1
|
Cheng Y, Magnard R, Langdon AJ, Lee D, Janak PH. Chronic Ethanol Exposure Produces Sex-Dependent Impairments in Value Computations in the Striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584332. [PMID: 38585868 PMCID: PMC10996555 DOI: 10.1101/2024.03.10.584332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Value-based decision-making relies on the striatum, where neural plasticity can be altered by chronic ethanol (EtOH) exposure, but the effects of such plasticity on striatal neural dynamics during decision-making remain unclear. This study investigated the long-term impacts of EtOH on reward-driven decision-making and striatal neurocomputations in male and female rats using a dynamic probabilistic reversal learning task. Following a prolonged withdrawal period, EtOH-exposed male rats exhibited deficits in adaptability and exploratory behavior, with a preference for value updating based on rewards rather than omissions. These behavioral changes were linked to altered neural encoding in the dorsomedial striatum (DMS), where EtOH increased outcome-related signals and decreased choice-related signals. In contrast, female rats showed minimal behavioral changes with distinct EtOH-evoked alterations of neural signals, revealing significant sex differences in the impact of chronic EtOH. Our findings underscore the profound impact of chronic EtOH exposure on adaptive decision-making, revealing enduring changes in neurocomputational processes in the striatum underlying cognitive deficits that differ by sex.
Collapse
Affiliation(s)
- Yifeng Cheng
- Department Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD
| | - Robin Magnard
- Department Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
| | - Angela J. Langdon
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Daeyeol Lee
- Department Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
- Zanvyl Krieger Mind/Brain Institute, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD
| | - Patricia H. Janak
- Department Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
2
|
Doyle MR, Beltran NM, Bushnell MSA, Syed M, Acosta V, Desai M, Rice KC, Serafine KM, Gould GG, Daws LC, Collins GT. Effects of access condition on substance use disorder-like phenotypes in male and female rats self-administering MDPV or cocaine. Drug Alcohol Depend 2024; 263:112408. [PMID: 39141975 DOI: 10.1016/j.drugalcdep.2024.112408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
Substance use disorder (SUD) is a heterogeneous disorder, where severity, symptoms, and patterns of use vary across individuals. Yet, when rats self-administer cocaine under short-access conditions, their behavior tends to be well-regulated, though individual differences can emerge with long- or intermittent-access. In contrast, significant individual differences emerge when rats self-administer 3,4-methylenedioxypyrovalerone (MDPV), even under short-access conditions, wherein ~30 % of rats exhibit high levels of drug-taking. This study assessed SUD-like phenotypes of male and female rats self-administering MDPV or cocaine by comparing level of drug intake, responding during periods of signaled drug unavailability, and sensitivity to footshock punishment to determine whether: (1) under short-access conditions, rats that self-administer MDPV will exhibit a more robust SUD-like phenotype than rats that self-administer cocaine; (2) female rats will have a more severe phenotype than male rats; and (3) compared to short-access, long- and intermittent-access to MDPV or cocaine self-administration will result in a more robust SUD-like phenotype. Compared to cocaine, rats that self-administered MDPV exhibited a more severe phenotype, even under short-access conditions. Long- and intermittent-access to cocaine and MDPV temporarily altered drug-taking patterns but did not systematically change SUD-like phenotypes. Behavioral and quantitative autoradiography studies suggest phenotypic differences are not due to expression of dopamine transporter, dopamine D2 or D3 receptors, or 5-HT1B, 5-HT2A, or 5-HT2C receptors. This study suggests individuals who use synthetic cathinones may be at greater risk for developing a SUD, and short-access MDPV self-administration may provide a useful method to study the transition to disordered substance use in humans.
Collapse
Affiliation(s)
- Michelle R Doyle
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nina M Beltran
- Department of Psychology, University of Texas at El Paso, El Paso, TX, USA
| | - Mark S A Bushnell
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Maaz Syed
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Valeria Acosta
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Marisa Desai
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism - Intramural Research Program, Bethesda, MD, USA
| | | | - Georgianna G Gould
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Lynette C Daws
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Gregory T Collins
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
3
|
Panayi MC, Shetty S, Porod M, Bahena L, Xi ZX, Newman AH, Schoenbaum G. The selective D 3Receptor antagonist VK4-116 reverses loss of insight caused by self-administration of cocaine in rats. Neuropsychopharmacology 2024; 49:1590-1599. [PMID: 38582939 PMCID: PMC11319511 DOI: 10.1038/s41386-024-01858-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Chronic psychostimulant use causes long-lasting changes to neural and cognitive function that persist after long periods of abstinence. As cocaine users transition from drug use to abstinence, a parallel transition from hyperactivity to hypoactivity has been found in orbitofrontal-striatal glucose metabolism and striatal D2/D3-receptor activity. Targeting these changes pharmacologically, using highly selective dopamine D3-receptor (D3R) antagonists and partial agonists, has shown promise in reducing drug-taking, and attenuating relapse in animal models of cocaine and opioid use disorder. However, much less attention has been paid to treating the loss of insight, operationalized as the inability to infer likely outcomes, associated with chronic psychostimulant use. Here we tested the selective D3R antagonist VK4-116 as a treatment for this loss in rats with a prior history of cocaine use. Male and female rats were first trained to self-administer cocaine or a sucrose liquid for 2 weeks. After 4 weeks of abstinence, performance was assessed using a sensory preconditioning (SPC) learning paradigm. Rats were given VK4-116 (15 mg/kg, i.p.) or vehicle 30 min prior to each SPC training session, thus creating four drug-treatment groups: sucrose-vehicle, sucrose-VK4-116, cocaine-vehicle, cocaine-VK4-116. The control groups (sucrose-vehicle, sucrose-VK4-116) showed normal sensory preconditioning, whereas cocaine use (cocaine-vehicle) selectively disrupted responding to the preconditioned cue, an effect that was reversed in the cocaine-VK4-116 group, which demonstrating responding to the preconditioned cue at levels comparable to controls. These preclinical findings demonstrate that highly selective dopamine D3R antagonists, particularly VK4-116, can reverse the long-term negative behavioral consequences of cocaine use.
Collapse
Affiliation(s)
- Marios C Panayi
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| | - Shohan Shetty
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Micaela Porod
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Lisette Bahena
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Zheng-Xiong Xi
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Amy Hauck Newman
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Geoffrey Schoenbaum
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
4
|
LaRocco K, Villiamma P, Hill J, Russell MA, DiLeone RJ, Groman SM. Sex differences in oxycodone-taking behaviors are linked to disruptions in reward-guided, decision-making functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.587443. [PMID: 38645212 PMCID: PMC11030399 DOI: 10.1101/2024.04.09.587443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Problematic opioid use that emerges in a subset of individuals may be due to pre-existing disruptions in the biobehavioral mechanisms that regulate drug use. The identity of these mechanisms is not known, but emerging evidence suggests that suboptimal decision-making that is observable prior to drug use may contribute to the pathology of addiction and, notably, serve as a powerful phenotype for interrogating biologically based differences in opiate-taking behaviors. The current study investigated the relationship between decision-making phenotypes and opioid-taking behaviors in male and female Long Evans rats. Adaptive decision-making processes were assessed using a probabilistic reversal-learning task and oxycodone- (or vehicle, as a control) taking behaviors assessed for 32 days using a saccharin fading procedure that promoted dynamic intake of oxycodone. Tests of motivation, extinction, and reinstatement were also performed. Computational analyses of decision-making and opioid-taking behaviors revealed that attenuated reward-guided decision-making was associated with greater self-administration of oxycodone and addiction-relevant behaviors. Moreover, pre-existing impairments in reward-guided decision-making observed in female rats was associated with greater oxycodone use and addiction-relevant behaviors when compared to males. These results provide new insights into the biobehavioral mechanisms that regulate opiate-taking behaviors and offer a novel phenotypic approach for interrogating sex differences in addiction susceptibility and opioid use disorders.
Collapse
|
5
|
Doyle MR, Beltran NM, Bushnell MSA, Syed M, Acosta V, Desai M, Rice KC, Serafine KM, Gould GG, Daws LC, Collins GT. Effects of access condition on substance use disorder-like phenotypes in male and female rats self-administering MDPV or cocaine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583431. [PMID: 38496609 PMCID: PMC10942381 DOI: 10.1101/2024.03.04.583431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Substance use disorder (SUD) is a heterogeneous disorder, where severity, symptoms, and patterns of substance use vary across individuals. Yet, when rats are allowed to self-administer drugs such as cocaine under short-access conditions, their behavior tends to be well-regulated and homogeneous in nature; though individual differences can emerge when rats are provided long- or intermittent-access to cocaine. In contrast to cocaine, significant individual differences emerge when rats are allowed to self-administer 3,4-methylenedioxypyrovalerone (MDPV), even under short-access conditions, wherein ~30% of rats rapidly transition to high levels of drug-taking. This study assessed the SUD-like phenotypes of male and female Sprague Dawley rats self-administering MDPV (0.032 mg/kg/infusion) or cocaine (0.32 mg/kg/infusion) by comparing level of drug intake, responding during periods of signaled drug unavailability, and sensitivity to footshock punishment to test the hypotheses that: (1) under short-access conditions, rats that self-administer MDPV will exhibit a more robust SUD-like phenotype than rats that self-administered cocaine; (2) female rats will have a more severe phenotype than male rats; and (3) compared to short-access, long- and intermittent-access to MDPV or cocaine self-administration will result in a more robust SUD-like phenotype. After short-access, rats that self-administered MDPV exhibited a more severe phenotype than rats that self-administered cocaine. Though long- and intermittent-access to cocaine and MDPV self-administration altered drug-taking patterns, manipulating access conditions did not systematically alter their SUD-like phenotype. Evidence from behavioral and quantitative autoradiography studies suggest that these differences are unlikely due to changes in expression levels of dopamine transporter, dopamine D2 or D3 receptors, or 5-HT1B, 5-HT2A, or 5-HT2C receptors, though these possibilities cannot be ruled out. These results show that the phenotype exhibited by rats self-administering MDPV differs from that observed for rats self-administering cocaine, and suggests that individuals that use MDPV and/or related cathinones may be at greater risk for developing a SUD, and that short-access MDPV self-administration may provide a useful method to understand the factors that mediate the transition to problematic or disordered substance use in humans.
Collapse
Affiliation(s)
- Michelle R. Doyle
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nina M. Beltran
- Department of Psychology, University of Texas at El Paso, El Paso, TX, USA
| | - Mark S. A. Bushnell
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Maaz Syed
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Valeria Acosta
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Marisa Desai
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kenner C. Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism - Intramural Research Program, Bethesda, MD
| | | | - Georgianna G. Gould
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Lynette C. Daws
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Gregory T. Collins
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
6
|
Zald DH. The influence of dopamine autoreceptors on temperament and addiction risk. Neurosci Biobehav Rev 2023; 155:105456. [PMID: 37926241 PMCID: PMC11330662 DOI: 10.1016/j.neubiorev.2023.105456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
As a major regulator of dopamine (DA), DA autoreceptors (DAARs) exert substantial influence over DA-mediated behaviors. This paper reviews the physiological and behavioral impact of DAARs. Individual differences in DAAR functioning influences temperamental traits such as novelty responsivity and impulsivity, both of which are associated with vulnerability to addictive behavior in animal models and a broad array of externalizing behaviors in humans. DAARs additionally impact the response to psychostimulants and other drugs of abuse. Human PET studies of D2-like receptors in the midbrain provide evidence for parallels to the animal literature. These data lead to the proposal that weak DAAR regulation is a risk factor for addiction and externalizing problems. The review highlights the potential to build translational models of the functional role of DAARs in behavior. It also draws attention to key limitations in the current literature that would need to be addressed to further advance a weak DAAR regulation model of addiction and externalizing risk.
Collapse
Affiliation(s)
- David H Zald
- Center for Advanced Human Brain Imaging and Department of Psychiatry, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
7
|
Panayi MC, Shetty S, Porod M, Bahena L, Xi ZX, Newman AH, Schoenbaum G. The selective D3-Receptor antagonist VK4-116 effectively treats behavioral inflexibility in rats caused by self-administration and withdrawal from cocaine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.03.556083. [PMID: 37732238 PMCID: PMC10508727 DOI: 10.1101/2023.09.03.556083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Chronic psychostimulant use can cause long lasting changes to neural and cognitive function that persist even after long periods of abstinence. As cocaine users transition from drug use to abstinence, a parallel transition from hyperactivity to hypoactivity has been found in orbitofrontal-striatal glucose metabolism, and striatal D2/D3 receptor activity. Targeting these changes pharmacologically, using highly selective dopamine D3 receptor (D3R) antagonists and partial agonists, has shown significant promise in reducing drug-taking, and attenuating relapse in animal models of cocaine and opioid use disorder. However, much less attention has been focused on treating inflexible and potentially maladaptive non-drug behaviors following chronic psychostimulant use. Here we tested the selective D3R antagonist VK4-116 as a treatment for the long-term behavioral inflexibility in abstinent male and female rats with a prior history of chronic cocaine use. Rats were first trained to self-administer cocaine (0.75 mg/kg/reinforcer) or a sucrose liquid (10%, .04 mL/reinforcer) for 2 weeks (FR1 schedule, max 60 reinforcers in 3 hrs/ day), followed by 4 weeks of abstinence. Cognitive and behavioral flexibilities were then assessed using a sensory preconditioning (SPC) learning paradigm. Rats were given an VK4-116 (15 mg/kg, i.p.) or vehicle 30 mins prior to each SPC training session, thus creating four drug-treatment groups: sucrose-vehicle, sucrose-VK4-116, cocaine-vehicle, cocaine-VK4-116. The control groups (sucrose-vehicle, sucrose-VK4-116) demonstrated significant evidence of flexible SPC behavior, whereas cocaine use (cocaine-vehicle) disrupted SPC behavior. Remarkably, the D3R antagonist VK4-116 mitigated this cocaine deficit in the cocaine-VK4-116 group, demonstrating flexible SPC to levels comparable to the control groups. These preclinical findings demonstrate that highly selective dopamine D3R antagonists, particularly VK4-116, show significant promise as a pharmacological treatment for the long-term negative behavioral consequences of cocaine use disorder.
Collapse
Affiliation(s)
- Marios C Panayi
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Shohan Shetty
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Micaela Porod
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Lisette Bahena
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Zheng-Xiong Xi
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Amy Hauck Newman
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Geoffrey Schoenbaum
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
8
|
Czoty PW, Tryhus AM, Solingapuram Sai KK, Nader SH, Epperly PM. Association of dopamine D2-like and D 3 receptor function with initial sensitivity to cocaine reinforcement in male rhesus monkeys. Brain Res 2023; 1807:148323. [PMID: 36914041 PMCID: PMC10150948 DOI: 10.1016/j.brainres.2023.148323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023]
Abstract
Identifying neurobiological characteristics that predict the development of cocaine use disorder would be of great value in prevention efforts. Because of their importance in mediating the abuse-related effects of cocaine, brain dopamine receptors are logical candidates for investigation. We analyzed data from two recently published studies that characterized availability of dopamine D2-like receptors (D2R) with [11C]raclopride PET imaging and dopamine D3 receptor (D3R) sensitivity with quinpirole-induced yawning in cocaine-naïve rhesus monkeys who subsequently acquired cocaine self-administration and completed a cocaine self-administration dose-effect curve. The present analysis compared D2R availability in several brain areas and characteristics of quinpirole-induced yawning, both acquired when monkeys were drug-naïve, with measures of initial sensitivity to cocaine. D2R availability in the caudate nucleus was negatively correlated with the ED50 of the cocaine self-administration curve, although the significance of this relationship was driven by an outlier and was not present after the outlier was removed. No other significant associations were observed between D2R availability in any examined brain region and measures of sensitivity to cocaine reinforcement. However, there was a significant negative correlation between D3R sensitivity, represented by the ED50 of the quinpirole-induced yawning curve, and the dose at which monkeys acquired cocaine self-administration. We also report no change from baseline D2R availability when a second PET scan was conducted after completion of the dose-effect curves. These data suggest the utility of D3R sensitivity, but not D2R availability, as a biomarker for vulnerability and resilience to cocaine. The well-established relationships between dopamine receptors and cocaine reinforcement in cocaine-experienced humans and animals may require extensive cocaine exposure.
Collapse
Affiliation(s)
- Paul W Czoty
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States.
| | - Aaron M Tryhus
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| | - Kiran K Solingapuram Sai
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| | - Susan H Nader
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| | - Phillip M Epperly
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| |
Collapse
|
9
|
Niedringhaus M, West EA. Prelimbic cortex neural encoding dynamically tracks expected outcome value. Physiol Behav 2022; 256:113938. [PMID: 35944659 PMCID: PMC11247951 DOI: 10.1016/j.physbeh.2022.113938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Animals must modify their behavior based on updated expected outcomes in a changing environment. Prelimbic cortex (PrL) neural encoding during learning predicts, and is necessary for, appropriately altering behavior based on a new expected outcome value following devaluation. We aimed to determine how PrL neural activity encodes reward predictive cues after the expected outcome value of those cues is decreased following conditioned taste aversion. In one post-devaluation session, rats were tested under extinction to determine their ability to alter their behavior to the expected outcome values (i.e., extinction test). In a second post-devaluation session, rats were tested with the newly devalued outcome delivered so that the rats experienced the updated outcome value within the session (i.e., re-exposure test). We found that PrL neural encoding of the cue associated with the devalued reward predicted the ability of rats to suppress behavior in the extinction test session, but not in the re-exposure test session. While all rats were able to successfully devalue the outcome during conditioned taste aversion, a subset of rats continued to consume the devalued outcome in the re-exposure test session. We found differential patterns of PrL neural encoding in the population of rats that did not avoid the devalued outcome during the re-exposure test compared to the rats that successfully avoided the devalued outcome. Our findings suggest that PrL neural encoding dynamically tracks expected outcome values, and differential neural encoding in the PrL to reward predictive cues following expected outcome value changes may contribute to distinct behavioral phenotypes.
Collapse
Affiliation(s)
- Mark Niedringhaus
- Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084
| | - Elizabeth A West
- Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084; Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084.
| |
Collapse
|
10
|
Adolescent reinforcement-learning trajectories predict cocaine-taking behaviors in adult male and female rats. Psychopharmacology (Berl) 2022; 239:2885-2901. [PMID: 35705734 DOI: 10.1007/s00213-022-06174-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
The anatomical, structural, and functional adaptations that occur in the brain during adolescence are thought to facilitate improvements in decision-making functions that are known to occur during this stage of development. The mechanisms that underlie these neural adaptations are not known, but deviations in developmental trajectories have been proposed to contribute to the emergence of mental illness, including addiction. Direct evidence supporting this hypothesis, however, has been limited. Here, we used a recently developed reversal-learning protocol to investigate the predictive relationship between adolescent decision-making trajectories and cocaine-taking behaviors in adulthood. Decision-making functions in the reversal-learning task were assessed throughout adolescence and into adulthood in male and female Long-Evans rats. Trial-by-trial choice data was fitted with a reinforcement-learning model to quantify the degree to which choice behavior of individual rats was influenced by rewarded (e.g., ∆+ parameter) and unrewarded (e.g., ∆0 parameter) outcomes. We report that reversal-learning performance improved during adolescence and that this was due to an increase in value updating for rewarded outcomes (e.g., ∆+ parameter). Furthermore, the rate of change in the ∆+ parameter predicted individual differences in the ∆+ parameter and, notably, cocaine-taking behaviors in adulthood: Rats that had a shallower adolescent trajectory were found to have a lower ∆+ parameter and greater cocaine self-administration in adulthood. These data indicate that adolescent development plays a critical role in drug use susceptibility. Future studies aimed at understanding the neurobiological mechanisms that underlie these age-related changes in decision-making could provide new insights into the biobehavioral mechanisms mediating addiction susceptibility.
Collapse
|
11
|
Groman SM, Thompson SL, Lee D, Taylor JR. Reinforcement learning detuned in addiction: integrative and translational approaches. Trends Neurosci 2022; 45:96-105. [PMID: 34920884 PMCID: PMC8770604 DOI: 10.1016/j.tins.2021.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 02/03/2023]
Abstract
Suboptimal decision-making strategies have been proposed to contribute to the pathophysiology of addiction. Decision-making, however, arises from a collection of computational components that can independently influence behavior. Disruptions in these different components can lead to decision-making deficits that appear similar behaviorally, but differ at the computational, and likely the neurobiological, level. Here, we discuss recent studies that have used computational approaches to investigate the decision-making processes underlying addiction. Studies in animal models have found that value updating following positive, but not negative, outcomes is predictive of drug use, whereas value updating following negative, but not positive, outcomes is disrupted following drug self-administration. We contextualize these findings with studies on the circuit and biological mechanisms of decision-making to develop a framework for revealing the biobehavioral mechanisms of addiction.
Collapse
Affiliation(s)
- Stephanie M. Groman
- Department of Neuroscience, University of Minnesota,Department of Psychiatry, Yale University,Correspondence to be directed to: Stephanie Groman, 321 Church Street SE, 4-125 Jackson Hall Minneapolis MN 55455,
| | | | - Daeyeol Lee
- The Zanvyl Krieger Mind/Brain Institute, The Solomon H Snyder Department of Neuroscience, Department of Psychological and Brain Sciences, Kavli Neuroscience Discovery Institute, Johns Hopkins University
| | - Jane R. Taylor
- Department of Psychiatry, Yale University,Department of Neuroscience, Yale University,Department of Psychology, Yale University
| |
Collapse
|
12
|
Kohno M, Dennis LE, McCready H, Hoffman WF. Dopamine dysfunction in stimulant use disorders: mechanistic comparisons and implications for treatment. Mol Psychiatry 2022; 27:220-229. [PMID: 34117366 PMCID: PMC8664889 DOI: 10.1038/s41380-021-01180-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022]
Abstract
Dopamine system deficiencies and associated behavioral phenotypes may be a critical barrier to success in treating stimulant use disorders. Similarities in dopamine dysfunction between cocaine and methamphetamine use disorder but also key differences may impact treatment efficacy and outcome. This review will first compare the epidemiology of cocaine and methamphetamine use disorder. A detailed account of the pharmacokinetic and pharmacodynamic properties associated with each drug will then be discussed, with an emphasis on effects on the dopamine system and associated signaling pathways. Lastly, treatment results from pharmacological clinical trials will be summarized along with a more comprehensive review of the involvement of the trace amine-associated receptor on dopamine signaling dysfunction among stimulants and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Milky Kohno
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA. .,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA. .,Research and Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA. .,Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA.
| | - Laura E. Dennis
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, USA,Research & Development Service, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Holly McCready
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, USA,Research & Development Service, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - William F. Hoffman
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, USA,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA,Research & Development Service, Veterans Affairs Portland Health Care System, Portland, Oregon, USA,Mental Health Division, Veterans Affairs Portland Health Care System, Portland, Oregon, USA,Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| |
Collapse
|
13
|
Fredriksson I, Tsai PJ, Shekara A, Duan Y, Applebey SV, Lu H, Bossert JM, Shaham Y, Yang Y. Orbitofrontal cortex and dorsal striatum functional connectivity predicts incubation of opioid craving after voluntary abstinence. Proc Natl Acad Sci U S A 2021; 118:e2106624118. [PMID: 34675078 PMCID: PMC8639358 DOI: 10.1073/pnas.2106624118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
We recently introduced a rat model of incubation of opioid craving after voluntary abstinence induced by negative consequences of drug seeking. Here, we used resting-state functional MRI to determine whether longitudinal functional connectivity changes in orbitofrontal cortex (OFC) circuits predict incubation of opioid craving after voluntary abstinence. We trained rats to self-administer for 14 d either intravenous oxycodone or palatable food. After 3 d, we introduced an electric barrier for 12 d that caused cessation of reward self-administration. We tested the rats for oxycodone or food seeking under extinction conditions immediately after self-administration training (early abstinence) and after electric barrier exposure (late abstinence). We imaged their brains before self-administration and during early and late abstinence. We analyzed changes in OFC functional connectivity induced by reward self-administration and electric barrier-induced abstinence. Oxycodone seeking was greater during late than early abstinence (incubation of oxycodone craving). Oxycodone self-administration experience increased OFC functional connectivity with dorsal striatum and related circuits that was positively correlated with incubated oxycodone seeking. In contrast, electric barrier-induced abstinence decreased OFC functional connectivity with dorsal striatum and related circuits that was negatively correlated with incubated oxycodone seeking. Food seeking was greater during early than late abstinence (abatement of food craving). Food self-administration experience and electric barrier-induced abstinence decreased or maintained functional connectivity in these circuits that were not correlated with abated food seeking. Opposing functional connectivity changes in OFC with dorsal striatum and related circuits induced by opioid self-administration versus voluntary abstinence predicted individual differences in incubation of opioid craving.
Collapse
Affiliation(s)
- Ida Fredriksson
- Behavioral Neuroscience Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224
- Center for Social and Affective Neuroscience, Linköping University, Linköping 581 83, Sweden
| | - Pei-Jung Tsai
- Neuroimaging Research Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224
| | - Aniruddha Shekara
- Behavioral Neuroscience Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224
| | - Ying Duan
- Neuroimaging Research Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224
| | - Sarah V Applebey
- Behavioral Neuroscience Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224
| | - Hanbing Lu
- Neuroimaging Research Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224
| | - Jennifer M Bossert
- Behavioral Neuroscience Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224
| | - Yavin Shaham
- Behavioral Neuroscience Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224;
| | - Yihong Yang
- Neuroimaging Research Branch, Intramural Research Program/National Institute on Drug Abuse/NIH, Baltimore, MD 21224
| |
Collapse
|
14
|
Azim L, Hindmarch P, Browne G, Chadwick T, Clare E, Courtney P, Dixon L, Duffelen N, Fouweather T, Geddes JR, Goudie N, Harvey S, Helter T, Holstein EM, Martin G, Mawson P, McCaffery J, Morriss R, Simon J, Smith D, Stokes PRA, Walker J, Weetman C, Wolstenhulme F, Young AH, Watson S, McAllister-Williams RH. Study protocol for a randomised placebo-controlled trial of pramipexole in addition to mood stabilisers for patients with treatment resistant bipolar depression (the PAX-BD study). BMC Psychiatry 2021; 21:334. [PMID: 34225686 PMCID: PMC8256234 DOI: 10.1186/s12888-021-03322-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/10/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Treatment Resistant Bipolar Depression (TRBD) is a major contributor to the burden of disease associated with Bipolar Disorder (BD). Treatment options for people experiencing bipolar depression are limited to three interventions listed by National Institute for Health and Care: lamotrigine, quetiapine and olanzapine, of which the latter two are often not well tolerated. The majority of depressed people with BD are therefore prescribed antidepressants despite limited efficacy. This demonstrates an unmet need for additional interventions. Pramipexole has been shown to improve mood symptoms in animal models of depression, in people with Parkinson's Disease and two proof of principle trials of pramipexole for people with BD who are currently depressed. METHODS The PAX-BD study, funded by the United Kingdom (UK) National Institute for Health Research, aims to extend previous findings by assessing the efficacy, safety and health economic impact of pramipexole in addition to mood stabilisers for patients with TRBD. A randomised, double-blind, placebo controlled design is conducted in a naturalistic UK National Health Service setting. An internal pilot study to examine feasibility and acceptability of the study design is included. Participants with TRBD are screened from National Health Service secondary care services in up to 40 mental health trusts in the UK, with the aim of recruiting approximately 414 participants into a pre-randomisation phase to achieve a target of 290 randomised participants. Primary safety and efficacy measures are at 12 weeks following randomisation, with follow up of participants to 52 weeks. The primary outcome is depressive symptoms as measured by Quick Inventory for Depressive Symptomatology - Self Report. Secondary outcomes include changes in anxiety, manic symptoms, tolerability, acceptability, quality of life and cost-effectiveness. Outcome measures are collected remotely using self-report tools implemented online, and observer-rated assessments conducted via telephone. ANCOVA will be used to examine the difference in rating scale scores between treatment arms, and dependent on compliance in completion of weekly self-report measures. A mixed effects linear regression model may also be used to account for repeated measures. TRIAL REGISTRATION ISRCTN72151939. Registered on 28 August 2019, http://www.isrctn.com/ISRCTN72151939 Protocol Version: 04-FEB-2021, Version 9.0.
Collapse
Affiliation(s)
- Lumbini Azim
- Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, Newcastle, UK
- Northern Centre for Mood Disorders, Newcastle University Translational and Clinical Research Institute, Newcastle, UK
| | - Paul Hindmarch
- Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, Newcastle, UK
- Northern Centre for Mood Disorders, Newcastle University Translational and Clinical Research Institute, Newcastle, UK
| | - Georgiana Browne
- Newcastle Clinical Trials Unit, Newcastle University, Newcastle, UK
| | - Thomas Chadwick
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Emily Clare
- Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, Newcastle, UK
| | - Paul Courtney
- Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, Newcastle, UK
| | - Lyndsey Dixon
- Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, Newcastle, UK
| | - Nichola Duffelen
- Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, Newcastle, UK
| | - Tony Fouweather
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - John R Geddes
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford, UK
| | - Nicola Goudie
- Newcastle Clinical Trials Unit, Newcastle University, Newcastle, UK
| | - Sandy Harvey
- Patient, Carer and Public Involvement, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Clinical Research Network in North East and North Cumbria, Newcastle upon Tyne, UK
| | - Timea Helter
- Department of Health Economics, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | | | - Garry Martin
- Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, Newcastle, UK
| | - Phil Mawson
- Newcastle Clinical Trials Unit, Newcastle University, Newcastle, UK
| | - Jenny McCaffery
- Newcastle Clinical Trials Unit, Newcastle University, Newcastle, UK
| | - Richard Morriss
- Division of Psychiatry and Applied Psychology, University of Nottingham, Nottingham, UK
| | - Judit Simon
- Department of Psychiatry, University of Oxford, Oxford, UK
- Patient, Carer and Public Involvement, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Daniel Smith
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Paul R A Stokes
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London & South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, London, UK
| | - Jenn Walker
- Newcastle Clinical Trials Unit, Newcastle University, Newcastle, UK
| | - Chris Weetman
- Newcastle Clinical Trials Unit, Newcastle University, Newcastle, UK
| | | | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London & South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, London, UK
| | - Stuart Watson
- Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, Newcastle, UK
- Northern Centre for Mood Disorders, Newcastle University Translational and Clinical Research Institute, Newcastle, UK
| | - R Hamish McAllister-Williams
- Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, Newcastle, UK.
- Northern Centre for Mood Disorders, Newcastle University Translational and Clinical Research Institute, Newcastle, UK.
- Northern Centre for Mood Disorders, Wolfson Research Centre, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5LP, UK.
| |
Collapse
|
15
|
Groman SM, Lee D, Taylor JR. Unlocking the reinforcement-learning circuits of the orbitofrontal cortex. Behav Neurosci 2021; 135:120-128. [PMID: 34060870 DOI: 10.1037/bne0000414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuroimaging studies have consistently identified the orbitofrontal cortex (OFC) as being affected in individuals with neuropsychiatric disorders. OFC dysfunction has been proposed to be a key mechanism by which decision-making impairments emerge in diverse clinical populations, and recent studies employing computational approaches have revealed that distinct reinforcement-learning mechanisms of decision-making differ among diagnoses. In this perspective, we propose that these computational differences may be linked to select OFC circuits and present our recent work that has used a neurocomputational approach to understand the biobehavioral mechanisms of addiction pathology in rodent models. We describe how combining translationally analogous behavioral paradigms with reinforcement-learning algorithms and sophisticated neuroscience techniques in animals can provide critical insights into OFC pathology in biobehavioral disorders. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
|
16
|
Niu Y, Zeng X, Zhao L, Zhou Y, Qin G, Zhang D, Fu Q, Zhou J, Chen L. Metabotropic glutamate receptor 5 regulates synaptic plasticity in a chronic migraine rat model through the PKC/NR2B signal. J Headache Pain 2020; 21:139. [PMID: 33276724 PMCID: PMC7716451 DOI: 10.1186/s10194-020-01206-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
Background The mechanism of chronic migraine (CM) is complex, central sensitization is considered as one of the pathological mechanism. Synaptic plasticity is the basis of central sensitization. Metabotropic glutamate receptor 5 (mGluR5) plays a vital role in the synaptic plasticity of the central nervous system. However, whether mGluR5 can promote the central sensitization by regulating synaptic plasticity in CM is unknown. Methods Male Wistar rats were used to establish a CM rat model, and the expression of mGluR5 mRNA and protein were detected by qRT-PCR and western blot. The allodynia was assessed by mechanical and thermal thresholds, and central sensitization was assessed by expression of the phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) at Serine 133(pCREB-S133) and c-Fos. The synaptic-associated protein postsynaptic density protein 95 (PSD), synaptophysin (Syp), and synaptophysin-1(Syt-1), synaptic ultrastructure, and dendritic spines were detected to explore synaptic plasticity. The expression of PKC, total NR2B(tNR2B), and phosphorylation of NR2B at Tyr1472(pNR2B-Y1472) were detected by western blot. Results We found that the expression of mGluR5 was upregulated in CM rats. Downregulated the mGluR5 with MPEP alleviated the allodynia and reduced the expression of CGRP, pCREB-S133, c-Fos, PSD, Syp and Syt-1 and synaptic transmission. Moreover, the administration of MPEP inhibited the upregulation of PKC and pNR2B-Y1472. Conclusions These results indicate that mGluR5 contributes to central sensitization by regulating synaptic plasticity in CM through the PKC/NR2B signal, which suggests that mGluR5 may be a potential therapeutic candidate for CM.
Collapse
Affiliation(s)
- Yingying Niu
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoxu Zeng
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lilin Zhao
- Department of Stomatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Zhou
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingqing Fu
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
17
|
Groman SM, Hillmer AT, Heather L, Fowles K, Holden D, Morris ED, Lee D, Taylor JR. Dysregulation of Decision Making Related to Metabotropic Glutamate 5, but Not Midbrain D 3, Receptor Availability Following Cocaine Self-administration in Rats. Biol Psychiatry 2020; 88:777-787. [PMID: 32826065 PMCID: PMC8935943 DOI: 10.1016/j.biopsych.2020.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/05/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Compulsive patterns of drug use are thought to be the consequence of drug-induced adaptations in the neural mechanisms that enable behavior to be flexible. Neuroimaging studies have found evidence of robust alterations in glutamate and dopamine receptors within brain regions that are known to be critical for decision-making processes in cocaine-dependent individuals, and these changes have been argued to be the consequence of persistent drug use. The causal relationships among drug-induced alterations, cocaine taking, and maladaptive decision-making processes, however, are difficult to establish in humans. METHODS We assessed decision making in adult male rats using a probabilistic reversal learning task and used positron emission tomography with the [11C]-(+)-PHNO and [18F]FPEB radioligands to quantify regional dopamine D2/3 and metabotropic glutamate 5 (mGlu5) receptor availability, respectively, before and after 21 days of cocaine or saline self-administration. Tests of motivation and relapse-like behaviors were also conducted. RESULTS We found that self-administration of cocaine, but not of saline, disrupted behavior in the probabilistic reversal learning task measured by selective impairments in negative-outcome updating and also increased cortical mGlu5 receptor availability following 2 weeks of forced abstinence. D2/3 and, importantly, midbrain D3 receptor availability was not altered following 2 weeks of abstinence from cocaine. Notably, the degree of the cocaine-induced increase in cortical mGlu5 receptor availability was related to the degree of disruption in negative-outcome updating. CONCLUSIONS These findings suggest that cocaine-induced changes in mGlu5 signaling may be a mechanism by which disruptions in negative-outcome updating emerge in cocaine-dependent individuals.
Collapse
Affiliation(s)
- Stephanie M. Groman
- Department of Psychiatry Yale University,Correspondence should be addressed to: Stephanie M. Groman, Ph.D. (), Jane R. Taylor, Ph.D. (), 34 Park Street, New Haven CT 06515
| | - Ansel T. Hillmer
- Department of Psychiatry Yale University,Department of Radiology and Biomedical Imaging Yale University,Department of Yale Positron Emission Tomography Center Yale University
| | - Liu Heather
- Department of Radiology and Biomedical Imaging Yale University
| | - Krista Fowles
- Department of Yale Positron Emission Tomography Center Yale University
| | - Daniel Holden
- Department of Yale Positron Emission Tomography Center Yale University
| | - Evan D. Morris
- Department of Radiology and Biomedical Imaging Yale University,Department of Yale Positron Emission Tomography Center Yale University,Invicro LLC
| | - Daeyeol Lee
- The Zanvyl Krieger Mind/Brain Institute, The Solomon H Snyder Department of Neuroscience, Department of Psychological and Brain Sciences, Johns Hopkins University
| | - Jane R. Taylor
- Department of Psychiatry Yale University,Department of Neuroscience Yale University,Correspondence should be addressed to: Stephanie M. Groman, Ph.D. (), Jane R. Taylor, Ph.D. (), 34 Park Street, New Haven CT 06515
| |
Collapse
|
18
|
Moin Afshar N, Keip AJ, Taylor JR, Lee D, Groman SM. Reinforcement Learning during Adolescence in Rats. J Neurosci 2020; 40:5857-5870. [PMID: 32601244 PMCID: PMC7380962 DOI: 10.1523/jneurosci.0910-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/07/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
The most dynamic period of postnatal brain development occurs during adolescence, the period between childhood and adulthood. Neuroimaging studies have observed morphologic and functional changes during adolescence, and it is believed that these changes serve to improve the functions of circuits that underlie decision-making. Direct evidence in support of this hypothesis, however, has been limited because most preclinical decision-making paradigms are not readily translated to humans. Here, we developed a reversal-learning protocol for the rapid assessment of adaptive choice behavior in dynamic environments in rats as young as postnatal day 30. A computational framework was used to elucidate the reinforcement-learning mechanisms that change in adolescence and into adulthood. Using a cross-sectional and longitudinal design, we provide the first evidence that value-based choice behavior in a reversal-learning task improves during adolescence in male and female Long-Evans rats and demonstrate that the increase in reversal performance is due to alterations in value updating for positive outcomes. Furthermore, we report that reversal-learning trajectories in adolescence reliably predicted reversal performance in adulthood. This novel behavioral protocol provides a unique platform for conducting biological and systems-level analyses of the neurodevelopmental mechanisms of decision-making.SIGNIFICANCE STATEMENT The neurodevelopmental adaptations that occur during adolescence are hypothesized to underlie age-related improvements in decision-making, but evidence to support this hypothesis has been limited. Here, we describe a novel behavioral protocol for rapidly assessing adaptive choice behavior in adolescent rats with a reversal-learning paradigm. Using a computational approach, we demonstrate that age-related changes in reversal-learning performance in male and female Long-Evans rats are linked to specific reinforcement-learning mechanisms and are predictive of reversal-learning performance in adulthood. Our behavioral protocol provides a unique platform for elucidating key components of adolescent brain function.
Collapse
Affiliation(s)
- Neema Moin Afshar
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut 06511
| | - Alex J Keip
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut 06511
| | - Jane R Taylor
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut 06511
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut 06520-8001
| | - Daeyeol Lee
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland 21205
| | - Stephanie M Groman
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut 06511
| |
Collapse
|