1
|
Li J, Zhu Z, Lv X, Tan H, Liu W, Luo G. Optimizing carbon sources on performance for enhanced efficacy in single-stage aerobic simultaneous nitrogen and phosphorus removal via biofloc technology. BIORESOURCE TECHNOLOGY 2024; 411:131347. [PMID: 39182794 DOI: 10.1016/j.biortech.2024.131347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Bioflocs can efficiently achieve simultaneous nitrate and phosphate removal through a single-stage aerobic process, provided they are continuously supplemented with an organic carbon source. This study investigated the effects of different carbon sources on this process. Results revealed that phosphate removal rate in the glucose group was 0.61 ± 0.02 mg/L/h, significantly higher than those in the acetate (0.28 ± 0.01 mg/L/h) and propionate (0.29 ± 0.03 mg/L/h) groups (p < 0.05). However, the three groups observed no significant differences in nitrate removal rates (p > 0.05). The superior performance of the glucose group in simultaneous nitrogen and phosphorus removal is likely due to the higher biomass synthesis. In contrast, nitrate removal in the acetate and propionate groups was primarily driven by denitrification, resulting in lower sludge production and reduced phosphate uptake. For practical application of bioflocs in simultaneous nitrogen and phosphorus removal, glucose is recommended as the optimal carbon source.
Collapse
Affiliation(s)
- Jiayang Li
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Ze Zhu
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | - Xinlan Lv
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Hongxin Tan
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Wenchang Liu
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Guozhi Luo
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
2
|
Fu K, Kang J, Zhao J, Bian Y, Li X, Yang W, Li Z. Efficient nitrite accumulation in partial sulfide autotrophic denitrification (PSAD) system: insights of S/N ratio, pH and temperature. ENVIRONMENTAL TECHNOLOGY 2024; 45:5419-5436. [PMID: 38118135 DOI: 10.1080/09593330.2023.2293678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/03/2023] [Indexed: 12/22/2023]
Abstract
To provide the necessary nitrite for the Anaerobic Ammonium Oxidation (ANAMMOX) process, the effect of nitrite accumulation in the partial sulfide autotrophic denitrification (PSAD) process was investigated using an SBR reactor. The results revealed that the effectiveness of nitrate removal was unsatisfactory when the S/N ratio (mol/mol) fell below 0.6. The optimal conditions for nitrate removal and nitrite accumulation were achieved within the S/N ratio range of 0.7-0.8, resulting in an average Nitrate Removal Efficiency (NRE) of 95.84%±4.89% and a Nitrite Accumulation Rate (NAR) of 75.31%±6.61%, respectively. It was observed that the nitrate reduction rate was three times faster than that of nitrite reduction during a typical cycle test. Furthermore, batch tests were conducted to assess the influence of pH and temperature conditions. In the pH tests, it became evident that the PSAD process performed more effectively in alkaline environment. The highest levels of nitrate removal and nitrite accumulation were achieved at an initial pH of 8.5, resulting in a NRE of 98.30%±1.93% and a NAR of 85.83%±0.47%, respectively. In the temperature tests, the most favourable outcomes for nitrate removal and nitrite accumulation were observed at 22±1 ℃, with a NRE of 100.00% and a NAR of 81.03%±1.64%, respectively. Moreover, a comparative analysis of 16S rRNA sequencing results between the raw sludge and the sulfide-enriched culture sludge sample showed that Proteobacteria (49.51%) remained the dominant phylum, with Thiobacillus (24.72%), Prosthecobacter (2.55%), Brevundimonas (2.31%) and Ignavibacterium (2.04%) emerging as the dominant genera, assuming the good nitrogen performance of the system.
Collapse
Affiliation(s)
- Kunming Fu
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Jia Kang
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Jing Zhao
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Yihao Bian
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Xiaodan Li
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Wenbing Yang
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Zirui Li
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| |
Collapse
|
3
|
Xiao Y, Yang L, Sun C, Li H. Efficient conversion from food waste to composite carbon source through rapid fermentation and ceramic membrane filtration. CHEMOSPHERE 2024; 367:143601. [PMID: 39442570 DOI: 10.1016/j.chemosphere.2024.143601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Anaerobic fermentation of food waste (FW) produces a broth rich in small-molecule organic substances, which has the potential as a composite carbon source for denitrification in wastewater treatment. In this study, the idea was tested by optimizing the fermentation process at different hydraulic residence time (HRT), refining fermentation broth through ceramic membrane filtration, and comparing the performance of fermentation filtrate and other commercial carbon sources. A short HRT of 3 days was a suitable fermentation condition with 88% polysaccharide degradation. Acetic acid contributed 40% of soluble chemical oxygen demand in the fermentation broth, followed by ethanol, propanol, lactic acid, and propionic acid, and the five products accounted for 80%. Ceramic membrane filtration can recover more than 70% of dissolved organic matter and more than 60% of small molecular organic matter and simultaneously remove 99% of SS, 41% of total nitrogen, and 62% of total phosphorus. At the rapid degradation stage, the denitrification rates reached 6.68-10.39 mg NOx--N/(g VSS·h), which was on par with commercial carbon sources. The short fermentation and the rapid membrane separation were integrated to create an efficient treatment system, which provided a feasible pathway to utilize FW combining wastewater treatment.
Collapse
Affiliation(s)
- Yongzhi Xiao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Luxin Yang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Caiping Sun
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Huan Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Zhang Y, Sun H, Lu C, Li H, Guo J. Role of molybdenum compounds in enhancing denitrification: Structure-activity relationship and the regulatory mechanisms. CHEMOSPHERE 2024; 367:143433. [PMID: 39393586 DOI: 10.1016/j.chemosphere.2024.143433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/13/2024]
Abstract
The effect and regulatory mechanisms of molybdenum compounds (MoO2, MoS2, MoSe2 and MoSi2) on denitrification were investigated by structure-activity relationships, electrochemical characteristics, microbial metabolism analysis and bacterial community distribution. All the assessed molybdenum compounds exhibited the enhancement effect on denitrification, in the order of MoS2 > MoSi2 > MoSe2 > MoO2, with MoS2 increasing 7.08-fold in 12 h. Analysis of structure-activity relationships suggested that the molybdenum compounds with lower negative redox potential and higher redox reversibility were favorable for promoting denitrification. According to the morphology observation, the interactions between Mo compounds and denitrifying bacteria may be beneficial to extracellular electron transfer. Molybdenum compounds with electron transfer capability facilitated an increase in electron capacitance from 835.1 to 1011.3 μF, promoting the electron exchange rate during denitrification. In the denitrification electron transport chain, the molybdenum compounds upregulated nicotinamide adenine dinucleotide and denitrifying enzyme activity, as well as facilitated the abundance of quinone pools, ATP translocation, and cytochrome c related proteins. Moreover, Mo compounds enriched functional bacteria such as electroactive bacteria and denitrifying functional bacteria. Notably, Mo ions in molybdenum compounds may provide active sites for nitrate reductase, optimizing the electron distribution of the denitrification process and thus improved the partial denitrification efficiency. This work aimed to further understand the regulatory mechanisms of molybdenum on denitrification electron transfer in the compound state and to anticipate the catalytic role of Mo compounds for sustainable water treatment.
Collapse
Affiliation(s)
- Ying Zhang
- Deep Space Exploration Laboratory/School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Hejiao Sun
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Caicai Lu
- Experimental Education Center, Beijing Normal University at Zhuhai, Jinfeng Road 18, Zhuhai, 519000, China.
| | - Haibo Li
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou, 318000, Zhejiang, China
| |
Collapse
|
5
|
Zhu W, Zeng Z, Xia J, Li L. Achieving rapid start-up and efficient nitrogen removal of partial-denitrification/anammox process using organic matter in brewery wastewater as carbon source. ENVIRONMENTAL TECHNOLOGY 2024:1-13. [PMID: 39258944 DOI: 10.1080/09593330.2024.2401157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
To find a cost-efficient carbon source for the partial denitrification/anaerobic ammonium oxidation (anammox) (PD/A) process, the practicability of using the organic matter contained in brewery wastewater as carbon source was investigated. Quick self-enrichment of denitrifying bacteria was achieved by supplying brewery wastewater as organic carbon source and using the mature anammox sludge as the seeding sludge. The PD/A process was successfully established after 33-day operation and then the average total nitrogen removal efficiency reached 92.29% when the influent CODCr: NO3--N: NH4+-N ratio was around 2.5: 1.0: 0.67. The relative abundance of Thauera increased from 0.03% in the seeding sludge to 54.29% on day 110, whereas Candidatus brocadia decreased from 30.66% to 2.08%. The metagenomic analysis indicated that the sludge on day 110 contained more nar and napA (total of 41.24%) than nirK and nirS (total of 11.93%). Thus NO2--N was accumulated efficiently in the process of denitrification and sufficient NO2--N was supplied for anammox bacteria in the PD/A process. Using brewery wastewater as carbon source not only saved the cost of nitrogen removal but also converted waste into resource and reduced the treatment expense of brewery wastewater.
Collapse
Affiliation(s)
- Wenxuan Zhu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Zhijie Zeng
- Shandong Dongyue Future Hydrogen Material Co., Ltd, Zibo, People's Republic of China
| | - Jiawei Xia
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Lingling Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
6
|
Zhang L, Wu Y, Fan X, Hao S, Yang J, Miyazawa A, Peng Y. Comprehensive study on pilot nitrification-sludge fermentation coupled denitrification system with extended sludge retention time. BIORESOURCE TECHNOLOGY 2024; 407:131100. [PMID: 38992478 DOI: 10.1016/j.biortech.2024.131100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
The sludge fermentation-coupled denitrification process, utilized for sludge reduction and nitrogen removal from wastewater, is frequently hindered by its hydrolysis step's efficacy. This study addresses this limitation by extending the sludge retention time (SRT) to 120 days. As a result, the nitrate removal efficiency (NRE) of the nitrification-sludge fermentation coupled denitrification (NSFD) pilot system increased from 67.1 ± 0.2 % to 96.7 ± 0.1 %, and the sludge reduction efficiency (SRE) rose from 40.2 ± 0.5 % to 62.2 ± 0.9 %. Longer SRT enhanced predation and energy dissipation, reducing intact cells from 99.2 % to 78.0 % and decreasing particle size from 135.2 ± 4.6 μm and 19.4 ± 2.1 μm to 64.5 ± 3.5 μm and 15.5 ± 1.6 μm, respectively. It also created different niches by altering the biofilm's adsorption capacity, with interactions between these niches driving improved performance. In conclusion, extending SRT optimized the microbial structure and enhanced the performance of the NSFD system.
Collapse
Affiliation(s)
- Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China.
| | - Yuchao Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China.
| | - Xuepeng Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China.
| | - Shiwei Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China.
| | - Jiachun Yang
- China Coal Technology & Engineering Group Co., Ltd. Tokyo, 100-0011, Japan.
| | | | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China.
| |
Collapse
|
7
|
Huang X, Wu M, Chen Y, Feng L, Ji F, Li L, Huang L, Wang Y, Shen F, Deng S, Fang D. Ultrahigh carbon utilization in symbiotic biofilm-sludge denitrification systems using polymers as sole electron donors. BIORESOURCE TECHNOLOGY 2024; 408:131194. [PMID: 39094962 DOI: 10.1016/j.biortech.2024.131194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
The polymer-based denitrification system is an effective nitrate removal process for treating low carbon/nitrogen wastewater. However, in polymer denitrification systems, carbon used for the denitrification reaction is weakly targeted. Improving the efficiency of carbon utilization in denitrification is important to reduce carbon wastage. In this study, a symbiotic biofilm-sludge denitrification system was constructed using polycaprolactone as electron donors. Results show that the carbon release amount in 120 days was 85.32±0.46 g, and the unit mass of polycaprolactone could remove 1.55±0.01 g NO3--N. Meaningfully, the targeted carbon utilization efficiency for denitrification could achieve 79%-85%. The quantitative results showed that the release of electron donors can be well matched to the demand for electron acceptors in the biofilm-sludge denitrification system. Overall, the symbiotic system can improve the nitrate removal efficiency and reduce the waste of carbon source.
Collapse
Affiliation(s)
- Xinjuan Huang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengting Wu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuzhe Chen
- China Southwest Architectural Design and Research Institute, Chengdu 610041, China
| | - Longkang Feng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Fangying Ji
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Li Li
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Liping Huang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Yingjun Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Fei Shen
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Provincial Engineering Center of Agricultural Environmental Pollution Control, Sichuan Agricultural University, Chengdu 611130, China
| | - Shihuai Deng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Dexin Fang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
8
|
Sun L, Ayele Shewa W, Bossy K, Dagnew M. Partial denitrification in rope-type biofilm reactors: Performance, kinetics, and microflora using internal vs. external carbon sources. BIORESOURCE TECHNOLOGY 2024; 404:130890. [PMID: 38788803 DOI: 10.1016/j.biortech.2024.130890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Stable nitrite accumulation through partial denitrification (PDN) represents an efficient pathway to support the anammox process, but limited studies explored the internal wastewater carbon sources and biofilm processes. This study assessed the viability of the PDN process, biofilm community evolution, and functional enzyme formation in rope-type biofilm media reactors using primary effluent (PE) and anaerobically pretreated wastewater carbon sources for the first time. Comparison was made with external carbon (acetate) under varied pH and biofilm thicknesses, maintaining a favourable sCOD: NO3-N ratio of 3. The wastewater's internal carbon resulted in thinner biofilms; nevertheless, modest nitrite accumulation (0.24 g/m2/d) occurred only at elevated pH. The highest nitrite accumulation (0.79 g/m2/d) was exhibited in the biofilm thickness-controlled acetate-fed reactor, featuring porous biofilms dominated by denitrifier Thauera (10.24 %) and imbalance between Nar, Nap, and Nir reductases. Using internal wastewater carbon sources offers a sustainable avenue for adopting the PDN process in full-scale application.
Collapse
Affiliation(s)
- Lin Sun
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada
| | - Wudneh Ayele Shewa
- Bishop Water Inc., 203-16 Edward Street South, Arnprior, ON K7S 3W4, Canada
| | - Kevin Bossy
- Bishop Water Inc., 203-16 Edward Street South, Arnprior, ON K7S 3W4, Canada
| | - Martha Dagnew
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada.
| |
Collapse
|
9
|
Eng Nkonogumo PL, Zhu Z, Emmanuel N, Zhang X, Zhou L, Wu P. Novel and innovative approaches to partial denitrification coupled with anammox: A critical review. CHEMOSPHERE 2024; 358:142066. [PMID: 38670502 DOI: 10.1016/j.chemosphere.2024.142066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
The partial denitrification (PD) coupled with anaerobic ammonium oxidation (Anammox) (PD/A) process is a unique biological denitrification method for sewage that concurrently removes nitrate (NO3--N) and ammonium (NH4+-N) in sewage. Comparing PD/A to conventional nitrification and denitrification technologies, noticeable improvements are shown in energy consumption, carbon source demand, sludge generation and emissions of greenhouse gasses. The PD is vital to obtaining nitrites (NO2--N) in the Anammox process. This paper provided valuable insight by introduced the basic principles and characteristics of the process and then summarized the strengthening strategies. The functional microorganisms and microbial competition have been discussed in details, the S-dependent denitrification-anammox has been analyzed in this review paper. Important factors affecting the PD/A process were examined from different aspects, and finally, the paper pointed out the shortcomings of the coupling process in experimental research and engineering applications. Thus, this research provided insightful information for the PD/A process's optimization technique in later treating many types of real and nitrate-based wastewater. The review paper also provided the prospective economic and environmental position for the actual design implementation of the PD/A process in the years to come.
Collapse
Affiliation(s)
- Paul Luchanganya Eng Nkonogumo
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zixuan Zhu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Nshimiyimana Emmanuel
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Li Zhou
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
10
|
Wu Z, Zhao T, Zhang Y, Wang Y, Chen P, Lu G, Huang S, Qiu G. Iron-enhanced microscale laboratory aerated filters in the treatment of artificial mariculture wastewater: A study on nitrogen removal performance and the impact on microbial community structure. CHEMOSPHERE 2024; 357:141854. [PMID: 38556181 DOI: 10.1016/j.chemosphere.2024.141854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
This study investigates the nitrogen removal efficacy and microbial community dynamics in seawater aquaculture effluent treatment using three different substrate combinations of microscale laboratory aerated filters (MFs) - MF1 (LECA), MF2 (LECA/Fe-C), and MF3 (LECA/Pyrite). The findings indicated that the COD removal exceeded 95% across all MFs, with higher removal efficiencies in MF2 and MF3. In terms of nitrogen removal performance, MF2 exhibited the highest average nitrogen removal of 93.17%, achieving a 12.35% and 3.56% increase compared to MF1 (80.82%) and MF3 (89.61%), respectively. High-throughput sequencing analysis revealed that the Fe-C substrate significantly enhanced the diversity of the microbial community. Notably, in MF2, the salinophilic denitrifying bacterium Halomonas was significantly enriched, accounting for 42.6% of the total microbial community, which was beneficial for nitrogen removal. Moreover, an in-depth analysis of nitrogen metabolic pathways and microbial enzymes indicated that MF2 and MF3 possessed a high abundance of nitrification and denitrification enzymes, related to the high removal rates of NH4+-N and NO3--N. Therefore, the combination of LECA with iron-based materials significantly enhances the nitrogen removal efficiency from mariculture wastewater.
Collapse
Affiliation(s)
- Zhipeng Wu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Tianyu Zhao
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Yu Zhang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Yanling Wang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Pengfei Chen
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Fang F, Yang J, Chen LL, Xu RZ, Luo JY, Ni BJ, Cao JS. Mixotrophic denitrification of waste activated sludge fermentation liquid as an alternative carbon source for nitrogen removal: Reducing N 2O emissions and costs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121348. [PMID: 38824891 DOI: 10.1016/j.jenvman.2024.121348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/08/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Heterotrophic-sulfur autotrophic denitrification (HAD) has been proposed to be a prospective nitrogen removal process. In this work, the potential of fermentation liquid (FL) from waste-activated sludge (WAS) as the electron donor for denitrification in the HAD system was explored and compared with other conventional carbon sources. Results showed that when FL was used as a carbon source, over 99% of NO3--N was removed and its removal rate exceeded 14.00 mg N/g MLSS/h, which was significantly higher than that of methanol and propionic acid. The produced sulfate was below the limit value and the emission of N2O was low (1.38% of the NO3--N). Microbial community analysis showed that autotrophic denitrifiers were predominated in the HAD system, in which Thiobacillus (16.4%) was the dominant genus. The economic analysis showed the cost of the FL was 0.062 €/m3, which was 30% lower than that in the group dosed with methanol. Our results demonstrated the FL was a promising carbon source for the HAD system, which could reduce carbon emission and cost, and offer a creative approach for waste-activated sludge resource reuse.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Jie Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ling-Long Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Jing-Yang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jia-Shun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
12
|
Li S, Xie X, Li H, Xue D. Relationship between denitrification and anammox rates and N 2 production with substrate consumption and pH in a riparian zone. ENVIRONMENTAL TECHNOLOGY 2024; 45:2531-2540. [PMID: 36973186 DOI: 10.1080/09593330.2023.2177889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/08/2023] [Indexed: 06/18/2023]
Abstract
Denitrification and anaerobic ammonium oxidation (anammox) are the key processes to quantitatively remove nitrate (NO3-) and balance the nitrogen (N) budget of the ecosystem. In this paper, a slurry-based 15N tracer approach was used to study the correlation and quantitative relation of substrate consumption and pH with rates of denitrification and anammox in a riparian zone. The results showed that the fastest rates of 0.93 µg N h-1 and 0.32 µg N h-1 for denitrification (Denitrif-N2) and anammox (Denitrif-N2), respectively. N2 produced by denitrification occupied 74.04% and produced by anammox occupied 25.96% of the total N2, proving denitrification is the dominant process to remove NO3-. The substrate content (NO3-, NH4+ and TOC) and pH varied during incubation and were significantly correlated with Dentrif-N2 and Anammox-N2. Nitrate and TOC as the substrates of denitrification demonstrated a significant correlation with Anammox-N2, which was associated with the products of denitrification involved in the anammox process. This proved a coupling of denitrification and anammox. A quantitative relationship was observed between Dentrif-N2 and Anammox-N2 in the range of 2.75-2.90 when TOC, NH4+ and NO3- consumption per unit mass or pH changed per unit. Nitrogen mass balance analysis showed that 1 mg N substrate (NO3-+NH4+) consumption in the denitrification and anammox can produce 1.05 mg N2 with a good linear relationship (r2 = 0.9334). This could be related to other processes that produced extra N2 in denitrification and anammox system.
Collapse
Affiliation(s)
- Shuangjian Li
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, People's Republic of China
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xuefei Xie
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, People's Republic of China
| | - Hu Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Dongmei Xue
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, People's Republic of China
| |
Collapse
|
13
|
Song J, Ma S, Huang Y, Lu K, Zhang J, Li Q. Mechanism of additional carrier with seasonal temperature changes enhanced ecological floating beds for non-point source pollution water treatment. ENVIRONMENTAL RESEARCH 2024; 242:117778. [PMID: 38036207 DOI: 10.1016/j.envres.2023.117778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
The continuous performance and denitrification characteristics of carriers were investigated in two modified enhanced ecological floating beds (EFBs), one with only ceramsite and the other with ceramsite and extra additional stereo-elastic packing. Over a period of more than 414 days, the extra carrier was found to improve nitrogen removal while enhancing the system's resistance to seasonal temperature variations. The denitrification of all carriers in EFBs was inhibited in practice by seasonal temperature change, especially temperature rose from below 20 °C to above 20 °C and the inhibition rate of nitrous nitrogen (NO2--N) reduction was consistently above 91%, which was higher than that of nitrate nitrogen (NO3--N). However, the denitrification process including the rate and the resistance to temperature changes of ceramsite in the same EFBs with stereo-elastic packing at different temperatures, was consistently improved. The removal rate of NO3--N and NO2--N increased by up to 23.5% and 19.5%, respectively. The potential denitrification rates of all carriers increased with time which was also evidenced by in PICRUSt results, which showed that the abundances of predicted functional genes encoding NO3--N and NO2--N reductase increased over time. The dominant denitrifier also differed over time due to seasonal temperature changes.
Collapse
Affiliation(s)
- Jia Song
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yan Huang
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Kaige Lu
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jingjing Zhang
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Qian Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China.
| |
Collapse
|
14
|
Zhou N, Yang Z, Zhang J, Zhang Z, Wang H. The negative effects of the excessive nitrite accumulation raised by anaerobic bioaugmentation on bioremediation of PAH-contaminated soil. BIORESOURCE TECHNOLOGY 2024; 393:130090. [PMID: 37995870 DOI: 10.1016/j.biortech.2023.130090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Nitrite accumulation in anaerobic bioaugmentation and its side effects on remediation efficiency of polycyclic aromatic hydrocarbon (PAH)-contaminated soil were investigated in this study. Four gradient doses of PAH-degrading inoculum (10^4, 10^5, 10^6 and 10^7 cells/g soil) were separately supplied to the actual PAH-contaminated soil combining with nitrate as the biostimulant. Although bioaugmented with higher dose of inoculum could effectively improve the biodegradation efficiencies in the initial stage than sole nitrate addition but also accelerated the accumulation of nitrite in soil. The inhibition effects of nitrite swiftly occurred following the rapid accumulation of nitrite in each experiment group, restraining the PAH-degrading functionality by inhibiting the growth of total biomass and denitrifying functions in soil. This study revealed the side effects of nitrite accumulation raised by bioaugmentation on soil microorganisms, contributing to further improving the biodegrading efficiencies in the actual site restoration.
Collapse
Affiliation(s)
- Nan Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhuoyue Yang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100091, China
| | - Jing Zhang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100091, China
| | - Zuotao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Chen J, Ma S, Wang H, Wang Y, Ren H, Xu K. Weak magnetic carriers reduce nitrite accumulation and boost denitrification at high nitrate concentrations by enriching functional bacteria and enhancing electron transfer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119734. [PMID: 38071915 DOI: 10.1016/j.jenvman.2023.119734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/19/2023] [Accepted: 11/26/2023] [Indexed: 01/14/2024]
Abstract
Biological denitrification is the dominant method for NO3- removal from wastewater, while high NO3- leads to NO2- accumulation and inhibits denitrification performance. In this study, different weak magnetic carriers (0, 0.3, 0.6, 0.9 mT) were used to enhance biological denitrification at NO3- of 50-2400 mg/L. The effect of magnetic carriers on the removal and mechanism of denitrification of high NO3- was investigated. The results showed that 0.6 and 0.9 mT carriers significantly enhanced the TN removal efficiency (>99%) and reduced the accumulation of NO2- (by > 97%) at NO3- of 1200-2400 mg/L 0.6 and 0.9 mT carriers stimulated microbial electron transport by improving the abundances of coenzyme Q-cytochrome C reductase (by 4.44-23.30%) and cytochrome C (by 2.90-16.77%), which contributed to the enhanced elimination of NO3- and NO2-. 0.6 and 0.9 mT carriers increased the activities of NAR (by 3.74-37.59%) and NIR (by 5.01-8.24%). The abundance of narG genes in 0.6 and 0.9 mT was 1.47-2.35 and 1.38-1.75 times that of R1, respectively, and the abundance of nirS genes was 1.49-2.83 and 1.55-2.39 times that of R1, respectively. Denitrifying microorganisms, e.g., Halomonas, Thauera and Pseudomonas were enriched at 0.6 and 0.9 mT carriers, which benefited to the advanced denitrification performance. This study suggests that weak magnetic carriers can help to enhance the biological denitrification of high NO3- wastewater.
Collapse
Affiliation(s)
- Jiahui Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Sijia Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Haiyue Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yanru Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
16
|
Jian C, Hao Y, Liu R, Qi X, Chen M, Liu N. Mixotrophic denitrification process driven by lime sulfur and butanediol: Denitrification performance and metagenomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166654. [PMID: 37647948 DOI: 10.1016/j.scitotenv.2023.166654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Heterotrophic sulfur-based autotrophic denitrification is a promising biological denitrification technology for low COD/TN (C/N) wastewater due to its high efficiency and low cost. Compared to the conventional autotrophic denitrification process driven by elemental sulfur, the presence of polysulfide in the system can promote high-speed nitrogen removal. However, autotrophic denitrification mediated by polysulfide has not been reported. This study investigated the denitrification performance and microbial metabolic mechanism of heterotrophic denitrification, sulfur-based autotrophic denitrification, and mixotrophic denitrification using lime sulfur and butanediol as electron donors. When the influent C/N was 1, the total nitrogen removal efficiency of the mixotrophic denitrification process was 1.67 and 1.14 times higher than that of the heterotrophic and sulfur-based autotrophic denitrification processes, respectively. Microbial community alpha diversity and principal component analysis indicated different electron donors lead to different evolutionary directions in microbial communities. Metagenomic analysis showed the enriched denitrifying bacteria (Thauera, Pseudomonas, and Pseudoxanthomonas), dissimilatory nitrate reduction to ammonia bacteria (Hydrogenophaga), and sulfur oxidizing bacteria (Thiobacillus) can stably support nitrate reduction. Analysis of metabolic pathways revealed that complete denitrification, dissimilatory nitrate reduction to ammonia, and sulfur disproportionation are the main pathways of the N and S cycle. This study demonstrates the feasibility of a mixotrophic denitrification process driven by a combination of lime sulfur and butanediol as a cost-effective solution for treating nitrogen pollution in low C/N wastewater and elucidates the N and S metabolic pathways involved.
Collapse
Affiliation(s)
- Chuanqi Jian
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yanru Hao
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Rentao Liu
- School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xiaochen Qi
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, Guangdong, China
| | - Minmin Chen
- Guangdong Environmental Protection Engineering Vocational College, Guangzhou 510655, Guangdong, China
| | - Na Liu
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
17
|
Lan Y, Li X, Du R, Fan X, Cao S, Peng Y. Hydroxyapatite (HAP) formation in acetate-driven partial denitrification process: Enhancing sludge granulation and phosphorus removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166659. [PMID: 37652380 DOI: 10.1016/j.scitotenv.2023.166659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/26/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Partial denitrification/anammox (PD/A) processes have emerged as a promising technology for efficient nitrogen removal from wastewater. However, these processes fail to remove phosphorus (P), a key pollutant that contributes to water eutrophication. To address this issue, the potential of inducing hydroxyapatite (HAP) precipitation in PD processes to achieve simultaneous P removal was investigated for the first time. Specifically, three SBRs (R1-R3) for PD were operated with adding varying concentrations of external Ca (30, 60, and 120 mg/L, respectively). Results demonstrated significant P reduction in all three SBRs, particularly in R3 with high Ca, which achieved an 80 % removal efficiency. Notably, sludge granulation was observed during operation, with the granule size in R3 with high Ca reaching 906.1 μm during the stable period, exceeding those in R2 (788.7 μm) and R1 (707.1 μm). This led to good settle ability of the PD sludge, as demonstrated by the lowest SVI5 (20 mL/g MLSS). Moreover, the decrease in the MLVSS/MLSS ratio suggested that the inorganic content accumulated, as observed by confocal laser scanning microscopy in the interior of the granules. Elemental composition analysis suggested that PD granules contained high P and Ca, while the X-ray diffraction (XRD) results confirmed the formation of HAP. Overall, this study demonstrated that PD-HAP coupled granular sludge process has potential as a robust and efficient method for nitrite production, as well as effective P removal and recovery, thereby advancing the application of anammox processes in wastewater treatment.
Collapse
Affiliation(s)
- Yu Lan
- College of Architecture and Civil engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, PR China; Chongqing Research Institute of Beijing University of Technology, Chongqing 401121, PR China
| | - Xing Li
- College of Architecture and Civil engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Xiaoyan Fan
- College of Architecture and Civil engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, PR China
| | - Shenbin Cao
- College of Architecture and Civil engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, PR China; Chongqing Research Institute of Beijing University of Technology, Chongqing 401121, PR China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
18
|
Yang J, Zhang M, Chen C, Zhao D, Chen Y, An S. Effect of Tubifex tubifex on the purification function of saturated vertical flow constructed wetlands for effluents with varying C/N ratios. CHEMOSPHERE 2023; 340:139872. [PMID: 37598942 DOI: 10.1016/j.chemosphere.2023.139872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
The improvement effect of Tubifex tubifex on the pollutant removal efficiencies (REs) of vertical flow constructed wetlands (VF-CWs) treating wastewater with various C/N ratios was explored. The experiment was conducted in pilot-scale saturated VF-CWs, being added different densities of T. tubifex and fed synthetic wastewater with successive C/N ratios of 0.5, 1.5, 3.0 and 6.0. The results suggest that T. tubifex addition and the influent C/N ratio had an interactive effect, i.e., T. tubifex addition improved NOx--N, NH4+-N, TN and COD REs by 36.7%, 56.5%, 22.6%, and 10.0%, respectively, under low C/N ratios, while high C/N ratios inhibited this improvement. Low-density T. tubifex addition significantly increased substrate dissolved oxygen (DO) by retarding excessive soil organic matter (OM) accumulation. With T. tubifex addition, an improvement in bacterial diversity, the relative abundance of N-cycle and fermentative bacteria, and N-cycle functional genes was only observed in substrates under low C/N ratios. T. tubifex can improve the purification function of saturated VF-CWs, but this strategy strongly depends on both the influent C/N ratio and density of T. tubifex addition.
Collapse
Affiliation(s)
- Jiqiang Yang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, PR China
| | - Miao Zhang
- Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing, 210036, PR China
| | - Chen Chen
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing, 210093, PR China
| | - Dehua Zhao
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing, 210093, PR China.
| | - Yun Chen
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, PR China
| | - Shuqing An
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing, 210093, PR China
| |
Collapse
|
19
|
Tian Z, Li G, Xiong Y, Cao X, Pang H, Tang W, Liu Y, Bai M, Zhu Q, Du C, Li M, Zhang L. Step-feeding food waste fermentation liquid as supplementary carbon source for low C/N municipal wastewater treatment: Bench scale performance and response of microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118434. [PMID: 37385198 DOI: 10.1016/j.jenvman.2023.118434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/05/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Municipal wastewater treatment often lacks carbon source, while carbon-rich organics in food waste are deficiently utilized. In this study, the food waste fermentation liquid (FWFL) was step-fed into a bench-scale step-feed three-stage anoxic/aerobic system (SFTS-A/O), to investigate its performance in nutrients removal and the response of microbial community as a supplementary carbon source. The results showed that the total nitrogen (TN) removal rate increased by 21.8-109.3% after step-feeding FWFL. However, the biomass of the SFTS-A/O system was increased by 14.6% and 11.9% in the two phases of the experiment, respectively. Proteobacteria was found to be the dominant functional phyla induced by FWFL, and the increase of its abundance attributed to the enrichment of denitrifying bacteria and carbohydrate-metabolizing bacteria was responsible for the biomass increase. Azospira belonged to Proteobacteria phylum was the dominant denitrifying genera when step-fed with FWFL, its abundance was increased from 2.7% in series 1 (S1) to 18.6% in series 2 (S2) and became the keystone species in the microbial networks. Metagenomics analysis revealed that step-feeding FWFL enhanced the abundance of denitrification and carbohydrates-metabolism genes, which were encode mainly by Proteobacteria. This study constitutes a key step towards the application of FWFL as a supplementary carbon source for low C/N municipal wastewater treatment.
Collapse
Affiliation(s)
- Zhenjun Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Guowen Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Xiong
- Beijing Water Science and Technology Institute, Beijing, 100048, China
| | - Xiaoxin Cao
- China Water Environment Group Co. Ltd., Beijing, 101101, China
| | - Hongtao Pang
- China Water Environment Group Co. Ltd., Beijing, 101101, China
| | - Wenzhong Tang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yongli Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Miaoxin Bai
- Inner Mongolia Enterprise Key Laboratory of Damaged Environment Appraisal, Evaluation and Restoration, Hohhot, 010020, China
| | - Qiuheng Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Caili Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Maotong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Lieyu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
20
|
Liang Z, Hao Q, Hu M, Zhang G, Chen K, Ma R, Luo S, Gou Y, He Y, Chen F, Wang X, Jiang C. Application of alkali-heated corncobs enhanced nitrogen removal and microbial diversity in constructed wetlands for treating low C/N ratio wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117624-117636. [PMID: 37872341 DOI: 10.1007/s11356-023-30497-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Lack of carbon source is the main limiting factor in the denitrification of low C/N ratio wastewater in the constructed wetlands (CWs). Agricultural waste has been considered as a supplementary carbon source but research is still limited. To solve this problem, ferric carbon (Fe-C) + zeolite, Fe-C + gravel, and gravel were used as substrates to build CWs in this experiment, aiming to investigate the effects of different carbon sources (rice straw, corncobs, alkali-heated corncobs) on nitrogen removal performance and microbial community structure in CWs for low C/N wastewater. The results demonstrated that the microbial community and effluent nitrogen concentration of CWs were mainly influenced by the carbon source rather than the substrate. Alkali-heated corncobs significantly enhanced the removal of NO2--N, NH4+-N, NO3-N, and TN. Carbon sources addition increased microbial diversity. Alkali-heated corncobs addition significantly increased the abundance of heterotrophic denitrifying bacteria (Proteobacteria and Bacteroidota). Furthermore, alkali-heated corncobs addition increased the copy number of nirS, nosZ, and nirK genes while greenhouse gas fluxes were lower than common corncobs. In summary, alkali-heated corncobs can be considered as an effective carbon source.
Collapse
Affiliation(s)
- Zhenghao Liang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Qingju Hao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, China
| | - Manli Hu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Guosheng Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Keqin Chen
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Rongzhen Ma
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Shixu Luo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yongxiang Gou
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yangjian He
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Fanghui Chen
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xunli Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Changsheng Jiang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China.
- Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, China.
| |
Collapse
|
21
|
Ortmeyer F. Treatment by enhanced denitrification of forecasted nitrate concentrations under different climate change scenarios. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118740. [PMID: 37562251 DOI: 10.1016/j.jenvman.2023.118740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Climate change has a decisive influence on future water resources and, consequently, on future nitrate (NO3-) concentrations. Due to decreasing water resources, in addition to decreasing and finite NO3- degradation capacities of the aquifers, higher NO3- concentrations are expected in the future. Likewise, NO3- pollution is expected to become more frequent. However, enhanced denitrification by addition of organic carbon (C) as an electron donor is a promising treatment method. This study describes the first model using NO3- projections based on climate projections, combined with the treatment method of enhanced denitrification. The exemplary study area is the Lodshof water catchment which is located in the Lower Rhine Embayment. The model illustrates the considerable potential of enhanced denitrification as an effective treatment. The expected increase in NO3- concentrations by the end of the 21st century, resulting from climate chance and a decreasing water resource, can be reduced by 38-58% in this model. In all projections, the limit value of 50 mg/L can be complied by this treatment. A projection with 20% lower NO3- input and the described treatment highlights the effectivity of combining measures to be able to manage the NO3- problem. Furthermore, this publication critically discusses the transfer of denitrification rates from laboratory experiments to the field scale and finally into models like this.
Collapse
Affiliation(s)
- Felix Ortmeyer
- University of Greifswald, Institute of Geography and Geology, Friedrich-Ludwig-Jahn-Str. 17A, 17487 Greifswald, Germany.
| |
Collapse
|
22
|
Zhang M, Liu J, Liang J, Fan Y, Gu X, Wu J. Response of nitrite accumulation, sludge characteristic and microbial transition to carbon source during the partial denitrification (PD) process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:165043. [PMID: 37355114 DOI: 10.1016/j.scitotenv.2023.165043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
Partial denitrification (PD, nitrate (NO3--N) → nitrite (NO2--N)) as a novel pathway for NO2--N production has been widely concerned, but the specific conditions for highly efficient and stable nitrite maintenance are not yet fully understood. In this study, the effects of carbon sources (acetate, R1; propionate, R2; glucose, R3) on NO2--N accumulation was discussed without seeding PD sludge and the mechanism analysis related to sludge characteristic and microbial evolution were elucidated. The optimal NO2--N, nitrate-to-nitrite transformation ratio (NTR) and nitrite removal efficiency (NRE) reached up to 32.10 mg/L, 98.01 %, and 86.95 % in R1. However, due to the complex metabolic pathway of glucose, the peak time of NO2--N production delayed from 30 min to 60 min. The sludge particle size decreased from 154.2 μm (R1), 130.8 μm (R2) to 112.6 μm (R3) with the increasing extracellular polymeric substances (EPS) from 80.75-85.44 mg/gVSS, 82.68-92.75 mg/gVSS to 106.31-110.25 mg/gVSS, where the ratio of proteins/polysaccharides (PN/PS) was proved to be closely associated with NO2--N generation. For the microbial evolution, Saccharimonadales (70.42 %) dominated the glucose system, while Bacillus (7.42-21.63 %) and Terrimonas (4.24-5.71 %) were the main contributors for NO2--N accumulation in the acetate and propionate systems. The achievement of PD showed many advantages of lower carbon demand, minimal sludge production, lesser greenhouse gas emission and prominent nutrient removal, offering an economically and technically attractive alternative for NO3--N containing wastewater treatment.
Collapse
Affiliation(s)
- Miao Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Jingbu Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Jiayin Liang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Yajun Fan
- Yangzhou Polytechnic Institute, Yangzhou 225127, PR China
| | - Xiaodan Gu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jun Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China.
| |
Collapse
|
23
|
Wang X, Hou H, Liu P, Hou L, Yang T, Dai H, Li J. Acceleration of nitrogen removal performance in a biofilm reactor augmented with Pseudomonas sp. using polycaprolactone as carbon source for treating low carbon to nitrogen wastewater. BIORESOURCE TECHNOLOGY 2023; 386:129507. [PMID: 37468003 DOI: 10.1016/j.biortech.2023.129507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Heterotrophic nitrification-aerobic denitrification (HN-AD) process was achieved in a moving bed biofilm reactor after 180-days acclimation using PCL as carbon source for low C/N wastewater treatment. A novel HN-AD strain, JQ-H3, with ability of PCL degradation was augmented to improve nitrogen removal. TN removal efficiencies of 82.31%, 90.05%, and 93.16% were achieved in the augmented reactor (R2), at different HRTs of 24 h, 20 h, and 16 h, while in the control reactor (R1), the TN removal efficiencies were 59.24%, 74.61%, and 76.68%. The effluent COD in R2 was 10.17 mg/L, much lower than that of 42.45 mg/L in R1. Microbial community analysis revealed that JQ-H3 has successfully proliferated with a relative abundance of 4.79%. Relative abundances of functional enzymes of nitrogen cycling remarkably increased due to bioaugmentation based on the analysis of PICRUSt2. This study provides a new approach for enhancing nitrogen removal in low C/N sewage treatment via the HN-AD process.
Collapse
Affiliation(s)
- Xiujie Wang
- The College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Huimin Hou
- The College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Peizheng Liu
- The College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Liangang Hou
- Water & Environmental Protection Department, China Construction First Group Construction & Development Co., Ltd. Beijing, 100102, China
| | - Tongyi Yang
- The College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Hongliang Dai
- The College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Jun Li
- National Engineering Laboratory of Urban Sewage Advanced Treatment and Resource Utilization Technology, The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
24
|
Lee S, Cho M, Sadowsky MJ, Jang J. Denitrifying Woodchip Bioreactors: A Microbial Solution for Nitrate in Agricultural Wastewater-A Review. J Microbiol 2023; 61:791-805. [PMID: 37594681 DOI: 10.1007/s12275-023-00067-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/19/2023]
Abstract
Nitrate (NO3-) is highly water-soluble and considered to be the main nitrogen pollutants leached from agricultural soils. Its presence in aquatic ecosystems is reported to cause various environmental and public health problems. Bioreactors containing microbes capable of transforming NO3- have been proposed as a means to remediate contaminated waters. Woodchip bioreactors (WBRs) are continuous flow, reactor systems located below or above ground. Below ground systems are comprised of a trench filled with woodchips, or other support matrices. The nitrate present in agricultural drainage wastewater passing through the bioreactor is converted to harmless dinitrogen gas (N2) via the action of several bacteria species. The WBR has been suggested as one of the most cost-effective NO3--removing strategy among several edge-of-field practices, and has been shown to successfully remove NO3- in several field studies. NO3- removal in the WBR primarily occurs via the activity of denitrifying microorganisms via enzymatic reactions sequentially reducing NO3- to N2. While previous woodchip bioreactor studies have focused extensively on its engineering and hydrological aspects, relatively fewer studies have dealt with the microorganisms playing key roles in the technology. This review discusses NO3- pollution cases originating from intensive farming practices and N-cycling microbial metabolisms which is one biological solution to remove NO3- from agricultural wastewater. Moreover, here we review the current knowledge on the physicochemical and operational factors affecting microbial metabolisms resulting in removal of NO3- in WBR, and perspectives to enhance WBR performance in the future.
Collapse
Affiliation(s)
- Sua Lee
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Min Cho
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Michael J Sadowsky
- BioTechnology Institute, Department of Soil, Water and Climate, and Department of Microbial and Plant Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jeonghwan Jang
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea.
| |
Collapse
|
25
|
Niu S, Gao S, Zhang K, Li Z, Wang G, Li H, Xia Y, Tian J, Yu E, Xie J, Zhang M, Gong W. Effects of hydraulic retention time and influent nitrate concentration on solid-phase denitrification system using wheat husk as carbon source. PeerJ 2023; 11:e15756. [PMID: 37520256 PMCID: PMC10373648 DOI: 10.7717/peerj.15756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Solid-phase denitrification shows promise for removing nitrate (NO3--N) from water. Biological denitrification uses external carbon sources to remove nitrogen from wastewater, among which agriculture waste is considered the most promising source due to its economic and efficiency advantages. Hydraulic retention time (HRT) and influent nitrate concentration (INC) are the main factors influencing biological denitrification. This study explored the effects of HRT and INC on solid-phase denitrification using wheat husk (WH) as a carbon source. A solid-phase denitrification system with WH carbon source was constructed to explore denitrification performance with differing HRT and INC. The optimal HRT and INC of the wheat husk-denitrification reactor (WH-DR) were 32 h and 50 mg/L, respectively. Under these conditions, NO3--N and total nitrogen removal rates were 97.37 ± 2.68% and 94.08 ± 4.01%, respectively. High-throughput sequencing revealed that the dominant phyla in the WH-DR operation were Proteobacteria, Bacteroidetes, and Campilobacterota. Among the dominant genera, Diaphorobacter (0.85%), Ideonella (0.38%), Thiobacillus (4.22%), and Sulfurifustis (0.60%) have denitrification functions; Spirochaeta (0.47%) is mainly involved in the degradation of WH; and Acidovorax (0.37%) and Azospira (0.86%) can both denitrify and degrade WH. This study determined the optimal HRT and INC for WH-DR and provides a reference for the development and application of WH as a novel, slow-release carbon source in treating aquaculture wastewater.
Collapse
Affiliation(s)
- Shuhui Niu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Shuwei Gao
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Kai Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Zhifei Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Guangjun Wang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Hongyan Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Yun Xia
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Jingjing Tian
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Ermeng Yu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Minting Zhang
- Guangdong Shunde Junjian Modern Agricultural Technology Co., Ltd, Foshan, China
| | - Wangbao Gong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| |
Collapse
|
26
|
Su X, Zhu XR, Li J, Wu L, Li X, Zhang Q, Peng Y. Determination of partial denitrification kinetic model parameters based on batch tests and metagenomic sequencing. BIORESOURCE TECHNOLOGY 2023; 379:128977. [PMID: 36990333 DOI: 10.1016/j.biortech.2023.128977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 05/03/2023]
Abstract
In this study, a model was developed to investigate the partial denitrification(PD) process. The heterotrophic biomass (XH) proportion in the sludge was determined to be 66.4% based on metagenomic sequencing. The kinetic parameters were first calibrated, then validated using the batch tests results. The results showed rapid decreases in the chemical oxygen demand (COD) and nitrate concentrations and gradual increases in the nitrite concentrations in the first four hours, then remained constant from 4 to 8 h. Anoxic reduction factor (ηNO3 and ηNO2) and half saturation constant (KS1 and KS2) were calibrated at 0.097, 0.13, 89.28 mg COD/L, and 102.29 mg COD/L, respectively. Whereas the simulation results demonstrated that the increase in carbon-to-nitrogen (C/N) ratios and the reduction in XH contributed to the increase in the nitrite transformation rate. This model provides potential strategies for optimizing the PD/A process.
Collapse
Affiliation(s)
- Xinwei Su
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiao-Rong Zhu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University Beijing 100730, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Lei Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
27
|
Chen Z, Zuo Q, Liu C, Li L, Deliz Quiñones KY, He Q. Insights into solid phase denitrification in wastewater tertiary treatment: the role of solid carbon source in carbon biodegradation and heterotrophic denitrification. BIORESOURCE TECHNOLOGY 2023; 376:128838. [PMID: 36898568 DOI: 10.1016/j.biortech.2023.128838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The practical application of solid phase denitrification (SPD) was hindered by either poor water quality from natural plant-like materials or high cost of pure synthetic biodegradable polymers. In this study, by combining polycaprolactone (PCL) with new natural materials (peanut shell, sugarcane bagasse), two novel economical solid carbon sources (SCSs) named as PCL/PS and PCL/SB were developed. Pure PCL and PCL/TPS (PCL with thermal plastic starch) were supplied as controls. During the 162-day operation, especially in the shortest HRT (2 h), higher NO3--N removal was achieved by PCL/PS (87.60%±0.06%) and PCL/SB (87.93%±0.05%) compared to PCL (83.28%±0.07%) and PCL/TPS (81.83%±0.05%). The predicted abundance of functional enzymes revealed the potential metabolism pathways of major components of SCSs. The natural components entered the glycolytic cycle by enzymatical generation of intermediates, while biopolymers being converted into small molecule products under specific enzyme activities (i.e., carboxylesterase, aldehyde dehydrogenase), together providing electrons and energy for denitrification.
Collapse
Affiliation(s)
- Ziwei Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Qingyang Zuo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China.
| | - Lin Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Katherine Y Deliz Quiñones
- Engineering School of Sustainable Infrastructure & Environment (ESSIE), Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6580, USA
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
28
|
Liu Q, Li C, Fan J, Peng Y, Du R. Evaluation of sludge anaerobic fermentation driving partial denitrification capability: In view of kinetics and metagenomic mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163581. [PMID: 37086990 DOI: 10.1016/j.scitotenv.2023.163581] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Partial denitrification (PD) provides a promising approach of efficient and stable nitrite (NO2--N) generation for annamox. In this study, the feasibility of short-term sludge anaerobic fermentation driving PD was evaluated. It was found that a higher NO2--N accumulation in nitrate (NO3--N) reduction was obtained with the 5-days fermented sludge compared to 8 and 15-days fermentation. Moreover, compared to acetate as carbon source, sludge fermentation products (SFPs) induced the higher NO2--N production with nitrate-to-nitrite transformation ratio (NTR) nearly 100 %. Denitrification activity of fermented sludge were obviously improved with SFPs as electron donor. Metagenomic analysis revealed that Thauera was the dominant bacteria, which was assumed to be the key contributor to PD performance by harboring the highest narGHI and napAB but much lower nirS and nirK. Under the conditions of SFPs and fermented sludge, Thauera was speculated to have higher resistance than other denitrifiers attributed to versatile carbon metabolic capabilities utilizing SFPs with the significantly improved genes for metabolism of complex organic carbon via glycolysis after anaerobic fermentation. A novel integration of sludge fermentation driving PD and anammox for mainstream wastewater treatment and sidestream polishing was proposed to offer a promising application with reduced commercial carbon source consumption and waste sludge reduction.
Collapse
Affiliation(s)
- Qingtao Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Cong Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jiarui Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
29
|
Ortmeyer F, Guerreiro MA, Begerow D, Banning A. Modified microbiology through enhanced denitrification by addition of various organic substances-temperature effect. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60282-60293. [PMID: 37022539 PMCID: PMC10163118 DOI: 10.1007/s11356-023-26784-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/29/2023] [Indexed: 05/08/2023]
Abstract
Worldwide, the environmental nitrate (NO3-) problem is increasingly coming into focus. These increases in NO3- concentration result mainly from agricultural inputs and are further exacerbated by decreasing and finite geogenic NO3- degradation capacity in aquifers. Thus, treatment methods are becoming more and more important. In this study, the effects of enhanced denitrification with addition of organic carbon (C) on thereby autochthonous occurring microbiology and compared at room temperature as well as 10 °C were investigated. Incubation of bacteria and fungi was carried out using natural sediments without degradation capacity and groundwater with high NO3- concentrations. Addition of the four applied substrates (acetate, glucose, ascorbic acid, and ethanol) results in major differences in microbial community. Cooling to 10 °C changes the microbiology again. Relative abundances of bacteria are strongly influenced by temperature, which is probably the explanation for different denitrification rates. Fungi are much more sensitive to the milieu change with organic C. Different fungi taxa preferentially occur at one of the two temperature approaches. Major modifications of the microbial community are mainly observed whose denitrification rates strongly depend on the temperature effect. Therefore, we assume a temperature optimum of enhanced denitrification specific to each substrate, which is influenced by the microbiology.
Collapse
Affiliation(s)
- Felix Ortmeyer
- Hydrogeology Department, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
- Geological Survey of Denmark and Greenland, Øster Voldgade 10, 1350 Copenhagen and Universitetsbyen 81, 8000, Aarhus, Denmark.
| | - Marco Alexandre Guerreiro
- Department of Evolution of Plants and Fungi, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
- Environmental Genomics, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
| | - Dominik Begerow
- Department of Evolution of Plants and Fungi, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
- University of Hamburg, Institute of Plant Sciences and Microbiology, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Andre Banning
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, T23 N73K, Ireland
- University College Cork, Environmental Research Institute, Lee Road, Cork, T23 XE10, Ireland
| |
Collapse
|
30
|
Long Y, Ma Y, Wan J, Wang Y, Tang M, Fu H, Cao J. Denitrification efficiency, microbial communities and metabolic mechanisms of corn cob hydrolysate as denitrifying carbon source. ENVIRONMENTAL RESEARCH 2023; 221:115315. [PMID: 36657591 DOI: 10.1016/j.envres.2023.115315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
In this study, the denitrification efficacy of corn cob hydrolysate (CCH) was compared and analyzed with that of glucose and acetate to determine its feasibility as an additional carbon source, and its metabolic mechanism as a denitrification carbon source was investigated in depth. By constructing a denitrification reactor, it was found that the TN removal rate exceeded 97% and the effluent COD remained below 70 mg/L during the stable operation with CCH as the carbon source, and the denitrification effect was comparable to that of the glucose stage (GS) and the acetate stage (AS). The analysis of the microbial community showed that the dominant phylum was Proteobacteria and Bacteroidota, where the abundance of Bacteroidota in the hydrolysate stage (HS) (24.37%) was significantly higher than that of GS (4.89%) and AS (11.93%). And the analysis at the genus level showed the presence of a large number of genera of organic matter hydrolysis and acid production in HS that were almost absent in other stages, such as Paludibacter (12.83%), Gracilibacteria (4.27%), f__Prolixibacteraceae_Unclassified (2.94%). In addition, the higher fatty acid metabolism and lower sugar metabolism of HS during carbon metabolism were similar to the ratio of AS, suggesting that CCH was mainly fermented to acids and then involved in the tricarboxylic acid (TCA) cycle. During nitrogen metabolism, the high relative abundance of narG, nirS, and nosZ ensured the denitrification process. The results of this study were expected to provide a theoretical basis and data support for promoting denitrification from novel carbon sources.
Collapse
Affiliation(s)
- Yingping Long
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yongwen Ma
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510006, China.
| | - Jinquan Wan
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510006, China
| | - Yan Wang
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510006, China
| | - Min Tang
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Hao Fu
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jianye Cao
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
31
|
Feng Y, Wang L, Yin Z, Cui Z, Qu K, Wang D, Wang Z, Zhu S, Cui H. Comparative investigation on heterotrophic denitrification driven by different biodegradable polymers for nitrate removal in mariculture wastewater: Organic carbon release, denitrification performance, and microbial community. Front Microbiol 2023; 14:1141362. [PMID: 36891393 PMCID: PMC9986267 DOI: 10.3389/fmicb.2023.1141362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Heterotrophic denitrification is widely studied to purify freshwater wastewater, but its application to seawater wastewater is rarely reported. In this study, two types of agricultural wastes and two types of synthetic polymers were selected as solid carbon sources in denitrification process to explore their effects on the purification capacity of low-C/N marine recirculating aquaculture wastewater (NO3 --N 30 mg/L, salinity 32‰). The surface properties of reed straw (RS), corn cob (CC), polycaprolactone (PCL) and poly3-hydroxybutyrate-hydroxypropionate (PHBV) were evaluated by Brunauer-Emmett-Teller, Scanning electron microscope and Fourier-transform infrared spectroscopy. Short-chain fatty acids, dissolved organic carbon (DOC), and chemical oxygen demand (COD) equivalents were used to analyze the carbon release capacity. Results showed that agricultural waste had higher carbon release capacity than PCL and PHBV. The cumulative DOC and COD of agricultural waste were 0.56-12.65 and 1.15-18.75 mg/g, respectively, while those for synthetic polymers were 0.07-1.473 and 0.045-1.425 mg/g, respectively. The removal efficiency of nitrate nitrogen (NO3 --N) was CC 70.80%, PCL 53.64%, RS 42.51%, and PHBV 41.35%. Microbial community analysis showed that Proteobacteria and Firmicutes were the most abundant phyla in agricultural wastes and biodegradable natural or synthetic polymers. Quantitative real-time PCR indicated the conversion from nitrate to nitrogen was achieved in all four carbon source systems, and all six genes had the highest copy number in CC. The contents of medium nitrate reductase, nitrite reductase and nitrous oxide reductase genes in agricultural wastes were higher than those in synthetic polymers. In summary, CC is an ideal carbon source for denitrification technology to purify low C/N recirculating mariculture wastewater.
Collapse
Affiliation(s)
- Yuna Feng
- National Experimental Teaching Demonstration Center for Aquatic Science, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Lu Wang
- Marine Life Research Center, Laoshan Laboratory, Qingdao, China
| | - Zhendong Yin
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
| | - Zhengguo Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Marine Life Research Center, Laoshan Laboratory, Qingdao, China
| | - Keming Qu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Marine Life Research Center, Laoshan Laboratory, Qingdao, China
| | - Dawei Wang
- National Experimental Teaching Demonstration Center for Aquatic Science, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Zhanying Wang
- National Experimental Teaching Demonstration Center for Aquatic Science, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Shengmin Zhu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
| | - Hongwu Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Marine Life Research Center, Laoshan Laboratory, Qingdao, China
| |
Collapse
|
32
|
Xie C, Zhang Q, Li X, Dan Q, Qin L, Wang C, Wang S, Peng Y. Highly efficient transformation of slowly-biodegradable organic matter into endogenous polymers during hydrolytic fermentation for achieving effective nitrite production by endogenous partial denitrification. WATER RESEARCH 2023; 230:119537. [PMID: 36587520 DOI: 10.1016/j.watres.2022.119537] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The utilization of slowly-biodegradable organic matter (SBOM) to provide nitrite efficiently for anaerobic ammonia oxidation (anammox) process is an essential topic. High nitrite concentration without inhibition of exogenous organic matter is optimal condition for anammox process. In this study, hydrolytic fermentation (HF) of SBOM was applied to drive an endogenous partial denitrification (EPD) process (nitrate to nitrite) during an anaerobic-anoxic operation in a starch-fed system. With a limited production of exogenous organic matter (22.3 ± 4.9 mg COD/L), 79.0% of SBOM was transformed into poly-hydroxyalkanoates (PHA) through a pathway of simultaneous HF-absorption and endogenous polymer synthesis, corresponding to a hydrolytic fermentation ratio of 86.0%. A high nitrate to nitrite transformation ratio of 85.4% was achieved under an influent carbon to nitrogen ratio of 4.8. Denitrifying glycogen-accumulating organisms (DGAOs) was enriched from 0.6% to 10.9%, with an increase from 0.7 to 1.0 of nitrate reductase genes to nitrite reductase genes ratio. Subsequently, nitrate reduction rate was 5.6-fold higher than the nitrate reduction rate. A prominent migration of exogenous complete denitrification to EPD was accomplished. Furthermore, the starch-fed system exhibited performance with significant adaptability and stability in the presence of different SBOMs (dissolved protein and primary sludge). Therefore, the HF-EPD system achieved efficient nitrite production through EPD with the addition of various SBOMs, providing a potential alternative to anammox systems for the treatment of SBOM-rich wastewater.
Collapse
Affiliation(s)
- Chen Xie
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qiongpeng Dan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Luyang Qin
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Chuanxin Wang
- Guangdong Shouhui Lantian Engineering and Technology Co. Ltd., China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
33
|
Ettaloui Z, Rifi SK, Haddaji C, Pala A, Taleb A, Souabi S. A study on the efficiency of the sequential batch reactor on the reduction of wastewater pollution from oil washing. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:387. [PMID: 36764969 DOI: 10.1007/s10661-023-11008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Industrial pollution discharges from washing fuel oils pose severe problems for the environment, particularly for the marine environment receiving these discharges. This work evaluates the biological treatment performance of wastewater (90 m3/h) rich in organic matter with low biodegradability using a sequential batch reactor (SBR) on a laboratory scale. The test using SBR was carried out for 25 days on a continuous cycle of 24 h (30 min of filling, 17 h of aeration, 4 h of anoxia, 2 h of settling, and 30 min of emptying). The feasibility of alternative sources of microorganisms from urban wastewater. The performance of the batch sequencing reactor was evaluated using turbidity, total suspended solids, chemical oxygen demand (COD), biological oxygen demand (BOD), ammonium, nitrate, and phenol as indicators. The results obtained showed that the COD/BOD ratio and the pollutant load vary from one campaign to another. The removal efficiency of COD, BOD, TSS (Total suspended solids), ammonium, nitrate, and phenol varies from 81%, 91%, 72%, 100%, 52%, and 63%. Thus, SBR-type treatment could be an interesting way to reduce pollution due to its simplicity, less space occupation, low energy consumption, and not requiring highly qualified personnel.
Collapse
Affiliation(s)
- Zineb Ettaloui
- Laboratory of Process Engineering and Environment, Faculty of Sciences & Technologies Mohammedia, Hassan II University, Casablanca, Morocco
| | - Safaa Khattabi Rifi
- Laboratory of Process Engineering and Environment, Faculty of Sciences & Technologies Mohammedia, Hassan II University, Casablanca, Morocco.
| | - Chaymae Haddaji
- Laboratory of Process Engineering and Environment, Faculty of Sciences & Technologies Mohammedia, Hassan II University, Casablanca, Morocco
| | - Aysegul Pala
- Environmental Research and Development Center (CEVMER), Dokuz Eylul University, Izmir, Turkey
| | - Abdesalam Taleb
- Laboratory of Process Engineering and Environment, Faculty of Sciences & Technologies Mohammedia, Hassan II University, Casablanca, Morocco
| | - Salah Souabi
- Laboratory of Process Engineering and Environment, Faculty of Sciences & Technologies Mohammedia, Hassan II University, Casablanca, Morocco
| |
Collapse
|
34
|
Imran MA, Li X, Yang Z, Xu J, Han L. Enhanced biological S 0 accumulation by using signal molecules during simultaneous desulfurization and denitrification. ENVIRONMENTAL TECHNOLOGY 2023; 44:841-852. [PMID: 34559602 DOI: 10.1080/09593330.2021.1985623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
A high rate of elemental sulfur (S0) accumulation from sulfide-containing wastewater has great significance in terms of resource recovery and pollution control. This experimental study used Thiobacillus denitrificans and denitrifying bacteria incorporated with signal molecules (C6 and OHHL) for simultaneous sulfide (S2-) and nitrate (NO3-) removal in synthetic wastewater. Also, the effects on S0 accumulation due to changes in organic matter composition and bacteria proportion through signal molecules were analyzed. The 99.0% of S2- removal and 99.3% of NO3- was achieved with 66% of S0 accumulation under the active S2- removal group. The S0 accumulation, S2- and NO3- removal mainly occurred in 0-48 h. The S0 accumulation in the active S2- removal group was 2.0-6.3 times higher than the inactive S2- removal groups. In addition, S0/SO42- ratio exhibited that S0 conversion almost linearly increased with reaction time under the active S2- removal group. The proportion of Thiobacillus denitrificans and H+ consumption showed a positive correlation with S0 accumulation. However, a very high or low ratio of H+/S0 is not suitable for S0 accumulation. The signal molecules greatly increased the concentration of protein-I and protein-II, which resulted in the high proportion of Thiobacillus denitrificans. Therefore, high S0 accumulation was achieved as Thiobacillus denitrificans regulated the H+ consumption and electron transfer rate and provided suppressed oxygen environment. This technology is cost-effective and commercially applicable for recovering S0 from wastewater.
Collapse
Affiliation(s)
- Muhammad A Imran
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, People's Republic of China
- Key Laboratory of Environmental Engineering, People's Republic of China
| | - Xiumin Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, People's Republic of China
- Key Laboratory of Environmental Engineering, People's Republic of China
| | - Zhengli Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, People's Republic of China
- Key Laboratory of Environmental Engineering, People's Republic of China
| | - Jinlan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, People's Republic of China
- Key Laboratory of Environmental Engineering, People's Republic of China
| | - Lixin Han
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, People's Republic of China
- Key Laboratory of Environmental Engineering, People's Republic of China
| |
Collapse
|
35
|
Liu Q, Li J, Zhao Y, Li X, Zhang Q, Sui J, Wang C, Peng Y. Mechanism of suspended sludge impact on anammox enrichment in anoxic biofilm through long term operation and microbial analysis. WATER RESEARCH 2023; 229:119412. [PMID: 36459890 DOI: 10.1016/j.watres.2022.119412] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The basic premise of anammox-technical application reliability in municipal wastewater treatment is substantially enriched anammox bacteria. To enrich the anammox, the special interaction mechanism between the suspended sludge (SS) and anoxic biofilm was investigated over three months in a partial denitrification/anammox biosystem subjected to dynamic changes in SS (absence→ presence→ absence). Results show that the introduction of SS significantly decreased the anammox nitrogen removal efficiency (83.8 ± 6.5%→ 48.7 ± 17.0%). With the presence or absence of SS, the spatial distribution of anammox bacteria within the anoxic biofilm gradually changed between the inner and outer layers, as detected by CLSM-FISH. qPCR and metagenomic sequencing show that changes in the presence and absence status of SS significantly reduced the abundance of the NO reducing functional gene, while the NO supply capacity (NO3-→NO) was improved, further favoring the anammox process. Batch tests and typical cycles further demonstrated that the anammox bacteria can stably acquire NO2-, and anammox bacteria in the anoxic biofilm competed far more NO2- than denitrifying bacteria according to the typical pH curve. Accordingly, the abundance of Candidatus Brocadia, as detected by high throughput sequencing, decreased in the anoxic biofilms with the introduction of SS, but greatly increased (0.82%→2.22%) after SS discharge. This study sheds new light on the high in-situ enrichment of anammox in mainstream.
Collapse
Affiliation(s)
- Qiyu Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yang Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jun Sui
- Guangdong Shouhui Lantian Engineering and Technology Co. Ltd, 510075, PR China
| | - Chuanxin Wang
- Guangdong Shouhui Lantian Engineering and Technology Co. Ltd, 510075, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
36
|
Zhu S, Zhang L, Ye Z, Zhao J, Liu G. Denitrification performance and bacterial ecological network of a reactor using biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as an electron donor for nitrate removal from aquaculture wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159637. [PMID: 36280055 DOI: 10.1016/j.scitotenv.2022.159637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Nitrate accumulation is a common phenomenon in aquaculture that can lead to eutrophication of surrounding water bodies. This study used poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as a carbon source and substrate and performed a microbial co-occurrence network ecological analysis to elucidate the denitrification processes in two packed-bed reactors with different salinities. The denitrification rate reached maximum values of 0.438 and 0.446 kg m-3 d-1 in reactor I (salinity 0 ‰) and reactor II (salinity 20 ‰), respectively. Although ammonia was formed in both systems based on dissimilation nitrate reduction to ammonia (DNRA), the concentration was very low (2.47 ± 1.99 and 2.84 ± 1.79 mg L-1); moreover, the nitrite content was average (1.01 ± 0.87 and 0.96 ± 0.86 mg L-1). These results suggested that denitrification dominated in both reactors. PHBV generally presented a stable release of DOC, although a sharp increase was observed in the start-up period of reactor II. 16S rRNA results showed that reactor I had richer microbial diversity than reactor II. Among the top ten taxa, Betaproteobacteria was the dominant class in reactor I while Gammaproteobacteria was the dominant class in reactor II. In the stable period, Thauera and Denitromonas was the most abundant genera in reactor I and reactor II, respectively. In addition, the bacterial co-occurrence network showed that reactor I had a more complex node and edge network and faster start-up time compared to reactor II; however, reactor II had a more stable nitrogen removal capacity. Higher expression of NorB and NosZ genes in reactor II indicated higher efficient denitrification in seawater system. The SEM and FTIR showed bacterial development and materials surface erosion. These findings verified the denitrification performance and niche differences between freshwater and seawater environments.
Collapse
Affiliation(s)
- Songming Zhu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, PR China; Ocean Academy, Zhejiang University, Zhoushan, PR China
| | - Leping Zhang
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, PR China
| | - Zhangying Ye
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, PR China; Ocean Academy, Zhejiang University, Zhoushan, PR China
| | - Jian Zhao
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, PR China
| | - Gang Liu
- Ocean Academy, Zhejiang University, Zhoushan, PR China.
| |
Collapse
|
37
|
Shi LD, Gao TY, Wei XW, Shapleigh JP, Zhao HP. pH-Dependent Hydrogenotrophic Denitratation Based on Self-Alkalization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:685-696. [PMID: 36408861 DOI: 10.1021/acs.est.2c05559] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Producing stable nitrite is a necessity for anaerobic ammonium oxidation (anammox) but remains a huge challenge. Here, we describe the design and operation of a hydrogenotrophic denitratation system that stably reduced >90% nitrate to nitrite under self-alkaline conditions of pH up to 10.80. Manually lowering the pH to a range of 9.00-10.00 dramatically decreased the nitrate-to-nitrite transformation ratio to <20%, showing a significant role of high pH in denitratation. Metagenomics combined with metatranscriptomics indicated that six microorganisms, including a Thauera member, dominated the community and encoded the various genes responsible for hydrogen oxidation and the complete denitrification process. During denitratation at high pH, transcription of periplasmic genes napA, nirS, and nirK, whose products perform nitrate and nitrite reduction, decreased sharply compared to that under neutral conditions, while narG, encoding a membrane-associated nitrate reductase, remained transcriptionally active, as were genes involved in intracellular proton homeostasis. Together with no reduction in only nitrite-amended samples, these results disproved the electron competition between reductions of nitrate and nitrite but highlighted a lack of protons outside cells constraining biological nitrite reduction. Overall, our study presents a stably efficient strategy for nitrite production and provides a major advance in the understanding of denitratation.
Collapse
Affiliation(s)
- Ling-Dong Shi
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, Zhejiang, China
| | - Tian-Yu Gao
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, Zhejiang, China
| | - Xiao-Wen Wei
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, Zhejiang, China
| | - James P Shapleigh
- Department of Microbiology, Cornell University, Ithaca, New York14853, United States
| | - He-Ping Zhao
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, Zhejiang, China
| |
Collapse
|
38
|
Duan L, Fan J, Wang Y, Wu Y, Xie C, Ye F, Lv J, Mao M, Sun Y. Interaction mechanism between nitrogen conversion and the microbial community in the hydrodynamic heterogeneous interaction zone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5799-5814. [PMID: 35980525 DOI: 10.1007/s11356-022-22549-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
To study the inorganic nitrogen in the process of interaction of river and groundwater and the changes in the microbial community, a vertical simulation device was used to simulate groundwater recharge to river water (upwelling) and river water recharge to groundwater (downwelling). The inorganic nitrogen concentrations in the soil and water solution as well as the characteristics of the microbial community were assessed to determine the inorganic nitrogen transformation and microbial community response in the heterogeneous interaction zone under hydrodynamic action, and the interaction mechanism between nitrogen transformation and the microbial community in the interaction zone was revealed. The removal rates of NO3--N in the simulated solution reached 99.1% and 99.3% under the two fluid-groundwater conversion modes, and the prolonged hydraulic retention time (HRT) of the oxidization-reduction layer in the fine clay area and the high organic matter content made the inorganic nitrogen transformation process dominated by microorganisms more complete. The denitrification during upwelling, dominated by denitrifying bacteria in Sphingomonas, Pseudomonas, Bacillus, and Arthrobacter, was stronger than that during downwelling. Dissimilatory nitrate reduction to ammonium (DNRA), controlled by some aerobic bacteria in Pseudomonas, Bacillus, and Desulfovibrio, was more intense in downflow mode than upflow mode.
Collapse
Affiliation(s)
- Lei Duan
- School of Hydraulic Engineering and Environment, Chang'an University, Xi'an, 710061, China
- Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions, Ministry of Education, Xi'an, 710064, China
| | - Jinghui Fan
- School of Hydraulic Engineering and Environment, Chang'an University, Xi'an, 710061, China
- Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions, Ministry of Education, Xi'an, 710064, China
| | - Yike Wang
- School of Hydraulic Engineering and Environment, Chang'an University, Xi'an, 710061, China
- Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions, Ministry of Education, Xi'an, 710064, China
| | - Yakun Wu
- School of Hydraulic Engineering and Environment, Chang'an University, Xi'an, 710061, China
- Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions, Ministry of Education, Xi'an, 710064, China
| | - Chenchen Xie
- School of Hydraulic Engineering and Environment, Chang'an University, Xi'an, 710061, China
- Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions, Ministry of Education, Xi'an, 710064, China
| | - Fei Ye
- School of Hydraulic Engineering and Environment, Chang'an University, Xi'an, 710061, China
- Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions, Ministry of Education, Xi'an, 710064, China
| | - Jiajia Lv
- School of Hydraulic Engineering and Environment, Chang'an University, Xi'an, 710061, China
- Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions, Ministry of Education, Xi'an, 710064, China
| | - Ming Mao
- School of Hydraulic Engineering and Environment, Chang'an University, Xi'an, 710061, China
- Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions, Ministry of Education, Xi'an, 710064, China
| | - Yaqiao Sun
- School of Hydraulic Engineering and Environment, Chang'an University, Xi'an, 710061, China.
- Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions, Ministry of Education, Xi'an, 710064, China.
| |
Collapse
|
39
|
Abbew AW, Amadu AA, Qiu S, Champagne P, Adebayo I, Anifowose PO, Ge S. Understanding the influence of free nitrous acid on microalgal-bacterial consortium in wastewater treatment: A critical review. BIORESOURCE TECHNOLOGY 2022; 363:127916. [PMID: 36087656 DOI: 10.1016/j.biortech.2022.127916] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Microalgal-bacterial consortium (MBC) constitutes a sustainable and efficient alternative to the conventional activated sludge process for wastewater treatment (WWT). Recently, integrating the MBC process with nitritation (i.e., shortcut MBC) has been proposed to achieve added benefits of reduced carbon and aeration requirements. In the shortcut MBC system, nitrite or free nitrous acid (FNA) accumulation exerts antimicrobial influences that disrupt the stable process performance. In this review, the formation and interactions that influence the performance of the MBC were firstly summarized. Then the influence of FNA on microalgal and bacterial monocultures and related mechanisms together with the knowledge gaps of FNA influence on the shortcut MBC were highlighted. Other challenges and future perspectives that impact the scale-up of the shortcut MBC for WWT were illustrated. A potential roadmap is proposed on how to maximize the stable operation of the shortcut MBC system for sustainable WWT and high-value biomass production.
Collapse
Affiliation(s)
- Abdul-Wahab Abbew
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Ayesha Algade Amadu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Pascale Champagne
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Ismaeel Adebayo
- School of Chemical Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Peter Oluwaseun Anifowose
- School of Science, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
40
|
Zhang M, Tan Y, Fan Y, Gao J, Liu Y, Lv X, Ge L, Wu J. Nitrite accumulation, denitrification kinetic and microbial evolution in the partial denitrification process: The combined effects of carbon source and nitrate concentration. BIORESOURCE TECHNOLOGY 2022; 361:127604. [PMID: 35835421 DOI: 10.1016/j.biortech.2022.127604] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The combined effects of carbon source (HAc, HPr, Glu, Glu + HAc) and nitrate concentration (40, 80 mg/L labeling as R40, R80) on partial denitrification (PD) were discussed at C/N ratio of 2.5 (COD = 100, 200 mg/L). The optimal NO2--N and NTR reached to 67.03 mg/L, 99.14% in HAc-R80 system, and denitrification kinetics revealed the same conclusion, corresponding to higher COD utilization rate (CUR: 58.46 mgCOD/(gVSS·h)), nitrate reduction rate (NaRR: 29.94 mgN/(gVSS·h)) and nitrite accumulation rate (NiAR: 29.68 mgN/(gVSS·h)). The preference order was HAc > HPr > Glu + HAc > Glu in both R40 and R80 systems due to different metabolic pathways, however, the NO2--N accumulation and kinetic parameters of R80 group were dramatically higher than those in R40 for the same carbon source. The R80 group facilitated more concentrated biodiversity (607-808 OTUs) with Terrimonas and norank_f_Saprospiraceae responsible for high NO2--N accumulation in HAc and HPr served systems, while norank_f_norank_o_Saccharimonadales and OLB13 dominated the Glu containing systems.
Collapse
Affiliation(s)
- Miao Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Yufei Tan
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Yajun Fan
- Yangzhou Polytechnic Institute, Yangzhou 225127, PR China
| | - Jing Gao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Yizhong Liu
- Yangzhou Jieyuan Drainage Company Limited, Yangzhou 225002, PR China
| | - Xiaofan Lv
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China.
| | - Liying Ge
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Jun Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| |
Collapse
|
41
|
Liu R, Xia L, Liu M, Gao Z, Feng J, You H, Qu W, Xing T, Wang J, Zhao Y. Influence of the carbon source concentration on the nitrate removal rate in groundwater. ENVIRONMENTAL TECHNOLOGY 2022; 43:3355-3365. [PMID: 33886439 DOI: 10.1080/09593330.2021.1921053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
At present, groundwater nitrate pollution in China is serious. The use of microorganisms for biological denitrification has been widely applied, and it is a universal and efficient in situ groundwater remediation technique, but this approach is influenced by many factors. In this study, glucose was adopted as the carbon source, four different concentrations of 0, 2, 5 and 10 g/L were considered, and natural groundwater with a nitrate concentration of 300.8 mg/L was employed as the experimental solution. The effect of the carbon source concentration on the nitrate removal rate in groundwater was examined through heterotrophic anaerobic denitrification experiments. The results showed that the nitrate removal rate could be improved by the addition of an external carbon source in the process of biological denitrification, and an optimal concentration was observed. At a glucose concentration of 2 g/L, the denitrification effect was the best.
Collapse
Affiliation(s)
- Ruinan Liu
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Lu Xia
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Manxi Liu
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Zongjun Gao
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Jianguo Feng
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Haichi You
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Wanlong Qu
- Qingdao Geo-Engineering Surveying Institute, Qingdao, People's Republic of China
- Key Laboratory of Urban Geology and Underground Space Resources, Shandong Provincial Bureau of Geology and Mineral Resources, Qingdao, People's Republic of China
| | - Tongju Xing
- Qingdao Geo-Engineering Surveying Institute, Qingdao, People's Republic of China
- Key Laboratory of Urban Geology and Underground Space Resources, Shandong Provincial Bureau of Geology and Mineral Resources, Qingdao, People's Republic of China
| | - Jing Wang
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Yanli Zhao
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
42
|
Guo Y, Guo L, Jin C, Zhao Y, Gao M, Ji J, She Z, Giesy JP. Comparison of primary and secondary sludge carbon sources derived from hydrolysis or acidogenesis for nitrate reduction and denitrification kinetics: Organics utilization and microbial community shift. ENVIRONMENTAL RESEARCH 2022; 212:113403. [PMID: 35525291 DOI: 10.1016/j.envres.2022.113403] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Seeking available and economical carbon sources for denitrification process is an intractable issue for wastewater treatment. However, no study compared different types of waste sludge as carbon source from denitrification mechanism, organics utilization and microbial community aspects. In this study, primary and secondary sludge were pretreated by thermophilic bacteria (TB), and its hydrolysis or acidogenic liquid were prepared as carbon sources for denitrification. At C/N of 8-3, the variations of NO3--N and NO2--N were profiled in typical cycles and denitrification kinetics was analyzed. Primary sludge achieved a competitive NOX-N removal efficiency with less dosage than secondary sludge. Fourier transform infrared (FTIR) spectroscopy was introduced to analyze organic composition from functional-group perspective and the utilization of organic matters in different sludge carbon sources was investigated. To further analyze the microbial community shift in different denitrification systems, high-throughput sequencing technology was applied. Results showed that denitrifier Thauera, belonging to Proteobacteria, was predominant, and primary sludge acidogenic liquid enriched Thauera most intensively with relative abundance of 47.3%.
Collapse
Affiliation(s)
- Yiding Guo
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Educatin, Ocean University of China, Qingdao, 266100, China.
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Junyuan Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
43
|
Cui Y, Zhao B, Xie F, Zhang X, Zhou A, Wang S, Yue X. Study on the preparation and feasibility of a novel adding-type biological slow-release carbon source. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115236. [PMID: 35568017 DOI: 10.1016/j.jenvman.2022.115236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/25/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The development of slow-release carbon sources is an effective biological treatment to remove nutrients from wastewater with low carbon-to-nitrogen ratio (C/N). Most filling-type slow-release carbon could not fulfil the needs of current wastewater treatment plants (WWTPs) process. And most adding-type slow-release carbon sources were prepared using some expensive chemical materials. In this study, combining the advantages of the aforementioned types, a novel adding-type wastepaper-flora (AT-WF) slow-release carbon source was proposed, aiming to realise wastepaper recycling in WWTPs. The screening and identification of the mixed flora, AT-WF carbon source release behaviour, and denitrification performance were investigated. The results showed that through the proposed screening method, a considerable proportion of cellulose-degradation-related genera was enriched, and the cellulose degradation ability and ratio of readily available carbon sources of flora T4, S4 and S5 were effectively strengthened. AT-WF had significant carbon release ability and stability, with an average total organic carbon (TOC) release of 8.82 ± 2.36 mg/g. Kinetic analysis showed that the entire carbon release process was more consistent with the first-order equation. Piecewise fitting with the Ritger-Peppas equation exhibited that the rapid-release (RR) stage was skeleton dissolution and the slow-release (SR) stage was Fick diffusion. Denitrification efficiency can achieve a high average removal efficiency of 94.17%, which could theoretically contribute 11.2% more to the total inorganic nitrogen (TIN) removal. Thus, this study indicated that AT-WF could be utilised as an alternative carbon source in WWTPs.
Collapse
Affiliation(s)
- Ying Cui
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Bowei Zhao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Fei Xie
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Xiao Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Sufang Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| |
Collapse
|
44
|
Aharoni I, Dahan O, Siebner H. Continuous monitoring of dissolved inorganic nitrogen (DIN) transformations along the waste-vadose zone - groundwater path of an uncontrolled landfill, using multiple N-species isotopic analysis. WATER RESEARCH 2022; 219:118508. [PMID: 35533620 DOI: 10.1016/j.watres.2022.118508] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 03/22/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Landfill leachates contain a heavy load of dissolved inorganic nitrogen (DIN), posing a threat to water resources. Therefore, it is highly important to understand the processes that control its evolution (speciation, accumulation, or attenuation) during the percolation of leachates through the unsaturated zone, finally affecting the groundwater. However, tracking DIN transformations in this complex and inaccessible environment is challenging, and knowledge concerning this important topic under field conditions is scarce. The presented study used a unique monitoring system that allows sampling of repetitive samples from within the waste and the unsaturated zone. An array of 8 wells penetrating the underlying aquifer completed the spatial observation. Multiple N-species isotopic approach was applied to discern the dominating N-involving processes over the continuum - from the waste mound through the unsaturated zone and the underlying aquifer. Despite the considerable heterogeneity observed throughout the profile, the results provided a cohesive and valuable reflection of the evolution of the inorganic nitrogen pool in this highly contaminated environment. Leachates inside the waste had reducing characteristics with high accumulation of ammonium (up to 360 mg/l NH4+-N), and a distinct δ15N-NH4+ range (-3‰ to +10‰). The upper layers of the unsaturated zone underneath the landfill margins found to be aerated, promoting N oxidation which resulted in the accumulation of nitrate in the leachates (up to 490 mg/l NO3-N). Exceptionally high concentrations of nitrite (up to 126 mg/l NO2-N) were found as oxygen levels decreased in deeper sections of the vadose zone. Enrichment of δ15N-NO2- compared to δ15N-NO3- indicated the significance of autotropic nitrite reduction, controlling the DIN composition, correlated with NO2- accumulation and net DIN attenuation. The δ15N: δ18O ratio implied co-occurrence of denitrification in the leachates, even in the more oxidized sections, further contributing to N-attenuation in the unsaturated zone. In the aquifer, δ15N-NH4+ values and δ15N: δ18O ratio linked N contamination to the leachates source. The encounter with the oxidized groundwater promoted intensive nitrification. δ15N-NO2- values in the groundwater were lighter than both δ15N-NH4+ and δ15N-NO3- by 22‰ to 62‰, implying the co-occurrence of nitrification-denitrification processes. The effect of denitrification grew with decreasing dissolved oxygen (DO) levels below 0.5 mg/l towards the center of the plume, contributing to net DIN attenuation in the plume. The findings are significant for any consideration of the risk posed by DIN, as well as remediation measures, in a landfill environment and other sites with a heavy load of degrading organic matter.
Collapse
Affiliation(s)
- Imri Aharoni
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel.
| | - Ofer Dahan
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Hagar Siebner
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel.
| |
Collapse
|
45
|
Fan J, Du R, Li C, Liu Q, Peng Y. Inducing high nitrite accumulation via modulating nitrate reduction power and carbon flux with Thauera spp. selection. BIORESOURCE TECHNOLOGY 2022; 354:127188. [PMID: 35452829 DOI: 10.1016/j.biortech.2022.127188] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Partial-denitrification (PD, NO3--N → NO2--N) is emerging as a promising approach for application of anaerobic ammonium oxidation (anammox) process. In this study, stable PD with high nitrite (NO2--N) accumulation was achieved by modulating nitrate (NO3--N) reduction activity and carbon metabolism. With the influent NO3--N increasing from 30 to 200 mg/L, specific NO3--N reduction rates (rno3) were significantly improved, corresponding to the nitrate-to-nitrite transforming ratio (NTR) increasing rapidly to 80.0% within just 70 days. The required COD/NO3--N decreased from 4.5 to 2.0 and the carbon flux was more shared in NO3--N reduction to NO2--N. Notably, Thauera spp. as core denitrifying bacteria was highly enriched with the relative abundance of 70.5%∼82.1% despite different inoculations. This study provided a new insight into inducing high NO2--N accumulation and promoting practical application of anammox technology.
Collapse
Affiliation(s)
- Jiarui Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| | - Cong Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qingtao Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
46
|
Synergistic Inorganic Carbon and Denitrification Genes Contributed to Nitrite Accumulation in a Hydrogen-Based Membrane Biofilm Reactor. Bioengineering (Basel) 2022; 9:bioengineering9050222. [PMID: 35621500 PMCID: PMC9137978 DOI: 10.3390/bioengineering9050222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
Partial denitrification, the termination of NO3−-N reduction at nitrite (NO2−-N), has received growing interest for treating wastewaters with high ammonium concentrations, because it can be coupled to anammox for total-nitrogen removal. NO2− accumulation in the hydrogen (H2)-based membrane biofilm reactor (MBfR) has rarely been studied, and the mechanisms behind its accumulation have not been defined. This study aimed at achieving the partial denitrification with H2-based autotrophic reducing bacteria in a MBfR. Results showed that by increasing the NO3− loading, increasing the pH, and decreasing the inorganic-carbon concentration, a nitrite transformation rate higher than 68% was achieved. Community analysis indicated that Thauera and Azoarcus became the dominant genera when partial denitrification was occurring. Functional genes abundances proved that partial denitrification to accumulate NO2− was correlated to increases of gene for the form I RuBisCo enzyme (cbbL). This study confirmed the feasibility of autotrophic partial denitrification formed in the MBfR, and revealed the inorganic carbon mechanism in MBfR denitrification.
Collapse
|
47
|
Wang L, Gu W, Liu Y, Liang P, Zhang X, Huang X. Challenges, solutions and prospects of mainstream anammox-based process for municipal wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153351. [PMID: 35077796 DOI: 10.1016/j.scitotenv.2022.153351] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/02/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic ammonia oxidation (anammox) process has a promising application prospect for the mainstream deammonification of municipal wastewater due to its high efficiency and low energy consumption. In this paper, challenges and solutions of mainstream anammox-based process are summarized by analyzing the literature of recent ten years. Slow growth rate of anammox bacteria is a main challenge for mainstream anammox-based process, and enhancement of bacteria retention has been recognized to be necessary. Compared with directly increasing sludge retention time (SRT) with membrane bioreactors or sequencing batch reactors, culturing anammox bacteria in the form of biofilm or granule sludge is more promising for its feasibility of eliminating nitrite oxidizing bacteria (NOB). Besides, adding external electron donors or conductive materials and enriching the concentration of ammonia with absorption materials have also been proved helpful to improve the activity of anammox bacteria. Other challenges include the elimination of NOB and achieving ideal ratio of NH4+ and NO2-. To solve these problems and achieve stable partial nitrification, composite control strategies based on low SRT and limited aeration are needed based on the special characteristics of ammonia oxidizing bacteria (AOB) and NOB. When treating actual wastewater, interference of low temperature and components in the influent is another problem. Relatively high activity of anammox bacteria has been realized after artificial acclimation at low temperature and the mechanism was also preliminary explored. Different pre-treatment sections have been designed to reduce the concentration of COD and S2- from the influent. As for the nitrate produced by the anammox reaction, coupling processes are useful to reduce the concentration of nitrate in the effluent. In brief, suitable reactor and coupling process should be selected according to the temperature, influent quality and discharge targets of different regions. The future prospects of the mainstream anammox-based process are also put forward.
Collapse
Affiliation(s)
- Lisheng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Wancong Gu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
48
|
Simultaneous Nitrification and Denitrification under Aerobic Atmosphere by Newly Isolated Pseudomona aeruginosa LS82. WATER 2022. [DOI: 10.3390/w14091452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Discharge of wastewater contained high amount of nitrogen would cause eutrophication to water bodies. Simultaneous nitrification and denitrification (SND) has been confirmed as an effective process, the isolation of SND bacteria is crucial for its successful operation. In this study, an SND strain was isolated and identified as Pseudomona aeruginosa LS82, which exhibited a rapid growth rate (0.385 h−1) and good nitrogen removal performance (4.96 mg N·L−1·h−1). Response surface methodology was applied to optimize the TN removal conditions, at which nearly complete nitrogen (99.8 ± 0.9%) removal were obtained within 18 h at the condition: pH 8.47, 100 rpm and the C/N ratio of 19.7. The saddle-shaped contours confirmed that the interaction of pH and inoculum size would influence the removal of total nitrogen significantly. Kinetic analyses indicated that the reduction of nitrite was the rate-limiting step in the SND process. Our research suggested strain LS82 can serve as a promising candidate for the treatment of ammonium rich wastewater, and expended our understanding the nitrogen removal mechanism in the SND process.
Collapse
|
49
|
Mahmoud A, Hamza RA, Elbeshbishy E. Enhancement of denitrification efficiency using municipal and industrial waste fermentation liquids as external carbon sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151578. [PMID: 34774960 DOI: 10.1016/j.scitotenv.2021.151578] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/28/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The addition of external carbon source for nitrogen removal from wastewater is an essential step in wastewater treatment. In this study, various external carbon sources from the fermentation of primary sludge (PS), thickened waste activated sludge (TWAS), food waste (FW), bakery processing & kitchen waste (BP + KW), fat, oil, & grease (FOG), and whey powder (WP) were successfully employed for wastewater denitrification. Methanol and acetate were also used as controls due to their common use as external carbon sources for wastewater denitrification. The denitrification performance and kinetics such as the specific denitrification rate (SDNR), denitrification potential (PDN), and the biomass yield were studied at a constant TVFA as COD/N ratio of 5 for all substrates. Complete denitrification was achieved with a NO3--N removal efficiency of 98-99%, and no NO2- accumulation was observed at the end of the experiments for all substrates. The results revealed that the liquid fermentation filtrates exhibited higher SDNRs than methanol and acetate. This indicates the high organic matter utilization efficiency and better denitrification ability of fermentation filtrates over conventional carbon sources. WP exhibited the highest SDNR of 17.6 mg NOx - N/g VSS/h, which is approximately four times that of methanol (4.6 mg NOx - N/g VSS/h). The other carbon sources had SDNRs two to three times higher than that of methanol. However, the fermentation filtrates exhibited higher biomass yields of 0.26-0.37 mg VSS/mg COD compared to methanol of 0.21 mg VSS/mg COD, which could lead to higher sludge handling costs. Moreover, methanol exhibited higher PDN of 0.25 g N/g COD compared to all the fermentation filtrates.
Collapse
Affiliation(s)
- Ali Mahmoud
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Rania Ahmed Hamza
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| | - Elsayed Elbeshbishy
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
50
|
Xie T, Zeng Z, Li L. Achieving partial denitrification using organic matter in brewery wastewater as carbon source. BIORESOURCE TECHNOLOGY 2022; 349:126849. [PMID: 35158032 DOI: 10.1016/j.biortech.2022.126849] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
To find a cost-effective carbon source for partial denitrification (PD), brewery wastewater was utilized to test the viability of initiating PD. The Sbre (sludge from the biological treatment tank of Tsingtao Brewery Plant sewage treatment station) and Slab (sludge from laboratory) were fed with brewery wastewater at CODCr/NO3--N (C/N) ratios of 8.0-10.0 and 5.0 for 95 days at 25 ± 1 °C, respectively. The mean NO3--N to NO2--N transformation ratio (NTR) in long-term operation was 40.0% in the Sbre system and 83.2% in the Slab system. Batch tests with C/N ratio of 2.2-4.4 were conducted after 95 days incubation and the result suggested that C/N ratio of 4.3 ± 0.1 contributed more to NO2--N accumulation in both systems. Thauera bacteria, known to be beneficial for NO2--N accumulation, became the dominant community. The relative abundances of Thauera on day 95 in the Sbre and Slab system were 83.36% and 79.11%, respectively.
Collapse
Affiliation(s)
- Tian Xie
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhijie Zeng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Lingling Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|