA
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
| | - Rajendra A Morey
- Duke University School of Medicine, Duke Brain Imaging and Analysis Center, Durham, NC, USA
| | - Charles Phillip Morris
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Aarhus University Hospital-Psychiatry, Psychosis Research Unit, Aarhus, Denmark
| | - Preben Bo Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Aarhus University, Centre for Integrative Sequencing, iSEQ, Aarhus, Denmark
- Aarhus University, Centre for Integrated Register-Based Research, Aarhus, Denmark
- Aarhus University, National Centre for Register-Based Research, Aarhus, Denmark
| | - Mary S Mufford
- Department of Pathology, University of Cape Town, Division of Human Genetics, Cape Town, South Africa
| | - Elliot C Nelson
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- University of Copenhagen, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
| | - Sonya B Norman
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- National Center for Post Traumatic Stress Disorder, Executive Division, White River Junction, VT, USA
| | - Nicole R Nugent
- Department of Emergency Medicine, Alpert Brown Medical School, Providence, RI, USA
- Department of Pediatrics, Alpert Brown Medical School, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Brown Medical School, Providence, RI, USA
| | - Meaghan O'Donnell
- Department of Psychiatry, University of Melbourne, Phoenix Australia, Melbourne, Victoria, Australia
| | - Holly K Orcutt
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Pedro M Pan
- Universidade Federal de São Paulo, Psychiatry, São Paulo, Brazil
| | - Matthew S Panizzon
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Gita A Pathak
- VA Connecticut Healthcare Center, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Edward S Peters
- University of Nebraska Medical Center, College of Public Health, Omaha, NE, USA
| | - Alan L Peterson
- South Texas Veterans Health Care System, Research and Development Service, San Antonio, TX, USA
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Matthew Peverill
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Robert H Pietrzak
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, West Haven, CT, USA
| | - Melissa A Polusny
- Minneapolis VA Health Care System, Mental Health Service Line, Minneapolis, MN, USA
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Care Delivery and Outcomes Research (CCDOR), Minneapolis, MN, USA
| | - Bernice Porjesz
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Xue-Jun Qin
- Duke University, Duke Molecular Physiology Institute, Durham, NC, USA
| | - Andrew Ratanatharathorn
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Columbia University Mailmain School of Public Health, New York City, NY, USA
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - Andrea L Roberts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alex O Rothbaum
- Department of Psychological Sciences, Emory University, Atlanta, GA, USA
- Department of Research and Outcomes, Skyland Trail, Atlanta, GA, USA
| | - Barbara O Rothbaum
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Peter Roy-Byrne
- Department of Psychiatry, University of Washington, Seattle, WA, USA
| | - Kenneth J Ruggiero
- Department of Nursing, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Ariane Rung
- Department of Epidemiology, Louisiana State University Health Sciences Center, School of Public Health, New Orleans, LA, USA
| | - Heiko Runz
- Biogen Inc., Research & Development, Cambridge, MA, USA
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, Maastricht Universitair Medisch Centrum, School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | | | - Giovanni Abrahão Salum
- Child Mind Institute, New York City, NY, USA
- Instituto Nacional de Psiquiatria de Desenvolvimento, São Paulo, Brazil
| | - Laura Sampson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Sixto E Sanchez
- Department of Medicine, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Marcos Santoro
- Universidade Federal de São Paulo, Departamento de Bioquímica-Disciplina de Biologia Molecular, São Paulo, Brazil
| | - Carina Seah
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Stellenbosch University, SAMRC Extramural Genomics of Brain Disorders Research Unit, Cape Town, South Africa
| | - Julia S Seng
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Women's and Gender Studies, University of Michigan, Ann Arbor, MI, USA
- University of Michigan, Institute for Research on Women and Gender, Ann Arbor, MI, USA
- University of Michigan, School of Nursing, Ann Arbor, MI, USA
| | - Andrey Shabalin
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Christina M Sheerin
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, USA
| | - Derrick Silove
- Department of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Alicia K Smith
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Department of Gynecology and Obstetrics, Department of Psychiatry and Behavioral Sciences, Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Jordan W Smoller
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Mental Health Service Line, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Dan J Stein
- University of Cape Town, Department of Psychiatry & Neuroscience Institute, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, South Africa
| | - Synne Stensland
- Oslo University Hospital, Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo, Norway
- Norwegian Centre for Violence and Traumatic Stress Studies, Oslo, Norway
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Jennifer A Sumner
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Martin H Teicher
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Developmental Biopsychiatry Research Program, Belmont, MA, USA
| | - Wesley K Thompson
- Mental Health Centre Sct. Hans, Institute of Biological Psychiatry, Roskilde, Denmark
- University of California San Diego, Herbert Wertheim School of Public Health and Human Longevity Science, La Jolla, CA, USA
| | - Arun K Tiwari
- Centre for Addiction and Mental Health, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Tanenbaum Centre for Pharmacogenetics, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Edward Trapido
- Department of Epidemiology, Louisiana State University Health Sciences Center, School of Public Health, New Orleans, LA, USA
| | - Monica Uddin
- University of South Florida College of Public Health, Genomics Program, Tampa, FL, USA
| | - Robert J Ursano
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, USA
| | - Unnur Valdimarsdóttir
- Karolinska Institutet, Unit of Integrative Epidemiology, Institute of Environmental Medicine, Stockholm, Sweden
- University of Iceland, Faculty of Medicine, Center of Public Health Sciences, School of Health Sciences, Reykjavik, Iceland
| | - Miranda Van Hooff
- University of Adelaide, Adelaide Medical School, Adelaide, South Australia, Australia
| | - Eric Vermetten
- ARQ Nationaal Psychotrauma Centrum, Psychotrauma Research Expert Group, Diemen, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Department of Psychiatry, New York University School of Medicine, New York City, NY, USA
| | - Christiaan H Vinkers
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Joanne Voisey
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
- Queensland University of Technology, Centre for Genomics and Personalised Health, Kelvin Grove, Queensland, Australia
| | - Yunpeng Wang
- Department of Psychology, University of Oslo, Lifespan Changes in Brain and Cognition (LCBC), Oslo, Norway
| | - Zhewu Wang
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- Department of Mental Health, Ralph H Johnson VA Medical Center, Charleston, SC, USA
| | - Monika Waszczuk
- Department of Psychology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Heike Weber
- University Hospital of Würzburg, Center of Mental Health, Psychiatry, Psychosomatics and Psychotherapy, Würzburg, Denmark
| | - Frank R Wendt
- Department of Anthropology, University of Toronto, Dalla Lana School of Public Health, Toronto, Ontario, Canada
| | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Copenhagen University Hospital, Institute of Biological Psychiatry, Mental Health Services, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- University of Copenhagen, The Globe Institute, Lundbeck Foundation Center for Geogenetics, Copenhagen, Denmark
| | - Michelle A Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Douglas E Williamson
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Research, Durham VA Health Care System, Durham, NC, USA
| | - Bendik S Winsvold
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, K. G. Jebsen Center for Genetic Epidemiology, Trondheim, Norway
- Oslo University Hospital, Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Sherry Winternitz
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Christiane Wolf
- University Hospital of Würzburg, Center of Mental Health, Psychiatry, Psychosomatics and Psychotherapy, Würzburg, Denmark
| | - Erika J Wolf
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yan Xia
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Analytic and Translational Genetics Unit, Boston, MA, USA
| | - Ying Xiong
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Rachel Yehuda
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Mental Health, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Keith A Young
- Central Texas Veterans Health Care System, Research Service, Temple, TX, USA
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Ross McD Young
- Queensland University of Technology, School of Clinical Sciences, Kelvin Grove, Queensland, Australia
- University of the Sunshine Coast, The Chancellory, Sippy Downs, Queensland, Australia
| | - Clement C Zai
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Centre for Addiction and Mental Health, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Tanenbaum Centre for Pharmacogenetics, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario, Canada
| | - Gwyneth C Zai
- Centre for Addiction and Mental Health, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Tanenbaum Centre for Pharmacogenetics, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, General Adult Psychiatry and Health Systems Division, Toronto, Ontario, Canada
| | - Mark Zervas
- Cohen Veterans Bioscience, New York City, NY, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale University, New Haven, CT, USA
| | - Lori A Zoellner
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - John-Anker Zwart
- University of Oslo, Institute of Clinical Medicine, Oslo, Norway
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, K. G. Jebsen Center for Genetic Epidemiology, Trondheim, Norway
- Oslo University Hospital, Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo, Norway
| | - Terri deRoon-Cassini
- Department of Surgery, Division of Trauma & Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Leigh L van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- SAMRC Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, USA
- University of California San Diego, School of Public Health, La Jolla, CA, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, USA
| |
Collapse
|
31
|
Castle ME, Flanigan ME. The role of brain serotonin signaling in excessive alcohol consumption and withdrawal: A call for more research in females. Neurobiol Stress 2024; 30:100618. [PMID: 38433994 PMCID: PMC10907856 DOI: 10.1016/j.ynstr.2024.100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
Alcohol Use Disorder (AUD) is a leading cause of death and disability worldwide, but current treatments are insufficient in fully addressing the symptoms that often lead to relapses in alcohol consumption. The brain's serotonin system has been implicated in AUD for decades and is a major regulator of stress-related behaviors associated with increased alcohol consumption. This review will discuss the current literature on the association between neurobiological adaptations in serotonin systems and AUD in humans as well as the effectiveness of serotonin receptor manipulations on alcohol-related behaviors like consumption and withdrawal. We will further discuss how these findings in humans relate to findings in animal models, including a comparison of systemic pharmacological manipulations modulating alcohol consumption. We next provide a detailed overview of brain region-specific roles for serotonin and serotonin receptor signaling in alcohol-related behaviors in preclinical animal models, highlighting the complexity of forming a cohesive model of serotonin function in AUD and providing possible avenues for more effective therapeutic intervention. Throughout the review, we discuss what is known about sex differences in the sequelae of AUD and the role of serotonin in these sequelae. We stress a critical need for additional studies in women and female animals so that we may build a clearer path to elucidating sex-specific serotonergic mechanisms and develop better treatments.
Collapse
Affiliation(s)
- Megan E. Castle
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Meghan E. Flanigan
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
32
|
Bove M, Morgese MG, Dimonte S, Sikora V, Agosti LP, Palmieri MA, Tucci P, Schiavone S, Trabace L. Increased stress vulnerability in the offspring of socially isolated rats: Behavioural, neurochemical and redox dysfunctions. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110945. [PMID: 38242425 DOI: 10.1016/j.pnpbp.2024.110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/22/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
Stressful events during pregnancy impact on the progeny neurodevelopment. However, little is known about preconceptional stress effects. The rat social isolation represents an animal model of chronic stress inducing a variety of dysfunctions. Moreover, social deprivation during adolescence interferes with key neurodevelopmental processes. Here, we investigated the development of behavioural, neurochemical and redox alterations in the male offspring of socially isolated female rats before pregnancy, reared in group (GRP) or in social isolation (ISO) from weaning until young-adulthood. To this aim, females were reared in GRP or in ISO conditions, from PND21 to PND70, when they were mated. Their male offspring was housed in GRP or ISO conditions through adolescence and until PND70, when passive avoidance-PA, novel object recognition-NOR and open field-OF tests were performed. Levels of noradrenaline (NA), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), glutamate (GLU) and GABA were assessed in the prefrontal cortex (PFC). Moreover, cortical ROS levels were quantified, as well as NF-kB and the NADPH oxidase NOX2 expression, redox status (expressed as GSH:GSSG ratio) and SOD1 amount. A significant decrease of the latency time in the PA was observed in the offspring of ISO females. In the NOR test, while a significant increase in the exploratory activity towards the novel object was observed in the offspring of GRP females, no significant differences were found in the offspring of ISO females. No significant differences were found in the OF test among experimental groups. Theoffspring of ISO females showed increased NA and 5-HIAA levels, whereas in the offspring persistently housed in isolation condition from weaninguntil adulthood, we detected reduced 5-HT levels and ehnanced 5-HIAA amount. No significant changes in GLU concentrations were detected, while decreased GABA content was observed in the offspring of ISO females exposed to social isolation. Increased ROS levels as well as reduced NF-κB, NOX2 expression were detected in the offspring of ISO females. This was accompanied by reduced redox status and enhanced SOD1 levels. In conclusion, our results suggest that female exposure to chronic social stress before pregnancy might have a profound influence on the offspring neurodevelopment in terms of cognitive, neurochemical and redox-related alterations, identifying this specific time window for possible preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Maria Bove
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Stefania Dimonte
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Vladyslav Sikora
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Lisa Pia Agosti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Maria Adelaide Palmieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy.
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, Foggia 71122, Italy
| |
Collapse
|
33
|
Mayor-Silva LI, Meneses-Monroy A, Rodriguez-Leal L, Moreno G. An Exploration of Resilience and Positive Affect among Undergraduate Nursing Students: A Longitudinal Observational Study. NURSING REPORTS 2024; 14:871-882. [PMID: 38651479 PMCID: PMC11036258 DOI: 10.3390/nursrep14020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The purpose of this study is to analyze the variation in resilience and emotional state scores in nursing students throughout the four years of training for the nursing degree. METHODS This is a longitudinal observational study of a paired and prospective cohort of 176 nursing students who enrolled in the first year of a bachelor's degree in 2019. The study followed up with the students in 2022 and examined several sociodemographic factors, including sex, marital status, date of birth, living arrangements and occupation. Additionally, the study investigated changes in negative affect, positive affect, and resilience. RESULTS A total of 176 students participated in the study. The study found that resilience increased from 68.24 ± 10.59 to 70.87 ± 9.06 (p < 0.001), positive affect increased from 28.16 ± 4.59 to 33.08 ± 8.00 (p < 0.001), and the negative affect score decreased from 25.27 ± 5.12 to 21.81 ± 7.85 (p < 0.001). The study also found that married individuals experienced an increase in negative affect (p = 0.03) compared to singles or those in open relationships. Furthermore, the change in resilience was greater in men than in women (p = 0.01). CONCLUSIONS Throughout their four-year training, nursing students experience an increase in resilience and positive affect, as well as a decrease in negative affect.
Collapse
Affiliation(s)
- L. Iván Mayor-Silva
- Departamento de Enfermería, Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.I.M.-S.); (A.M.-M.)
| | - Alfonso Meneses-Monroy
- Departamento de Enfermería, Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.I.M.-S.); (A.M.-M.)
| | - Leyre Rodriguez-Leal
- Red Cross Nursing University College, Autonomous University of Madrid, 28003 Madrid, Spain
| | - Guillermo Moreno
- Departamento de Enfermería, Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.I.M.-S.); (A.M.-M.)
- Grupo de Investigación Cardiovascular Multidisciplinar Traslacional (GICMT), Área de Investigación Cardiovascular, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
34
|
González-Burgos I, Velázquez-Zamora DA, González-Tapia D. Estradiol-mediated modulation of memory and of the underlying dendritic spine plasticity through the life span. Histol Histopathol 2024; 39:411-423. [PMID: 37966087 DOI: 10.14670/hh-18-672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The morphophysiology of the nervous system changes and adapts in response to external environmental inputs and the experiences of individuals throughout their lives. Other changes in the organisms internal environment can also contribute to nervous system restructuring in the form of plastic changes that underlie its capacity to adapt to emerging psychophysiological conditions. These adaptive processes lead to subtle modifications of the organisms internal homeostasis which is closely related with the activity of chemical messengers, such as neurotransmitters and hormones. Hormones reach the brain through the bloodstream, where they activate specific receptors through which certain biochemical, physiological, and morphological changes take place in numerous regions. Fetal development, infancy, puberty, and adulthood are all periods of substantial hormone-mediated brain remodeling in both males and females. Adulthood, specifically, is associated with a broad range of life events, including reproductive cycles in both sexes, and pregnancy and menopause in women. Events of this kind occur concomitantly with eventual modifications in behavioral performance and, especially, in cognitive abilities like learning and memory that underlie, at least in part, plastic changes in the dendritic spines of the neuronal cells in cerebral areas involved in processing cognitive information. Estrogens form a family that consists of three molecules [17β-estradiol (E2), estrone, estriol] which are deeply involved in regulating numerous bodily functions in different stages of the life-cycle, including the modulation of cognitive performance. This review addresses the effects of E2 on the dendritic spine-mediated synaptic organization of cognitive performance throughout the life span.
Collapse
Affiliation(s)
| | | | - David González-Tapia
- Department of Health-disease as an individual and collective process, Health Division, Tlajomulco University Centre, University of Guadalajara, Tlajomulco de Zúñiga, Jalisco, México
| |
Collapse
|
35
|
Somelar-Duracz K, Jürgenson M, Viil J, Zharkovsky A, Jaako K. 'Unpredictable chronic mild stress does not exacerbate memory impairment or altered neuronal and glial plasticity in the hippocampus of middle-aged vitamin D deficient mice'. Eur J Neurosci 2024; 59:1696-1722. [PMID: 38269959 DOI: 10.1111/ejn.16256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024]
Abstract
Vitamin D deficiency is a worldwide health concern, especially in the elderly population. Much remains unknown about the relationship between vitamin D deficiency (VDD), stress-induced cognitive dysfunctions and depressive-like behaviour. In this study, 4-month-old male C57Bl/6J mice were fed with control or vitamin D free diet for 6 months, followed by unpredictable chronic stress (UCMS) for 8 weeks. VDD induced cognitive impairment and reduced grooming behaviour, but did not induce depressive-like behaviour. While UCMS in vitamin D sufficient mice induced expected depressive-like phenotype and impairments in the contextual fear memory, chronic stress did not manifest as an additional risk factor for memory impairments and depressive-like behaviour in VDD mice. In fact, UCMS restored self-care behaviour in VDD mice. At the histopathological level, VDD mice exhibited cell loss in the granule cell layer, reduced survival of newly generated cells, accompanied with an increased number of apoptotic cells and alterations in glial morphology in the hippocampus; however, these effects were not exacerbated by UCMS. Interestingly, UCMS reversed VDD induced loss of microglial cells. Moreover, tyrosine hydroxylase levels decreased in the striatum of VDD mice, but not in stressed VDD mice. These findings indicate that long-term VDD in adulthood impairs cognition but does not augment behavioural response to UCMS in middle-aged mice. While VDD caused cell loss and altered glial response in the DG of the hippocampus, these effects were not exacerbated by UCMS and could contribute to mechanisms regulating altered stress response.
Collapse
Affiliation(s)
- Kelli Somelar-Duracz
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Monika Jürgenson
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Janeli Viil
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Alexander Zharkovsky
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Külli Jaako
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| |
Collapse
|
36
|
Pan N, Yang C, Suo X, Shekara A, Hu S, Gong Q, Wang S. Sex differences in the relationship between brain gray matter volume and psychological resilience in late adolescence. Eur Child Adolesc Psychiatry 2024; 33:1057-1066. [PMID: 37212908 DOI: 10.1007/s00787-023-02231-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Psychological resilience reflects an individual's ability to adapt and cope successfully in adverse environments and situations, making it a crucial trait in resisting stress-linked mental disorders and physical diseases. Although prior literature has consistently shown that males are more resilient than females, the sex-linked neuroanatomical correlates of psychological resilience are largely unknown. This study aims to explore the sex-specific relation between psychological resilience and brain gray matter volume (GMV) in adolescents via structural magnetic resonance imaging (s-MRI). A cohort of 231 healthy adolescents (121/110 females/males), aged 16 to 20 completed brain s-MRI scanning and Connor-Davidson Resilience Scale (CD-RISC) and other controlling behavioral tests. With s-MRI data, an optimized voxel-based morphometry method was used to estimate regional GMV, and a whole-brain condition-by-covariate interaction analysis was performed to identify the brain regions showing sex effects on the relation between psychological resilience and GMV. Male adolescents scored significantly higher than females on the CD-RISC. The association of psychological resilience with GMV differed between the two sex groups in the left ventrolateral prefrontal cortex extending to the adjacent anterior insula, with a positive correlation among males and a negative correlation among females. The sex-specific association between psychological resilience and GMV might be linked to sex differences in the hypothalamic-pituitary-adrenal axis and brain maturation during adolescence. This study may be novel in revealing the sex-linked neuroanatomical basis of psychological resilience, highlighting the need for a more thorough investigation of the role of sex in future studies of psychological resilience and stress-related illness.
Collapse
Affiliation(s)
- Nanfang Pan
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Cheng Yang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xueling Suo
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Aniruddha Shekara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Samantha Hu
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China.
| | - Song Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
37
|
Mengelkoch S, Slavich GM. Sex Differences in Stress Susceptibility as a Key Mechanism Underlying Depression Risk. Curr Psychiatry Rep 2024; 26:157-165. [PMID: 38470558 PMCID: PMC10978685 DOI: 10.1007/s11920-024-01490-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 03/14/2024]
Abstract
PURPOSE OF REVIEW Although females are at relatively greater risk for a variety of disorders, including depression, the biological mechanisms underlying this striking health disparity remain unclear. To address this issue, we highlight sex differences in stress susceptibility as a key mechanism potentially driving this effect and describe the interacting inflammatory, hormonal, epigenomic, and social-environmental mechanisms involved. RECENT FINDINGS Using the Social Signal Transduction Theory of Depression as a theoretical framework, women's elevated risk for depression may stem from a tight link between life stress, inflammation, and depression in women. Further, research finds hormonal contraceptive use alters cortisol and inflammatory reactivity to acute stress in ways that may increase depression risk in females. Finally, beyond established epigenetic mechanisms, mothers may transfer risk for depression to their female offspring through stressful family environments, which influence stress generation and stress-related gene expression. Together, these findings provide initial, biologically plausible clues that may help explain the relatively greater risk for depression in females vs. males. Looking forward, much more research is needed to address the longstanding underrepresentation of females in biomedical research on the biology of stress and depression.
Collapse
Affiliation(s)
- Summer Mengelkoch
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
38
|
Assari S, Sheikhattari P. Sex Differences in the Relationship Between Nucleus Accumbens Volume and Youth Tobacco or Marijuana Use Following Stressful Life Events. JOURNAL OF MENTAL HEALTH & CLINICAL PSYCHOLOGY 2024; 8:1-13. [PMID: 38751734 PMCID: PMC11095827 DOI: 10.29245/2578-2959/2024/2.1305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Background Exposure to stressful life events (SLEs) can upset balance and affect the healthy brain development of children and youths. These events may influence substance use by altering brain reward systems, especially the nucleus accumbens (NAc), which plays a key role in motivated behaviors and reward processing. The interaction between sensitization to SLEs, depression, and substance use might vary between male and female youths, potentially due to differences in how each sex responds to SLEs. Aims This study aims to examine the effect of sex on the relationship between SLEs, Nucleus Accumbens activity, and substance use in a nationwide sample of young individuals. Methods We utilized data from the Adolescent Brain Cognitive Development study (ABCD), a longitudinal study of pre-adolescents aged 9-10 years, comprising 11,795 participants tracked over 36 months. Structured interviews measuring SLEs were conducted using the Kiddie Schedule for Affective Disorders and Schizophrenia (K-SADS). Initial linear regression analyses explored if SLEs could predict volumes of the right and left NAc. Subsequently, Cox regression models were used to investigate how SLEs and NAc volume might predict the initiation of tobacco and marijuana use, with the analysis stratified by sex to address potential sex differences. Results Our findings reveal that SLEs significantly predicted marijuana use in males but not in females, and tobacco use was influenced by SLEs in both sexes. A higher number of SLEs was linked with decreased left NAc volume in males, a trend not seen in females. The right NAc volume did not predict substance use in either sex. However, volumes of both the right and left NAc were significant predictors of future tobacco use, with varying relationships across sexes. In females, an inverse relationship was observed between both NAc volumes and the risk of tobacco use. In contrast, a positive correlation existed between the left NAc volume and tobacco and marijuana use in males, with no such relationship for females. Conclusion This study underscores that the associations between SLEs, NAc volume, and subsequent substance use are influenced by a nuanced interplay of sex, brain hemisphere, and substance type.
Collapse
Affiliation(s)
- Shervin Assari
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
- Department of Family Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
- Department of Urban Public Health, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| | | |
Collapse
|
39
|
Sigaran GJ, Lima KR, das Neves BHS, Dos Santos Soares M, Carriço MRS, Roehrs R, Mello-Carpes PB. Acute physical exercise enhances memory persistence in female rats. Brain Res 2024; 1827:148760. [PMID: 38211827 DOI: 10.1016/j.brainres.2024.148760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Memory is a complex cognitive process with distinct stages, such as acquisition, consolidation, and retrieval. The hippocampus plays a crucial role in memory consolidation and retrieval. Physical exercise (PE) has been shown to enhance memory and cognitive functions, but the available research is mainly developed with males. So, there is limited knowledge about acute PE's effects on females' memory. This study aimed to investigate the impact of acute PE on memory in female rats and explore potential sex differences in PE memory modulation. Forty-two female Wistar rats were subjected to a novel object recognition (NOR) task, with half of them undergoing a single session of 30 min of PE after the learning session (memory acquisition). Behavioral assessments showed that acute PE improved memory persistence in female rats, with increased discrimination of novel objects. Biochemical analysis revealed elevated noradrenaline levels in the hippocampus following acute PE and NOR training. Notably, the positive effects of acute PE on female rats' memory were similar to those previously observed in male rats. These findings suggest that acute PE can enhance memory in female rats and underscore the importance of considering sex differences in cognitive research. PE may offer a non-invasive strategy to promote cognitive health in both males and females.
Collapse
Affiliation(s)
- Gabriela Jaques Sigaran
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Karine Ramires Lima
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Ben-Hur Souto das Neves
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Marisele Dos Santos Soares
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Murilo Ricardo Sigal Carriço
- Laboratory of Environmental Chemical and Toxicological Analysis, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Rafael Roehrs
- Laboratory of Environmental Chemical and Toxicological Analysis, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Pâmela Billig Mello-Carpes
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil.
| |
Collapse
|
40
|
Scarborough J, Iachizzi M, Schalbetter SM, Müller FS, Weber-Stadlbauer U, Richetto J. Prenatal and postnatal influences on behavioral development in a mouse model of preconceptional stress. Neurobiol Stress 2024; 29:100614. [PMID: 38357099 PMCID: PMC10865047 DOI: 10.1016/j.ynstr.2024.100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/12/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Depression during pregnancy is detrimental for the wellbeing of the expectant mother and can exert long-term consequences on the offspring's development and mental health. In this context, both the gestational environment and the postpartum milieu may be negatively affected by the depressive pathology. It is, however, challenging to assess whether the contributions of prenatal and postnatal depression exposure are distinct, interactive, or cumulative, as it is unclear whether antenatal effects are due to direct effects on fetal development or because antenatal symptoms continue postnatally. Preclinical models have sought to answer this question by implementing stressors that induce a depressive-like state in the dams during pregnancy and studying the effects on the offspring. The aim of our present study was to disentangle the contribution of direct stress in utero from possible changes in maternal behavior in a novel model of preconceptional stress based on social isolation rearing (SIR). Using a cross-fostering paradigm in this model, we show that while SIR leads to subtle changes in maternal behavior, the behavioral changes observed in the offspring are driven by a complex interaction between sex, and prenatal and postnatal maternal factors. Indeed, male offspring are more sensitive to the prenatal environment, as demonstrated by behavioral and transcriptional changes driven by their birth mother, while females are likely affected by more complex interactions between the pre and the postpartum milieu, as suggested by the important impact of their surrogate foster mother. Taken together, our findings suggest that male and female offspring have different time-windows and behavioral domains of susceptibility to maternal preconceptional stress, and thus underscore the importance of including both sexes when investigating the mechanisms that mediate the negative consequences of exposure to such stressor.
Collapse
Affiliation(s)
- Joseph Scarborough
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Monica Iachizzi
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Sina M. Schalbetter
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Flavia S. Müller
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Ho TC, Buthmann J, Chahal R, Miller JG, Gotlib IH. Exploring sex differences in trajectories of pubertal development and mental health following early adversity. Psychoneuroendocrinology 2024; 161:106944. [PMID: 38171040 PMCID: PMC10842731 DOI: 10.1016/j.psyneuen.2023.106944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024]
Abstract
Despite evidence that early life adversity (ELA) affects mental health in adolescence, we know little about sex differences in how distinct dimensions of adversity affect development and their corresponding effects on mental health. In this three-wave longitudinal study, 209 participants (118 females; ages 9-13 years at baseline) provided objective (salivary hormones, BMI, age of menarche) and subjective (perceived gonadal and adrenal status) measures of puberty and physical development, and reported on levels of internalizing and externalizing symptoms at all timepoints. Participants also reported lifetime exposure to three distinct types of ELA: deprivation, threat, and unpredictability. Using generalized additive mixed models, we tested within each sex whether dimensions of adversity were associated with longitudinal changes in measures of pubertal and physical development, and whether these indices of development were associated with trajectories of internalizing and externalizing symptoms. In females, experiences of threat and unpredictability were significantly associated with earlier pubertal timing (e.g., age of menarche) whereas experiences of deprivation were associated with steeper increases in BMI; further, faster pubertal tempo (i.e., steeper increases in pubertal stage) was associated with increases in internalizing and externalizing symptoms. In males, however, ELA was not associated with any measures of pubertal or physical development or with symptoms. Together, our results suggest that adverse experiences during early life have sex-selective consequences for pubertal and physical maturation and mental health trajectories in ways that may elucidate why females are at higher risk for mental health difficulties during puberty, particularly following exposure to unpredictable and threatening experiences of adversity.
Collapse
Affiliation(s)
- Tiffany C Ho
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jessica Buthmann
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - Rajpreet Chahal
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - Jonas G Miller
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
42
|
Fenske SJ, Liu J, Chen H, Diniz MA, Stephens RL, Cornea E, Gilmore JH, Gao W. Sex differences in brain-behavior relationships in the first two years of life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578147. [PMID: 38352542 PMCID: PMC10862872 DOI: 10.1101/2024.01.31.578147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Background Evidence for sex differences in cognition in childhood is established, but less is known about the underlying neural mechanisms for these differences. Recent findings suggest the existence of brain-behavior relationship heterogeneities during infancy; however, it remains unclear whether sex underlies these heterogeneities during this critical period when sex-related behavioral differences arise. Methods A sample of 316 infants was included with resting-state functional magnetic resonance imaging scans at neonate (3 weeks), 1, and 2 years of age. We used multiple linear regression to test interactions between sex and resting-state functional connectivity on behavioral scores of working memory, inhibitory self-control, intelligence, and anxiety collected at 4 years of age. Results We found six age-specific, intra-hemispheric connections showing significant and robust sex differences in functional connectivity-behavior relationships. All connections are either with the prefrontal cortex or the temporal pole, which has direct anatomical pathways to the prefrontal cortex. Sex differences in functional connectivity only emerge when associated with behavior, and not in functional connectivity alone. Furthermore, at neonate and 2 years of age, these age-specific connections displayed greater connectivity in males and lower connectivity in females in association with better behavioral scores. Conclusions Taken together, we critically capture robust and conserved brain mechanisms that are distinct to sex and are defined by their relationship to behavioral outcomes. Our results establish brain-behavior mechanisms as an important feature in the search for sex differences during development.
Collapse
Affiliation(s)
- Sonja J Fenske
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Janelle Liu
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Haitao Chen
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- David Geffen School of Medicine, University of California, Los Angeles, CA 90025
| | - Marcio A Diniz
- The Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Rebecca L Stephens
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, 27599
| | - Emil Cornea
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, 27599
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, 27599
| | - Wei Gao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- David Geffen School of Medicine, University of California, Los Angeles, CA 90025
| |
Collapse
|
43
|
Harris BN, Yavari M, Ramalingam L, Mounce PL, Alers Maldonado K, Chavira AC, Thomas S, Scoggin S, Biltz C, Moustaid-Moussa N. Impact of Long-Term Dietary High Fat and Eicosapentaenoic Acid on Behavior and Hypothalamic-Pituitary-Adrenal Axis Activity in Amyloidogenic APPswe/PSEN1dE9 Mice. Neuroendocrinology 2024; 114:553-576. [PMID: 38301617 PMCID: PMC11153005 DOI: 10.1159/000536586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) alters neurocognitive and emotional function and causes dysregulation of multiple homeostatic processes. The leading AD framework pins amyloid beta plaques and tau tangles as primary drivers of dysfunction. However, many additional variables, including diet, stress, sex, age, and pain tolerance, interact in ways that are not fully understood to impact the onset and progression of AD pathophysiology. We asked: (1) does high-fat diet, compared to low-fat diet, exacerbate AD pathophysiology and behavioral decline? And, (2) can supplementation with eicosapentaenoic (EPA)-enriched fish oil prevent high-fat-diet-induced changes? METHODS Male and female APPswePSdE9 mice, and their non-transgenic littermates, were randomly assigned to a diet condition (low-fat, high-fat, high-fat with EPA) and followed from 2 to 10 months of age. We assessed baseline corticosterone concentration during aging, pain tolerance, cognitive function, stress coping, and corticosterone response to a stressor. RESULTS Transgenic mice were consistently more active than non-transgenic mice but did not perform worse on either cognitive task, even though we recently reported that these same transgenic mice exhibited metabolic changes and had increased amyloid beta. Mice fed high-fat diet had higher baseline and post-stressor corticosterone, but diet did not impact cognition or pain tolerance. Sex had the biggest influence, as female mice were consistently more active and had higher corticosterone than males. CONCLUSION Overall, diet, genotype, and sex did not have consistent impacts on outcomes. We found little support for predicted interactions and correlations, suggesting diet impacts metabolic function and amyloid beta levels, but these outcomes do not translate to changes in behaviors measured here.
Collapse
Affiliation(s)
- Breanna N. Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
| | - Mahsa Yavari
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
- Current address: Department of Molecular Metabolism, School of Public Health, Harvard University, Boston, MA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
- Current address: Department of Nutritional and Food Studies Syracuse University, Syracuse, NY
| | - P. Logan Mounce
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | | | - Angela C. Chavira
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Sarah Thomas
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Caroline Biltz
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
| |
Collapse
|
44
|
Kilpatrick LA, Gupta A, Tillisch K, Labus JS, Naliboff BD, Mayer EA, Chang L. Neural correlates of perceived and relative resilience in male and female patients with irritable bowel syndrome. Neurogastroenterol Motil 2024; 36:e14710. [PMID: 38031358 PMCID: PMC11014739 DOI: 10.1111/nmo.14710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Patients with irritable bowel syndrome (IBS) show lower resilience than healthy controls (HCs), associated with greater symptom severity and worse quality of life. However, little is known about affected markers of resilience or the influence of sex. Furthermore, as resilience is complex, a comprehensive assessment, with multiple resilience measures, is needed. Therefore, we aimed to evaluate perceived and relative resilience and their neural correlates in men and women with IBS. METHODS In 402 individuals (232 IBS [73.3% women] and 170 HCs [61.2% women]), perceived resilience was assessed by the Connor-Davidson Resilience Scale (CDRISC) and Brief Resilience Scale (BRS); relative resilience was assessed by the standardized residual of the Short Form-12 mental component summary score predicted by the Adverse Childhood Experiences score. Non-rotated partial least squares analysis of region-to-region resting-state connectivity data was used to define resilience-related signatures in HCs. Disease and sex-related differences within these signatures were investigated. KEY RESULTS Scores on all resilience measures were lower in IBS than in HCs (p's < 0.05). In all three resilience-related signatures, patients with IBS showed reduced connectivity largely involving the central autonomic network (p's < 0.001). Men with IBS showed lower CDRISC scores than women with IBS, and greater reductions in CDRISC-related connectivity, associated with worse symptom severity (p < 0.05). CONCLUSIONS AND INFERENCES Individuals with IBS show reduced perceived and relative resilience, with reduced connectivity suggesting impaired homeostasis maintenance. Men with IBS may show additional impairment in specific aspects of resilience. Treatments aimed at improving resilience may benefit patients with IBS, especially men with IBS.
Collapse
Affiliation(s)
- Lisa A Kilpatrick
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Arpana Gupta
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Kirsten Tillisch
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Jennifer S Labus
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
- Brain Research Institute, University of California, Los Angeles, California, USA
- Gonda (Goldschmied) Neuroscience Research Center, Los Angeles, California, USA
| | - Bruce D Naliboff
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Emeran A Mayer
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Lin Chang
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
| |
Collapse
|
45
|
Lkhagvasuren B, Hiramoto T, Bat-Erdene E, Tumurbaatar E, Tumur-Ochir G, Amartuvshin T, Dashtseren M, Lai E, Viswanath V, Oka T, Jadamba T. Anxiety, depression, and brain overwork in the general population of Mongolia. Sci Rep 2024; 14:2484. [PMID: 38291198 PMCID: PMC10828419 DOI: 10.1038/s41598-024-52779-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
In Mongolia, there is limited data on the prevalence and correlates of common mental health conditions. This study addresses this data gap by exploring anxiety, depression, and brain overwork. The aim of this study was to determine normative data on these conditions in the general population of Mongolia. This nationwide, population-based, cross-sectional study was conducted in 48 sampling centers across Mongolia in 2020. A total of 613 participants (190 men and 423 women) with a mean age of 41.8 ± 12.4 years were recruited. The participants completed the Hospital Anxiety and Depression Scale (HADS) and the Brain Overwork Scale (BOS-10). Vital signs, body measurements, and lifestyle determinants were also assessed. The prevalence of anxiety was 9.9%, depression was 4.9%, and brain overwork was 18.3% among the participants. Anxiety and depression were correlated with brain overwork symptoms. Brain overwork was associated with young age, unemployment, low income, and alcohol use. These findings suggest that anxiety, depression, and brain overwork are a significant problem in the general population of Mongolia. Further research is needed to develop effective interventions to reduce the prevalence and risk factors of anxiety, depression, and brain overwork.
Collapse
Affiliation(s)
- Battuvshin Lkhagvasuren
- Brain and Mind Research Institute, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia.
- Department of Psychosomatic Medicine, International University of Health and Welfare Narita Hospital, Narita, Japan.
| | - Tetsuya Hiramoto
- Department of Psychosomatic Medicine, NHO Fukuoka National Hospital, Fukuoka, Japan
| | - Enkhjin Bat-Erdene
- Brain and Mind Research Institute, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Child Health Institute of New Jersey, Rutgers University, New Brunswick, USA
| | - Enkhnaran Tumurbaatar
- Brain and Mind Research Institute, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| | - Gantsetseg Tumur-Ochir
- Department of Mental Health Surveillance, National Center for Mental Health, Ulaanbaatar, Mongolia
| | - Tsolmontuya Amartuvshin
- Department of Family Medicine, School of Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Myagmartseren Dashtseren
- Department of Family Medicine, School of Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Edward Lai
- School of Osteopathic Medicine, Rowan-Virtua University, Stratford, USA
| | - Vijay Viswanath
- College of Medicine, University of Cincinnati, Cincinnati, USA
| | - Takakazu Oka
- Department of Psychosomatic Medicine, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Tsolmon Jadamba
- Brain and Mind Research Institute, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia.
| |
Collapse
|
46
|
Bellingacci L, Canonichesi J, Sciaccaluga M, Megaro A, Mazzocchetti P, Di Mauro M, Costa C, Di Filippo M, Pettorossi VE, Tozzi A. Locally Synthetized 17-β-Estradiol Reverses Amyloid-β-42-Induced Hippocampal Long-Term Potentiation Deficits. Int J Mol Sci 2024; 25:1377. [PMID: 38338656 PMCID: PMC10855267 DOI: 10.3390/ijms25031377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Amyloid beta 1-42 (Aβ42) aggregates acutely impair hippocampal long-term potentiation (LTP) of synaptic transmission, and 17β-estradiol is crucial for hippocampal LTP. We tested whether boosting the synthesis of neural-derived 17β-estradiol (nE2) saves hippocampal LTP by the neurotoxic action of Aβ42. Electrophysiological recordings were performed to measure dentate gyrus (DG) LTP in rat hippocampal slices. Using a pharmacological approach, we tested the ability of nE2 to counteract the LTP impairment caused by acute exposure to soluble Aβ42 aggregates. nE2 was found to be required for LTP in DG under physiological conditions. Blockade of steroid 5α-reductase with finasteride, by increasing nE2 synthesis from testosterone (T), completely recovered LTP in slices treated with soluble Aβ42 aggregates. Modulation of the glutamate N-methyl-D aspartate receptor (NMDAR) by memantine effectively rescued the LTP deficit observed in slices exposed to Aβ42, and memantine prevented LTP reduction observed under the blocking of nE2 synthesis. nE2 is able to counteract Aβ42-induced synaptic dysfunction. This effect depends on a rapid, non-genomic mechanism of action of nE2, which may share a common pathway with glutamate NMDAR signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alessandro Tozzi
- Department of Medicine and Surgery, University of Perugia, 06156 Perugia, Italy; (L.B.); (J.C.); (M.S.)
| |
Collapse
|
47
|
De Looze C, McCrory C, O'Halloran A, Polidoro S, Anne Kenny R, Feeney J. Mind versus body: Perceived stress and biological stress are independently related to cognitive decline. Brain Behav Immun 2024; 115:696-704. [PMID: 37977246 DOI: 10.1016/j.bbi.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023] Open
Abstract
Chronic stress may increase risk of age-related cognitive decline. 'Stress', however, is a multidimensional construct and few studies have investigated the inter-relationship of subjective stress and biological stress with cognitive decline. In this study, we examine the relationship between perceived stress and two measures of biological stress - allostatic load, indexing stress at the physiological level and leukocyte telomere length, indexing stress at the cellular level - with cognitive decline over a 12-year period in adults aged 50 and older. 3,458 participants (aged ≥ 50) from The Irish Longitudinal study on Ageing with measurements of allostatic load, telomere length and perceived stress at baseline and repeated measures of cognitive function were included. Hierarchical linear regression models with adjustment for multiple potential confounders were applied, and repeated stratified by sex in sensitivity analyses. Higher perceived stress at baseline was associated with lower cognitive function (β = -0.10, 95 % CI -0.12, -0.07, p <.001), with similar strength of associations across waves. There were significant interactions between measures of biological stress and wave; higher allostatic load was associated (X2(18) = 64.4; p <.001), and telomere length was borderline (X2(18) = 9.4; p =.09) associated with cognitive decline from 4-year follow-up onward. Sex stratified analyses revealed that the association between telomere length and cognitive decline was present in women only. Mutual adjustment did not attenuate associations in either case. The interactions between allostatic load and telomere length with perceived stress were not significant. Our findings suggest that subjective measures of stress and biological metrics may be independently related to cognitive function over time in older adults, hinting at the potential for different underlying mechanisms.
Collapse
Affiliation(s)
- Céline De Looze
- The Irish Longitudinal Study on Ageing (TILDA), School of Medicine, Trinity College Dublin, Dublin, Ireland.
| | - Cathal McCrory
- The Irish Longitudinal Study on Ageing (TILDA), School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Aisling O'Halloran
- The Irish Longitudinal Study on Ageing (TILDA), School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing (TILDA), School of Medicine, Trinity College Dublin, Dublin, Ireland; Mercer's Institute for Successful Ageing (MISA), St James's Hospital, Dublin, Ireland
| | - Joanne Feeney
- The Irish Longitudinal Study on Ageing (TILDA), School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
48
|
Schouler-Ocak M, Moran JK. Anxiety and mood disorders in forcibly displaced people across the world. Curr Opin Psychiatry 2024; 37:18-22. [PMID: 37972938 DOI: 10.1097/yco.0000000000000904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW Displaced persons around the world have intensified in the previous decade and are predicted to rise further with greater global instability. The mental health issues involved with fleeing one's home, and attempting to make a new life in a host country need to be understood and addressed. RECENT FINDINGS Prevalence of anxiety and mood disorders, including posttraumatic stress disorder appear to be higher for displaced peoples than for the population in the host country. This is consistent across different methods. Traumatic life events in the country of origin as well as during flight contribute to symptom severity. Factors in the host country increasing severity including isolation, discrimination, low social support. There are successfully implemented intercultural interventions at the individual level of the practitioner, as well as at the institutional level. SUMMARY There are many possibilities for successful interventions in displaced people, realizing this at a scale appropriate to the size of the problem remains a challenge.
Collapse
Affiliation(s)
| | - James Kennth Moran
- Department of Psychiatry and Psychotherapy, Multisensory Integration Lab, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
49
|
Corallo F, Maggio MG, Bonanno L, De Luca R, Cardile D, Cappadona I, Todaro A, Calabrò RS. Burden in caregivers of patients with acquired brain injury: Influence of family role and gender. NeuroRehabilitation 2024; 55:69-76. [PMID: 39031393 DOI: 10.3233/nre-240056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
BACKGROUND Acquired brain injuries (ABI) represent neurological disorders that can arise after traumatic and non-traumatic events. In addition to the physical, emotional and cognitive challenges that patients face, these injuries can bring changes in the life of the patient and his or her family. OBJECTIVE This study aims to understand how the occurrence of an ABI condition can disrupt and reshape family functioning by examining certain dimensions such as role in the family, gender and age, which may have a major influence on family dynamics. METHODS We enrolled 86 caregivers of patients with ABI. Two experienced psychologists examined family functioning with Olso's Family Adaptability and Cohesion Rating Scale (FACES IV). RESULTS The correlation between groups by generics showed a significant difference only for flexibility (p = 0.05). Specifically, flexibility was greater in male caregivers, particularly in sons. Most of the constructs defining family functioning, such as communication, remained unchanged despite the ABI event. CONCLUSION This study provides an in-depth understanding of how families face the challenges posed by the ABI and the role caregivers play within the system.
Collapse
Affiliation(s)
| | | | - Lilla Bonanno
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Agorastos A. Thematic Selection: Stress and Stress-related Disorders Posttraumatic Stress Disorder (Part 2). Curr Neuropharmacol 2024; 22:522-523. [PMID: 38284340 PMCID: PMC10845103 DOI: 10.2174/1570159x2204231106143917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Affiliation(s)
- Agorastos Agorastos
- Assistant Professor of Psychiatry, Aristotle University of Thessaloniki, Greece
| |
Collapse
|