1
|
Behera SK, Karthika S, Mahanty B, Meher SK, Zafar M, Baskaran D, Rajamanickam R, Das R, Pakshirajan K, Bilyaminu AM, Rene ER. Application of artificial intelligence tools in wastewater and waste gas treatment systems: Recent advances and prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122386. [PMID: 39260284 DOI: 10.1016/j.jenvman.2024.122386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/17/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
The non-linear complex relationships among the process variables in wastewater and waste gas treatment systems possess a significant challenge for real-time systems modelling. Data driven artificial intelligence (AI) tools are increasingly being adopted to predict the process performance, cost-effective process monitoring, and the control of different waste treatment systems, including those involving resource recovery. This review presents an in-depth analysis of the applications of emerging AI tools in physico-chemical and biological processes for the treatment of air pollutants, water and wastewater, and resource recovery processes. Additionally, the successful implementation of AI-controlled wastewater and waste gas treatment systems, along with real-time monitoring at the industrial scale are discussed.
Collapse
Affiliation(s)
- Shishir Kumar Behera
- Process Simulation Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India.
| | - S Karthika
- Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai, 600 025, Tamil Nadu, India
| | - Biswanath Mahanty
- Division of Biotechnology, Karunya Institute of Technology & Sciences, Coimbatore, 641 114, Tamil Nadu, India
| | - Saroj K Meher
- Systems Science and Informatics Unit, Indian Statistical Institute, Bangalore, 560059, India
| | - Mohd Zafar
- Department of Applied Biotechnology, College of Applied Sciences & Pharmacy, University of Technology and Applied Sciences - Sur, P.O. Box: 484, Zip Code: 411, Sur, Oman
| | - Divya Baskaran
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam, 59626, South Korea; Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, Tamil Nadu, India
| | - Ravi Rajamanickam
- Department of Chemical Engineering, Annamalai University, Chidambaram, 608002, Tamil Nadu, India
| | - Raja Das
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781 039, Assam, India
| | - Abubakar M Bilyaminu
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, P. O. Box 3015, 2601, DA Delft, the Netherlands
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, P. O. Box 3015, 2601, DA Delft, the Netherlands
| |
Collapse
|
2
|
Dueholm MKD, Andersen KS, Korntved AKC, Rudkjøbing V, Alves M, Bajón-Fernández Y, Batstone D, Butler C, Cruz MC, Davidsson Å, Erijman L, Holliger C, Koch K, Kreuzinger N, Lee C, Lyberatos G, Mutnuri S, O'Flaherty V, Oleskowicz-Popiel P, Pokorna D, Rajal V, Recktenwald M, Rodríguez J, Saikaly PE, Tooker N, Vierheilig J, De Vrieze J, Wurzbacher C, Nielsen PH. MiDAS 5: Global diversity of bacteria and archaea in anaerobic digesters. Nat Commun 2024; 15:5361. [PMID: 38918384 PMCID: PMC11199495 DOI: 10.1038/s41467-024-49641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Anaerobic digestion of organic waste into methane and carbon dioxide (biogas) is carried out by complex microbial communities. Here, we use full-length 16S rRNA gene sequencing of 285 full-scale anaerobic digesters (ADs) to expand our knowledge about diversity and function of the bacteria and archaea in ADs worldwide. The sequences are processed into full-length 16S rRNA amplicon sequence variants (FL-ASVs) and are used to expand the MiDAS 4 database for bacteria and archaea in wastewater treatment systems, creating MiDAS 5. The expansion of the MiDAS database increases the coverage for bacteria and archaea in ADs worldwide, leading to improved genus- and species-level classification. Using MiDAS 5, we carry out an amplicon-based, global-scale microbial community profiling of the sampled ADs using three common sets of primers targeting different regions of the 16S rRNA gene in bacteria and/or archaea. We reveal how environmental conditions and biogeography shape the AD microbiota. We also identify core and conditionally rare or abundant taxa, encompassing 692 genera and 1013 species. These represent 84-99% and 18-61% of the accumulated read abundance, respectively, across samples depending on the amplicon primers used. Finally, we examine the global diversity of functional groups with known importance for the anaerobic digestion process.
Collapse
Affiliation(s)
- Morten Kam Dahl Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| | - Kasper Skytte Andersen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Anne-Kirstine C Korntved
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Vibeke Rudkjøbing
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Madalena Alves
- Centre of Biological Engineering, University of Minho, Minho, Portugal
| | | | - Damien Batstone
- Australian Centre for Water and Environmental Biotechnology (ACWEB), The University of Queensland, Brisbane, Australia
| | - Caitlyn Butler
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Mercedes Cecilia Cruz
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Åsa Davidsson
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Leonardo Erijman
- INGEBI-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| | - Christof Holliger
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich (TUM), Garching, Germany
| | - Norbert Kreuzinger
- Institute of Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - Changsoo Lee
- Department of Civil, Urban, Earth, and Environmental Engineering & Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Gerasimos Lyberatos
- School of Chemical Engineering, National Technical University of Athens, Zografou, Greece
| | - Srikanth Mutnuri
- Applied Environmental Biotechnology Laboratory, Birla Institute of Technology and Science (BITS-Pilani), Pilani, Goa campus, Goa, India
| | - Vincent O'Flaherty
- School of Biological and Chemical Sciences and Ryan Institute, University of Galway, Galway, Ireland
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Poznan, Poland
| | - Dana Pokorna
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Veronica Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | | | - Jorge Rodríguez
- Chemical Engineering Department, Khalifa University, Khalifa, UAE
| | - Pascal E Saikaly
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Nick Tooker
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Julia Vierheilig
- Institute of Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| | - Christian Wurzbacher
- Chair of Urban Water Systems Engineering, Technical University of Munich (TUM), Garching, Germany
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
3
|
Mitraka GC, Kontogiannopoulos KN, Zouboulis AI, Kougias PG. Evaluation of the optimal sewage sludge pre-treatment technology through continuous reactor operation: Process performance and microbial community insights. WATER RESEARCH 2024; 257:121662. [PMID: 38678834 DOI: 10.1016/j.watres.2024.121662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
This study investigated the impact of two low-temperature thermal pre-treatments on continuous anaerobic reactors' performance, sequentially fed with sludge of different total solids content (∼3 % and ∼6 %) and subjected to progressively increasing Organic Loading Rates (OLR) from 1.0 to 2.5 g volatile solids/(LReactor⋅day). Assessing pre-treatments' influence on influent sludge characteristics revealed enhanced organic matter hydrolysis, facilitating sludge solubilization and methanogenesis; volatile fatty acids concentration also increased, particularly in pre-treated sludge of ∼6 % total solids, indicating improved heating efficiency under increased solids content. The reactor fed with sludge pre-treated at 45 °C for 48 h and 55 °C for an extra 48 h exhibited the highest methane yield under all applied OLRs, peaking at 240 ± 3.0 mL/g volatile solids at the OLR of 2.5 g volatile solids/(LReactor⋅day). 16S rRNA gene sequencing demonstrated differences in the reactors' microbiomes as evidence of sludge thickening and the different pre-treatments applied, which promoted the release of organic matter in diverse concentrations and compositions. Finally, the microbial analysis revealed that specific foam-related genera increased in abundance in the foam layer of reactors' effluent bottles, dictating their association with the sludge foaming incidents that occurred inside the reactors during their operation at 2.0 g volatile solids/(LReactor⋅day).
Collapse
Affiliation(s)
- Georgia-Christina Mitraka
- Laboratory of Chemical & Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece; Soil and Water Resources Institute, Hellenic Agricultural Organisation Dimitra, Thermi, P.O. Box 60458, Thessaloniki GR-57001, Greece
| | - Konstantinos N Kontogiannopoulos
- Soil and Water Resources Institute, Hellenic Agricultural Organisation Dimitra, Thermi, P.O. Box 60458, Thessaloniki GR-57001, Greece
| | - Anastasios I Zouboulis
- Laboratory of Chemical & Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Panagiotis G Kougias
- Soil and Water Resources Institute, Hellenic Agricultural Organisation Dimitra, Thermi, P.O. Box 60458, Thessaloniki GR-57001, Greece.
| |
Collapse
|
4
|
Ruiz-Bastidas RC, Ochoa-Durán C, Sanabria J, Cadavid-Rodríguez LS. Effect of Ecuadorian natural zeolite on the performance of anaerobic digestion of swine waste in semicontinuous regime. CHEMOSPHERE 2024; 352:141517. [PMID: 38387656 DOI: 10.1016/j.chemosphere.2024.141517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
This study explores the potential of zeolite as an amendment to mitigate ammonium inhibition in the anaerobic digestion of swine waste. Two 50 L reactors, one with and one without zeolite amendment were operated at an OLR of 3.0 g VS L-1d-1 for 130 days, and fed with swine waste from a full-scale pig farm. Under these conditions, zeolite doses of 4 g L-1 allowed total ammonia nitrogen (TAN) concentrations to be kept below 1000 mgNH3-N L-1. The zeolite-amended reactor not only showed an average increase of 8% in methane production under stable conditions but also exhibited 34% reduction in H2S concentrations in the biogas, compared to the reactor without zeolite. The community of archaea originating from the inoculum was conserved in the reactor with zeolite amendment, particularly the acetoclastic methanogens of the genus Methanosaeta. On the other hand, in the reactor without zeolite addition, the microbial community went from being dominated by the acetoclastic methanogen Methanosaeta to having a high relative abundance of hydrogenotrophic methanogens. The zeolite addition also favoured the reactor stability, prevented foaming, and produced an enriched natural zeolite with N, P and K. However, additional studies on the potential of enriched zeolite as a fertilizer are required, which could make the use of zeolite in Anaerobic Digestion of swine waste not only energetically favourable but also economically feasible.
Collapse
Affiliation(s)
- Rosa Cecilia Ruiz-Bastidas
- Universidad Nacional de Colombia - Sede Medellín, Facultad de Ciencias, Cra. 65 #59a-110, Medellín, 050034, Colombia.
| | - Camilo Ochoa-Durán
- Universidad Nacional de Colombia - Sede Palmira, Facultad de Ingeniería y Administración, Departamento de Ingeniería, Cra. 32 No 12-00, Palmira, 763533, Colombia
| | - Janeth Sanabria
- Universidad del Valle, Microbiology and Environmental Biotechnology Laboratory, Cali, 760042, Colombia
| | - Luz Stella Cadavid-Rodríguez
- Universidad Nacional de Colombia - Sede Palmira, Facultad de Ingeniería y Administración, Departamento de Ingeniería, Cra. 32 No 12-00, Palmira, 763533, Colombia.
| |
Collapse
|
5
|
Wang Y, Wang H, Chen H. Response of aerobic activated sludge to edible oil exposure: Extracellular polymeric substance (EPS) characteristics and microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117571. [PMID: 36871358 DOI: 10.1016/j.jenvman.2023.117571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Aerobic activated sludge is widely used to degrade edible oil wastewater in wastewater treatment plants. During this process, the observed poor organics removal performance might be caused by poor sludge settling performance, which might be influenced by extracellular polymeric substances (EPS) and the structure of the microbial community. However, this hypothesis was not confirmed. Thus, this study investigated the response of activated sludge to 50% and 100% edible oil exposure in comparison to glucose, focusing on organics removal performance, characteristics of sludge, EPS, and microbial community structure. Results showed that both concentrations of edible oil influenced the systems' performance, although 100% edible oil showed more significant negative effects than 50% edible oil. The mechanisms behind the influence of edible oil on the aerobic activated sludge system and the differences between the different concentrations of edible oil were revealed. The worse system performance in the edible oil exposure system was due to the worse sludge settling performance, which was significantly affected by edible oil (p < 0.05). The sludge settling performance was mainly inhibited by promoting the formation of floating particles and the enrichment of filamentous bacteria in the 50% edible oil exposure system; biosurfactant secretion was also speculated as the reason, in addition to the above factors, in the 100% edible oil exposure system. The macroscopic largest floating particles, highest total relative abundance of foaming bacteria and biosurfactant production genera (34.32%), lowest surface tension (43.7 mN/m), and highest emulsifying activity (E24 = 25%) of EPS in 100% edible oil exposure systems provide strong evidence.
Collapse
Affiliation(s)
- Yanqiong Wang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Hongwu Wang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai, 200092, China.
| | - Hongbin Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| |
Collapse
|
6
|
Nuid M, Aris A, Abdullah S, Fulazzaky MA, Muda K. Bioaugmentation and enhanced formation of biogranules for degradation of oil and grease: Start-up, kinetic and mass transfer studies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118032. [PMID: 37163834 DOI: 10.1016/j.jenvman.2023.118032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Biogranulation technology is an emerging biological process in treating various wastewater. However, the development of biogranules requires an extended period of time when treating wastewaters with high oil and grease (O&G) content. A study was therefore conducted to assess the formation of biogranules through bioaugmentation with the Serratia marcescens SA30 strain, in treating real anaerobically digested palm oil mill effluent (AD-POME), with O&G of about 4600 mg/L. The biogranules were developed in a lab-scale sequencing batch reactor (SBR) system under alternating anaerobic and aerobic conditions. The experimental data were assessed using the modified mass transfer factor (MMTF) models to understand the mechanisms of biosorption of O&G on the biogranules. The system was run with variable organic loading rates (OLR) of 0.69-9.90 kg/m3d and superficial air velocity (SAV) of 2 cm/s. After 60 days of being bioaugmented with the Serratia marcescens SA30 strain, the flocculent biomass transformed into biogranules with excellent settleability with improved treatment efficiency. The biogranules showed a compact structure and good settling ability with an average diameter of about 2 mm, a sludge volume index at 5 min (SVI5) of 43 mL/g, and a settling velocity (SV) of 81 m/h after 256 days of operation. The average removal efficiencies of O&G increased from 6 to 99.92%, respectively. The application of the MMTF model verified that the resistance to O&G biosorption is controlled via film mass transfer. This research indicates successful bioaugmentation of biogranules using the Serratia marcescens SA30 strain for enhanced biodegradation of O&G and is capable to treat real AD-POME.
Collapse
Affiliation(s)
- Maria Nuid
- Centre for Environmental Sustainability and Water Security, Research Institute for Sustainable Environment, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Malaysia
| | - Azmi Aris
- Centre for Environmental Sustainability and Water Security, Research Institute for Sustainable Environment, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Malaysia; Department of Water and Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Malaysia.
| | - Shakila Abdullah
- Faculty of Applied Sciences and Technology Universiti Tun Hussein Onn Malaysia, Pagoh Education Hub, Panchor, 84600, Muar, Johor, Malaysia
| | - Mohamad Ali Fulazzaky
- School of Postgraduate Studies, Universitas Djuanda, Jalan Tol Ciawi No. 1, Ciawi, Bogor, 16700, Indonesia
| | - Khalida Muda
- Department of Water and Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Malaysia
| |
Collapse
|
7
|
Leca E, Zennaro B, Hamelin J, Carrère H, Sambusiti C. Use of additives to improve collective biogas plant performances: A comprehensive review. Biotechnol Adv 2023; 65:108129. [PMID: 36933869 DOI: 10.1016/j.biotechadv.2023.108129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Nowadays, anaerobic digestion (AD) is being increasingly encouraged to increase the production of biogas and thus of biomethane. Due to the high diversity among feedstocks used, the variability of operating parameters and the size of collective biogas plants, different incidents and limitations may occur (e.g., inhibitions, foaming, complex rheology). To improve performance and overcome these limitations, several additives can be used. This literature review aims to summarize the effects of the addition of various additives in co-digestion continuous or semi-continuous reactors to fit as much as possible with collective biogas plant challenges. The addition of (i) microbial strains or consortia, (ii) enzymes and (iii) inorganic additives (trace elements, carbon-based materials) in digester is analyzed and discussed. Several challenges associated with the use of additives for AD process at collective biogas plant scale requiring further research work are highlighted: elucidation of mechanisms, dosage and combination of additives, environmental assessment, economic feasibility, etc.
Collapse
Affiliation(s)
- Estelle Leca
- TotalEnergies, CSTJF, Centre Scientifique et Technique Jean Féger, Av. Larribau, 64000 Pau, France
| | - Bastien Zennaro
- INRAE Transfert, 60 Rue Nicolas Leblanc, 11100 Narbonne, France
| | - Jérôme Hamelin
- INRAE, Univ Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France
| | - Hélène Carrère
- INRAE, Univ Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France
| | - Cecilia Sambusiti
- TotalEnergies, CSTJF, Centre Scientifique et Technique Jean Féger, Av. Larribau, 64000 Pau, France.
| |
Collapse
|
8
|
Ge Y, Tao J, Wang Z, Chen C, Liang R, Mu L, Ruan H, Rodríguez Yon Y, Yan B, Chen G. Simulation of integrated anaerobic digestion-gasification systems using machine learning models. BIORESOURCE TECHNOLOGY 2023; 369:128420. [PMID: 36462766 DOI: 10.1016/j.biortech.2022.128420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
In this study, the anaerobic digestion model M-ADM1 was integrated with the gasification model T-ANN to form a set of integrated models that can efficiently simulate the biomass AD-GS integration technology. Biogas slurry is used as feedstocks to prepare biogas slurry fertilizer. Solid residue is used feedstocks for gasification reactions. Biogas and syngas from the gasification of solid residue are used for energy. In this process, carbon emission is regarded as an important index for the comprehensive evaluation and optimization of AD-GS integration process. This study found that when the anaerobic digestion duration was 0 to 15 days, the carbon emission reduction increased rapidly. The amount of carbon emission reduction peaks on day 15. The value of carbon emission reduction is 0.1828 gCO2eq. In addition, when FEAG reached the maximum value at 15 days of anaerobic digestion, the decreasing trend of FEAG rate change value started to become significant.
Collapse
Affiliation(s)
- Yadong Ge
- School of Mechanical Engineering/School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Junyu Tao
- School of Mechanical Engineering/School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Zhi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Chao Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Rui Liang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Lan Mu
- School of Mechanical Engineering/School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yakelin Rodríguez Yon
- Department of Biofertilizers and Plant Nutrition, Instituto Nacional de Ciencias Agrícolas (INCA), Gaveta Postal n° 1, 32700, San José de Las Lajas, Mayabeque, Cuba
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; Tianjin Key Lab of Biomass Wastes Utilization/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin 300072, China
| | - Guanyi Chen
- School of Mechanical Engineering/School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; School of Science, Tibet University, Lhasa 850012, China
| |
Collapse
|
9
|
Krohn C, Khudur L, Dias DA, van den Akker B, Rees CA, Crosbie ND, Surapaneni A, O'Carroll DM, Stuetz RM, Batstone DJ, Ball AS. The role of microbial ecology in improving the performance of anaerobic digestion of sewage sludge. Front Microbiol 2022; 13:1079136. [PMID: 36590430 PMCID: PMC9801413 DOI: 10.3389/fmicb.2022.1079136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
The use of next-generation diagnostic tools to optimise the anaerobic digestion of municipal sewage sludge has the potential to increase renewable natural gas recovery, improve the reuse of biosolid fertilisers and help operators expand circular economies globally. This review aims to provide perspectives on the role of microbial ecology in improving digester performance in wastewater treatment plants, highlighting that a systems biology approach is fundamental for monitoring mesophilic anaerobic sewage sludge in continuously stirred reactor tanks. We further highlight the potential applications arising from investigations into sludge ecology. The principal limitation for improvements in methane recoveries or in process stability of anaerobic digestion, especially after pre-treatment or during co-digestion, are ecological knowledge gaps related to the front-end metabolism (hydrolysis and fermentation). Operational problems such as stable biological foaming are a key problem, for which ecological markers are a suitable approach. However, no biomarkers exist yet to assist in monitoring and management of clade-specific foaming potentials along with other risks, such as pollutants and pathogens. Fundamental ecological principles apply to anaerobic digestion, which presents opportunities to predict and manipulate reactor functions. The path ahead for mapping ecological markers on process endpoints and risk factors of anaerobic digestion will involve numerical ecology, an expanding field that employs metrics derived from alpha, beta, phylogenetic, taxonomic, and functional diversity, as well as from phenotypes or life strategies derived from genetic potentials. In contrast to addressing operational issues (as noted above), which are effectively addressed by whole population or individual biomarkers, broad improvement and optimisation of function will require enhancement of hydrolysis and acidogenic processes. This will require a discovery-based approach, which will involve integrative research involving the proteome and metabolome. This will utilise, but overcome current limitations of DNA-centric approaches, and likely have broad application outside the specific field of anaerobic digestion.
Collapse
Affiliation(s)
- Christian Krohn
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia,*Correspondence: Christian Krohn,
| | - Leadin Khudur
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia
| | - Daniel Anthony Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, STEM College, RMIT University, Bundoora, VIC, Australia
| | | | | | | | - Aravind Surapaneni
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia
| | - Denis M. O'Carroll
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Richard M. Stuetz
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Damien J. Batstone
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia,Australian Centre for Water and Environmental Biotechnology, Gehrmann Building, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew S. Ball
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
10
|
Modelling filamentous bacteria in activated sludge systems and the advancements of secondary settling tank models: A review. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Sani K, Jariyaboon R, O-Thong S, Cheirsilp B, Kaparaju P, Wang Y, Kongjan P. Performance of pilot scale two-stage anaerobic co-digestion of waste activated sludge and greasy sludge under uncontrolled mesophilic temperature. WATER RESEARCH 2022; 221:118736. [PMID: 35714466 DOI: 10.1016/j.watres.2022.118736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/04/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Waste-activated sludge (WAS) and greasy sludge (GS) discharged from the canned tuna industry are considerably characterized as harsh organic wastes to be individually treated by using traditional anaerobic digestion. This study was attempted to anaerobically co-digest WAS and GS in continuous pilot scale two-stage process, comprising the first 50 L continuous stir tank reactor (CSTR1) and the second 250 L continuous stir tank reactor (CSTR2). The two-stage co-digesting operation of dewatered WAS:GS ratio of 0.4:1 (g-VS) at ambient temperature with the organic loading rate (OLR) of 12.6 ± 0.75 g-VS/L·d and 2.26 ± 0.13 g-VS/L·d, corresponding to 3-day and 17-day hydraulic retention time (HRT) for the first and second stage, respectively generated highest methane production rate of 957 ± 86 mL-CH4/L·d, corresponding to methane yield of 423.4 ± 36 mL-CH4/g-VS. Organic removal efficiency obtained was around 67.5% on COD basis. The microbial diversity was depended on the process's activity. Bacteria were mostly detected in the CSTR1, dominating with the phylum Firmicutes and Proteobacteria, whereas genus Methanosaeta archaea were found dominantly in the CSTR2. The economic analysis of process shows payback period (PBP), internal rate of return (IRR), and net present value (NPV) of 3 years, 30%, and 250,177 USD, respectively. This study demonstrated the potential approach to applying the two-stage anaerobic co-digestion process to stabilize both WAS and GS along with generating valuable bioenergy carriers.
Collapse
Affiliation(s)
- Khaliyah Sani
- Energy Technology Program, Faculty of Engineering, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand; Bio-Mass Conversion to Energy and Chemicals (Bio-MEC) Research Unit, Prince of Songkla University, Pattani 94000, Thailand
| | - Rattana Jariyaboon
- Bio-Mass Conversion to Energy and Chemicals (Bio-MEC) Research Unit, Prince of Songkla University, Pattani 94000, Thailand; Department of Science, Faculty of Science and Technology, Prince of Songkla University, Meung, Pattani 94000, Thailand
| | - Sompong O-Thong
- International College, Thaksin University, Songkhla 90000, Thailand
| | - Benjamas Cheirsilp
- Biotechnology for Bioresource Utilization Laboratory, Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Prasad Kaparaju
- School of Engineering and Built Environment, Griffith University, Nathan 4111, Australia
| | - Yi Wang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy, MOA of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Prawit Kongjan
- Bio-Mass Conversion to Energy and Chemicals (Bio-MEC) Research Unit, Prince of Songkla University, Pattani 94000, Thailand; Department of Science, Faculty of Science and Technology, Prince of Songkla University, Meung, Pattani 94000, Thailand.
| |
Collapse
|
12
|
Kim M, Chul P, Kim W, Cui F. Application of data smoothing and principal component analysis to develop a parameter ranking system for the anaerobic digestion process. CHEMOSPHERE 2022; 299:134444. [PMID: 35364088 DOI: 10.1016/j.chemosphere.2022.134444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/02/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
A parameter ranking system to enhance data interpretation of the anaerobic digestion process was developed using principal component analysis (PCA) and data smoothing. The experimental data collected from the start-up operation of a pilot-scale, two-stage anaerobic digester for food wastewater treatment was used to demonstrate the enhanced PCA procedures. The correlation of multiple parameters in the anaerobic digestion process could be identified by the ranked parameters based on statistically scored outcomes. According to the parameters ranked for their impact on biogas production and methane yield, the biochemical oxygen demand (BOD) in the food wastewater was shown to have the highest correlated ranks with a score of 0.246, and the pH and ammonium in the food wastewater were shown to have lower ranked scores of 0.834 and 1.019, respectively. Therefore, ammonia toxicity and pH shock might not have had significant influence, and the operating priority should be focused on the organic loads. This application of PCA to anaerobic digestion can be helpful for addressing stabilization issues by identifying the core parameters that primarily contribute to early detection of operating problems.
Collapse
Affiliation(s)
- Moonil Kim
- Department of Civil & Environmental Engineering, Hanyang University, 55 Hanyangdaehak-ro, Ansan City, Kyeonggido, 426-791, Republic of Korea
| | - Park Chul
- Department of Civil & Environmental Engineering, Hanyang University, 55 Hanyangdaehak-ro, Ansan City, Kyeonggido, 426-791, Republic of Korea
| | - Wan Kim
- Department of Civil & Environmental Engineering, Hanyang University, 55 Hanyangdaehak-ro, Ansan City, Kyeonggido, 426-791, Republic of Korea.
| | - Fenghao Cui
- Department of Civil & Environmental Engineering, Hanyang University, 55 Hanyangdaehak-ro, Ansan City, Kyeonggido, 426-791, Republic of Korea.
| |
Collapse
|
13
|
Long-Term Assessment of Temperature Management in an Industrial Scale Biogas Plant. SUSTAINABILITY 2022. [DOI: 10.3390/su14020612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Temperature management is one of the primary considerations of biogas plant operation, and influences physical and biochemical processes. An increase in the temperature leads to an increase in the hydrolysis rate of the feedstock, while it can inhibit microorganisms taking part in different stages of anaerobic digestion. Because of the complexity of the biochemical processes within the anaerobic digestion process, there is a lack of knowledge about the effects of temperature and temperature change on efficiency. Moreover, the impact of stirring directly affects the temperature distribution in the anaerobic digestion reactors. In this study, the temperature management in an industrial-scale biogas plant was examined, and the effect of small temperature changes (from the operation temperature 42 °C) on the efficiency was studied in a laboratory under two different conditions: with stirring (at 40 and 44 °C) and without stirring (at 40 and 44 °C). The examination results from the biogas plant showed that heat transfer in the reactor was not sufficient at the bottom of the digester. Adaptation of the post-digester samples to the temperature changes was more challenging than that of the digester samples. From digestate samples, higher biomethane generation could be obtained, resulting from sufficient contact between microorganisms, enzymes, and substrates. Overall, differences between these changing conditions (approx. 6 NmL CH4 g VS−1) were not significant and could be adapted by the process.
Collapse
|
14
|
Petkova B, Tcholakova S, Denkov N. Foamability of surfactant solutions: Interplay between adsorption and hydrodynamic conditions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Toutian V, Barjenbruch M, Loderer C, Remy C. Impact of process parameters of thermal alkaline pretreatment on biogas yield and dewaterability of waste activated sludge. WATER RESEARCH 2021; 202:117465. [PMID: 34358907 DOI: 10.1016/j.watres.2021.117465] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Thermal alkaline pretreatment (TAP) of waste activated sludge (WAS) before anaerobic digestion (AD) was reviewed. Focus of the review was on impact of TAP process parameters on biomethane yield (BY) and kinetics of AD and downstream dewatering. With higher initial biodegradability of untreated WAS, effect of TAP on BY decreases. Depending on initial biodegradability, BY increase of 22-97% is expected. Treatment temperatures below 100 °C showed to be as effective as temperatures higher than 100 °C in terms of BY increase. Alkali dosage and resulting initial pH have a significant effect on BY increase and showed to have an optimum range of 40-60 mg NaOH per g total solids (TS) of sludge. It is advised that alkali is dosed based on solids content in WAS and monitored by pH. Treatment time of 1.5-5 h is sufficient for an effective low temperature TAP (T < 100 °C), with longer treatment times showing no positive impact on BY increase. Load of sludge liquor with organics and nutrients increases with more intensive TAP conditions. Despite kinetic enhancement of hydrolysis step in AD, more research is needed to clarify if TAP improves kinetics of entire AD process which determines required digester volume. Impact of TAP on dewaterability of digestate is ambiguous and needs more investigation using standardized methods, also with regards to potential effects on polymer demand. Findings of experimental studies were reflected against available data from commercialized TAP process of Pondus®, throughout review. Finally, important process design parameters of TAP such as input TS and point of alkali dosage are discussed and recommendations for future research are presented.
Collapse
Affiliation(s)
- Vahid Toutian
- Department of Urban Water Management, Technical University of Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; Berlin Centre of Competence for Water, Cicerostrasse 24, 10709 Berlin, Germany.
| | - Matthias Barjenbruch
- Department of Urban Water Management, Technical University of Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Christian Loderer
- Steinbacher + Steinbacher ZT GmbH, Isbaryg. 20/II/10, 1140 Vienna, Austria
| | - Christian Remy
- Berlin Centre of Competence for Water, Cicerostrasse 24, 10709 Berlin, Germany
| |
Collapse
|
16
|
Rhee C, Yu SI, Kim DW, Bae IH, Shin J, Jeong SY, Kim YM, Shin SG. Density profile modeling for real-time estimation of liquid level in anaerobic digester using multiple pressure meters. CHEMOSPHERE 2021; 277:130299. [PMID: 33774236 DOI: 10.1016/j.chemosphere.2021.130299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/24/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
The liquid level of a bioreactor is an important operating parameter governing the hydraulic retention time. In this study, a novel method is proposed to estimate the liquid level of anaerobic digesters. The proposed method has an advantage over typical differential pressure measurement as it considers the heterogeneity of the digestate along the level using multiple pressure meters. The real-time measurement generates a model to fit the densities at different liquid columns, predicts the density of the surface layer and determines the overall liquid level. A pilot-scale (0.33 m3 working volume; 1.2 m liquid level) digester, equipped with seven pressure meters, was operated to test the methodology. The performance of the digester was confirmed stable during a long-term (175 d) operation. A set of density-pressure models was developed and were validated using the long-term experimental data. The new method employing cubic model showed significantly better estimation of the reactor level (mean error rate of 1.31%) with improved CDF, as compared with the traditional differential pressure method (mean error rate of 5.71%). The methodology proposed in this study is simple, robust, and cost-effective and can be used to provide additional insights into the operation of an anaerobic digester such as assessing the mixing efficiency.
Collapse
Affiliation(s)
- Chaeyoung Rhee
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, Jinju, 52828, Republic of Korea; Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology, Jinju, 52725, Republic of Korea
| | - Sung Il Yu
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, Jinju, 52828, Republic of Korea; Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology, Jinju, 52725, Republic of Korea
| | - Dae Wook Kim
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, Jinju, 52828, Republic of Korea; Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology, Jinju, 52725, Republic of Korea
| | - Il Ho Bae
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology, Jinju, 52725, Republic of Korea
| | - Juhee Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, Jinju, 52828, Republic of Korea; Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology, Jinju, 52725, Republic of Korea
| | - Seong Yeob Jeong
- Environment N Energy O&M Inc., 3F, 167-12, Jukbaek 3-ro, Pyeongtaek, 17864, Republic of Korea
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Seung Gu Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, Jinju, 52828, Republic of Korea; Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology, Jinju, 52725, Republic of Korea.
| |
Collapse
|
17
|
Yang P, Peng Y, Tan H, Liu H, Wu D, Wang X, Li L, Peng X. Foaming mechanisms and control strategies during the anaerobic digestion of organic waste: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146531. [PMID: 34030228 DOI: 10.1016/j.scitotenv.2021.146531] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Foaming is a problem that affects the efficient and stable operation of the anaerobic digestion process. Characterizing foaming mechanisms and developing early warning and foaming control methods is thus critically important. This review summarizes the correlation of process parameters, state parameters, and microbial communities with foaming in anaerobic digesters; discusses the applicability of the above-mentioned multi-scale parameters and foaming potential evaluation methods for the prediction of foaming risk; and introduces the principles and practical applications of antifoaming and defoaming methods. Multiple causes of foaming in anaerobic digestion systems have been identified, but a generalizable foaming mechanism has yet to be described. Further study of the correlation between extracellular polymeric substances and soluble microbial products and foaming may provide new insights into foaming mechanisms. Monitoring the foaming potential (including the volume expansion potential) is an effective approach for estimating the risk of foaming. An in-situ monitoring system for determining the foaming potential in anaerobic digestion sites could provide an early warning of foaming risk. Antifoaming methods based on operating parameter management and process regulation help prevent foaming from the source, and biological defoaming methods are highly targeted and efficient, which is a promising research direction. Clarifying foaming mechanisms will aid the development of active antifoaming methods and efficient biological defoaming methods.
Collapse
Affiliation(s)
- Pingjin Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yun Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Hanyue Tan
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Hengyi Liu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Di Wu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xiaoming Wang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Lei Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Xuya Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
18
|
A Fixed Bed Pervious Concrete Anaerobic Bioreactor for Biological Sulphate Remediation of Acid Mine Drainage Using Simple Organic Matter. SUSTAINABILITY 2021. [DOI: 10.3390/su13126529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The development of low-operational-cost and low-operational-complexity active sulphate (SO4) reducing bioremediation for Acid Mine Drainage (AMD) is an ongoing pursuit towards sustainable mining. This study introduces a fixed bed pervious concrete anaerobic bioreactor as a second stage AMD remediation process. The study investigated the pH self-regulation capabilities, SO4 remediation capabilities and the rate limiting parameters of the bioreactor using glucose as an organic matter source. The AMD was pre-treated using a permeable reactive barrier. A 21-day trial comprised of an increase in the SO4 loading rate while reducing the organic loading rate was undertaken to identify performance limiting conditions. A daily average SO4 concentration reduction rate of 55.2% was achieved over the initial 13 days of the experiments. The study found that a COD to SO4 ratio and VFA to alkalinity ratio below 5:1 and 0.5:1 respectively were performance limiting. The bioreactor was capable of self-regulating pH within the neutral range of 6.5 and 7.5. The study findings indicate that the bioreactor design can reduce operational costs and operational complexity of active AMD bioremediation.
Collapse
|
19
|
Jiang C, McIlroy SJ, Qi R, Petriglieri F, Yashiro E, Kondrotaite Z, Nielsen PH. Identification of microorganisms responsible for foam formation in mesophilic anaerobic digesters treating surplus activated sludge. WATER RESEARCH 2021; 191:116779. [PMID: 33401166 DOI: 10.1016/j.watres.2020.116779] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/06/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Foaming is a common operational problem in anaerobic digestion (AD) systems, where hydrophobic filamentous microorganisms are usually considered to be the major cause. However, little is known about the identity of foam-stabilising microorganisms in AD systems, and control measures are lacking. This study identified putative foam forming microorganisms in 13 full-scale mesophilic digesters located at 11 wastewater treatment plants in Denmark, using 16S rRNA gene amplicon sequencing with species-level resolution and fluorescence in situ hybridization (FISH) for visualization. A foaming potential aeration test was applied to classify the digester sludges according to their foaming propensity. A high foaming potential for sludges was linked to the abundance of species from the genus Candidatus Microthrix, immigrating with the feed stream (surplus activated sludge), but also to several novel phylotypes potentially growing in the digester. These species were classified to the genera Ca. Brevefilum (Ca. B. fermentans) and Tetrasphaera (midas_s_5), the families ST-12K33 (midas_s_22), and Rikenellaceae (midas_s_141), and the archaeal genus Methanospirillum (midas_s_2576). Application of FISH showed that these potential foam-forming organisms all had a filamentous morphology. Additionally, it was shown that concentrations of ammonium and total nitrogen correlated strongly to the presence of foam-formers. This study provided new insight into the identity of putative foam-forming microorganisms in mesophilic AD systems, allowing for the subsequent surveillance of their abundances and studies of their ecology. Such information will importantly inform the development of control measures for these problematic microorganisms.
Collapse
Affiliation(s)
- Chenjing Jiang
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark; Key Laboratory of Engineering Oceanography, Second Institute of Oceanography, SOA, Hangzhou, 310012, China
| | - Simon Jon McIlroy
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark; Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Rong Qi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, China
| | - Francesca Petriglieri
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Erika Yashiro
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Zivile Kondrotaite
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark.
| |
Collapse
|
20
|
The significance of microbial community functions and symbiosis in enhancing methane production during anaerobic digestion: a review. Symbiosis 2020. [DOI: 10.1007/s13199-020-00734-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Performance of a Full-Scale Biogas Plant Operation in Greece and Its Impact on the Circular Economy. WATER 2020. [DOI: 10.3390/w12113074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biogas plants have been started to expand recently in Greece and their positive contribution to the economy is evident. A typical case study is presented which focuses on the long-term monitoring (lasting for one year) of a 500 kW mesophilic biogas plant consisting of an one-stage digester. The main feedstock used was cow manure, supplemented occasionally with chicken manure, corn silage, wheat/ray silage, glycerine, cheese whey, molasses and olive mill wastewater. The mixture of the feedstocks was adjusted based on their availability, cost and biochemical methane potential. The organic loading rate (OLR) varied at 3.42 ± 0.23 kg COD m−3 day−1 (or 2.74 ± 0.18 kg VS m−3 day−1) and resulted in a stable performance in terms of specific biogas production rate (1.27 ± 0.12 m3 m−3 day−1), biogas yield (0.46 ± 0.05 m3 kg−1 VS, 55 ± 1.3% in methane) and electricity production rate (12687 ± 1140 kWh day−1). There were no problems of foaming, nor was there a need for trace metal addition. The digestate was used by the neighboring farmers who observed an improvement in their crop yield. The profit estimates per feedstock indicate that chicken manure is superior to the other feedstocks, while molasses, silages and glycerin result in less profit due to the long distance of the biogas plant from their production source. Finally, the greenhouse gas emissions due to the digestate storage in the open air seem to be minor (0.81% of the methane consumed).
Collapse
|
22
|
Hora PI, Pati SG, McNamara PJ, Arnold WA. Increased Use of Quaternary Ammonium Compounds during the SARS-CoV-2 Pandemic and Beyond: Consideration of Environmental Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2020; 7:622-631. [PMID: 37566314 PMCID: PMC7341688 DOI: 10.1021/acs.estlett.0c00437] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 05/17/2023]
Abstract
Quaternary ammonium compounds (QACs) are active ingredients in over 200 disinfectants currently recommended by the U.S. EPA for use to inactivate the SARS-CoV-2 (COVID-19) virus. The amounts of these compounds used in household, workplace, and industry settings has very likely increased, and usage will continue to be elevated given the scope of the pandemic. QACs have been previously detected in wastewater, surface waters, and sediments, and effects on antibiotic resistance have been explored. Thus, it is important to assess potential environmental and engineering impacts of elevated QAC usage, which may include disruption of wastewater treatment unit operations, proliferation of antibiotic resistance, formation of nitrosamine disinfection byproducts, and impacts on biota in surface waters. The threat caused by COVID-19 is clear, and a reasonable response is elevated use of QACs to mitigate spread of infection. Exploration of potential effects, environmental fate, and technologies to minimize environmental releases of QACs, however, is warranted.
Collapse
Affiliation(s)
- Priya I. Hora
- Department of Civil, Environmental, and Geo-
Engineering, University of Minnesota − Twin Cities, 500
Pillsbury Drive SE, Minneapolis, Minnesota 55455, United States
| | - Sarah G. Pati
- Department of Environmental Sciences,
University of Basel, Bernoullistrasse 30, 4056 Basel,
Switzerland
| | - Patrick J. McNamara
- Department of Civil, Construction, and Environmental
Engineering, Marquette University, P.O. Box 1881, Milwaukee,
Wisconsin 53233, United States
| | - William A. Arnold
- Department of Civil, Environmental, and Geo-
Engineering, University of Minnesota − Twin Cities, 500
Pillsbury Drive SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
23
|
Lafratta M, Thorpe RB, Ouki SK, Shana A, Germain E, Willcocks M, Lee J. Dynamic biogas production from anaerobic digestion of sewage sludge for on-demand electricity generation. BIORESOURCE TECHNOLOGY 2020; 310:123415. [PMID: 32344240 DOI: 10.1016/j.biortech.2020.123415] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
The aim of this work was to study the potentials and benefits of dynamic biogas production from Anaerobic Digestion (AD) of sewage sludge. The biogas production rate was aimed to match the flexible demand for electricity generation and so appropriate feeding regimes were calculated and tested in both pilot and demonstration scale. The results demonstrate that flexibilization capability exists for both conventional AD and advanced AD using Thermal Hydrolysis Process (THP) as pre-treatment. Whilst the former provides lower capability, flexible biogas production was achieved by the latter, as it provides a quick response. In all scenarios, the value of the biogas converted into electricity is higher than with a steady operational regime, increasing by 3.6% on average (up to 5.0%) in conventional and by 4.8% on average (up to 7.1%) with THP. The process has proven scalable up to 18 m3 digester capacity in operational conditions like those in full scale.
Collapse
Affiliation(s)
- Mauro Lafratta
- Centre for Environment and Sustainability, University of Surrey, Guildford GU2 7XH, United Kingdom; Research, Development and Innovation, Thames Water Utilities Ltd, Reading STW, Reading RG2 0RP, United Kingdom.
| | - Rex B Thorpe
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Sabeha K Ouki
- Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Achame Shana
- Operational Excellence, Thames Water Utilities Ltd, Clearwater Court, Vastern Road, Reading RG1 8DB, United Kingdom
| | - Eve Germain
- Research, Development and Innovation, Thames Water Utilities Ltd, Reading STW, Reading RG2 0RP, United Kingdom
| | - Mark Willcocks
- Energy and Carbon, Thames Water Utilities Ltd, Clearwater Court, Vastern Road, Reading RG1 8DB, United Kingdom
| | - Jacquetta Lee
- Centre for Environment and Sustainability, University of Surrey, Guildford GU2 7XH, United Kingdom
| |
Collapse
|
24
|
Not Just Numbers: Mathematical Modelling and Its Contribution to Anaerobic Digestion Processes. Processes (Basel) 2020. [DOI: 10.3390/pr8080888] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mathematical modelling of bioprocesses has a long and notable history, with eminent contributions from fields including microbiology, ecology, biophysics, chemistry, statistics, control theory and mathematical theory. This richness of ideas and breadth of concepts provide great motivation for inquisitive engineers and intrepid scientists to try their hand at modelling, and this collaboration of disciplines has also delivered significant milestones in the quality and application of models for both theoretical and practical interrogation of engineered biological systems. The focus of this review is the anaerobic digestion process, which, as a technology that has come in and out of fashion, remains a fundamental process for addressing the global climate emergency. Whether with conventional anaerobic digestion systems, biorefineries, or other anaerobic technologies, mathematical models are important tools that are used to design, monitor, control and optimise the process. Both highly structured, mechanistic models and data-driven approaches have been used extensively over half a decade, but recent advances in computational capacity, scientific understanding and diversity and quality of process data, presents an opportunity for the development of new modelling paradigms, augmentation of existing methods, or even incorporation of tools from other disciplines, to ensure that anaerobic digestion research can remain resilient and relevant in the face of emerging and future challenges.
Collapse
|
25
|
Abstract
The biogas production technology has improved over the last years for the aim of reducing the costs of the process, increasing the biogas yields, and minimizing the greenhouse gas emissions. To obtain a stable and efficient biogas production, there are several design considerations and operational parameters to be taken into account. Besides, adapting the process to unanticipated conditions can be achieved by adequate monitoring of various operational parameters. This paper reviews the research that has been conducted over the last years. This review paper summarizes the developments in biogas design and operation, while highlighting the main factors that affect the efficiency of the anaerobic digestion process. The study’s outcomes revealed that the optimum operational values of the main parameters may vary from one biogas plant to another. Additionally, the negative conditions that should be avoided while operating a biogas plant were identified.
Collapse
|
26
|
Usman M, Zha L, Abomohra AEF, Li X, Zhang C, Salama ES. Evaluation of animal- and plant-based lipidic waste in anaerobic digestion: kinetics of long-chain fatty acids degradation. Crit Rev Biotechnol 2020; 40:733-749. [DOI: 10.1080/07388551.2020.1756215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Muhammad Usman
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, Gansu Province, China
| | - Lajia Zha
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, Gansu Province, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, Gansu Province, China
| | - Abd El-Fatah Abomohra
- New Energy Department, School of Energy and Power Engineering, Jiangsu University, Jiangsu Province, China
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Xiangkai Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, Gansu Province, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, Gansu Province, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, Gansu Province, China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu Province, China
| |
Collapse
|
27
|
Foams in Wastewater Treatment Plants: From Causes to Control Methods. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082716] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The formation of persistent foams can be a critical problem in wastewater treatment plants (WWTPs) as it could lead to a series of operational problems, especially the reduction of the overall system performance. To date, the effects of foaming in the WWTPs are a problem that is currently very common and shared, but which to date is treated mainly only at the management level and still too little studied through a globally shared scientific method: the complexity of the phenomenon and the systems have led to numerous partially contradictory descriptions and hypotheses over the years. The goal must be to suggest future research directions and indicate promising strategies to prevent or control the formation of foams in WWTPs. This study examines and investigates the problem of foams by a methodological approach of research through a review on the state of the art: the factors influencing the formation of foams are described first (such as surfactants and/or extracellular polymeric substances (EPSs)), then the known methods for the evaluation of foaming, both direct and indirect, are presented, with the aim of identifying the correct and best (from the management point of view) control and/or prevention strategies to be applied in the future in WWTPs.
Collapse
|
28
|
Nishiguchi K, Winkler MKH. Correlating sludge constituents with digester foaming risk using sludge foam potential and rheology. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:949-960. [PMID: 32541113 DOI: 10.2166/wst.2020.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Foam potential and viscometer ramp tests (VRTs) were conducted for three municipal wastewater treatment plants to determine if these methods can relate to mechanisms of foaming to physical and biological constituents in sludge. At all plants, digester volatile solids (VS) concentration correlated (R2 > 0.41) with increases in plastic viscosity, a VRT parameter corresponding to foaming risk. Plastic viscosity also correlated with foam-causing bacteria Gordonia (R2 = 0.38). Foam potential test values increased with Microthrix parvicella (R2> 0.28). For one plant, suspected foam-causing bacteria Mycobacterium negatively correlated with parameters representing foam risk. Microscopic filament counting correlated (R2 = 0.97) with quantitative polymerase chain reaction (qPCR) for Gordonia, suggesting that the more accessible counting method can reliably quantify foam-causing bacteria. Foam potential tests and VRTs resulted in plant-specific correlations with foam-related constituents. Therefore, these tests may provide useful evidence when investigating causes of digester foam events.
Collapse
Affiliation(s)
- Kota Nishiguchi
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA E-mail:
| | - Mari K H Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA E-mail:
| |
Collapse
|
29
|
Ao T, Ran Y, Chen Y, Li R, Luo Y, Liu X, Li D. Effect of viscosity on process stability and microbial community composition during anaerobic mesophilic digestion of Maotai-flavored distiller's grains. BIORESOURCE TECHNOLOGY 2020; 297:122460. [PMID: 31784250 DOI: 10.1016/j.biortech.2019.122460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
To investigate the effects of viscosity on the mesophilic digestion of Maotai-flavored distiller's grains, a continuous experiment was conducted in a 70 L reactor at organic loading rates of 3, 4, 5, and 6 g VS/(L·d) with and without effluent recirculation. High organic loading rates and continuous effluent recirculation increased the digestate viscosity, and high viscosity caused severe foaming, which blocked the biogas outlet pipe. Moreover, a viscosity above 782 mPa·s was proposed as an early warning indicator for foaming. A maximum volumetric biogas production rate of 1.72 L/(L·d) was accomplished by diluting the feed without effluent recirculation at a recommended organic loading rate of 5 g VS/(L·d). Proteiniphilum, Ruminococcus_2, norank_f_Synergistaceae, norank_o__DTU014, Syntrophomonas, Methanosarcina, Methanobacterium, and Methanosaeta were the dominant acidogens, syntrophic bacteria, and methanogens existed in both low and high viscosity groups. Candidatus_Methanofastidiosum capable of employing the methylated thiol reduction pathway was found only in the high viscosity system.
Collapse
Affiliation(s)
- Tianjie Ao
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Ran
- Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
| | - Yichao Chen
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China
| | - Ruiling Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; College of Engineering, Northeast Agricultural University, No. 600, Changjiang Road, Xiangfang District, Harbin, Heilongjiang 150030, China
| | - Yiping Luo
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China
| | - Xiaofeng Liu
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China
| | - Dong Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China.
| |
Collapse
|
30
|
Ekstrand EM, Svensson BH, Šafarič L, Björn A. Viscosity dynamics and the production of extracellular polymeric substances and soluble microbial products during anaerobic digestion of pulp and paper mill wastewater sludges. Bioprocess Biosyst Eng 2019; 43:283-291. [PMID: 31602491 PMCID: PMC6960218 DOI: 10.1007/s00449-019-02224-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 11/28/2022]
Abstract
The production processes of the pulp and paper industry often run in campaigns, leading to large variations in the composition of wastewaters and waste sludges. During anaerobic digestion (AD) of these wastes, the viscosity or the production of extracellular polymeric substances (EPS) and soluble microbial products (SMP) may be affected, with the risk of foam formation, inefficient digester mixing or poor sludge dewaterability. The aim of this study was to investigate how viscosity and production of EPS and SMP during long-term AD of pulp and paper mill sludge is affected by changes in organic loading rate (OLR) and hydraulic retention time (HRT). Two mesophilic lab-scale continuous stirred tank reactors (CSTRs) were operated for 800 days (R1 and R2), initially digesting only fibre sludge, then co-digesting fibre sludge and activated sludge. The HRT was lowered, followed by an increase in the OLR. Reactor fluids were sampled once a month for rheological characterization and analysis of EPS and SMP. The production of the protein fraction of SMP was positively correlated to the OLR, implicating reduced effluent qualities at high OLR. EPS formation correlated with the magnesium content, and during sulphate deficiency, the production of EPS and SMP increased. At high levels of EPS and SMP, there was an increase in viscosity of the anaerobic sludges, and dewatering efficiency was reduced. In addition, increased viscosity and/or the production of EPS and SMP were important factors in sludge bulking and foam formation in the CSTRs. Sludge bulking was avoided by more frequent stirring.
Collapse
Affiliation(s)
- Eva-Maria Ekstrand
- Department of Thematic Studies, Environmental Change, Linköping University, 581 83, Linköping, Sweden.
| | - Bo H Svensson
- Department of Thematic Studies, Environmental Change, Linköping University, 581 83, Linköping, Sweden
| | - Luka Šafarič
- Department of Thematic Studies, Environmental Change, Linköping University, 581 83, Linköping, Sweden
| | - Annika Björn
- Department of Thematic Studies, Environmental Change, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
31
|
A Review of the Chemistry of Anaerobic Digestion: Methods of Accelerating and Optimizing Process Efficiency. Processes (Basel) 2019. [DOI: 10.3390/pr7080504] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The anaerobic digestion technology has been in existence for centuries and its underlying theory established for decades. It is considered a useful technology for the generation of renewable energy, and provides means to alleviate problems associated with low access to energy. However, a great deal of current research is targeted towards the optimization of this technology under diverse digestion process conditions. This review presents an in-depth analysis of the chemistry of anaerobic digestion and discusses how process chemistry can be used to optimize system performance through identification of methods that can accelerate syntrophic interactions of different microorganisms for improved methanogenic reactions. Recent advances in addition to old research are discussed in order to offer a general but comprehensive synopsis of accumulated knowledge in the theory of anaerobic digestion, as well as an overview of previous research and future directions and opportunities of the AD technology. Achieving a sustainable energy system requires comprehensive reforms in not just economic, social and policy aspects, but also in all technical aspects, which represents one of the most crucial future investments for anaerobic digestion systems.
Collapse
|
32
|
Pan S, Wen C, Liu Q, Chi Y, Mi H, Li Z, Du L, Huang R, Wei Y. A novel hydraulic biogas digester controlling the scum formation in batch and semi-continuous tests using banana stems. BIORESOURCE TECHNOLOGY 2019; 286:121372. [PMID: 31035032 DOI: 10.1016/j.biortech.2019.121372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 06/09/2023]
Abstract
Scum formation is a widespread phenomenon and causes serious damage in straw biogas digesters. A 10-L novel hydraulic conical digester for controlling scum was developed in this work and compared with a hydraulic cylindrical digester that simulated the conventional digester. After 30 d of batch and 120 d of semi-continuous fermentations using banana stems, the scum volumes of in cylindrical digesters were 4.12 and 2.12 times that in the conical digesters, respectively. The conical digesters increased biogas production by 5.7% and 11.6% in batch and semi-continuous tests, respectively. The VS removal of feedstock in conical digesters were 5.6 and 7.2% greater than for the batch and semi-continuous cylindrical, respectively. The microbial diversity and evenness were higher in conical than cylindrical digesters. The results demonstrated that conical shape was an effective structure for controlling scum formation and improving biogas production.
Collapse
Affiliation(s)
- Shiyou Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Chuan Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Qiangqiang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yue Chi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Huizhi Mi
- Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Zhenchong Li
- Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Liqin Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Ribo Huang
- Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Yutuo Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
33
|
Gupta D, Mahajani SM, Garg A. Effect of hydrothermal carbonization as pretreatment on energy recovery from food and paper wastes. BIORESOURCE TECHNOLOGY 2019; 285:121329. [PMID: 31003203 DOI: 10.1016/j.biortech.2019.121329] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
In this study, food waste (FW) and paper wastes were subjected to hydrothermal carbonization (HTC) with a purpose to improve energy recovery potential. FW is suggested as the suitable feedstock for production of hydrochar (HC) having highest calorific value (29.6 MJ/kg). Carbon content in FW derived HC was increased from 50% to ∼72% whereas energy retention efficiency was found to be 5.74 times of that in FW. Wastewater recovered after HTC of FW was rich in carbohydrates with chemical oxygen demand of ∼56,000 mg/L which may further be subjected to anaerobic treatment for biogas generation. Energy balance calculations showed that the solid and liquid fractions recovered after HTC of FW yielded highest energy output (2950 kJ/kg FW) compared to incineration (2217 kJ/kg FW), anaerobic digestion (2605 kJ/kg) and in-vessel composting. HTC process can be adopted as decentralized facility by institutions where highly moisturized wastes are generated.
Collapse
Affiliation(s)
- Divya Gupta
- Centre for Environmental Science and Engineering, IIT Bombay, Mumbai 400076, India
| | - S M Mahajani
- Department of Chemical Engineering, IIT Bombay, Mumbai 400076, India
| | - Anurag Garg
- Centre for Environmental Science and Engineering, IIT Bombay, Mumbai 400076, India.
| |
Collapse
|
34
|
Granular Sludge Bed Processes in Anaerobic Digestion of Particle-Rich Substrates. ENERGIES 2019. [DOI: 10.3390/en12152940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Granular sludge bed (GSB) anaerobic digestion (AD) is a well-established method for efficient wastewater treatment, limited, however, by the wastewater particle content. This review is carried out to investigate how and to what extent feed particles influence GSB to evaluate the applicability of GSB to various types of slurries that are abundantly available. Sludge bed microorganisms evidently have mechanisms to retain feed particles for digestion. Disintegration and hydrolysis of such particulates are often the rate-limiting steps in AD. GSB running on particle-rich substrates and factors that affect these processes are stdied especially. Disintegration and hydrolysis models are therefore reviewed. How particles may influence other key processes within GSB is also discussed. Based on this, limitations and strategies for effective digestion of particle-rich substrates in high-rate AD reactors are evaluated.
Collapse
|
35
|
Kong X, Liu J, Yue X, Li Y, Wang H. Fe 0 inhibits bio-foam generating in anaerobic digestion reactor under conditions of organic shock loading and re-startup. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 92:107-114. [PMID: 31160019 DOI: 10.1016/j.wasman.2019.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/28/2019] [Accepted: 05/12/2019] [Indexed: 06/09/2023]
Abstract
Bio-foaming during the anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is a major cause of unstable reactor operations, especially under high organic loading rates (OLRs). Here, we used two 40-liter anaerobic reactors to deal with the actual organic fraction of municipal solid waste at OLRs of 5 and 7.5 kgVS/m3/d and tried to inhibit bio-foam generation by dosing with Fe0. One of reactors had 400 g of Fe0 added before operation and additional 200 g of Fe0 was added when the operating conditions changed; the other one was the control reactor with no Fe0 dosing. The results show that bio-foam was generated in the control reactor at an organic shock loading of 10 kgVS/m3/d and re-startup at 5 kgVS/m3/d, while the reactor containing Fe0 operated normally. Due to the surfactant attributes of volatile fatty acids (VFAs), the probability of bio-foam generation was positively correlated with the effluent's degree of surface activity (SA) induced by VFAs, which is a parameter representing the foaming potential. Because VFA biodegradation was enhanced in the reactor with added Fe0, at the position of Fe0 accumulation, the SA was decreased by 49.7-59.2%. Furthermore, the effect of Fe0 dosing on inhibiting bio-foam was evaluated by comparison with traditional commercial anti-foam agents. The results suggest possible reasons for bio-foam generation in OFMSW AD and suggest the reasonable usage of Fe0 to inhibit bio-foam formation.
Collapse
Affiliation(s)
- Xin Kong
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Yanan Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Hongtao Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| |
Collapse
|
36
|
Nguyen LN, Johir MAH, Commault A, Bustamante H, Aurisch R, Lowrie R, Nghiem LD. Impacts of mixing on foaming, methane production, stratification and microbial community in full-scale anaerobic co-digestion process. BIORESOURCE TECHNOLOGY 2019; 281:226-233. [PMID: 30825825 DOI: 10.1016/j.biortech.2019.02.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the impact of mixing on key factors including foaming, substrate stratification, methane production and microbial community in three full scale anaerobic digesters. Digester foaming was observed at one plant that co-digested sewage sludge and food waste, and was operated without mixing. The lack of mixing led to uneven distribution of total chemical oxygen demand (tCOD) and volatile solid (VS) as well as methane production within the digester. 16S rRNA gene-based community analysis clearly differentiated the microbial community from the top and bottom. By contrast, foaming and substrate stratification were not observed at the other two plants with internal circulation mixing. The abundance of methanogens (Methanomicrobia) at the top was about four times higher than at the bottom, correlating to much higher methane production from the top verified by ex-situ biomethane assay, causing foaming. This result is consistent with foaming potential assessment of digestate samples from the digester.
Collapse
Affiliation(s)
- Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| | - Md Abu Hasan Johir
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Audrey Commault
- Climate Change Cluster (C3), University of Technology Sydney, NSW 2007, Australia
| | | | | | | | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
37
|
Chen GQ, Artemi A, Lee J, Gras SL, Kentish SE. A pilot scale study on the concentration of milk and whey by forward osmosis. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.01.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Mauerhofer LM, Pappenreiter P, Paulik C, Seifert AH, Bernacchi S, Rittmann SKMR. Methods for quantification of growth and productivity in anaerobic microbiology and biotechnology. Folia Microbiol (Praha) 2019; 64:321-360. [PMID: 30446943 PMCID: PMC6529396 DOI: 10.1007/s12223-018-0658-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/12/2018] [Indexed: 12/17/2022]
Abstract
Anaerobic microorganisms (anaerobes) possess a fascinating metabolic versatility. This characteristic makes anaerobes interesting candidates for physiological studies and utilizable as microbial cell factories. To investigate the physiological characteristics of an anaerobic microbial population, yield, productivity, specific growth rate, biomass production, substrate uptake, and product formation are regarded as essential variables. The determination of those variables in distinct cultivation systems may be achieved by using different techniques for sampling, measuring of growth, substrate uptake, and product formation kinetics. In this review, a comprehensive overview of methods is presented, and the applicability is discussed in the frame of anaerobic microbiology and biotechnology.
Collapse
Affiliation(s)
- Lisa-Maria Mauerhofer
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Althanstraße 14, 1090, Wien, Austria
| | - Patricia Pappenreiter
- Institute for Chemical Technology of Organic Materials, Johannes Kepler University Linz, Linz, Austria
| | - Christian Paulik
- Institute for Chemical Technology of Organic Materials, Johannes Kepler University Linz, Linz, Austria
| | | | | | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Althanstraße 14, 1090, Wien, Austria.
| |
Collapse
|
39
|
Gruber-Brunhumer MR, Montgomery LFR, Nussbaumer M, Schoepp T, Zohar E, Muccio M, Ludwig I, Bochmann G, Fuchs W, Drosg B. Effects of partial maize silage substitution with microalgae on viscosity and biogas yields in continuous AD trials. J Biotechnol 2019; 295:80-89. [PMID: 30853635 DOI: 10.1016/j.jbiotec.2019.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 11/29/2022]
Abstract
The microalga Acutodesmus obliquus was investigated as a feedstock in semi-continuously fed anaerobic digestion trials, where A. obliquus was co-digested with pig slurry and maize silage. Maize silage was substituted by both 10% and 20% untreated, and 20% ultrasonicated microalgae biomass on a VS (volatile solids) basis. The substitution of maize silage with 20% of either ultrasonicated and untreated microalgae led to significantly lower biogas yields, i.e., 560 dm³ kg-1 VScorr in the reference compared to 516 and 509 dm³ kg-1VScorr for untreated and ultrasonicated microalgae substitution. Further, the viscosities in the different reactors were measured at an OLR of 3.5 g VS dm-3 d-1. However, all treatments with microalgae resulted in significantly lower viscosities. While the mean viscosity reached 0.503 Pa s in the reference reactor, mean viscosities were 53% lower in reactors where maize was substituted by 20% microalgae, i.e. 0.239 Pa s, at a constant rotation speed of 30 rpm. Reactors where maize was substituted by 20% ultrasonicated microalgae had a 32% lower viscosity, for 10% microalgae substitution a decrease of 8% was measured. Decreased viscosities have beneficial effect on the bioprocess and the economy in biogas plants. Nonetheless, with regard to other parameters, no positive effect on biogas yields by partial substitution with microalgae biomass was found. The application of microalgae may be an interesting option in anaerobic digestion when fibrous or lignocellulosic substances lead to high viscosities of the digested slurries. High production costs remain the bottleneck for making microalgae an interesting feedstock.
Collapse
Affiliation(s)
- M R Gruber-Brunhumer
- BIOENERGY 2020+ GmbH, Inffeldgasse 21b, A-8010 Graz, Austria; University of Natural Resources and Life Sciences, Department for Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Str. 20, A-3430 Tulln, Austria; Institute for Environment and Food Security, Montfortstraße 4, 6900 Bregenz, Austria
| | - L F R Montgomery
- BIOENERGY 2020+ GmbH, Inffeldgasse 21b, A-8010 Graz, Austria; University of Natural Resources and Life Sciences, Department for Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Str. 20, A-3430 Tulln, Austria; NNFCC Ltd, Biocentre, York Science Park, Innovation Way, York, YO10 5DG, United Kingdom
| | - M Nussbaumer
- BIOENERGY 2020+ GmbH, Inffeldgasse 21b, A-8010 Graz, Austria; University of Natural Resources and Life Sciences, Department for Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| | - T Schoepp
- BIOENERGY 2020+ GmbH, Inffeldgasse 21b, A-8010 Graz, Austria; University of Natural Resources and Life Sciences, Institute of Sanitary Engineering and Water Pollution Control (SIG), Muthgasse 18, 1190 Wien, Austria
| | - E Zohar
- Erber Future Business, Erber Campus 1, 3131 Getzersdorf, Austria; ROHKRAFT green, Schulgasse 6, A3454 Reidling, Austria
| | - M Muccio
- Erber Future Business, Erber Campus 1, 3131 Getzersdorf, Austria; BIOMIN Holding GmbH, Erber Campus 1, 3131 Getzersdorf, Austria
| | - I Ludwig
- University of Natural Resources and Life Sciences, Department for Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| | - G Bochmann
- BIOENERGY 2020+ GmbH, Inffeldgasse 21b, A-8010 Graz, Austria
| | - W Fuchs
- BIOENERGY 2020+ GmbH, Inffeldgasse 21b, A-8010 Graz, Austria; University of Natural Resources and Life Sciences, Department for Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| | - B Drosg
- BIOENERGY 2020+ GmbH, Inffeldgasse 21b, A-8010 Graz, Austria; University of Natural Resources and Life Sciences, Department for Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| |
Collapse
|
40
|
Cunha J, Morais S, Silva JC, van der Weijden RD, Hernández Leal L, Zeeman G, Buisman CJN. Bulk pH and Carbon Source Are Key Factors for Calcium Phosphate Granulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1334-1343. [PMID: 30620555 PMCID: PMC6365912 DOI: 10.1021/acs.est.8b06230] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/27/2018] [Accepted: 01/08/2019] [Indexed: 05/27/2023]
Abstract
Recovery of calcium phosphate granules (CaP granules) from high-strength wastewater is an opportunity to reduce the natural phosphorus (P) scarcity, geographic imbalances of P reserves, and eutrophication. Formation of CaP granules was previously observed in an upflow anaerobic sludge bed (UASB) reactor treating source separated black water and is enhanced by Ca2+ addition. However, the required operating conditions and influent composition for CaP granulation are still unknown. In this study, we have experimentally demonstrated that the carbon source and bulk pH are crucial parameters for the formation and growth of CaP granules in a UASB reactor, operating at relatively low upflow velocity (<1 cm h-1). Degradation of glucose yielded sufficient biomass (microbial cells and extracellular biopolymers) to cover crystal and amorphous calcium phosphate [Ca x(PO4) y], forming CaP granules. Influent only containing volatile fatty acids as the carbon source did not generate CaP granules. Moreover, bulk pH between 7.0 and 7.5 was crucial for the enrichment of Ca x(PO4) y in the granules over bulk precipitation. Bulk pH 8 reduced the Ca x(PO4) y enrichment in granules of >1.4 mm diameter from 9 to 5 wt % P. Moreover, for bulk pH 7.5, co-precipitation of CaCO3 with Ca x(PO4) y was reduced.
Collapse
Affiliation(s)
- Jorge
Ricardo Cunha
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Post Office Box 1113, 8900 CC Leeuwarden, Netherlands
| | - Sara Morais
- Department
of Chemical Engineering, Faculty of Engineering
of the University of Porto (FEUP), Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana C. Silva
- Department
of Chemical Engineering, Faculty of Engineering
of the University of Porto (FEUP), Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Renata D. van der Weijden
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Post Office Box 1113, 8900 CC Leeuwarden, Netherlands
- Sub-department
of Environmental Technology, Wageningen
University, Post Office
Box 17, 6700 AA Wageningen, Netherlands
| | - Lucía Hernández Leal
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Post Office Box 1113, 8900 CC Leeuwarden, Netherlands
| | - Grietje Zeeman
- Sub-department
of Environmental Technology, Wageningen
University, Post Office
Box 17, 6700 AA Wageningen, Netherlands
| | - Cees J. N. Buisman
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Post Office Box 1113, 8900 CC Leeuwarden, Netherlands
- Sub-department
of Environmental Technology, Wageningen
University, Post Office
Box 17, 6700 AA Wageningen, Netherlands
| |
Collapse
|
41
|
Ren G, Hu A, Huang S, Ye J, Tang J, Zhou S. Graphite-assisted electro-fermentation methanogenesis: Spectroelectrochemical and microbial community analyses of cathode biofilms. BIORESOURCE TECHNOLOGY 2018; 269:74-80. [PMID: 30149257 DOI: 10.1016/j.biortech.2018.08.078] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/17/2018] [Accepted: 08/19/2018] [Indexed: 05/28/2023]
Abstract
The stimulatory effect of conductive particles on anaerobic digestion has been demonstrated in recent years. However, it is yet to be determined whether and how conductive particles affect methanogenesis via electro-fermentation (electro-fermentation methanogenesis). In this study, it was demonstrated, for the first time, that conductive graphite boosted the methane production yield by 54.3% and increased the maximum methane production rate by 72.2% during electro-fermentation methanogenesis. Graphite significantly affected the composition of cathode biofilms, with more live and large aggregates being observed. Spectroelectrochemical analyses further showed that the kinds and intensities of biocatalytic active sites and redox groups on the cathode biofilms increased during graphite-assisted electro-fermentation methanogenesis. Particularly, c-type cytochromes, humic acid-like substances, and humic substances improved the long-range electron transport to methanogens such as Methanobacterium and Methanosarcina. The results have implications for the improvement of electro-fermentation process and the use of conductive materials for biofuel recovery.
Collapse
Affiliation(s)
- Guoping Ren
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Andong Hu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaofu Huang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
42
|
Petriglieri F, Nierychlo M, Nielsen PH, McIlroy SJ. In situ visualisation of the abundant Chloroflexi populations in full-scale anaerobic digesters and the fate of immigrating species. PLoS One 2018; 13:e0206255. [PMID: 30383873 PMCID: PMC6211663 DOI: 10.1371/journal.pone.0206255] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/09/2018] [Indexed: 11/18/2022] Open
Abstract
Anaerobic digestion is a key process for the conversion of waste organics to biogas for energy and is reliant on the synergistic activities of complex microbial communities. Members of the phylum Chloroflexi are often found to be abundant in these systems, yet little is known of their role, with most members yet to be cultured or identified. The aim of this study was to characterize the Chloroflexi communities present in full-scale anaerobic digesters receiving excess sludge from wastewater treatment plants. The core genus-level-phylotypes were identified from extensive 16S rRNA gene amplicon sequencing surveys of 19 full-scale systems over a 6 year period. The T78 and Leptolinea, and the RB349 and SJA-170, were found to be the most abundant genera of mesophilic and thermophilic digesters, respectively. With the exception of Leptolinea, these phylotypes are known only by their 16S rRNA gene sequence, and their morphology and metabolic potentials are not known. Fluorescence in situ hybridisation (FISH) probes were designed for these phylotypes, with their application revealing a similar thin filamentous morphology, indicating a possible role for these organisms in maintaining floc structure. The new FISH probes provide a useful tool for future efforts to characterize these organisms in situ. FISH also suggests that immigrating Chloroflexi species die off in the anaerobic digester environment and their high abundance in anaerobic digesters, observed with DNA based sequencing surveys, was quite possibly due to the persistence of their DNA after their death. This observation is important for the interpretation of popular DNA-based sequencing methods applied for the characterisation of communities with substantial immigration rates, such as anaerobic digesters.
Collapse
Affiliation(s)
- Francesca Petriglieri
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Simon Jon McIlroy
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
43
|
Zhang L, Sun X. Influence of sugar beet pulp and paper waste as bulking agents on physical, chemical, and microbial properties during green waste composting. BIORESOURCE TECHNOLOGY 2018; 267:182-191. [PMID: 30021150 DOI: 10.1016/j.biortech.2018.07.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 06/08/2023]
Abstract
Composting is considered to be a natural, sustainable, and highly beneficial method for solid waste disposal. The objective of this study was to investigate the two-stage composting of green waste (GW) as affected by the addition of sugar beet pulp (SBP; at 0, 25, and 35%) and/or paper waste (PW; at 0, 5, and 10%) as bulking agents. The combination of SBP and PW greatly improved the composting conditions and the final compost quality in terms of composting temperature; pH; emissions of ammonia, nitrite nitrogen, and carbon dioxide; lignocellulose degradation; microbial abundance; enzyme activities; particle-size distribution; the ratio of water-soluble organic carbon to organic nitrogen; and phytotoxicity. The optimal two-stage composting process of GW and the highest quality compost product were obtained with the combination of 25% SBP and 10% PW. This optimal combination of bulking agents produced a mature and stable final compost product in only 20 days.
Collapse
Affiliation(s)
- Lu Zhang
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| | - Xiangyang Sun
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
44
|
Kariyama ID, Zhai X, Wu B. Influence of mixing on anaerobic digestion efficiency in stirred tank digesters: A review. WATER RESEARCH 2018; 143:503-517. [PMID: 29990745 DOI: 10.1016/j.watres.2018.06.065] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
A comprehensive review was carried out on the influence of mixing on anaerobic digestion (AD) efficiency in stirred tank anaerobic digesters. Though traditionally, stirred tank digesters operated as continuous stirred tank reactors (CSTRs), this review revealed that there is no motivation to continue to operate stirred tank anaerobic digesters as CSTRs if AD energy efficiency is to be improved. AD energy production efficiency can be achieved with optimized intermittent mixing. AD efficiency should include an assessment of the net energy production efficiency and should be the criteria in determining the mixing mode, mixing intensity, mixing time and mixing interval for every anaerobic digestion operating plan.
Collapse
Affiliation(s)
- Ibrahim Denka Kariyama
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, China
| | - Xiaodong Zhai
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, China
| | - Binxin Wu
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, China.
| |
Collapse
|
45
|
Zhang Q, Vlaeminck SE, DeBarbadillo C, Su C, Al-Omari A, Wett B, Pümpel T, Shaw A, Chandran K, Murthy S, De Clippeleir H. Supernatant organics from anaerobic digestion after thermal hydrolysis cause direct and/or diffusional activity loss for nitritation and anammox. WATER RESEARCH 2018; 143:270-281. [PMID: 29986237 DOI: 10.1016/j.watres.2018.06.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/05/2018] [Accepted: 06/16/2018] [Indexed: 06/08/2023]
Abstract
Treatment of sewage sludge with a thermal hydrolysis process (THP) followed by anaerobic digestion (AD) enables to boost biogas production and minimize residual sludge volumes. However, the reject water can cause inhibition to aerobic and anoxic ammonium-oxidizing bacteria (AerAOB & AnAOB), the two key microbial groups involved in the deammonification process. Firstly, a detailed investigation elucidated the impact of different organic fractions present in THP-AD return liquor on AerAOB and AnAOB activity. For AnAOB, soluble compounds linked to THP conditions and AD performance caused the main inhibition. Direct inhibition by dissolved organics was also observed for AerAOB, but could be overcome by treating the filtrate with extended aerobic or anaerobic incubation or with activated carbon. AerAOB additionally suffered from particulate and colloidal organics limiting the diffusion of substrates. This was resolved by improving the dewatering process through an optimized flocculant polymer dose and/or addition of coagulant polymer to better capture the large colloidal fraction, especially in case of unstable AD performance. Secondly, a new inhibition model for AerAOB included diffusion-limiting compounds based on the porter-equation, and achieved the best fit with the experimental data, highlighting that AerAOB were highly sensitive to large colloids. Overall, this paper for the first time provides separate identification of organic fractions within THP-AD filtrate causing differential types of inhibition. Moreover, it highlights the combined effect of the performance of THP, AD and dewatering on the downstream autotrophic nitrogen removal kinetics.
Collapse
Affiliation(s)
- Qi Zhang
- DC Water, 5000 Overlook Ave. SW, Washington, DC, 20032, USA; Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent, 9000, Belgium; Department of Earth and Environmental Engineering, Columbia University, 500 West 120th Street, New York, USA
| | - Siegfried E Vlaeminck
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent, 9000, Belgium; Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerpen, 2020, Belgium.
| | | | - Chunyang Su
- DC Water, 5000 Overlook Ave. SW, Washington, DC, 20032, USA
| | - Ahmed Al-Omari
- DC Water, 5000 Overlook Ave. SW, Washington, DC, 20032, USA
| | - Bernhard Wett
- ARAconsult, Unterbergerstr.1, Innsbruck, A-6020, Austria
| | - Thomas Pümpel
- Institut für Mikrobiologie, Technikerstr. 25, Innsbruck, A-6020, Austria
| | - Andrew Shaw
- Black & Veatch, 8400 Ward Parkway, Kansas City, MO, 64114, USA
| | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University, 500 West 120th Street, New York, USA
| | - Sudhir Murthy
- DC Water, 5000 Overlook Ave. SW, Washington, DC, 20032, USA
| | | |
Collapse
|
46
|
Jiang C, Qi R, Hao L, McIlroy SJ, Nielsen PH. Monitoring foaming potential in anaerobic digesters. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 75:280-288. [PMID: 29478959 DOI: 10.1016/j.wasman.2018.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Foaming in anaerobic digestion (AD) systems for biogas generation can give serious operational problems. The cause of such foaming events is often unclear, and it is therefore not an easy task to predict and subsequently apply preventative measures. Methods for the measurement of the foaming potential of digester sludge are often implemented, but no standardized method is available. In this study, we investigated parameters influencing the foam formation during experimental aeration tests of full-scale digester sludge, including air flow, time, and total solids concentration, and proposed an optimized method for standard use. In a survey of 16 full-scale AD systems located at wastewater treatment plants in Denmark, all sludge samples were classified into three groups (non-foaming, pre-foaming, and actually foaming) according to their foam height/propensity and stability. Extensive surveillance of plants with the proposed classification system will enable the determination of cut-off values to help to identify foaming or pre-foaming sludge, and to associate these with operational conditions leading to foaming episodes.
Collapse
Affiliation(s)
- Chenjing Jiang
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark; Key Laboratory of Engineering Oceanography, Second Institute of Oceanography, SOA, Hangzhou 310012, China
| | - Rong Qi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Liping Hao
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Simon Jon McIlroy
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark.
| |
Collapse
|
47
|
Ometto F, Berg A, Björn A, Safaric L, Svensson BH, Karlsson A, Ejlertsson J. Inclusion of Saccharina latissima in conventional anaerobic digestion systems. ENVIRONMENTAL TECHNOLOGY 2018; 39:628-639. [PMID: 28317451 DOI: 10.1080/09593330.2017.1309075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 03/14/2017] [Indexed: 06/06/2023]
Abstract
Loading macroalgae into existing anaerobic digestion (AD) plants allows us to overcome challenges such as low digestion efficiencies, trace elements limitation, excessive salinity levels and accumulation of volatile fatty acids (VFAs), observed while digesting algae as a single substrate. In this work, the co-digestion of the brown macroalgae Saccharina latissima with mixed municipal wastewater sludge (WWS) was investigated in mesophilic and thermophilic conditions. The hydraulic retention time (HRT) and the organic loading rate (OLR) were fixed at 19 days and 2.1 g l-1 d-1 of volatile solids (VS), respectively. Initially, WWS was digested alone. Subsequently, a percentage of the total OLR (20%, 50% and finally 80%) was replaced by S. latissima biomass. Optimal digestion conditions were observed at medium-low algae loading (≤50% of total OLR) with an average methane yield close to [Formula: see text] and [Formula: see text] in mesophilic and thermophilic conditions, respectively. The conductivity values increased with the algae loading without inhibiting the digestion process. The viscosities of the reactor sludges revealed decreasing values with reduced WWS loading at both temperatures, enhancing mixing properties.
Collapse
Affiliation(s)
- F Ometto
- a Research and Development Department , Scandinavian Biogas Fuels AB , Stockholm , Sweden
| | - A Berg
- a Research and Development Department , Scandinavian Biogas Fuels AB , Stockholm , Sweden
| | - A Björn
- b Department of Thematic Studies - Environmental Changes , Linköping University , Linköping , Sweden
| | - L Safaric
- b Department of Thematic Studies - Environmental Changes , Linköping University , Linköping , Sweden
| | - B H Svensson
- b Department of Thematic Studies - Environmental Changes , Linköping University , Linköping , Sweden
| | - A Karlsson
- a Research and Development Department , Scandinavian Biogas Fuels AB , Stockholm , Sweden
| | - J Ejlertsson
- a Research and Development Department , Scandinavian Biogas Fuels AB , Stockholm , Sweden
- b Department of Thematic Studies - Environmental Changes , Linköping University , Linköping , Sweden
| |
Collapse
|
48
|
Xu F, Li Y, Ge X, Yang L, Li Y. Anaerobic digestion of food waste - Challenges and opportunities. BIORESOURCE TECHNOLOGY 2018; 247:1047-1058. [PMID: 28965912 DOI: 10.1016/j.biortech.2017.09.020] [Citation(s) in RCA: 308] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 06/07/2023]
Abstract
The disposal of large amounts of food waste has caused significant environmental pollution and financial costs globally. Compared with traditional disposal methods (i.e., landfilling, incineration, and composting), anaerobic digestion (AD) is a promising technology for food waste management, but has not yet been fully applied due to a few technical and social challenges. This paper summarizes the quantity, composition, and methane potential of various types of food waste. Recent research on different strategies to enhance AD of food waste, including co-digestion, addition of micronutrients, control of foaming, and process design, is discussed. It is envisaged that AD of food waste could be combined with an existing AD facility or be integrated with the production of value-added products to reduce costs and increase revenue. Further understanding of the fundamental biological and physicochemical processes in AD is required to improve the technology.
Collapse
Affiliation(s)
- Fuqing Xu
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Yangyang Li
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; College of Resource and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Xumeng Ge
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; Quasar Energy Group, 8600 E. Pleasant Valley Rd, Independence, OH 44131, USA
| | - Liangcheng Yang
- Department of Health Sciences, Illinois State University, USA
| | - Yebo Li
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; Quasar Energy Group, 8600 E. Pleasant Valley Rd, Independence, OH 44131, USA.
| |
Collapse
|
49
|
Li L, Peng X, Wang X, Wu D. Anaerobic digestion of food waste: A review focusing on process stability. BIORESOURCE TECHNOLOGY 2018; 248:20-28. [PMID: 28711296 DOI: 10.1016/j.biortech.2017.07.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Food waste (FW) is rich in biomass energy, and increasing numbers of national programs are being established to recover energy from FW using anaerobic digestion (AD). However process instability is a common operational issue for AD of FW. Process monitoring and control as well as microbial management can be used to control instability and increase the energy conversion efficiency of anaerobic digesters. Here, we review research progress related to these methods and identify existing limitations to efficient AD; recommendations for future research are also discussed. Process monitoring and control are suitable for evaluating the current operational status of digesters, whereas microbial management can facilitate early diagnosis and process optimization. Optimizing and combining these two methods are necessary to improve AD efficiency.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xuya Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Xiaoming Wang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Di Wu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
50
|
Moestedt J, Rönnberg J, Nordell E. The effect of different mesophilic temperatures during anaerobic digestion of sludge on the overall performance of a WWTP in Sweden. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:3213-3219. [PMID: 29236000 DOI: 10.2166/wst.2017.367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This project was initiated to evaluate the effect of alternative process temperatures to 38 °C at the anaerobic digestion step in a Swedish wastewater treatment plant (WWTP) treating mixed sludge. The efficiency of the different temperatures was evaluated with respect to biogas production, volume of sludge produced and nutrient content in the reject water to find the optimum temperature for the WWTP as a whole. Three temperatures, 34 °C, 38 °C and 42 °C, were compared in laboratory scale. Increasing the process temperature to 42 °C resulted in process instability, reduced methane yield, accumulation of volatile fatty acids and higher treatment costs of the reject water. By decreasing the temperature to 34 °C, slightly higher sludge mass was observed and a lower gas production rate, while the specific methane produced remained unchanged compared to 38 °C but foaming was observed at several occasions. In summary 38 °C was proved to be the most favourable temperature for the anaerobic digestion process treating mixed sludge when the evaluation included effects such as foaming, sludge mass and quality of the reject water.
Collapse
Affiliation(s)
- J Moestedt
- Department of Biogas R&D, Tekniska verken i Linköping AB, Box 1500, Linköping SE-581 15, Sweden E-mail:
| | - J Rönnberg
- Department of Biogas R&D, Tekniska verken i Linköping AB, Box 1500, Linköping SE-581 15, Sweden E-mail: ; Present address: ELVA AB, Box 5048, SE-591 l05 Motala, Sweden
| | - E Nordell
- Department of Biogas R&D, Tekniska verken i Linköping AB, Box 1500, Linköping SE-581 15, Sweden E-mail:
| |
Collapse
|