1
|
Re A, Schiavon M, Torretta V, Polvara E, Invernizzi M, Sironi S, Caruson P. Application of different packing media for the biofiltration of gaseous effluents from waste composting. ENVIRONMENTAL TECHNOLOGY 2024; 45:1622-1635. [PMID: 36404772 DOI: 10.1080/09593330.2022.2148570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
A pilot-scale experiment was implemented in a waste bioreactor with an inner capacity of 1 m3 in order to simulate a real-scale composting process. The waste underwent composting conditions that are typical of the initial bio-oxidation phase, characterised by a high production of volatile organic compounds (VOCs), hydrogen sulphide (H2S) and odorants. The waste bioreactor was fed with an intermittent airflow rate of 6 Nm3/h. The target of this study was to investigate the air treatment performance of three biofilters with the same size, but filled with different filtering media: (1) wood chips, (2) a two-layer combination of lava rock (50%) and peat (50%), and (3) peat only. The analyses on air samples taken upstream and downstream of the biofilters showed that the combination of lava rock and peat presents the best performance in terms of mean removal efficiency of odour (96%), total VOCs (95%) and H2S (77%) concentrations. Wood chips showed the worst abatement performance, with respective mean removal efficiencies of 90%, 88% and 62%. From the results obtained, it is possible to conclude that the combination of lava rock and peat can be considered as a promising choice for air pollution control in waste composting facilities.
Collapse
Affiliation(s)
- Andrea Re
- Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Marco Schiavon
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Vincenzo Torretta
- Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Elisa Polvara
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Marzio Invernizzi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Selena Sironi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | | |
Collapse
|
2
|
Tian H, Liu J, Zhang Y, Yue P. A novel integrated industrial-scale biological reactor for odor control in a sewage sludge composting facility: Performance, pollutant transformation, and bioaerosol emission mechanism. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 164:9-19. [PMID: 37185067 DOI: 10.1016/j.wasman.2023.03.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/27/2023] [Accepted: 03/17/2023] [Indexed: 05/17/2023]
Abstract
In order to remove multiple pollutants in the sewage sludge (SS) composting facility, a novel integrated industrial-scale biological reactor based on biological trickling filtration and fungal biological filtration (BTF-FBF) was developed. This study examined bioaerosol emission, odour removal, pollutant transformation mechanism, and project investment. At an inlet flow rate of 7200 m3/h, the average removal efficiencies of hydrogen sulfide (H2S), ammonia (NH3), and volatile organic compounds (VOCs) during the steady stage were 97.2 %, 98.9 %, and 92.2 %. The BTF-FBF separates microbial phases (bacteria and fungi) of different modules. BTF removed most hydrophilic compounds, while FBF removed hydrophobic ones. Moreover, the reactor could effectively remove pathogens or opportunistic pathogens bioaerosols, such as Escherichia coli (61.9%), Salmonella sp. (85%), and Aspergillus fumigatus (82.1%). The pollutant transformation mechanism of BTF-FBF was proposed. BTF-FBF annualized costs were 324,783 CNY/year at 15 years. In conclusion, BTF-FBF provides new insights into composting facility bioaerosol, odour, and pathogen emission control.
Collapse
Affiliation(s)
- Hongyu Tian
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China.
| | - Jianwei Liu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China.
| | - Yuxiu Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China.
| | - Peng Yue
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China.
| |
Collapse
|
3
|
Zhu Q, Wu P, Chen B, Wu Q, Cao F, Wang H, Mei Y, Liang Y, Sun X, Chen Z. Improving NH 3 and H 2S removal efficiency with pilot-scale biotrickling filter by co-immobilizing Kosakonia oryzae FB2-3 and Acinetobacter baumannii L5-4. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33181-33194. [PMID: 36474037 DOI: 10.1007/s11356-022-24426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
In this study, two NH4+-N and S2- removal strains, namely, Kosakonia oryzae (FB2-3) and Acinetobacter baumannii (L5-4), were isolated from the packing materials in a long-running biotrickling filter (BTF). The removal capacities of combined FB2-3 and L5-4 (FB2-3 + L5-4) toward 100 mg L-1 of NH4+-N and 200 mg L-1 of S2- reached 97.31 ± 1.62% and 98.57 ± 1.12% under the optimal conditions (32.0 °C and initial pH = 7.0), which were higher than those of single strain. Then, FB2-3 and L5-4 liquid inoculums were prepared, and their concentrations respectively reached 1.56 × 109 CFU mL-1 and 1.05 × 109 CFU mL-1 by adding different resuspension solutions and protective agents after 12-week storage at 25 °C. Finally, pilot-scale BTF test showed that NH3 and H2S in the real exhaust gases from a pharmaceutical factory were effectively removed with removal rates > 87% and maximum elimination capacities were reached 136 g (NH3) m-3 h-1 and 176 g (H2S) m-3 h-1 at 18 °C-34 °C and pH 4.0-7.0 in the BTF loaded with bamboo charcoal packing materials co-immobilized with FB2-3 and L5-4. After co-immobilization of FB2-3 and L5-4, in the bamboo charcoal packing materials, the new microbial diversity composition contained the dominant genera of Acinetobacter, Mycobacterium, Kosakonia, and Sulfobacillus was formed, and the diversity of entire bacterial community was decreased, compared to the control. These results indicate that FB2-3 and L5-4 have potential to be developed into liquid ready-to-use inoculums for effectively removing NH3 and H2S from exhaust gases in BTF.
Collapse
Affiliation(s)
- Qiuyan Zhu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Pengyu Wu
- College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, People's Republic of China
| | - Budong Chen
- Chuhuan Science and Technology Co., Ltd, Hangzhou, 310000, People's Republic of China
| | - Qijun Wu
- Chuhuan Science and Technology Co., Ltd, Hangzhou, 310000, People's Republic of China
| | - Feifei Cao
- Chuhuan Science and Technology Co., Ltd, Hangzhou, 310000, People's Republic of China
| | - Hao Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuxia Mei
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yunxiang Liang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaowen Sun
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhenmin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
4
|
Al-Faliti M, Dvorak B, Aly Hassan A. Removal of a mixture of formaldehyde and methanol vapors in biotrickling filters under mesophilic and thermophilic conditions: Potential application in ethanol production. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2022; 72:602-616. [PMID: 35311619 DOI: 10.1080/10962247.2022.2056262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Ethanol is a significant source of energy as a biofuel; however, its production using corn involves the generation of harmful emissions from both fermentation tanks and dryers. Scrubbers control the emissions from fermentation tanks, while the emissions from the dryers are controlled by regenerative thermal oxidizers. Potential alternatives to these energy- and water-intensive technologies are biotrickling filters (BTFs). In this study, two BTFs were operated in parallel to treat formaldehyde and methanol emissions in a volumetric ratio of 4:1, one at 25°C (mesophilic), and the other at 60°C (thermophilic). The mesophilic BTF simulated emissions from fermentation tanks, while the thermophilic BTF simulated emissions from dryers. Both beds were operated at an empty bed residence time of ~30 s and influent formaldehyde concentrations of 20, 50, and 100 parts per million per volume (ppmv). Formaldehyde polymerization was reduced in this study by adding NaOH to pH levels of 7.0-7.4 and heating the solution to a temperature of 60°C. BTFs have successfully removed formaldehyde at typical ethanol plants emissions ~21 ppmv. The BTF technology have the potential in replacing the conventional air treatment methods used at ethanol plants.Implications: Currently, ethanol plants remove and treat hazardous air pollutants (HAPs) using wet scrubbers from the fermenter off-gasses and using thermal oxidizers to combust off-gasses. The utilization of biotrickling filters (BTFs) for HAP removal generally and formaldehyde particularly has wide implication in the field of renewable energy. Utilizing BTFs in the 200+ ethanol plants in USA will save cost and reduce water and energy needs significantly. BTFs can reduce an ethanol plant's carbon intensity (CI) by 1 to 3 g CO2/MJ. This can result in roughly $50 million per year in additional revenue in Nebraska for instance.
Collapse
Affiliation(s)
- Mitham Al-Faliti
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Bruce Dvorak
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Ashraf Aly Hassan
- Department of Civil and Environmental Engineering and National Water and Energy Center, United Arab Emirates University, Al Ain, UAE
| |
Collapse
|
5
|
Pachaiappan R, Cornejo-Ponce L, Rajendran R, Manavalan K, Femilaa Rajan V, Awad F. A review on biofiltration techniques: Recent advancements in the removal of volatile organic compounds and heavy metals in the treatment of polluted water. Bioengineered 2022; 13:8432-8477. [PMID: 35260028 PMCID: PMC9161908 DOI: 10.1080/21655979.2022.2050538] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Good quality of water determines the healthy life of living beings on this earth. The cleanliness of water was interrupted by the pollutants emerging out of several human activities. Industrialization, urbanization, heavy population, and improper disposal of wastes are found to be the major reasons for the contamination of water. Globally, the inclusion of volatile organic compounds (VOCs) and heavy metals released by manufacturing industries, pharmaceuticals, and petrochemical processes have created environmental issues. The toxic nature of these pollutants has led researchers, scientists, and industries to exhibit concern towards the complete eradication of them. In this scenario, the development of wastewater treatment methodologies at low cost and in an eco-friendly way had gained importance at the international level. Recently, bio-based technologies were considered for environmental remedies. Biofiltration based works have shown a significant result for the removal of volatile organic compounds and heavy metals in the treatment of wastewater. This was done with several biological sources such as bacteria, fungi, algae, plants, yeasts, etc. The biofiltration technique is cost-effective, simple, biocompatible, sustainable, and eco-friendly compared to conventional techniques. This review article provides deep insight into biofiltration technologies engaged in the removal of volatile organic compounds and heavy metals in the wastewater treatment process.
Collapse
Affiliation(s)
- Rekha Pachaiappan
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda.General Velasquez, 1775, Arica, Chile
| | - Lorena Cornejo-Ponce
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda.General Velasquez, 1775, Arica, Chile
| | - Rathika Rajendran
- Department of Physics, A.D.M. College for Women (Autonomous), Nagapattinam, Tamil Nadu - 611001, India
| | - Kovendhan Manavalan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu - 603203, India
| | - Vincent Femilaa Rajan
- Department of Sustainable Energy Management, Stella Maris College (Autonomous), Chennai - 600086, Tamil Nadu, India
| | - Fathi Awad
- Department of Allied Health Professionals, Faculty of Medical and Health Sciences, Liwa College of Technology, Abu Dhabi, UAE
| |
Collapse
|
6
|
Metagenomic analysis of microbial community structure and function in a improved biofilter with odorous gases. Sci Rep 2022; 12:1731. [PMID: 35110663 PMCID: PMC8810771 DOI: 10.1038/s41598-022-05858-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022] Open
Abstract
Biofilters have been broadly applied to degrade the odorous gases from industrial emissions. A industrial scale biofilter was set up to treat the odorous gases. To explore biofilter potentials, the microbial community structure and function must be well defined. Using of improved biofilter, the differences in microbial community structures and functions in biofilters before and after treatment were investigated by metagenomic analysis. Odorous gases have the potential to alter the microbial community structure in the sludge of biofilter. A total of 90,016 genes assigned into various functional metabolic pathways were identified. In the improved biofilter, the dominant phyla were Proteobacteria, Planctomycetes, and Chloroflexi, and the dominant genera were Thioalkalivibrio, Thauera, and Pseudomonas. Several xenobiotic biodegradation-related pathways showed significant changes during the treatment process. Compared with the original biofilter, Thermotogae and Crenarchaeota phyla were significantly enriched in the improved biofilter, suggesting their important role in nitrogen-fixing. Furthermore, several nitrogen metabolic pathway-related genes, such as nirA and nifA, and sulfur metabolic pathway-related genes, such as fccB and phsA, were considered to be efficient genes that were involved in removing odorous gases. Our findings can be used for improving the efficiency of biofilter and helping the industrial enterprises to reduce the emission of waste gases.
Collapse
|
7
|
Zhang Y, Liu J, Li J, Yue T. Effects of filler voidage on pressure drop and microbial community evolution in fungal bio-trickling filters. CHEMOSPHERE 2021; 273:129710. [PMID: 33524753 DOI: 10.1016/j.chemosphere.2021.129710] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/18/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Bio-trickling filters (BTFs) can be used to remediate pollution by volatile organic compounds such as toluene. To investigate the effect of filler voidage on pressure drop (△P), two parallel BTFs were constructed using ceramsite with different voidages (47.5% for BTF1 and 55% for BTF2) and inoculated with Fusarium fungus to purify toluene. Commutation and stagnation operations were explored as ways to relieve △P. In BTF1, commutation temporarily relieved △P and maintained it for 7 days. Implementing stagnation on the 178th day for 69 days effectively reduced the △P from 720 Pa/m to below 20 Pa/m, which was maintained for 36 days. Compared with BTF1, the filler in BTF2 effectively delayed the increase in △P for 70 days or more and ensured stable operation for as long as 174 days. High-throughput sequencing revealed that Fusarium was mainly replaced by Protoctista, Fronsecaea and other fungi in both BTFs, although there were significant differences in their microbial communities. The influences of commutation and stagnation operations on fungal evolution were more obvious in BTF2, in relation to both time and space. The results provide guidance for designing better BTFs to treat hazardous pollutants.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China; Beijing Municipal Institute of Labour Protection, Beijing, 100054, China
| | - Jia Liu
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jian Li
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Tao Yue
- Beijing Municipal Institute of Labour Protection, Beijing, 100054, China.
| |
Collapse
|
8
|
Ali S, Khan N. Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants. Microbiol Res 2021; 249:126771. [PMID: 33930840 DOI: 10.1016/j.micres.2021.126771] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/01/2021] [Accepted: 04/17/2021] [Indexed: 11/24/2022]
Abstract
Drought stress is expected to increase in intensity, frequency, and duration in many parts of the world, with potential negative impacts on plant growth and productivity. The plants have evolved complex physiological and biochemical mechanisms to respond and adjust to water-deficient environments. The physiological and biochemical mechanisms associated with water-stress tolerance and water-use efficiency have been extensively studied. Besides these adaptive and mitigating strategies, the plant growth-promoting rhizobacteria (PGPR) play a significant role in alleviating plant drought stress. These beneficial microorganisms colonize the endo-rhizosphere/rhizosphere of plants and enhance drought tolerance. The common mechanism by which these microorganisms improve drought tolerance included the production of volatile compounds, phytohormones, siderophores, exopolysaccharides, 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase), accumulation of antioxidant, stress-induced metabolites such as osmotic solutes proline, alternation in leaf and root morphology and regulation of the stress-responsive genes. The PGPR is an easy and efficient alternative approach to genetic manipulation and crop enhancement practices because plant breeding and genetic modification are time-consuming and expensive processes for obtaining stress-tolerant varieties. In this review, we will elaborate on PGPR's mechanistic approaches in enhancing the plant stress tolerance to cope with the drought stress.
Collapse
Affiliation(s)
- Shahid Ali
- Plant Epigenetic and Development, Northeast Forestry University, Harbin, 150040, China
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
9
|
Shang B, Zhou T, Tao X, Chen Y, Dong H. Simultaneous removal of ammonia and volatile organic compounds from composting of dead pigs and manure using pilot-scale biofilter. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2021; 71:378-391. [PMID: 33094706 DOI: 10.1080/10962247.2020.1841040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/03/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Odor emission is one of the most common problems associated with dead animals composting. Biofiltration treatment for eliminating exhaust odors formed during dead pigs and manure composting has been studied. The composting and biofiltration process consisted of two series of tests. Composting experimental trials lasted 6 weeks, and composting was performed using six pilot-scale reactor vessels. A total of 37 kinds of volatile organic compounds (VOCs) present in the air were identified, and temporal variations were determined during the 42 days of composting. Dimethyl sulfide (DMS), dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS), and trimethylamine (TMA) were identified as the main odors VOCs component according to odor active values (OAVs). Nine biofilter vessels containing mature compost were used in studying the effect of different (30, 60, and 100 s) empty bed retention times (EBRT) on the simultaneous removal efficiencies (REs) of NH3, DMS, DMDS, DMTS, and TMA. Results indicated that the inlet concentration of NH3 applied was 12-447 mg m-3, and the average removal efficiencies were 85.4%, 88.7%, and 89.0% for EBRTs of 30, 60, and 100 s, respectively. The average REs of DMS, DMDS, DMTS, and TMA were 79.2%-95.4%, 81.9%-94.0%, 76.7%-99.1%, and 92.9%-100%, respectively, and their maximum elimination capacity (ECs) were 220, 1301, 296, and 603 mg m-3 h-1, respectively. The optimal EBRT for the stimulation removal of NH3, DMS, DMDS, DMTS, and TMA was 60 s.Implications: Dimethyl sulfide (DMS), dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS), and trimethylamine (TMA) were identified as the main odors VOCs component during dead pigs and manure composting. Biofilter with mature as media can be used to stimulation remove NH3, DMS, DMDS, DMTS, and TMA, the optimal empty bed retention times EBRT was 60 s.
Collapse
Affiliation(s)
- Bin Shang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Energy Conservation and Waste Utilization in Agriculture, Ministry of Agriculture, Beijing, People's Republic of China
| | - Tanlong Zhou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Energy Conservation and Waste Utilization in Agriculture, Ministry of Agriculture, Beijing, People's Republic of China
| | - Xiuping Tao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Energy Conservation and Waste Utilization in Agriculture, Ministry of Agriculture, Beijing, People's Republic of China
| | - Yongxing Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Energy Conservation and Waste Utilization in Agriculture, Ministry of Agriculture, Beijing, People's Republic of China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Energy Conservation and Waste Utilization in Agriculture, Ministry of Agriculture, Beijing, People's Republic of China
| |
Collapse
|
10
|
Tran HT, Lin C, Bui XT, Ngo HH, Cheruiyot NK, Hoang HG, Vu CT. Aerobic composting remediation of petroleum hydrocarbon-contaminated soil. Current and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142250. [PMID: 33207468 DOI: 10.1016/j.scitotenv.2020.142250] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
This article provides a comprehensive review on aerobic composting remediation of soil contaminated with total petroleum hydrocarbons (TPHs). The studies reviewed have demonstrated that composting technology can be applied to treat TPH contamination (as high as 380,000 mg kg-1) in clay, silt, and sandy soils successfully. Most of these studies reported more than 70% removal efficiency, with a maximum of 99%. During the composting process, the bacteria use TPHs as carbon and energy sources, whereas the fungi produce enzymes that can catalyze oxidation reactions of TPHs. The mutualistic and competitive interactions between the bacteria and fungi are believed to sustain a robust biodegradation system. The highest biodegradation rate is observed during the thermophilic phase. However, the presence of a diverse and dynamic microbial community ensures that TPH degradation occurs in the entire composting process. Initial concentration, soil type, soil/compost ratio, aeration rate, moisture content, C/N ratio, pH, and temperature affect the composting process and should be monitored and controlled to ensure successful degradation. Nevertheless, there is insufficient research on optimizing these operational parameters, especially for large-scale composting. Also, toxic and odorous gas emissions during degradation of TPHs, usually unaddressed, can be potential air pollution sources and need further insightful characterization and mitigation/control research.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chitsan Lin
- College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam.
| | - Huu-Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Nicholas Kiprotich Cheruiyot
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Hong-Giang Hoang
- College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chi-Thanh Vu
- Department of Civil and Environmental Engineering, The University of Alabama in Huntsville, AL 35899, USA
| |
Collapse
|
11
|
Chen J, Ruan JW, Ye JX, Cheng ZW, Chen DZ. Removal of gaseous tetrahydrofuran via a three-phase airlift bioreactor loaded with immobilized cells of GFP-tagged Pseudomonas oleovorans GDT4. CHEMOSPHERE 2020; 258:127148. [PMID: 32535434 DOI: 10.1016/j.chemosphere.2020.127148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/01/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Tetrahydrofuran (THF) is a common highly toxic cyclic aliphatic ether that frequently exists in waste gases. Removal of gaseous THF is a serious issue with important environmental ramifications. A novel three-phase airlift bioreactor (TPAB) loaded with immobilized cells was developed for efficient THF removal from gas streams. An effective THF-degrading transformant, Pseudomonas oleovorans GDT4, which contains the pTn-Mod-OTc-gfp plasmid and was tagged with a green fluorescent protein (GFP), was constructed. Continuous treatment of THF-containing waste gases was succeeded by the GFP-labelled cells immobilized with calcium alginate and activated carbon fiber in the TPAB for 60 days with >90% removal efficiency. The number of fluorescent cells in the beads reached 1.7 × 1011 cells·g-1 of bead on day 10, accounting for 83.3% of the total number of cells. The amount further increased to 3.0 × 1011 cells·g-1 of bead on day 40. However, it decreased to 2.5 × 1011 cells·g-1 of bead with a substantial increase in biomass in the liquid because of cell leakage and hydraulic shock. PCR-DGGE revealed that P. oleovorans was the dominant microorganism throughout the entire operation. The maximum elimination capacity was affected by empty bed residence time (EBRT). The capacity was only 25.9 g m-3·h-1 at EBRT of 80 s, whereas it reached 37.8 g m-3·h-1 at EBRT of 140 s. This work provides an alternative method for full-scale removal of gaseous THF and presents a useful tool for determining the biomass of a specific degrader in immobilized beads.
Collapse
Affiliation(s)
- Jing Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Jing-Wen Ruan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jie-Xu Ye
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhuo-Wei Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Dong-Zhi Chen
- College of Petrochemical and Environment, Zhejiang Ocean University, Zhoushan, 316004, China; College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
12
|
Febrisiantosa A, Choi HL, Renggaman A, Sudiarto SIA, Lee J. The investigation of combined ventilation-biofilter systems using recycled treated wastewater on odor reduction efficiency. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1209-1216. [PMID: 32054174 PMCID: PMC7322663 DOI: 10.5713/ajas.19.0777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/10/2019] [Indexed: 11/27/2022]
Abstract
Objective The present study aimed to evaluate the performance of odor abatement by using two different ventilation-biofilter systems with recycled stablized swine wastewater. Methods The performance of odor removal efficiency was evaluated using two different ventilation-biofilter-recycled wastewater arrangements. A recirculating air-flow ventilation system connected to a vertical biofilter (M1) and a plug-flow ventilation system connected to a horizontal biofilter (M2) were installed. Water dripping over the surface of the biofilter was recycled at a flow rate of 0.83 L/h in summer and 0.58 L/h in winter to reduce odorous compounds and particulate matter (PM). The experiments were performed for 64 days with M1 and M2 to investigate how these two ventilation-biofilter systems influenced the reduction of odor compounds in the model houses. Odorous compounds, NH3 and volatile organic compounds (VOCs) were analyzed, and microclimatic variables such as temperature, humidity, and PM were monitored. Results Ammonia concentration inside M1 was about 41% higher on average than that in M2. PM and total suspended particles (TSPs) inside M1 were about 62.2% and 69.9%, respectively, higher than those in M2. TSPs in the model house were positively correlated with the concentration of NH3 and VOCs. Conclusion M2 emitted lower concentration of odorous compounds than M1. Moreover, M2 could maintain the optimum temperature condition for a swine house during the cooler season. The plug-flow ventilation–horizontal biofilter system could be used for pig houses to minimize air pollution produced by swine farming activities and maintain optimum microclimate conditions for pigs.
Collapse
Affiliation(s)
- Andi Febrisiantosa
- Department of Agricultural Biotechnology, Research Institute for Agricultural and Life Science, Seoul National University, Seoul 08826, Korea.,Research Unit for Natural Product Technology, Indonesian Institute of Sciences, Yogyakarta 55861, Indonesia
| | - Hong L Choi
- Department of Agricultural Biotechnology, Research Institute for Agricultural and Life Science, Seoul National University, Seoul 08826, Korea.,Resourcification Research Center for Crop-Animal Farming, Seoul 08800, Korea
| | - Anriansyah Renggaman
- Department of Agricultural Biotechnology, Research Institute for Agricultural and Life Science, Seoul National University, Seoul 08826, Korea.,School of Life Science and Technology, Institute Teknologi Bandung 40132, Indonesia
| | - Sartika I A Sudiarto
- Department of Agricultural Biotechnology, Research Institute for Agricultural and Life Science, Seoul National University, Seoul 08826, Korea.,School of Life Science and Technology, Institute Teknologi Bandung 40132, Indonesia
| | - Joonhee Lee
- Institute of Livestock Environmental Management, Daejeon 34065, Korea
| |
Collapse
|
13
|
Zhang Y, Liu J, Li J. Comparison of four methods to solve clogging issues in a fungi-based bio-trickling filter. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Li W, Ni J, Cai S, Liu Y, Shen C, Yang H, Chen Y, Tao J, Yu Y, Liu Q. Variations in microbial community structure and functional gene expression in bio-treatment processes with odorous pollutants. Sci Rep 2019; 9:17870. [PMID: 31780738 PMCID: PMC6883040 DOI: 10.1038/s41598-019-54281-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/07/2019] [Indexed: 11/09/2022] Open
Abstract
Engineered microbial ecosystems in biofilters have been widely applied to treat odorous gases from industrial emissions. Variations in microbial community structure and function associated with the removal of odorous gases by biofilters are largely unknown. This study performed a metagenomic analysis to discover shifts in microbial community structures in a commercial scale biofilter after treating odorous gas. Our study identified 175,675 functional genes assigned into 43 functional KEGG pathways. Based on the unigene sequences, there were significant changes in microbial community structures in the biofilter after treating odorous gas. The dominant genera were Thiobacillus and Oceanicaulis before the treatment, and were Acidithiobacillus and Ferroplasma after the treatment. A clustering analysis showed that the number of down-regulated microbes exceeded the number of up-regulated microbes, suggesting that odorous gas treatment reduced in microbial community structures. A differential expression analysis identified 29,975 up- and 452,599 down-regulated genes. An enrichment analysis showed 17 classic types of xenobiotic biodegradation pathways. The results identified 16 and 15 genes involved in ammonia and sulfite metabolism, respectively; an analysis of their relative abundance identified several up-regulated genes, which may be efficient genes involved in removing odorous gases. The data provided in this study demonstrate the changes in microbial communities and help identify the dominant microflora and genes that play key roles in treating odorous gases.
Collapse
Affiliation(s)
- Weidong Li
- College of Qianjiang, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China
| | - Jianguo Ni
- Hangzhou Ecological Environment Bureau of Xiaoshan Branch, Hangzhou, 311201, Zhejiang, People's Republic of China
| | - Shaoqin Cai
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China.,College of Environment, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Ying Liu
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China
| | - Chenjia Shen
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China
| | - Huayun Yang
- College of Qianjiang, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China
| | - Yuquan Chen
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China
| | - Jia Tao
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China
| | - Yunfeng Yu
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China
| | - Qi Liu
- College of Qianjiang, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China. .,College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China.
| |
Collapse
|
15
|
Characterization of Volatile Organic Compound (VOC) Emissions from Swine Manure Biogas Digestate Storage. ATMOSPHERE 2019. [DOI: 10.3390/atmos10070411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Livestock manure is one of the major sources of volatile organic compound (VOC) emissions; however, characteristics of VOCs emitted from biogas digestate (BD) storage, which is a common manure practice, remain unclear. The objective of this study was to characterize VOC emissions during BD storage through the dynamic emission vessel method, to identify the VOC emissions that have potential odor and/or toxic effects. The results revealed the detection of 49 VOCs with seven classes, whose total concentration varied from 171.35 to 523.71 μg m−3. The key classes of the 49 VOCs included Oxygenated VOCs (OVOCs), olefins and halogenated hydrocarbons. The top four compositions, accounting for 74.38% of total VOCs (TVOCs), included ethanol, propylene, acetone and 2-butanone. The top four odorous VOCs, accounting for only 5.15% of the TVOCs, were toluene, carbon disulfide, ethyl acetate and methyl sulfide, with the concentration ranging from 13.25 to 18.06 μg m−3. Finally, 11 main hazardous air pollutant VOCs, accounting for 32.77% of the TVOCs, were propylene, 2-butanone, toluene, methyl methacrylate, etc., with the concentration ranging from 81.05 to 116.96 μg m−3. Results could contribute to filling the knowledge gaps in the characteristics of VOC emissions from biogas digestate (BD), and provide a basis for exploring mitigation strategies on odor and hazardous air pollutions.
Collapse
|
16
|
Biological treatment of organic materials for energy and nutrients production—Anaerobic digestion and composting. ADVANCES IN BIOENERGY 2019. [DOI: 10.1016/bs.aibe.2019.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Wu H, Yan H, Quan Y, Zhao H, Jiang N, Yin C. Recent progress and perspectives in biotrickling filters for VOCs and odorous gases treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 222:409-419. [PMID: 29883876 DOI: 10.1016/j.jenvman.2018.06.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/19/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
Pollution caused by volatile organic compounds (VOCs) and odorous pollutants in the air can produce severe environmental problems. In recent years, the emission control of VOCs and odorous pollutants has become a crucial issue owing to the adverse effect on humans and the environment. For treating these compounds, biotrickling filter (BTF) technology acts as an environment friendly and cost-effective alternative to conventional air pollution control technologies. Besides, low concentration of VOCs and odorous pollutants can also be effectively removed using BTF systems. However, the VOCs and odorants removal performance by BTF may be limited by the hydrophobicity, toxicity, and low bioavailability of these pollutants. To solve these problems, this review summarizes the design, mechanism, and common analytical methods of recent BTF advances. In addition, the operating conditions, mass transfer, packing materials and microorganisms (which are the critical parameters in a BTF system) were evaluated and discussed in view of improving the removal performance of BTFs. Further research on these specific topics, together with the combination of BTF technology with other technologies, should improve the removal performance of BTFs.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Huayu Yan
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Yue Quan
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Huazhang Zhao
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Nanzhe Jiang
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Chengri Yin
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Department of Chemistry, Yanbian University, Yanji 133002, China.
| |
Collapse
|
18
|
Valdehuesa KNG, Nisola GM, Lee SP, Anonas AV, Tuuguu E, Galera MM, Cho E, Chung WJ. Removal of odorous compounds emitted from a food-waste composting facility in Korea using a pilot-scale scrubber. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:1094-1101. [PMID: 29842847 DOI: 10.1080/10934529.2018.1474586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Monitoring and control of odorous compound emissions have been enforced by the Korean government since 2005. One of the point sources for these emissions was from food waste composting facilities. In this study, a pilot-scale scrubber installed in a composting facility was evaluated for its performance in the removal of malodorous compounds. The exhaust stream contained ammonia and methylamine as the major odorants detected by the threshold odor test and various instrumental techniques (GC-FID, FPD, MS and HPLC/UV). For the scrubber operation, the column was randomly packed with polypropylene Hi-Rex 200, while aqueous sulfuric acid was selected as the scrubbing solution. To achieve 95% removal, the scrubber must be operated by using H2SO4 solution with pH at < 6.5, liquid to gas ratio > 4.5, gas loading rate < 1750 m3/m3-hr and contact time < 0.94 s. The scrubber performance was further evaluated by determining the mass transfer coefficients and then monitoring for 355 days of operation. The pilot-scale scrubber maintained > 95% ammonia and methylamine removal efficiencies despite the fluctuations in the inlet (from composting facility exhaust stream) concentration. The optimum operating conditions and scrubber performance indicators determined in this study provides a basis for the design of a plant-scale scrubber for treatment of composting facility gas emissions.
Collapse
Affiliation(s)
- Kris Niño G Valdehuesa
- a Energy and Environment Fusion Technology Center (E2FTC), Department of Energy Science and Technology (DEST) , Myongji University , Nam-dong, Cheoin-gu, Yongin-si , Gyeonggi-do , South Korea
| | - Grace M Nisola
- a Energy and Environment Fusion Technology Center (E2FTC), Department of Energy Science and Technology (DEST) , Myongji University , Nam-dong, Cheoin-gu, Yongin-si , Gyeonggi-do , South Korea
| | - Seong-Poong Lee
- a Energy and Environment Fusion Technology Center (E2FTC), Department of Energy Science and Technology (DEST) , Myongji University , Nam-dong, Cheoin-gu, Yongin-si , Gyeonggi-do , South Korea
| | - Alex V Anonas
- a Energy and Environment Fusion Technology Center (E2FTC), Department of Energy Science and Technology (DEST) , Myongji University , Nam-dong, Cheoin-gu, Yongin-si , Gyeonggi-do , South Korea
| | - Enkhdul Tuuguu
- a Energy and Environment Fusion Technology Center (E2FTC), Department of Energy Science and Technology (DEST) , Myongji University , Nam-dong, Cheoin-gu, Yongin-si , Gyeonggi-do , South Korea
| | - Melvin M Galera
- a Energy and Environment Fusion Technology Center (E2FTC), Department of Energy Science and Technology (DEST) , Myongji University , Nam-dong, Cheoin-gu, Yongin-si , Gyeonggi-do , South Korea
| | - Eulsaeng Cho
- a Energy and Environment Fusion Technology Center (E2FTC), Department of Energy Science and Technology (DEST) , Myongji University , Nam-dong, Cheoin-gu, Yongin-si , Gyeonggi-do , South Korea
| | - Wook-Jin Chung
- a Energy and Environment Fusion Technology Center (E2FTC), Department of Energy Science and Technology (DEST) , Myongji University , Nam-dong, Cheoin-gu, Yongin-si , Gyeonggi-do , South Korea
| |
Collapse
|
19
|
Rene ER, Sergienko N, Goswami T, López ME, Kumar G, Saratale GD, Venkatachalam P, Pakshirajan K, Swaminathan T. Effects of concentration and gas flow rate on the removal of gas-phase toluene and xylene mixture in a compost biofilter. BIORESOURCE TECHNOLOGY 2018; 248:28-35. [PMID: 28844689 DOI: 10.1016/j.biortech.2017.08.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
The aim of this work was to study the performance of a compost/ceramic bead biofilter (6:4 v/v) for the removal of gas-phase toluene and xylene at different inlet loading rates (ILR). The inlet toluene (or) xylene concentrations were varied from 0.1 to 1.5gm-3, at gas flow rates of 0.024, 0.048 and 0.072m3h-1, respectively, corresponding to total ILR varying between 7 and 213gm-3h-1. Although there was mutual inhibition, xylene removal was severely inhibited by the presence of toluene than toluene removal by the presence of xylene. The biofilter was also exposed to transient variations such as prolonged periods of shutdown (30days) and shock loads to envisage the response and recuperating ability of the biofilter. The maximum elimination capacity (EC) for toluene and xylene were 29.2 and 16.4gm-3h-1, respectively, at inlet loads of 53.8 and 43.7gm-3h-1.
Collapse
Affiliation(s)
- Eldon R Rene
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India; Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands.
| | - Natalia Sergienko
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands
| | - Torsha Goswami
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands
| | - M Estefanía López
- Department of Chemical Engineering, Faculty of Sciences, Campus da Zapateira, University of La Coruńa, Rua da Fraga, 10, E-15008 La Coruña, Spain
| | - Gopalakrishnan Kumar
- Center for Materials Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Ganesh D Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Perumal Venkatachalam
- Periyar University, Department of Biotechnology, Plant Genetic Engineering and Molecular Biology Lab, Periyar Palkalai Nagar, Salem 636 011, Tamil Nadu, India
| | - K Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - T Swaminathan
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
20
|
Gallego E, Roca FJ, Perales JF, Guardino X, Gadea E, Garrote P. Impact of formaldehyde and VOCs from waste treatment plants upon the ambient air nearby an urban area (Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:369-380. [PMID: 27300568 DOI: 10.1016/j.scitotenv.2016.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 05/06/2023]
Affiliation(s)
- Eva Gallego
- Laboratori del Centre de Medi Ambient. Universitat Politècnica de Catalunya (LCMA-UPC). Avda. Diagonal, 647. E, 08028 Barcelona, Spain.
| | - Francisco Javier Roca
- Laboratori del Centre de Medi Ambient. Universitat Politècnica de Catalunya (LCMA-UPC). Avda. Diagonal, 647. E, 08028 Barcelona, Spain.
| | - José Francisco Perales
- Laboratori del Centre de Medi Ambient. Universitat Politècnica de Catalunya (LCMA-UPC). Avda. Diagonal, 647. E, 08028 Barcelona, Spain.
| | - Xavier Guardino
- Centro Nacional de Condiciones de Trabajo. CNCT-INSHT. Dulcet 2-10. E, 08034 Barcelona, Spain.
| | - Enrique Gadea
- Centro Nacional de Condiciones de Trabajo. CNCT-INSHT. Dulcet 2-10. E, 08034 Barcelona, Spain.
| | - Pedro Garrote
- Centro Nacional de Condiciones de Trabajo. CNCT-INSHT. Dulcet 2-10. E, 08034 Barcelona, Spain.
| |
Collapse
|
21
|
Niu H, Leung DYC, Wong C, Zhang T, Chan M, Leung FCC. Nitric oxide removal by wastewater bacteria in a biotrickling filter. J Environ Sci (China) 2014; 26:555-565. [PMID: 25079268 DOI: 10.1016/s1001-0742(13)60456-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/20/2013] [Accepted: 08/29/2013] [Indexed: 06/03/2023]
Abstract
Nitric oxide (NO) is one of the most important air pollutants in atmosphere mainly emitted from combustion source. A biotrickling filter was designed and operated to remove NO from an air stream using bacteria extracted from the sewage sludge of a municipal sewage treatment plant. To obtain the best operation conditions for the biotrickling filter, orthogonal experiments (L9(3(4))) were designed. Inlet oxygen concentration was found to be the most significant factor of the biotrickling filter and has a significant negative effect on the system. The optimal conditions of the biotrickling filter occurred at a temperature of 40°C, a pH of 8.0 and a chemical oxygen demand of 165 mg/L in the recycled water with no oxygen in the system. The bacteria sample was detected by DNA sequencing technology and showed 93%-98% similarity to Pseudomonas mendocina. Moreover, a full gene sequencing results indicated the bacterium was a brand new strain and named as P. mendocina DLHK. This strain can transfer nitrate to organic nitrogen. The result suggested the assimilation nitrogen process in this system. Through the isotope experimental analysis, two intermediate products ((15)NO and (15)N2O) were found. The results indicated the denitrification function and capability of the biotrickling filter in removing NO.
Collapse
Affiliation(s)
- Hejingying Niu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Dennis Y C Leung
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Chifat Wong
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Tong Zhang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Mayngor Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Fred C C Leung
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
22
|
Chen KP, Chang HY, Chou MS. Biofiltration of odorous fume emitted from recycled nylon melting operations. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2013; 63:1343-1351. [PMID: 24344577 DOI: 10.1080/10962247.2013.823893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study aimed to develop a biofilter packed only with fern chips for the removal of odorous compounds from recycled nylon melting operations. The fern chip biofilters could avoid the shortcomings of traditional media, such as compaction, drying, and breakdown, which lead to the performance failure of the biofilters. A pilot-scale biofilter consisting of an acrylic column (14 cm2 x 120 cm height) packed with fern chips to a volume of around 19.6 L was used for the test. Experimental results indicate that oxygen- and nitrogen-containing hydrocarbons as well as paraffins were major volatile organic compounds (VOCs) emitted from thermal smelting of recycled nylon at 250 degrees C. With operation conditions of medium pH of 5.5-7.0, empty bed retention time (EBRT) of 6-12 sec, influent total hydrocarbon (THC) concentrations of 0.65-2.61 mg m(-3), and volumetric organic loading of 0.05-0.85 g m(-3) hr(-1), the fern-chip-packed biofilter with nutrients of milk, potassium dihydrogen phosphate, and glucose could achieve an overall THC removal efficiency of around 80%. Burnt odor emitted from the smelting of the recycled nylon could be eliminated by the biofilter.
Collapse
Affiliation(s)
- Kuan-Po Chen
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, Republic of China
| | - Hsiao-Yu Chang
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, Republic of China
| | - Ming-Shean Chou
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, Republic of China
| |
Collapse
|
23
|
Giri BS, Pandey RA. Biological treatment of gaseous emissions containing dimethyl sulphide generated from pulp and paper industry. BIORESOURCE TECHNOLOGY 2013; 142:420-427. [PMID: 23748090 DOI: 10.1016/j.biortech.2013.04.100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/25/2013] [Accepted: 04/25/2013] [Indexed: 06/02/2023]
Abstract
A bench scale biofilter packed with compost and wood chips seeded with potential DMS degrading culture (Bacillus sphaericus) could efficiently remove DMS from ambient air with removal efficiency (RE%) of 71 ± 11 at an effective bed contact time (EBCT) of 360 ± 20s with loading rate in the range of 4-28 gDMS/m(3)/h. Further, the same biofilter operated for the treatment of vent gas generated from a P&P industry indicated DMS removal of 61 ± 18% at optimal EBCT of 360 ± 25s with a loading rate in the range of 3-128 gDMS/m(3)/h.
Collapse
Affiliation(s)
- Balendu Shekher Giri
- Environmental Biotechnology Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, India
| | | |
Collapse
|
24
|
Ralebitso-Senior TK, Senior E, Di Felice R, Jarvis K. Waste gas biofiltration: advances and limitations of current approaches in microbiology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:8542-8573. [PMID: 22746978 DOI: 10.1021/es203906c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
As confidence in gas biofiltration efficacy grows, ever more complex malodorant and toxic molecules are ameliorated. In parallel, for many countries, emission control legislation becomes increasingly stringent to accommodate both public health and climate change imperatives. Effective gas biofiltration in biofilters and biotrickling filters depends on three key bioreactor variables: the support medium; gas molecule solubilization; and the catabolic population. Organic and inorganic support media, singly or in combination, have been employed and their key criteria are considered by critical appraisal of one, char. Catabolic species have included fungal and bacterial monocultures and, to a lesser extent, microbial communities. In the absence of organic support medium (soil, compost, sewage sludge, etc.) inoculum provision, a targeted enrichment and isolation program must be undertaken followed, possibly, by culture efficacy improvement. Microbial community process enhancement can then be gained by comprehensive characterization of the culturable and total populations. For all species, support medium attachment is critical and this is considered prior to filtration optimization by water content, pH, temperature, loadings, and nutrients manipulation. Finally, to negate discharge of fungal spores, and/or archaeal and/or bacterial cells, capture/destruction technologies are required to enable exploitation of the mineralization product CO(2).
Collapse
|
25
|
López R, Cabeza IO, Giráldez I, Díaz MJ. Biofiltration of composting gases using different municipal solid waste-pruning residue composts: monitoring by using an electronic nose. BIORESOURCE TECHNOLOGY 2011; 102:7984-7993. [PMID: 21704517 DOI: 10.1016/j.biortech.2011.05.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/26/2011] [Accepted: 05/30/2011] [Indexed: 05/31/2023]
Abstract
The concentration of volatile organic compounds (VOCs) during the composting of kitchen waste and pruning residues, and the abatement of VOCs by different compost biofilters was studied. VOCs removal efficiencies greater than 90% were obtained using composts of municipal solid waste (MSW) or MSW-pruning residue as biofilter material. An electronic nose identified qualitative differences among the biofilter output gases at very low concentrations of VOCs. These differences were related to compost constituents, compost particle size (2-7 or 7-20mm), and a combination of both factors. The total concentration of VOCs determined by a photoionization analyser and inferred from electronic nose data sets were correlated over an ample range of concentrations of VOCs, showing that these techniques could be specially adapted for the monitoring of these processes.
Collapse
Affiliation(s)
- R López
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, P.O. Box 1052, 41080 Sevilla, Spain.
| | | | | | | |
Collapse
|
26
|
Lee EH, Ryu HW, Cho KS. Effect of switching gas inlet position on the performance of a polyurethane biofilter under transient loading for the removal of benzene, toluene and xylene mixtures. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2011; 46:1570-1578. [PMID: 22029699 DOI: 10.1080/10934529.2011.609444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The performance of a polyurethane (PU) biofilter was evaluated using different operating modes (unidirectional flow (UF) and flow-directional switching (FDS) operations) under transient loading conditions (intermittent and shutdown). Gas mixtures containing benzene, toluene and xylene (BTX) were employed as model gases. Quantitative real-time PCR methods were used for targeting the tmoA gene responsible for BTX degradation and estimating density of the BTX-degraders in the PU filter bed. Although the overall BTX Removal efficiencies at the outlet (50 h(-1) of space velocity) were similar between the UF and FDS biofilters, the removability of BTX in the FDS biofilter was higher than that in the UF biofilter until the 3rd sampling position (68 h(-1) of space velocity). The BTX removal potentials and tmoA gene copy numbers of the FDS biofilter remained constant, irrespective of the distances from the inlet, but those of the UF biofilter increased with increasing distance from the inlet position. These results indicate that an even distribution of BTX degraders in the FDS filter bed contributed to better BTX removal performance. After a 10 day-shutdown, the performances of the UF and SDF biofilters were rapidly restored within 1 day.
Collapse
Affiliation(s)
- Eun-Hee Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | | | | |
Collapse
|