1
|
Jiang M, Kang L, Wang YL, Zhou B, Li HY, Yan Q, Liu ZG. Mechanisms of microbiota-gut-brain axis communication in anxiety disorders. Front Neurosci 2024; 18:1501134. [PMID: 39717701 PMCID: PMC11663871 DOI: 10.3389/fnins.2024.1501134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Anxiety disorders, prevalent mental health conditions, receive significant attention globally due to their intricate etiology and the suboptimal effectiveness of existing therapies. Research is increasingly recognizing that the genesis of anxiety involves not only neurochemical brain alterations but also changes in gut microbiota. The microbiota-gut-brain axis (MGBA), serving as a bidirectional communication pathway between the gut microbiota and the central nervous system (CNS), is at the forefront of novel approaches to deciphering the complex pathophysiology of anxiety disorders. This review scrutinizes the role and recent advancements in the MGBA concerning anxiety disorders through a review of the literature, emphasizing mechanisms via neural signals, endocrine pathways, and immune responses. The evidence robustly supports the critical influence of MGBA in both the development and progression of these disorders. Furthermore, this discussion explores potential therapeutic avenues stemming from these insights, alongside the challenges and issues present in this realm. Collectively, our findings aim to enhance understanding of the pathological mechanisms and foster improved preventative and therapeutic strategies for anxiety disorders.
Collapse
Affiliation(s)
- Min Jiang
- Department of Clinical Laboratory, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Li Kang
- Department of Anesthesiology, The First People’s Hospital of Neijiang, Neijiang, Sichuan, China
| | - Ya-Li Wang
- Department of Neurology, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Bin Zhou
- Department of Neurology, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Hong-Yi Li
- Department of Neurology, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Qiang Yan
- Department of Clinical Laboratory, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| | - Zhi-Gang Liu
- Department of Clinical Laboratory, Neijiang Central District People’s Hospital, Neijiang, Sichuan, China
| |
Collapse
|
2
|
Liang J, Xiong Z, Lei Q, Jiang Z, Wei J, Ouyang F, Chen Y, Zeng J. Sleep dysfunction and gut dysbiosis related amino acids metabolism disorders in cynomolgus monkeys after middle cerebral artery occlusion. Exp Neurol 2024; 382:114970. [PMID: 39321863 DOI: 10.1016/j.expneurol.2024.114970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/06/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION This study aimed to explore the characteristics of post-stroke sleep dysfunction and verify their association with gut dysbiosis and the related amino acid metabolism disorders. This was achieved by using fecal microbiota transplantation (FMT) in a non-human primate stroke model. METHODS Twenty adult male cynomolgus monkeys were divided into the sham (n = 4), middle cerebral artery occlusion (MCAO, n = 5), MCAO + FMT (n = 3), and donor (n = 8) groups. The MCAO+FMT group received FMT at post-MCAO week 4. Sleep parameters, gut microbiota, gamma-aminobutyric acid (GABA), and glutamine (Gln) in the cerebrospinal fluid (CSF) were measured at baseline and postoperative weeks 4, 8, and 12. RESULTS At postoperative weeks 4, 8, and 12, the MCAO group showed decreased sleep efficiency, measured as the percentage of sleep during the whole night (82.3 ± 3.2 % vs 91.3 ± 2.5 %, 79.0 ± 3.75 % vs 90.8 ± 3.2 %, and 69.5 ± 4.8 % vs 90.5 ± 2.7 %; all P < 0.05), lower relative abundance of Lactobacillus (all P < 0.05), and reduced GABA concentrations in the CSF (317.3 ± 30.6 nmol/L vs 437.7 ± 25.6 nmol/L, 303.1 ± 48.9 nmol/L vs 4 40.9 ± 37.8 nmol/L, and 337.9 ± 49.4 nmol/L vs 457.4 ± 39.2 nmol/L; all P < 0.05) compared with the sham group. Sleep efficiency at post-FMT weeks 4 and 8 (84.7 ± 1.1 % vs 79.0 ± 3.75 %, and 84.1 ± 2.0 % vs 69.5 ± 4.8 %; both P < 0.05) and GABA concentration in the CSF at post-FMT week 4 (403.1 ± 25.4 nmol/L vs 303.1 ± 48.9 nmol/L, P < 0.05) was higher in the MCAO+FMT group than in the MCAO group. CONCLUSIONS Post-stroke sleep dysfunction in monkeys is characterized by impaired sleep coherence, associated with decreased levels of probiotics such as Lactobacillus, GABA, and Gln in the CSF and can be ameliorated using FMT.
Collapse
Affiliation(s)
- Jiahui Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China; Department of Medical Imaging, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangdong 510060, China
| | - Zhiyi Xiong
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Qingfeng Lei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China; Department of Neurology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, China
| | - Zimu Jiang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Jiating Wei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Fubing Ouyang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Yicong Chen
- Section II, Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China.
| | - Jinsheng Zeng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No. 58 Zhongshan Road 2, Guangzhou 510080, China.
| |
Collapse
|
3
|
Edwards CM, Guerrero IE, Thompson D, Dolezel T, Rinaman L. Ascending Vagal Sensory and Central Noradrenergic Pathways Modulate Retrieval of Passive Avoidance Memory in Male Rats. J Neurosci Res 2024; 102:e25390. [PMID: 39373381 DOI: 10.1002/jnr.25390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024]
Abstract
Visceral feedback from the body is often subconscious, but plays an important role in guiding motivated behaviors. Vagal sensory neurons relay "gut feelings" to noradrenergic (NA) neurons in the caudal nucleus of the solitary tract (cNTS), which in turn project to the anterior ventrolateral bed nucleus of the stria terminalis (vlBNST) and other hypothalamic-limbic forebrain regions. Prior work supports a role for these circuits in modulating memory consolidation and extinction, but a potential role in retrieval of conditioned avoidance remains untested. To examine this, adult male rats underwent passive avoidance conditioning. We then lesioned gut-sensing vagal afferents by injecting cholecystokinin-conjugated saporin toxin (CSAP) into the vagal nodose ganglia (Experiment 1), or lesioned NA inputs to the vlBNST by injecting saporin toxin conjugated to an antibody against dopamine-beta hydroxylase (DSAP) into the vlBNST (Experiment 2). When avoidance behavior was later assessed, rats with vagal CSAP lesions or NA DSAP lesions displayed significantly increased conditioned passive avoidance. These new findings support the view that gut vagal afferents and the cNTSNA-to-vlBNST circuit play a role in modulating the expression/retrieval of learned passive avoidance. Overall, our data suggest a dynamic modulatory role of vagal sensory feedback to the limbic forebrain in integrating interoceptive signals with contextual cues that elicit conditioned avoidance behavior.
Collapse
Affiliation(s)
- Caitlyn M Edwards
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Inge Estefania Guerrero
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Danielle Thompson
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Tyla Dolezel
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Linda Rinaman
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
4
|
Chang H, Perkins MH, Novaes LS, Qian F, Zhang T, Neckel PH, Scherer S, Ley RE, Han W, de Araujo IE. Stress-sensitive neural circuits change the gut microbiome via duodenal glands. Cell 2024; 187:5393-5412.e30. [PMID: 39121857 PMCID: PMC11425084 DOI: 10.1016/j.cell.2024.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/13/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
Negative psychological states impact immunity by altering the gut microbiome. However, the relationship between brain states and microbiome composition remains unclear. We show that Brunner's glands in the duodenum couple stress-sensitive brain circuits to bacterial homeostasis. Brunner's glands mediated the enrichment of gut Lactobacillus species in response to vagus nerve stimulation. Cell-specific ablation of the glands markedly suppressed Lactobacilli counts and heightened vulnerability to infection. In the forebrain, we mapped a vagally mediated, polysynaptic circuit connecting the central nucleus of the amygdala to Brunner's glands. Chronic stress suppressed central amygdala activity and phenocopied the effects of gland lesions. Conversely, excitation of either the central amygdala or parasympathetic vagal neurons activated Brunner's glands and reversed the effects of stress on the gut microbiome and immunity. The findings revealed a tractable brain-body mechanism linking psychological states to host defense.
Collapse
Affiliation(s)
- Hao Chang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Matthew H Perkins
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Leonardo S Novaes
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Tong Zhang
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou 510180, Guangdong, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Peter H Neckel
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen 72074, Germany
| | - Simon Scherer
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, Tübingen 72076, Germany
| | - Ruth E Ley
- Max-Planck Institute for Biology, Tübingen 72076, Germany
| | - Wenfei Han
- Max-Planck Institute for Biological Cybernetics, Tübingen 72076, Germany.
| | - Ivan E de Araujo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Max-Planck Institute for Biological Cybernetics, Tübingen 72076, Germany.
| |
Collapse
|
5
|
S H, T T, Vellapandian C. Gut-Brain Axis: Unveiling the Interplay Between Diabetes Mellitus and Alzheimer's Disease. Cureus 2024; 16:e68083. [PMID: 39347125 PMCID: PMC11438540 DOI: 10.7759/cureus.68083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
The gut-brain axis (GBA) represents a complex bidirectional communication system linking the gastrointestinal tract with the CNS, influencing various physiological processes, including cognition. Emerging research suggests a significant interplay between diabetes mellitus (DM) and Alzheimer's disease (AD) mediated through this axis. DM, characterized by impaired insulin signaling and chronic inflammation, appears to exacerbate the pathology of AD. Key mechanisms include insulin resistance affecting neuronal function and promoting amyloid-beta accumulation and tau phosphorylation, hallmark features of AD. Additionally, dysbiosis of gut microbiota in DM may contribute to neuroinflammation and oxidative stress, further aggravating AD pathology. The gut microbiota can modulate systemic inflammation and metabolic dysfunction, potentially impacting AD progression in DM individuals. Understanding these interactions is crucial for developing targeted therapeutic strategies that address both DM and AD simultaneously. This abstract highlights the intricate relationship between metabolic disorders like DM and neurodegenerative conditions such as AD, emphasizing the role of the GBA as a pivotal area for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Haripriya S
- Department of Pharmacology, Sri Ramaswamy Memorial (SRM) College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Tamilanban T
- Department of Pharmacology, Sri Ramaswamy Memorial (SRM) College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Chitra Vellapandian
- Department of Pharmacy/Pharmacology, Sri Ramaswamy Memorial (SRM) College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, IND
| |
Collapse
|
6
|
Fox EA, Serlin HK. Gaps in our understanding of how vagal afferents to the small intestinal mucosa detect luminal stimuli. Am J Physiol Regul Integr Comp Physiol 2024; 327:R173-R187. [PMID: 38860288 DOI: 10.1152/ajpregu.00252.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Vagal afferents to the gastrointestinal tract are crucial for the regulation of food intake, signaling negative feedback that contributes to satiation and positive feedback that produces appetition and reward. Vagal afferents to the small intestinal mucosa contribute to this regulation by sensing luminal stimuli and reporting this information to the brain. These afferents respond to mechanical, chemical, thermal, pH, and osmolar stimuli, as well as to bacterial products and immunogens. Surprisingly, little is known about how these stimuli are transduced by vagal mucosal afferents or how their transduction is organized among these afferents' terminals. Furthermore, the effects of stimulus concentration ranges or physiological stimuli on vagal activity have not been examined for some of these stimuli. Also, detection of luminal stimuli has rarely been examined in rodents, which are most frequently used for studying small intestinal innervation. Here we review what is known about stimulus detection by vagal mucosal afferents and illustrate the complexity of this detection using nutrients as an exemplar. The accepted model proposes that nutrients bind to taste receptors on enteroendocrine cells (EECs), which excite them, causing the release of hormones that stimulate vagal mucosal afferents. However, evidence reviewed here suggests that although this model accounts for many aspects of vagal signaling about nutrients, it cannot account for all aspects. A major goal of this review is therefore to evaluate what is known about nutrient absorption and detection and, based on this evaluation, identify candidate mucosal cells and structures that could cooperate with EECs and vagal mucosal afferents in stimulus detection.
Collapse
Affiliation(s)
- Edward A Fox
- Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, United States
| | - Hannah K Serlin
- Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, United States
| |
Collapse
|
7
|
Chang H, Perkins MH, Novaes LS, Qian F, Han W, de Araujo IE. An Amygdalar-Vagal-Glandular Circuit Controls the Intestinal Microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.594027. [PMID: 38853855 PMCID: PMC11160750 DOI: 10.1101/2024.06.02.594027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Psychological states can regulate intestinal mucosal immunity by altering the gut microbiome. However, the link between the brain and microbiome composition remains elusive. We show that Brunner's glands in the duodenal submucosa couple brain activity to intestinal bacterial homeostasis. Brunner's glands mediated the enrichment of gut probiotic species in response to stimulation of abdominal vagal fibers. Cell-specific ablation of the glands triggered transmissible dysbiosis associated with an immunodeficiency syndrome that led to mortality upon gut infection with pathogens. The syndrome could be largely prevented by oral or intra-intestinal administration of probiotics. In the forebrain, we identified a vagally-mediated, polysynaptic circuit connecting the glands of Brunner to the central nucleus of the amygdala. Intra-vital imaging revealed that excitation of central amygdala neurons activated Brunner's glands and promoted the growth of probiotic populations. Our findings unveil a vagal-glandular neuroimmune circuitry that may be targeted for the modulation of the gut microbiome. The glands of Brunner may be the critical cells that regulate the levels of Lactobacilli species in the intestine.
Collapse
|
8
|
Mustika D, Nishimura Y, Ueno S, Tominaga S, Shimizu T, Tajiri N, Jung CG, Hida H. Central amygdala is related to the reduction of aggressive behavior by monosodium glutamate ingestion during the period of development in an ADHD model rat. Front Nutr 2024; 11:1356189. [PMID: 38765817 PMCID: PMC11099272 DOI: 10.3389/fnut.2024.1356189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Monosodium glutamate (MSG), an umami substance, stimulates the gut-brain axis communication via gut umami receptors and the subsequent vagus nerves. However, the brain mechanism underlying the effect of MSG ingestion during the developmental period on aggression has not yet been clarified. We first tried to establish new experimental conditions to be more appropriate for detailed analysis of the brain, and then investigated the effects of MSG ingestion on aggressive behavior during the developmental stage of an ADHD rat model. Methods Long-Evans, WKY/Izm, SHR/Izm, and SHR-SP/Ezo were individually housed from postnatal day 25 for 5 weeks. Post-weaning social isolation (PWSI) was given to escalate aggressive behavior. The resident-intruder test, that is conducted during the subjective night, was used for a detailed analysis of aggression, including the frequency, duration, and latency of anogenital sniffing, aggressive grooming, and attack behavior. Immunohistochemistry of c-Fos expression was conducted in all strains to predict potential aggression-related brain areas. Finally, the most aggressive strain, SHR/Izm, a known model of attention-deficit hyperactivity disorder (ADHD), was used to investigate the effect of MSG ingestion (60 mM solution) on aggression, followed by c-Fos immunostaining in aggression-related areas. Bilateral subdiaphragmatic vagotomy was performed to verify the importance of gut-brain interactions in the effect of MSG. Results The resident intruder test revealed that SHR/Izm rats were the most aggressive among the four strains for all aggression parameters tested. SHR/Izm rats also showed the highest number of c-Fos + cells in aggression-related brain areas, including the central amygdala (CeA). MSG ingestion significantly decreased the frequency and duration of aggressive grooming and attack behavior and increased the latency of attack behavior. Furthermore, MSG administration successfully increased c-Fos positive cell number in the intermediate nucleus of the solitary tract (iNTS), a terminal of the gastrointestinal sensory afferent fiber of the vagus nerve, and modulated c-Fos positive cells in the CeA. Interestingly, vagotomy diminished the MSG effects on aggression and c-Fos expression in the iNTS and CeA. Conclusion MSG ingestion decreased PWSI-induced aggression in SHR/Izm, which was mediated by the vagus nerve related to the stimulation of iNTS and modulation of CeA activity.
Collapse
Affiliation(s)
- Dewi Mustika
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Physiology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Yu Nishimura
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinya Ueno
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shiori Tominaga
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takeshi Shimizu
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Food and Nutrition, Shokei University Junior College, Kumamoto, Japan
| | - Naoki Tajiri
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Cha-Gyun Jung
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hideki Hida
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
9
|
Spencer NJ, Kyloh MA, Travis L, Hibberd TJ. Mechanisms underlying the gut-brain communication: How enterochromaffin (EC) cells activate vagal afferent nerve endings in the small intestine. J Comp Neurol 2024; 532:e25613. [PMID: 38625817 DOI: 10.1002/cne.25613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/02/2024] [Accepted: 03/24/2024] [Indexed: 04/18/2024]
Abstract
How the gastrointestinal tract communicates with the brain, via sensory nerves, is of significant interest for our understanding of human health and disease. Enterochromaffin (EC) cells in the gut mucosa release a variety of neurochemicals, including the largest quantity of 5-hydroxytryptamine (5-HT) in the body. How 5-HT and other substances released from EC cells activate sensory nerve endings in the gut wall remains a major unresolved mystery. We used in vivo anterograde tracing from nodose ganglia to determine the spatial relationship between 5-HT synthesizing and peptide-YY (PYY)-synthesizing EC cells and their proximity to vagal afferent nerve endings that project to the mucosa of mouse small intestine. The shortest mean distances between single 5-HT- and PYY-synthesizing EC cells and the nearest vagal afferent nerve endings in the mucosa were 33.1 ± 14.4 µm (n = 56; N = 6) and 70.3 ± 32.3 µm (n = 16; N = 6). No morphological evidence was found to suggest that 5-HT- or PYY-containing EC cells form close morphological associations with vagal afferents endings, or varicose axons of passage. The large distances between EC cells and vagal afferent endings are many hundreds of times greater than those known to underlie synaptic transmission in the nervous system (typically 10-15 nm). Taken together, the findings lead to the inescapable conclusion that communication between 5-HT-containing EC cells and vagal afferent nerve endings in the mucosa of the mouse small intestinal occurs in a paracrine fashion, via diffusion. New and Noteworthy None of the findings here are consistent with a view that close physical contacts occur between 5-HT-containing EC cells and vagal afferent nerve endings in mouse small intestine. Rather, the findings suggest that gut-brain communication between EC cells and vagal afferent endings occurs via passive diffusion. The morphological data presented do not support the view that EC cells are physically close enough to vagal afferent endings to communicate via fast synaptic transmission.
Collapse
Affiliation(s)
- Nick J Spencer
- Visceral Neurophysiology Laboratory, Flinders Health and Medical Research Institute & College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia, Australia
| | - Melinda A Kyloh
- Visceral Neurophysiology Laboratory, Flinders Health and Medical Research Institute & College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia, Australia
| | - Lee Travis
- Visceral Neurophysiology Laboratory, Flinders Health and Medical Research Institute & College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia, Australia
| | - Timothy J Hibberd
- Visceral Neurophysiology Laboratory, Flinders Health and Medical Research Institute & College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia, Australia
| |
Collapse
|
10
|
Belelli D, Riva A, Nutt DJ. Reducing the harms of alcohol: nutritional interventions and functional alcohol alternatives. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 175:241-276. [PMID: 38555118 DOI: 10.1016/bs.irn.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The health risks and harm associated with regular alcohol consumption are well documented. In a recent WHO statement published in The Lancet Public Health alcohol consumption has been estimated to contribute worldwide to 3 million deaths in 2016 while also being responsible for 5·1% of the global burden of disease and injury. The total elimination of alcohol consumption, which has been long imbedded in human culture and society, is not practical and prohibition policies have proved historically ineffective. However, valuable strategies to reduce alcohol harms are already available and improved alternative approaches are currently being developed. Here, we will review and discuss recent advances on two main types of approaches, that is nutritional interventions and functional alcohol alternatives.
Collapse
Affiliation(s)
- Delia Belelli
- GABALabs Res. Senior Scientific Consultant, United Kingdom
| | - Antonio Riva
- Roger Williams Institute of Hepatology (Foundation for Liver Research), London; Faculty of Life Sciences & Medicine, King's College London, London
| | | |
Collapse
|
11
|
Décarie-Spain L, Hayes AMR, Lauer LT, Kanoski SE. The gut-brain axis and cognitive control: A role for the vagus nerve. Semin Cell Dev Biol 2024; 156:201-209. [PMID: 36803834 PMCID: PMC10427741 DOI: 10.1016/j.semcdb.2023.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023]
Abstract
Survival requires the integration of external information and interoceptive cues to effectively guide advantageous behaviors, particularly foraging and other behaviors that promote energy acquisition and consumption. The vagus nerve acts as a critical relay between the abdominal viscera and the brain to convey metabolic signals. This review synthesizes recent findings from rodent models and humans revealing the impact of vagus nerve signaling from the gut on the control of higher-order neurocognitive domains, including anxiety, depression, reward motivation, and learning and memory. We propose a framework where meal consumption engages gastrointestinal tract-originating vagal afferent signaling that functions to alleviate anxiety and depressive-like states, while also promoting motivational and memory functions. These concurrent processes serve to favor the encoding of meal-relevant information into memory storage, thus facilitating future foraging behaviors. Modulation of these neurocognitive domains by vagal tone is also discussed in the context of pathological conditions, including the use of transcutaneous vagus nerve stimulation for the treatment of anxiety disorders, major depressive disorder, and dementia-associated memory impairments. Collectively, these findings highlight the contributions of gastrointestinal vagus nerve signaling to the regulation of neurocognitive processes that shape various adaptive behavioral responses.
Collapse
Affiliation(s)
- Léa Décarie-Spain
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Anna M R Hayes
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Logan Tierno Lauer
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA; Neuroscience Graduate Program, University of Southern California, 3641Watt Way, Los Angeles, CA 90089, USA.
| |
Collapse
|
12
|
Teckentrup V, Kroemer NB. Mechanisms for survival: vagal control of goal-directed behavior. Trends Cogn Sci 2024; 28:237-251. [PMID: 38036309 DOI: 10.1016/j.tics.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Survival is a fundamental physiological drive, and neural circuits have evolved to prioritize actions that meet the energy demands of the body. This fine-tuning of goal-directed actions based on metabolic states ('allostasis') is deeply rooted in our brain, and hindbrain nuclei orchestrate the vital communication between the brain and body through the vagus nerve. Despite mounting evidence for vagal control of allostatic behavior in animals, its broader function in humans is still contested. Based on stimulation studies, we propose that the vagal afferent pathway supports transitions between survival modes by gating the integration of ascending bodily signals, thereby regulating reward-seeking. By reconceptualizing vagal signals as catalysts for goal-directed behavior, our perspective opens new avenues for theory-driven translational work in mental disorders.
Collapse
Affiliation(s)
- Vanessa Teckentrup
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, 72076 Tübingen, Germany; School of Psychology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Nils B Kroemer
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, 72076 Tübingen, Germany; Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, 53127 Bonn, Germany; German Center for Mental Health (DZPG), 72076 Tübingen, Germany.
| |
Collapse
|
13
|
Wood CP, Avalos B, Alvarez C, DiPatrizio NV. A Sexually Dimorphic Role for Intestinal Cannabinoid Receptor Subtype-1 in the Behavioral Expression of Anxiety. Cannabis Cannabinoid Res 2023; 8:1045-1059. [PMID: 37862126 PMCID: PMC10771877 DOI: 10.1089/can.2023.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
Background: Increasing evidence suggests that the endocannabinoid system (ECS) in the brain controls anxiety and may be a therapeutic target for the treatment of anxiety disorders. For example, both pharmacological and genetic disruption of cannabinoid receptor subtype-1 (CB1R) signaling in the central nervous system is associated with increased anxiety-like behaviors in rodents, while activating the system is anxiolytic. Sex is also a critical factor that controls the behavioral expression of anxiety; however, roles for the ECS in the gut in these processes and possible differences between sexes are largely unknown. Objective: In this study, we aimed to determine if CB1Rs in the intestinal epithelium exert control over anxiety-like behaviors in a sex-dependent manner. Methods: We subjected male and female mice with conditional deletion of CB1Rs in the intestinal epithelium (intCB1-/-) and controls (intCB1+/+) to the elevated plus maze (EPM), light/dark box, and open field test. Corticosterone (CORT) levels in plasma were measured at baseline and immediately after EPM exposure. Results: When compared with intCB1+/+ male mice, intCB1-/- male mice exhibited reduced levels of anxiety-like behaviors in the EPM and light/dark box. In contrast to male mice, no differences were found between female intCB1+/+ and intCB1-/- mice. Circulating CORT was higher in female versus male mice for both genotype groups at baseline and after EPM exposure; however, there was no effect of genotype on CORT levels. Conclusions: Collectively, these results indicate that genetic deletion of CB1Rs in the intestinal epithelium is associated with an anxiolytic phenotype in a sex-dependent manner.
Collapse
Affiliation(s)
- Courtney P. Wood
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Bryant Avalos
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Camila Alvarez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Nicholas V. DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
- University of California Riverside Center for Cannabinoid Research, Riverside, California, USA
| |
Collapse
|
14
|
Qin S, Wang C, Wang X, Wu W, Liu C. Causal association of gastroesophageal reflux disease with obstructive sleep apnea and sleep-related phenotypes: a bidirectional two-sample Mendelian randomization study. Front Neurol 2023; 14:1283286. [PMID: 38093755 PMCID: PMC10716286 DOI: 10.3389/fneur.2023.1283286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 06/27/2024] Open
Abstract
Background The interactions and associations between obstructive sleep apnea (OSA), sleep-related phenotypes (SRPs), and gastroesophageal reflux disease (GERD) are complex, thus it is hard to explore the effect and direction of causalities. Study objectives A bidirectional Mendelian randomization (MR) study was performed to explore causal associations of GERD with OSA and SRPs (including insomnia, morningness, sleep duration, ease of getting up, daytime napping, daytime dozing, and snoring). Methods First, we gathered summary statistics from publicly available databases. Subsequently, we identified single-nucleotide polymorphisms without strong linkage (r2 ≤ 0.001) by referencing relevant genome-wide association studies that met genome-wide significance criteria. Our primary analysis relied on inverse variance weighted to estimate the causal relationship. To ensure the validity of our findings, we also conducted several sensitivity analyses. These included MR Pleiotropy RESidual Sum and Outlier to detect and correct for potential pleiotropic effects, MR-Egger to assess directional pleiotropy, and weighted median analysis to further evaluate heterogeneity and pleiotropy. For the initial MR analysis, when causality was indicated by the results, instrumental variables that were significantly linked to the aforementioned confounding factors were removed. We will re-analyze the data after excluding outcome-related single nucleotide polymorphisms to confirm that the results are still consistent with the previous results. Results GERD was found to increase the risk of OSA (OR = 1.53, 95% CI = 1.37-1.70, p = 5.3 × 10-15), insomnia (OR = 1.14, 95% CI = 1.10-1.19, p = 1.3 × 10-10), snoring (OR = 1.09, 95% CI = 1.04-1.13, p = 6.3 × 10-5) and less sleep duration (OR = 0.94, 95% CI = 0.91-0.97, p = 3.7 × 10-4). According to the reverse-direction analysis, there is an elevated risk of GERD associated with OSA (OR = 1.07, 95% CI = 1.02-1.12, p = 0.005), insomnia (OR = 1.95, 95% CI = 1.60-2.37, p = 1.92 × 10-11) and snoring (OR = 1.74, 95% CI = 1.37-2.21, p = 4.4 × 10-6). Conclusion Genetic susceptibility to GERD can elevate the likelihood of experiencing insomnia, snoring, and OSA, in addition to diminishing sleep duration. Conversely, a reverse MR analysis indicates that ameliorating any one of insomnia, snoring, or OSA can mitigate the risk of developing GERD.
Collapse
Affiliation(s)
| | | | | | | | - Chengyong Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
15
|
Wang Q, Yang Q, Liu X. The microbiota-gut-brain axis and neurodevelopmental disorders. Protein Cell 2023; 14:762-775. [PMID: 37166201 PMCID: PMC10599644 DOI: 10.1093/procel/pwad026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
The gut microbiota has been found to interact with the brain through the microbiota-gut-brain axis, regulating various physiological processes. In recent years, the impacts of the gut microbiota on neurodevelopment through this axis have been increasingly appreciated. The gut microbiota is commonly considered to regulate neurodevelopment through three pathways, the immune pathway, the neuronal pathway, and the endocrine/systemic pathway, with overlaps and crosstalks in between. Accumulating studies have identified the role of the microbiota-gut-brain axis in neurodevelopmental disorders including autism spectrum disorder, attention deficit hyperactivity disorder, and Rett Syndrome. Numerous researchers have examined the physiological and pathophysiological mechanisms influenced by the gut microbiota in neurodevelopmental disorders (NDDs). This review aims to provide a comprehensive overview of advancements in research pertaining to the microbiota-gut-brain axis in NDDs. Furthermore, we analyzed both the current state of research progress and discuss future perspectives in this field.
Collapse
Affiliation(s)
- Qinwen Wang
- State Key Laboratory of Reproductive Medicine and offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Qianyue Yang
- State Key Laboratory of Reproductive Medicine and offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Xingyin Liu
- State Key Laboratory of Reproductive Medicine and offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
- Department of Microbiota Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
16
|
Ma J, Nguyen D, Madas J, Kwiat AM, Toledo Z, Bizanti A, Kogut N, Mistareehi A, Bendowski K, Zhang Y, Chen J, Li DP, Powley TL, Furness JB, Cheng Z. Spinal afferent innervation in flat-mounts of the rat stomach: anterograde tracing. Sci Rep 2023; 13:17675. [PMID: 37853008 PMCID: PMC10584867 DOI: 10.1038/s41598-023-43120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
The dorsal root ganglia (DRG) project spinal afferent axons to the stomach. However, the distribution and morphology of spinal afferent axons in the stomach have not been well characterized. In this study, we used a combination of state-of-the-art techniques, including anterograde tracer injection into the left DRG T7-T11, avidin-biotin and Cuprolinic Blue labeling, Zeiss M2 Imager, and Neurolucida to characterize spinal afferent axons in flat-mounts of the whole rat stomach muscular wall. We found that spinal afferent axons innervated all regions with a variety of distinct terminal structures innervating different gastric targets: (1) The ganglionic type: some axons formed varicose contacts with individual neurons within myenteric ganglia. (2) The muscle type: most axons ran in parallel with the longitudinal and circular muscles and expressed spherical varicosities. Complex terminal structures were observed within the circular muscle layer. (3) The ganglia-muscle mixed type: some individual varicose axons innervated both myenteric neurons and the circular muscle, exhibiting polymorphic terminal structures. (4) The vascular type: individual varicose axons ran along the blood vessels and occasionally traversed the vessel wall. This work provides a foundation for future topographical anatomical and functional mapping of spinal afferent axon innervation of the stomach under normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Jichao Ma
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Duyen Nguyen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Jazune Madas
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Andrew M Kwiat
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Zulema Toledo
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Nicole Kogut
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Anas Mistareehi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Kohlton Bendowski
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Yuanyuan Zhang
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - De-Pei Li
- Department of Medicine, Center for Precision Medicine, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - Terry L Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 479062, USA
| | - John B Furness
- Department of Anatomy and Physiology, University of Melbourne, and Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Zixi Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
17
|
Tao R, Liu S, Crawford J, Tao F. Gut-Brain Crosstalk and the Central Mechanisms of Orofacial Pain. Brain Sci 2023; 13:1456. [PMID: 37891825 PMCID: PMC10605055 DOI: 10.3390/brainsci13101456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Accumulated evidence has demonstrated that the gut microbiome can contribute to pain modulation through the microbiome-gut-brain axis. Various relevant microbiome metabolites in the gut are involved in the regulation of pain signaling in the central nervous system. In this review, we summarize recent advances in gut-brain interactions by which the microbiome metabolites modulate pain, with a focus on orofacial pain, and we further discuss the role of gut-brain crosstalk in the central mechanisms of orofacial pain whereby the gut microbiome modulates orofacial pain via the vagus nerve-mediated direct pathway and the gut metabolites/molecules-mediated indirect pathway. The direct and indirect pathways both contribute to the central regulation of orofacial pain through different brain structures (such as the nucleus tractus solitarius and the parabrachial nucleus) and signaling transmission across the blood-brain barrier, respectively. Understanding the gut microbiome-regulated pain mechanisms in the brain could help us to develop non-opioid novel therapies for orofacial pain.
Collapse
Affiliation(s)
| | | | | | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave., Dallas, TX 75246, USA
| |
Collapse
|
18
|
Li L, Yang J, Liu T, Shi Y. Role of the gut-microbiota-metabolite-brain axis in the pathogenesis of preterm brain injury. Biomed Pharmacother 2023; 165:115243. [PMID: 37517290 DOI: 10.1016/j.biopha.2023.115243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/09/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023] Open
Abstract
Brain injury, a common complication in preterm infants, includes the destruction of the key structural and functional connections of the brain and causes neurodevelopmental disorders; it has high morbidity and mortality rates. The exact mechanism underlying brain injury in preterm infants is unclear. Intestinal flora plays a vital role in brain development and the maturation of the immune system in infants; however, detailed understanding of the gut microbiota-metabolite-brain axis in preterm infants is lacking. In this review, we summarise the key mechanisms by which the intestinal microbiota contribute to neurodevelopment and brain injury in preterm infants, with special emphasis on the influence of microorganisms and their metabolites on the regulation of neurocognitive development and neurodevelopmental risks related to preterm birth, infection and neonatal necrotising enterocolitis (NEC). This review provides support for the development and application of novel therapeutic strategies, including probiotics, prebiotics, synbiotics, and faecal bacteria transplantation targeting at brain injury in preterm infants.
Collapse
Affiliation(s)
- Ling Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Jiahui Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Tianjing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
19
|
Carson KE, Alvarez J, Mackley J, Travagli RA, Browning KN. Perinatal high-fat diet exposure alters oxytocin and corticotropin releasing factor inputs onto vagal neurocircuits controlling gastric motility. J Physiol 2023; 601:2853-2875. [PMID: 37154244 PMCID: PMC10524104 DOI: 10.1113/jp284726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023] Open
Abstract
Perinatal high-fat diet (pHFD) exposure alters the development of vagal neurocircuits that control gastrointestinal (GI) motility and reduce stress resiliency in offspring. Descending oxytocin (OXT; prototypical anti-stress peptide) and corticotropin releasing factor (CRF; prototypical stress peptide) inputs from the paraventricular nucleus (PVN) of the hypothalamus to the dorsal motor nucleus of the vagus (DMV) modulate the GI stress response. How these descending inputs, and their associated changes to GI motility and stress responses, are altered following pHFD exposure are, however, unknown. The present study used retrograde neuronal tracing experiments, cerebrospinal fluid extraction, in vivo recordings of gastric tone, motility and gastric emptying rates, and in vitro electrophysiological recordings from brainstem slice preparations to investigate the hypothesis that pHFD alters descending PVN-DMV inputs and dysregulates vagal brain-gut responses to stress. Compared to controls, rats exposed to pHFD had slower gastric emptying rates and did not respond to acute stress with the expected delay in gastric emptying. Neuronal tracing experiments demonstrated that pHFD reduced the number of PVNOXT neurons that project to the DMV, but increased PVNCRF neurons. Both in vitro electrophysiology recordings of DMV neurons and in vivo recordings of gastric motility and tone demonstrated that, following pHFD, PVNCRF -DMV projections were tonically active, and that pharmacological antagonism of brainstem CRF1 receptors restored the appropriate gastric response to brainstem OXT application. These results suggest that pHFD exposure disrupts descending PVN-DMV inputs, leading to a dysregulated vagal brain-gut response to stress. KEY POINTS: Maternal high-fat diet exposure is associated with gastric dysregulation and stress sensitivity in offspring. The present study demonstrates that perinatal high-fat diet exposure downregulates hypothalamic-vagal oxytocin (OXT) inputs but upregulates hypothalamic-vagal corticotropin releasing factor (CRF) inputs. Both in vitro and in vivo studies demonstrated that, following perinatal high-fat diet, CRF receptors were tonically active at NTS-DMV synapses, and that pharmacological antagonism of these receptors restored the appropriate gastric response to OXT. The current study suggests that perinatal high-fat diet exposure disrupts descending PVN-DMV inputs, leading to a dysregulated vagal brain-gut response to stress.
Collapse
Affiliation(s)
- Kaitlin E. Carson
- Department of Neural and Behavioral Sciences, Pennsylvania State College of Medicine, Hershey, PA
| | - Jared Alvarez
- Barrett Honors College, Arizona State University, Tempe, AZ
| | - Jasmine Mackley
- Schreyer Honors College, Pennsylvania State University, State College, PA
| | | | - Kirsteen N. Browning
- Address for correspondence: Kirsteen N. Browning, PhD, Penn State College of Medicine, 500 University Drive, MC H109, Hershey, PA, 17033;
| |
Collapse
|
20
|
Scott KA, Tan Y, Johnson DN, Elsaafien K, Baumer-Harrison C, Eikenberry SA, Sa JM, de Lartigue G, de Kloet AD, Krause EG. Mechanosensation of the heart and gut elicits hypometabolism and vigilance in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547073. [PMID: 37425814 PMCID: PMC10327188 DOI: 10.1101/2023.06.29.547073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Interoception broadly refers to awareness of one's internal milieu. Vagal sensory afferents monitor the internal milieu and maintain homeostasis by engaging brain circuits that alter physiology and behavior. While the importance of the body-to-brain communication that underlies interoception is implicit, the vagal afferents and corresponding brain circuits that shape perception of the viscera are largely unknown. Here, we use mice to parse neural circuits subserving interoception of the heart and gut. We determine vagal sensory afferents expressing the oxytocin receptor, hereafter referred to as NDGOxtr, send projections to the aortic arch or stomach and duodenum with molecular and structural features indicative of mechanosensation. Chemogenetic excitation of NDGOxtr significantly decreases food and water consumption, and remarkably, produces a torpor-like phenotype characterized by reductions in cardiac output, body temperature, and energy expenditure. Chemogenetic excitation of NDGOxtr also creates patterns of brain activity associated with augmented hypothalamic-pituitary-adrenal axis activity and behavioral indices of vigilance. Recurrent excitation of NDGOxtr suppresses food intake and lowers body mass, indicating that mechanosensation of the heart and gut can exert enduring effects on energy balance. These findings suggest that the sensation of vascular stretch and gastrointestinal distention may have profound effects on whole body metabolism and mental health.
Collapse
Affiliation(s)
- Karen A. Scott
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32611, USA
| | - Yalun Tan
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32611, USA
| | - Dominique N. Johnson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32611, USA
| | - Khalid Elsaafien
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32611, USA
| | - Caitlin Baumer-Harrison
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32611, USA
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32611, USA
| | - Sophia A. Eikenberry
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32611, USA
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32611, USA
| | - Jessica M. Sa
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32611, USA
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32611, USA
| | | | - Annette D. de Kloet
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32611, USA
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32611, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Eric G. Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32611, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
21
|
Noble EE. Behavioral Consequences of a Rumbling Tummy: Fasting Alters Emotional State via the Vagus Nerve. Biol Psychiatry 2022; 92:690-692. [PMID: 36202543 DOI: 10.1016/j.biopsych.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/02/2022]
Affiliation(s)
- Emily E Noble
- Department of Nutritional Sciences, University of Georgia, Athens, Georgia.
| |
Collapse
|