1
|
Ruan M, Li Y, Ma C, Xie Y, Chen W, Luo L, Li X, Hu W, Hu B. Treatment of landfill leachate by black soldier fly (Hermetia illucens L.) larvae and the changes of intestinal microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121193. [PMID: 38772238 DOI: 10.1016/j.jenvman.2024.121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
Black soldier fly larvae (BSFL) (Hermetia illucens) are commonly used to treat organic waste. This work aims to evaluate the transformation effect, heavy metal migration, and alterations in the gut microbiota of BSFL in addition to treating landfill leachate (LL) with BSFL. We found that BSFL may grow in various landfill leachate concentrations without obvious toxicity and growth inhibition. In addition, the results indicated a significant increase in the content of ammonia nitrogen and the activity of urease and β-glucosidase (β-GC) in LL, increased from 2570.17 mg/L to 5853.67 mg/L, 1859.17 mg/(g·d) to 517,177.98 mg/(g·d), 313.73 μg/(g·h) to 441.91 μg/(g·h) respectively. Conversely, the content of total nitrogen (TN) and total organic carbon (TOC) decreased in LL, decreasing by 31.24% and 29.45% respectively. Heavy metals are accumulated in the leachate by the BSFL to differing degrees, the descending sequence of accumulation is Cd > As > Cu > Cr. As dropped by 26.0%, Cd increased by 22.6%, Cu reduced by 5.23%, and Cr increased by 317.1% in the remaining matrix. The concentration of heavy metals satisfies the organic fertilizers' limit index (NY/T1978). The diversity of intestinal microorganisms in BSFL decreased, from 2819 OTUs to 2338 OTUs, with Providencia and Morganella emerging as the core flora. The gene abundance of nitrogen metabolism in the microbiota increased significantly. The TOC, β-GC, and Copper (Cu) content in BSFL correlated significantly with the gut microbiota. In Summary, this study revealed the treatment effect of BSFL on LL, the migration of heavy metals, and changes in the intestinal microorganisms of BSFL. The content of heavy metals in BSFL was found to be much lower than the upper limit of feed protein raw materials, demonstrating that BSFL is a sustainable method to treat LL.
Collapse
Affiliation(s)
- Mingjun Ruan
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - You Li
- Everbright Environmental Technology (China) Co., Ltd., Nanjing, 211102, Jiangsu Province, China
| | - Chong Ma
- Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen, 518118, China
| | - Yingying Xie
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenying Chen
- Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen, 518118, China
| | - Limei Luo
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xueling Li
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenfeng Hu
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Bin Hu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, China.
| |
Collapse
|
2
|
Niermans K, Hoek-van den Hil EF, van der Fels-Klerx HJ, van Loon JJA. The role of larvae of black soldier fly and house fly and of feed substrate microbes in biotransformation of aflatoxin B 1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116449. [PMID: 38759532 DOI: 10.1016/j.ecoenv.2024.116449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
Over the past few years, there has been growing interest in the ability of insect larvae to convert various organic side-streams containing mycotoxins into insect biomass that can be used as animal feed. Various studies have examined the effects of exposure to aflatoxin B1 (AFB1) on a variety of insect species, including the larvae of the black soldier fly (BSFL; Hermetia illucens L.; Diptera: Stratiomyidae) and the housefly (HFL; Musca domestica L.; Diptera: Muscidae). Most of these studies demonstrated that AFB1 degradation takes place, either enzymatic and/or non-enzymatic. The possible role of feed substrate microorganisms (MOs) in this process has thus far not been investigated. The main objective of this study was therefore to investigate whether biotransformation of AFB1 occurred and whether it is caused by insect-enzymes and/or by microbial enzymes of MOs in the feed substrate. In order to investigate this, sterile and non-sterile feed substrates were spiked with AFB1 and incubated either with or without insect larvae (BSFL or HFL). The AFB1 concentration was determined via LC-MS/MS analyses and recorded over time. Approximately 50% of the initially present AFB1 was recovered in the treatment involving BSFL, which was comparable to the treatment without BSFL (60%). Similar patterns were observed for HFL. The molar mass balance of AFB1 for the sterile feed substrates with BSFL and HFL was 73% and 78%, respectively. We could not establish whether non-enzymatic degradation of AFB1 in the feed substrates occurred. The results showed that both BSFL and substrate-specific MOs play a role in the biotransformation of AFB1 as well as in conversion of AFB1 into aflatoxin P1 and aflatoxicol, respectively. In contrast, HFL did not seem to contribute to AFB1 degradation. The obtained results contribute to our understanding of aflatoxin metabolism by different insect species. This information is crucial for assessing the safety of feeding fly larvae with feed substrates contaminated with AFB1 with the purpose of subsequent use as animal feed.
Collapse
Affiliation(s)
- K Niermans
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, the Netherlands; Wageningen Food Safety Research, Akkermaalsbos 2, Wageningen 6708 WB, the Netherlands
| | - E F Hoek-van den Hil
- Wageningen Food Safety Research, Akkermaalsbos 2, Wageningen 6708 WB, the Netherlands
| | | | - J J A van Loon
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, the Netherlands
| |
Collapse
|
3
|
Uçaroğlu S, Gümrah BG. Management of water-based paint sludge originating from the automotive industry via composting. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:279-289. [PMID: 38330298 DOI: 10.1080/10962247.2024.2316821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Water-based paint sludge generated from the automotive industry is considered a hazardous waste due to its high carbon content and is challenging and costly to manage. This study investigates the management of water-based paint sludge through the composting process, considering its high carbon content. The water-based paint sludge was composted in five separate reactors with the addition of treatment sludge from the same industry as co-substrate and inoculum, as well as sunflower stalks as a bulking agent. The ratio of paint sludge added to the compost mixtures varied between 40% and 80%. The highest temperature was achieved in reactors where industrial sludge was added, and the bulking agent was used at a rate of 20% (R3 and R5). The most efficient composting process was conducted with the addition of 60% water-based paint sludge, 20% treatment sludge, and 20% sunflower stalks (w/w, wet weight basis) (R3). During this process, reductions in organic matter content were observed due to organic matter mineralization, resulting in a decrease in moisture during the maturation phase and consequently reducing waste volumes. The composting process can be a useful tool in addressing the challenges of paint sludge management. Utilizing the composting process not only reduces waste volumes, thereby minimizing environmental impacts, but also offers a sustainable approach to paint sludge management by lowering disposal costs. It is also possible to achieve more effective results by composting paint sludge with different recipes and the use of various bulking agents.Implications: Composting is a method that can be used to achieve stabilization, reduce the quantity, and enable biodrying of water-based paint sludge generated from the automotive industry. In this study, different ratios of paint sludge were mixed with treatment sludge from the same industry as co-substrate and inoculum, while sunflower stalks were added as a bulking agent, and a composting process was conducted. The addition of industrial wastewater treatment sludge and sunflower stalks has increased the efficiency of the paint sludge composting process. In the management of paint sludge, the composting process has emerged as a significant alternative that reduces disposal costs and environmental impacts.
Collapse
Affiliation(s)
- Selnur Uçaroğlu
- Faculty of Engineering, Department of Environmental Engineering, Bursa Uludag University, Nilufer, Bursa, Turkey
| | - Behice Gamze Gümrah
- Faculty of Engineering, Department of Environmental Engineering, Bursa Uludag University, Nilufer, Bursa, Turkey
| |
Collapse
|
4
|
Yin Y, Wang S, Li Y, Yao D, Zhang K, Kong X, Zhang R, Zhang Z. Antagonistic effect of the beneficial bacterium Enterobacter hormaechei against the heavy metal Cu 2+ in housefly larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116077. [PMID: 38335578 DOI: 10.1016/j.ecoenv.2024.116077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Vermicomposting via housefly larvae can be used to efficiently treat manure and regenerate biofertilizer; however, the uptake of heavy metals could negatively influence the growth and development of larvae. Intestinal bacteria play an important role in the development of houseflies, but their effects on resistance to heavy metal damage in houseflies are still poorly understood. In this study, the life history traits and gut microbiota of housefly larvae were evaluated after exposure to an environment with Cu2+ -Enterobacter hormaechei. The data showed that exposure to 300 μg/mL Cu2+ significantly inhibited larval development and locomotor activity and reduced immune capacity. However, dietary supplementation with a Cu2+ -Enterobacter hormaechei mixture resulted in increased body weight and length, and the immune capacity of the larvae returned to normal levels. The abundances of Providencia and Klebsiella increased when larvae were fed Cu2+ -contaminated diets, while the abundances of Enterobacter and Bacillus increased when larvae were exposed to a Cu2+ -Enterobacter hormaechei mixture-contaminated environment. In vitro scanning electron microscopy analysis revealed that Enterobacter hormaechei exhibited obvious adsorption of Cu2+ when cultured in the presence of Cu2+, which reduced the damage caused by Cu2+ to other bacteria in the intestine and protected the larvae from Cu2+ injury. Overall, our results showed that Enterobacter hormaechei can absorb Cu2+ and increase the abundance of beneficial bacteria, thus protecting housefly larvae from damage caused by Cu2+. These results may fill the gaps in our understanding of the interactions between heavy metals and beneficial intestinal bacteria, offering valuable insights into the interplay between housefly larvae and metal contaminants in the environment. This approach could enhance the efficiency of converting manure contaminated with heavy metals to resources using houseflies.
Collapse
Affiliation(s)
- Yansong Yin
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), No. 619, Changchen Road, Taian 271016, Shandong, China
| | - Shumin Wang
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China; School of Life Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China
| | - Ying Li
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), No. 619, Changchen Road, Taian 271016, Shandong, China
| | - Dawei Yao
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China; Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University, Jinan, Shandong, China
| | - Kexin Zhang
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), No. 619, Changchen Road, Taian 271016, Shandong, China
| | - Xinxin Kong
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), No. 619, Changchen Road, Taian 271016, Shandong, China
| | - Ruiling Zhang
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), No. 619, Changchen Road, Taian 271016, Shandong, China.
| | - Zhong Zhang
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China; Weifang Medical University, Weifang 261021, Shandong, China.
| |
Collapse
|
5
|
Zhang J, Luo Z, Li N, Yu Y, Cai M, Zheng L, Zhu F, Huang F, K Tomberlin J, Rehman KU, Yu Z, Zhang J. Cellulose-degrading bacteria improve conversion efficiency in the co-digestion of dairy and chicken manure by black soldier fly larvae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119156. [PMID: 37837764 DOI: 10.1016/j.jenvman.2023.119156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 10/16/2023]
Abstract
Black soldier fly larvae (BSFL) have potential utility in converting livestock manure into larval biomass as a protein source for livestock feed. However, BSFL have limited ability to convert dairy manure (DM) rich in lignocellulose. Our previous research demonstrated that feeding BSFL with mixtures of 40% dairy manure and 60% chicken manure (DM40) provides a novel strategy for significantly improving their efficiency in converting DM. However, the mechanisms underlying the efficient conversion of DM40 by BSFL are unclear. In this study, we conducted a holistic study on the taxonomic stucture and potential functions of microbiota in the larval gut and manure during the DM and DM40 conversion by BSFL, as well as the effects of BSFL on cellulosic biodegradation and biomass production. Results showed that BSFL can consume cellulose and other nutrients more effectively and harvest more biomass in a shorter conversion cycle in the DM40 system. The larval gut in the DM40 system yielded a higher microbiota complexity. Bacillus and Amphibacillus in the BSFL gut were strongly correlated with the larval cellulose degradation capacity. Furthermore, in vitro screening results for culturable cellulolytic microbes from the larval guts showed that the DM40 system isolated more cellulolytic microbes. A key bacterial strain (DM40L-LB110; Bacillus subtilis) with high cellulase activity from the larval gut of DM40 was validated for potential industrial applications. Therefore, mixing an appropriate proportion of chicken manure into DM increased the abundance of intestinal bacteria (Bacillus and Amphibacillus) producing cellulase and improved the digestion ability (particularly cellulose degradation) of BSFL to cellulose-rich manure through changes in microbial communities composition in intestine. This study reveals the microecological mechanisms underlying the high-efficiency conversion of cellulose-rich manure by BSFL and provide potential applications for the large-scale cellulose-rich wastes conversion by intestinal microbes combined with BSFL.
Collapse
Affiliation(s)
- Jia Zhang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Zhijun Luo
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Nan Li
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Yongqiang Yu
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Minmin Cai
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Longyu Zheng
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Fengling Zhu
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Feng Huang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China.
| | | | - Kashif Ur Rehman
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Ziniu Yu
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Jibin Zhang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
6
|
Du Y, Shang G, Zhai J, Wang X. Effects of soybean oil exposure on the survival, reproduction, biochemical responses, and gut microbiome of the earthworm Eisenia fetida. J Environ Sci (China) 2023; 133:23-36. [PMID: 37451786 DOI: 10.1016/j.jes.2022.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 07/18/2023]
Abstract
With increasing production of kitchen waste, cooking oil gradually enters the soil, where it can negatively affect soil fauna. In this study, we explored the effects of soybean oil on the survival, growth, reproduction, tissue structure, biochemical responses, mRNA expression, and gut microbiome of earthworms (Eisenia fetida). The median lethal concentration of soybean oil was found to be 15.59%. Earthworm growth and reproduction were significantly inhibited following exposure to a sublethal concentration of soybean oil (1/3 LC50, 5.2%). The activity of the antioxidant enzymes total superoxide dismutase (T-SOD), peroxidase (POD), and catalase (CAT) were affected under soybean oil exposure. The glutathione (GSH) content decreased significantly, whereas that of the lipid peroxide malondialdehyde (MDA) increased significantly after soybean oil exposure. mRNA expression levels of the SOD, metallothionein (MT), lysenin and lysozyme were significantly upregulated. The abundance of Bacteroides species, which are related to mineral oil repair, and Muribaculaceae species, which are related to immune regulation, increased within the earthworm intestine. These results indicate that soybean oil waste is toxic to earthworms. Thus, earthworms deployed defense mechanisms involving antioxidant system and gut microbiota for protection against soybean oil exposure-induced stress.
Collapse
Affiliation(s)
- Yating Du
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China; Organic Recycling Research Institute (Suzhou), China Agricultural University, Suzhou 215100, China
| | - Guangshen Shang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China
| | - Junjie Zhai
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China
| | - Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China.
| |
Collapse
|
7
|
Cui G, Lü F, Lu T, Zhang H, He P. Feasibility of housefly larvae-mediated vermicomposting for recycling food waste added digestate as additive. J Environ Sci (China) 2023; 128:150-160. [PMID: 36801031 DOI: 10.1016/j.jes.2022.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 06/18/2023]
Abstract
The development of methods for the efficient treatment and application of food waste digestate is an important research goal. Vermicomposting via housefly larvae is an efficient way to reduce food waste and achieve its valorization, however, studies on the application and performance of digestate in vermicomposting are rarely. The present study aimed to investigate the feasibility of the co-treatment of food waste and digestate as an additive via larvae. Restaurant food waste (RFW) and household food waste (HFW) were selected to assess the effects of waste type on vermicomposting performance and larval quality. Waste reduction rates of 50.9%-57.8% were observed in the vermicomposting of food waste mixed with digestate at a ratio of 25%, which were slightly lower than those for treatments without the addition of digestate (62.8%-65.9%). The addition of digestate increased the germination index, with a maximum value of 82% in the RFW treatments with 25% digestate, and decreased the respiration activity, with a minimum value of 30 mg-O2/g-TS. The larval productivity of 13.9% in the RFW treatment system with a digestate rate of 25% was lower that without digestate (19.5%). Materials balance shows that larval biomass and metabolic equivalent had decreasing trends as the amount of digestate increased and HFW vermicomposting exhibited lower bioconversion efficiency than that of RFW treatment system regardless of the addition of digestate. These results suggest that mixing digestate at a low ratio (25%) during vermicomposting of food waste especially RFW could lead to considerable larval biomass and generate relatively stable residues.
Collapse
Affiliation(s)
- Guangyu Cui
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, China
| | - Tao Lu
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, China.
| |
Collapse
|
8
|
Lyakhovchenko N, Gubina E, Senchenkov V, Nikishin I, Solyanikova I. Estimation of the Ability to Decompose Sodium Benzoate by a Bacterium Isolated from Biohumus Eicenia Fetida. BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235709001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The study presents growth kinetics of a BG28 bacterial strain isolated from vermicompost (generated with the use of Eisenia fetida worms). The strain was given a codename BG28. It was revealed that the isolate is capable of using high concentrations of sodium benzoate (up to 15 g/l) as a substrate. At the same time, the rate and division constants of a culture that grows at 5 g/l, 10 g/l, and 15 g/l do not differ. However, the mean and specific increment of BG28 at the end of the logarithmic growth phase is significantly higher in the variant with 5 g/l. It was testified, that with the shortest duration of the logarithmic growth phase on a medium with 5 g/l, the substrate loss constant is higher than in other variants. The difference in the kinetic parameters of the culture at 5 g/l and 10 g/l sodium benzoate is insignificant. With an increase of the substrate concentration to 15 g/l, the duration of the logarithmic growth phase increased significantly, but the sodium benzoate decrease constant was found to be the lowest. During the study of the individual properties of BG28, it was revealed that the strain is capable of growing on benzoic acid. On this basis, it can be assumed that the culture contributes to the degradation of plant residues during vermicomposting. Besides, the isolate grows on a mineral nutrient medium with polyethylene glycol 6000 and liquid paraffin. In the process of the individual properties estimation, it was revealed that the strain is capable of local suppression of the Alternaria brassicicola VKM F-1864 mold growth when co-cultivated on agar nutrient medium.
Collapse
|
9
|
Yang-Jie D, Xiang FM, Tao XH, Jiang CL, Zhang TZ, Zhang ZJ. A full-scale black soldier fly larvae ( Hermetia illucens) bioconversion system for domestic biodegradable wastes to resource. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:143-154. [PMID: 35730797 DOI: 10.1177/0734242x221103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Domestic biodegradable wastes (DBW) pose a threat to environmental quality and human health. Bioconversion via black soldier fly larvae (BSFL; Hermitia illucens L.) is an expedient way for converting 'waste to resource' (insect protein and biofertilizer). Although researches abounded in laboratory-reared experiments and bioconversion mechanisms were pertinent, the void of data from actual and full-scale operation restricts the intensification of BSFL technology and its global adoption. Hence, a full-scale BSFL bioconversion system lasting 4 years in Hangzhou (China) was investigated, and the feasibility and efficiency of 15 tonnes of DBW per day were studied. Through continuous technical optimization, the average production of fresh larvae was increased from 8.5% in 2017 to 15.3% in 2020, along with bioconversion rate of final vermicompost decreased from 35.4% to 14.5%. The total biomass reduction rate in 2020 was 68.7 ± 17.4 kg/(m3 d), equivalent to 0.735 ± 0.215 kg/(kg d) in the form of fresh larvae. Crude fat in fresh larvae accounted for 13.4%, and crude protein accounted for 16.2% in which the determined amino acid profile bore a strong resemblance to fish meal only except histidine and tyrosine. Its economic benefits proved the feasibility of this technology, and the profit reached up to 35.9 US$ per tonne of DBW in 2019. In conclusion, BSFL bioconversion system under current 'insect-farm' operation was a promising solution for DBW treatment with value-added waste recycling.
Collapse
Affiliation(s)
- Deng Yang-Jie
- College of Natural Research and Environmental Sciences, Zhejiang University, Hangzhou, P. R. China
- Hangzhou Gusheng Technology Company, Hangzhou, P. R. China
| | - Fang-Ming Xiang
- College of Natural Research and Environmental Sciences, Zhejiang University, Hangzhou, P. R. China
- Hangzhou Gusheng Technology Company, Hangzhou, P. R. China
| | - Xing-Hua Tao
- College of Natural Research and Environmental Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Cheng-Liang Jiang
- College of Natural Research and Environmental Sciences, Zhejiang University, Hangzhou, P. R. China
- Hangzhou Gusheng Technology Company, Hangzhou, P. R. China
- Zhejiang Fumei Biotechnology Company, Hangzhou, P. R. China
| | | | - Zhi-Jian Zhang
- College of Natural Research and Environmental Sciences, Zhejiang University, Hangzhou, P. R. China
- China Academy of West Region Development, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
10
|
Li H, Xu X, Zhang M, Zhang Y, Zhao Y, Jiang X, Xin X, Zhang Z, Zhang R, Gui Z. Accelerated degradation of cellulose in silkworm excrement by the interaction of housefly larvae and cellulose-degrading bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116295. [PMID: 36150354 DOI: 10.1016/j.jenvman.2022.116295] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The environmental pollution caused by silkworm (Bombyx mori) excrement is prominent, and rich in refractory cellulose is the bottleneck restricting the efficient recycling of silkworm excrement. This study was performed to investigate the effects of housefly larvae vermicomposting on the biodegradation of cellulose in silkworm excrement. After six days, a 58.90% reduction of cellulose content in treatment groups was observed, which was significantly higher than 11.5% of the control groups without housefly larvae. Three cellulose-degrading bacterial strains were isolated from silkworm excrement, which were identified as Bacillus licheniformis, Bacillus amyloliquefaciens, and Bacillus subtilis based on 16S rRNA gene sequence analysis. These three bacterial stains had a high cellulose degradation index (HC value ranged to between 1.86 and 5.97 and FPase ranged from 5.07 U/mL to 7.31 U/mL). It was found that housefly larvae increased the abundance of cellulose-degrading bacterial genus (Bacillus and Pseudomonas) by regulating the external environmental conditions (temperature and pH). Carbohydrate metabolism was the bacterial communities' primary function during vermicomposting based on the PICRUSt. The results of Tax4Fun indicated that the abundance of endo-β-1,4-glucanase and exo-β-1,4-glucanase increased rapidly and maintained at a higher level in silkworm excrement due to the addition of housefly larvae, which contributed to the accelerated degradation of cellulose in silkworm excrement. The finding of this investigation showed that housefly larvae can significantly accelerate the degradation of cellulose in silkworm excrement by increasing the abundance of cellulose-degrading bacterial genera and cellulase.
Collapse
Affiliation(s)
- Hao Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China
| | - Xueming Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
| | - Minqi Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
| | - Yuanhao Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
| | - Ying Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
| | - Xueping Jiang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
| | - Xiangdong Xin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China
| | - Zhendong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China
| | - Ran Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China
| | - Zhongzheng Gui
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, Jiangsu, China.
| |
Collapse
|
11
|
Houseflies harbor less diverse microbiota under laboratory conditions but maintain a consistent set of host-associated bacteria. Sci Rep 2022; 12:11132. [PMID: 35778448 PMCID: PMC9249849 DOI: 10.1038/s41598-022-15186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
The housefly (Musca domestica) is a wide-ranging insect, often associated with decaying matter from livestock and humans. The septic environments in which houseflies live are believed to be a rich source for microbial acquisition. Although the housefly can harbor a wide range of microorganisms, it is not yet well known which microbes are always recurrent, which are dispensable and which environmentally dependent. In the present study, we aim at identifying which microbes are recurrently associated with the housefly gut throughout the species’ life cycle and whether their acquisition relies on the fly’s living environment. We surveyed three housefly strains—two of them kept under standard laboratory conditions for a long time and one wild-caught. To track any shifts happening throughout the lifecycle of the housefly and to test the consistency of the revealed microbial communities, we sampled houseflies at five developmental stages over the course of four consecutive generations. Both the bacterial and fungal microbiota of five developmental stages were studied for all samples, using amplicon sequencing for the 16S and ITS1 rRNA gene, respectively. Results revealed diverse microbial communities yet consistent for each of the two distinct sampling environments. The wild-caught population showed a more diverse and more distinct gut microbiota than the two laboratory strains, even though the strain was phylogenetically similar and shared geographic origin with one of them. Two bacterial genera, Myroides and Providencia, and two yeasts, Trichosporon and Candida tropicalis, were present in all sampled larvae and pupae, regardless of the strain. Analysis of the provided diet revealed that the flies acquired the yeasts through feeding. Our main findings show that houseflies might lose microbial diversity when reared in controlled environments, however they can maintain a consistent set of bacteria. We conclude that although the environment can facilitate certain microbial transmission routes for the housefly, and despite the fungal microbiota being largely acquired through diet, the larval bacterial gut microbiome remains relatively consistent within the same developmental stage.
Collapse
|
12
|
Black Soldier Fly Larvae Influence Internal and Substrate Bacterial Community Composition Depending on Substrate Type and Larval Density. Appl Environ Microbiol 2022; 88:e0008422. [PMID: 35532232 PMCID: PMC9128521 DOI: 10.1128/aem.00084-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Saprophagous fly larvae interact with a rich community of bacteria in decomposing organic matter. Larvae of some species, such as the black soldier fly, can process a wide range of organic residual streams into edible insect biomass and thus produce protein as a sustainable component of livestock feed. The microbiological safety of the insects and substrates remains a point of concern. Substrate-associated bacteria can dominate the larval gut microbiota, but the larvae can also alter the bacterial community in the substrate. However, the relative importance of substrate type and larval density in bacterial community dynamics is unknown. We investigated four larval densities (0 [control], 50, 100, or 200 larvae per container [520 mL; diameter, 75 mm]) and three feed substrates (chicken feed, chicken manure, and camelina substrate [50% chicken feed, 50% camelina oilseed press cake]) and sampled the bacterial communities of the substrates and larvae at three time points over 15 days. Although feed substrate was the strongest driver of microbiota composition over time, larval density significantly altered the relative abundances of several common bacterial genera, including potential pathogens, in each substrate and in larvae fed chicken feed. Bacterial communities of the larvae and substrate differed to a higher degree in chicken manure and camelina than in chicken feed. This supports the substrate-dependent impact of black soldier fly larvae on bacteria both within the larvae and in the substrate. This study indicates that substrate composition and larval density can alter bacterial community composition and might be used to improve insect microbiological safety. IMPORTANCE Black soldier fly larvae can process organic side streams into nutritious insect biomass, yielding a sustainable ingredient of animal feed. In processing such organic residues, the larvae impact the substrate and its microbiota. However, their role relative to the feed substrate in shaping the bacterial community is unknown. This may be important for the waste management industry to determine whether pathogens can be controlled by manipulating the larval density and the timing of harvest. We investigated how the type of feed substrate and the larval density (number of larvae per container) interacted to influence bacterial community composition in the substrates and larvae over time. Substrate type was the strongest driver of bacterial community composition, and the magnitude of the impact of the larvae depended on the substrate type and larval density. Thus, both substrate composition and larval density may be used to improve the microbiological safety of the larvae as animal feed.
Collapse
|
13
|
Zhao X, Shen JP, Shu CL, Jin SS, Di HJ, Zhang LM, He JZ. Attenuation of antibiotic resistance genes in livestock manure through vermicomposting via Protaetia brevitarsis and its fate in a soil-vegetable system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150781. [PMID: 34624280 DOI: 10.1016/j.scitotenv.2021.150781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/05/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Scarab larvae (Protaetia brevitarsis) could transform large quantities of agricultural waste into compost, providing a promising bio-fertilizer for soil management. There is an urgent need to assess the risk of antibiotic resistance genes (ARGs) in soil-vegetable system with application of compost derived from P. brevitarsis larvae. We conducted a pot experiment to compare the changes of ARGs in the soil and lettuce by adding four types of manure, livestock manure (chicken and swine manure) and the corresponding larval frass. Significantly low numbers of ARGs and mobile genetic elements (MGEs) were detected in both larval frass compared with the corresponding livestock manure. Pot experiment showed that the detected numbers of ARGs and MGEs in bulk soil, rhizosphere soil, and root endophytes were significantly lower in the frass-amended treatments than the raw manure-amended treatments. Furthermore, the relative abundance of ARGs and MGEs with application of chicken-frass was significant lower in rhizosphere soil and leaf endophyte. Using non-metric multidimensional scaling analysis, the patterns of soil ARGs and MGEs with chicken-frass application were more close to those from the bulk soil in the control. Structural equation models indicated that livestock manure addition was the main driver shaping soil ARGs with raw manure application, while MGEs were the key drivers in frass-amended treatments. These findings demonstrated that application of livestock manure vermicomposting via scarab larvae (P. brevitarsis) may be at low risk in spreading manure-borne ARGs through soil-plant system, providing an alternative technique for reducing ARGs in organic waste.
Collapse
Affiliation(s)
- Xiang Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ju-Pei Shen
- University of Chinese Academy of Sciences, Beijing 100049, China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China.
| | - Chang-Long Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sheng-Sheng Jin
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Hong J Di
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, Canterbury 7674, New Zealand
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Zheng He
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
14
|
Neupane S, Saski C, Nayduch D. House fly larval grazing alters dairy cattle manure microbial communities. BMC Microbiol 2021; 21:346. [PMID: 34911456 PMCID: PMC8672618 DOI: 10.1186/s12866-021-02418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Background House fly larvae (Musca domestica L.) require a live microbial community to successfully develop. Cattle manure is rich in organic matter and microorganisms, comprising a suitable substrate for larvae who feed on both the decomposing manure and the prokaryotic and eukaryotic microbes therein. Microbial communities change as manure ages, and when fly larvae are present changes attributable to larval grazing also occur. Here, we used high throughput sequencing of 16S and 18S rRNA genes to characterize microbial communities in dairy cattle manure and evaluated the changes in those communities over time by comparing the communities in fresh manure to aged manure with or without house fly larvae. Results Bacteria, archaea and protist community compositions significantly differed across manure types (e.g. fresh, aged, larval-grazed). Irrespective of manure type, microbial communities were dominated by the following phyla: Euryarchaeota (Archaea); Proteobacteria, Firmicutes and Bacteroidetes (Bacteria); Ciliophora, Metamonanda, Ochrophyta, Apicomplexa, Discoba, Lobosa and Cercozoa (Protists). Larval grazing significantly reduced the abundances of Bacteroidetes, Ciliophora, Cercozoa and increased the abundances of Apicomplexa and Discoba. Manure aging alone significantly altered the abundance bacteria (Acinetobacter, Clostridium, Petrimonas, Succinovibro), protists (Buxtonella, Enteromonas) and archaea (Methanosphaera and Methanomassiliicoccus). Larval grazing also altered the abundance of several bacterial genera (Pseudomonas, Bacteroides, Flavobacterium, Taibaiella, Sphingopyxis, Sphingobacterium), protists (Oxytricha, Cercomonas, Colpodella, Parabodo) and archaea (Methanobrevibacter and Methanocorpusculum). Overall, larval grazing significantly reduced bacterial and archaeal diversities but increased protist diversity. Moreover, total carbon (TC) and nitrogen (TN) decreased in larval grazed manure, and both TC and TN were highly correlated with several of bacterial, archaeal and protist communities. Conclusions House fly larval grazing altered the abundance and diversity of bacterial, archaeal and protist communities differently than manure aging alone. Fly larvae likely alter community composition by directly feeding on and eliminating microbes and by competing with predatory microbes for available nutrients and microbial prey. Our results lend insight into the role house fly larvae play in shaping manure microbial communities and help identify microbes that house fly larvae utilize as food sources in manure. Information extrapolated from this study can be used to develop manure management strategies to interfere with house fly development and reduce house fly populations. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02418-5.
Collapse
Affiliation(s)
- Saraswoti Neupane
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Christopher Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Dana Nayduch
- USDA-ARS, Center for Grain and Animal Health Research, Arthropod-Borne Animal Diseases Research Unit, Manhattan, KS, USA.
| |
Collapse
|
15
|
Hamidou Leyo I, Moussa Ousmane Z, Noël G, Francis F, Caparros Megido R. Breeding Enhancement of Musca domestica L. 1758: Egg Load as a Measure of Optimal Larval Density. INSECTS 2021; 12:956. [PMID: 34821757 PMCID: PMC8620863 DOI: 10.3390/insects12110956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/01/2022]
Abstract
The amount of waste produced by the population creates general health problems in terms of public health and hygiene. In recent years the common housefly (Musca domestica L. 1758; Dipteran: Muscidae) has been widely used in the treatment of organic wastes. This study aims to assess the effect of egg loading of the common housefly on maggot development and waste reduction. Housefly larvae were reared at four egg loads (1.25, 2.5, 5, 10 mg) under three different diets (wheat bran, millet bran, cow dung). Two-factor ANOVA (α = 0.05) was used to test the effect of two fixed factors (egg load and substrate) on larval biomass, the survival rate from egg hatching until the last larval instar, number of larvae and substrate reduction rate. The comparison of means based on Duncan's test was performed to compare the means of the different variables measured. Principal component analysis (PCA) was used to determine the relationship between the measured variables (larval biomass, the survival rate from egg hatching until the last larval instar, number of larvae, and substrate reduction rate) on the discrimination of the egg load factor. The results showed that under the same nutritional conditions, the yield of housefly larvae, the number of larvae and the reduction of substrates increased with increasing egg load. Indeed, at each of three substrates, the rearing egg load of 10 mg resulted in the maximum larval yield, maximum number of larvae, and maximum substrate reduction rate. At this optimum load, wheat bran generated greater biomass, greater number of larvae and greater reduction of substrate compared to millet bran and cow dung. The egg load as a whole had no effect on the survival rate from egg hatching until the last larval instar, unlike substrate type. The high egg load for the survival rate (from egg hatching until the last larval instar) for millet bran was 1.25 while there was no difference for the other two substrates. These results can help to make the waste treatment process efficient with the subsequent production of a large larval biomass that can serve as added value in animal feed. The egg load of 10 mg and the wheat bran were superior respectively to the other egg load and substrates type for all parameters tested excepted for the survival rate (from egg hatching until the last larval instar). Ours study indicated that larval biomass, larval number, egg viability and substrate rate reduction of Musca domestica are affected by the egg load, substrate type and their interaction.
Collapse
Affiliation(s)
- Idriss Hamidou Leyo
- Ecole Doctorale Science de la Vie et de Terre EDSVT, Faculté d’Agronomie, Université Abdou Moumouni de Niamey, Niamey BP 10960, Niger;
| | - Zakari Moussa Ousmane
- Ecole Doctorale Science de la Vie et de Terre EDSVT, Faculté d’Agronomie, Université Abdou Moumouni de Niamey, Niamey BP 10960, Niger;
| | - Gregoire Noël
- Entomologie Fonctionnelle et Évolutive, Terra, Gembloux Agro-Bio Tech, Liège-Université, Passage des Déportés 2, 5030 Gembloux, Belgium; (G.N.); (F.F.); (R.C.M.)
| | - Frédéric Francis
- Entomologie Fonctionnelle et Évolutive, Terra, Gembloux Agro-Bio Tech, Liège-Université, Passage des Déportés 2, 5030 Gembloux, Belgium; (G.N.); (F.F.); (R.C.M.)
| | - Rudy Caparros Megido
- Entomologie Fonctionnelle et Évolutive, Terra, Gembloux Agro-Bio Tech, Liège-Université, Passage des Déportés 2, 5030 Gembloux, Belgium; (G.N.); (F.F.); (R.C.M.)
| |
Collapse
|
16
|
Wang X, Wan J, Jiang G, Yang T, Banerjee S, Wei Z, Mei X, Friman VP, Xu Y, Shen Q. Compositional and functional succession of bacterial and fungal communities is associated with changes in abiotic properties during pig manure composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 131:350-358. [PMID: 34237529 DOI: 10.1016/j.wasman.2021.06.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
While both bacteria and fungi are important for the degradation and humification of organic matter during composting, it is unclear to what extent their roles are associated with abiotic compost properties. This study evaluated changes in abiotic compost properties and the succession of bacterial and fungal communities during pig manure composting for 90 days. The compost rapidly reached thermophilic phase (>58 ℃), which lasted for 15 days. Both bacterial and fungal community compositions changed drastically during composting and while bacterial diversity increased, the fungal diversity decreased during the thermophilic phase of composting. Two taxa dominated both bacterial (Bacillales and Clostridiales) and fungal (Eurotiales and Glomerellales) communities and these showed alternating abundance fluctuations following different phases of composting. The abundance fluctuations of most dominant bacterial and fungal taxa could be further associated with decreases in the concentrations of fulvic acid, cellulose, hemicellulose and overall biodegradation potential in the compost. Moreover, bacterial predicted metabolic gene abundances dominated the first three phases of composting, while predicted fungal saprotrophic functional genes increased consistently, reaching highest abundances towards the end of composting. Finally, redundancy analysis (RDA) showed that changes in abiotic compost properties correlated with the bacterial community diversity and carbohydrate metabolism and fungal wood saprotrophic function. Together these results suggests that bacterial and fungal community succession was associated with temporal changes in abiotic compost properties, potentially explaining alternating taxa abundance patterns during pig manure composting.
Collapse
Affiliation(s)
- Xiaofang Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Jinxin Wan
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Gaofei Jiang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Tianjie Yang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Samiran Banerjee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Zhong Wei
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Xinlan Mei
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | | | - Yangchun Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| |
Collapse
|
17
|
Huang S, Ma Q, Hou Q, Zuo T, Zhang Z, Ni W. Identification and quantitative chemical analysis of betaines in different organic wastes and their bioconversion composts. BIORESOURCE TECHNOLOGY 2021; 328:124857. [PMID: 33631462 DOI: 10.1016/j.biortech.2021.124857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Global organic waste is increasing, bioconversion of organic waste arises because it can recover valuable nutrients and produce bioactive substances. Betaines are important bioactive substances in plants under environmental stress, but have received limited attention in vermicompost/larvae bioconversion compost. In this study, betaines in organic waste and vermicompost/larvae bioconversion compost were identified and quantified by HPLC-ESI-MS/MS. We observed the existence of glutamine betaine in all samples, which was first found in natural sources recently. Valine betaine was the highest among all detected betaines followed by GABA betaine, and both were rare in plants. The existence of tyrosine betaine in cow dung (CD) and vermicompost (CDV) was found, which was previously shown to be in fungi. Most importantly, we found larvae bioconversion could increase betaines by 5.56-99.75%, while vermicomposting decreased them. Bioconversion of larvae can effectively increase betaines in compost and can be used to produce potential novel functional organic fertilizers.
Collapse
Affiliation(s)
- Shan Huang
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Qingxu Ma
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Qiong Hou
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Ting Zuo
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Zhijian Zhang
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Wuzhong Ni
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Wan J, Wang X, Yang T, Wei Z, Banerjee S, Friman VP, Mei X, Xu Y, Shen Q. Livestock Manure Type Affects Microbial Community Composition and Assembly During Composting. Front Microbiol 2021; 12:621126. [PMID: 33828537 PMCID: PMC8019744 DOI: 10.3389/fmicb.2021.621126] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Composting is an environmentally friendly way to turn plant and animal wastes into organic fertilizers. However, it is unclear to what extent the source of animal waste products (such as manure) affects the physicochemical and microbiological properties of compost. Here, we experimentally tested how the type of livestock manure of herbivores (sheep and cattle) and omnivores (pig and chicken) influences the bacterial and fungal communities and physicochemical properties of compost. Higher pH, NO3-N, Total carbon (TC) content and C/N were found in sheep and cattle manure composts, while higher EC, NH4-N, Total nitrogen (TN) and total phosphorus (TP) content were measured in pig and chicken manure composts. Paired clustering between herbivore and omnivore manure compost metataxonomy composition was also observed at both initial and final phases of composting. Despite this clear clustering, all communities changed drastically during the composting leading to reduced bacterial and fungal diversity and large shifts in community composition and species dominance. While Proteobacteria and Chloroflexi were the major phyla in sheep and cattle manure composts, Firmicutes dominated in pig and chicken manure composts. Together, our results indicate that feeding habits of livestock can determine the biochemical and biological properties of manures, having predictable effects on microbial community composition and assembly during composting. Manure metataxonomy profiles could thus potentially be used to steer and manage composting processes.
Collapse
Affiliation(s)
- Jinxin Wan
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Xiaofang Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Tianjie Yang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Samiran Banerjee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Ville-Petri Friman
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, China.,Department of Biology, University of York, York, United Kingdom
| | - Xinlan Mei
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yangchun Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
19
|
Cui G, Lü F, Zhang H, Shao L, He P. Critical insight into the fate of antibiotic resistance genes during biological treatment of typical biowastes. BIORESOURCE TECHNOLOGY 2020; 317:123974. [PMID: 32799078 DOI: 10.1016/j.biortech.2020.123974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 05/06/2023]
Abstract
Antibiotic resistance genes (ARGs) in biowaste, such as livestock manure and excess activated sludge, pose potential threat to human and ecological health when applied to agricultural fields. Biological treatment approaches, such as thermophilic composting/vermicomposting and anaerobic digestion, widely adopted to stabilize biowaste have demonstrated significant effects on the fate of ARGs. However, the influence of these biological treatments on ARGs is not known. This review summarizes the occurrence of ARGs in biowaste and the impact of thermophilic composting, vermicomposting, and anaerobic digestion on the fate of ARGs with discussion on factors, including substrate properties, pretreatments, additives, and operational parameters, associated with ARGs during biological treatment of biowaste. Finally, this review explores the research implications and proposes new avenues in the field of biological treatment of organic waste.
Collapse
Affiliation(s)
- Guangyu Cui
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Fan Lü
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hua Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China
| | - Pinjing He
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China.
| |
Collapse
|
20
|
Molavi F, Ehrampoush MH, Ebrahimi AA, Nabi-Meibodi M, Mokhtari M. Evaluating changes in microbial population and earthworms weight during vermicomposting of cow manure containing co-trimoxazole. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:403-412. [PMID: 33312569 PMCID: PMC7721917 DOI: 10.1007/s40201-019-00404-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 09/24/2019] [Indexed: 06/12/2023]
Abstract
BACKGROUND Transmission of pathogens such as fecal coliforms is regarded as a significant concern about using livestock manure in agricultural applications. PURPOSE The aim of this study was to evaluate the effects of vermicomposting on fecal coliforms in cow manure containing co-trimoxazole as a widely used drug for cow diseases in animal husbandry. METHODS Adaptation process of earthworms was carried out in two phases for 6 weeks; then, the main process was fulfilled in 9 weeks. The final weight of cow manure per reactor was 3.5 kg. 120 g of earthworms added to each reactor (approximately 280-300 numbers in the reactor). Co-trimoxazole was also prepared with a purity of 99% from Pakdarou Co., Iran, and added to the reactors at concentrations of 10, 20, 50, and100mg/kg. Organic carbon, total Kjeldahl nitrogen (TKN), carbon-to-nitrogen (C:N) ratio, as well as phosphorus content of the reactors were measured. Fecal coliforms and parasite eggs were counted using standard laboratory methods (i.e. the Iranian Compost Standard) for 8 weeks. RESULTS The results revealed a decrease in organic carbon, C:N ratio, and co-trimoxazole content but a rising trend in TKN and phosphorus levels. The weight of earthworms also increased at the end of the process in all reactors, except for one case. A significant reduction was observed in fecal coliforms and parasite eggs at the end of the vermicomposting. CONCLUSIONS According to the results, earthworms could be active in cow manure vermicomposting including 10-100 mg/kg concentration of co-trimoxazole antibiotic. The vermicomposting seems to be an effective method for reducing fecal coliforms and parasites in cow manure. As well, co-trimoxazole in common concentration could not have any effects on the ability of earthworms. At the end of the vermicomposting, all parameters were placed within the ICS (National) - Grade 1.
Collapse
Affiliation(s)
- Fereshteh Molavi
- Environmental Science and Technology Research Center, Department of Waste Management, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, 8915173160 Iran
| | - Mohammad Hassan Ehrampoush
- Environmental Science and Technology Research Center, Department of Waste Management, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, 8915173160 Iran
| | - Ali Asghar Ebrahimi
- Environmental Science and Technology Research Center, Department of Waste Management, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, 8915173160 Iran
| | - Mohsen Nabi-Meibodi
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehdi Mokhtari
- Environmental Science and Technology Research Center, Department of Waste Management, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, 8915173160 Iran
| |
Collapse
|
21
|
Wei P, Li Y, Lai D, Geng L, Liu C, Zhang J, Shu C, Liu R. Protaetia brevitarsis larvae can feed on and convert spent mushroom substrate from Auricularia auricula and Lentinula edodes cultivation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 114:234-239. [PMID: 32682088 DOI: 10.1016/j.wasman.2020.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/19/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
The edible mushroom industry produces massive amounts of spent mushroom substrate (SMS). Thus, there is an urgent need for high-value utilization technology to process the SMS, especially SMSs originating from woodchips. Protaetia brevitarsis larvae (PBL) can feed on various types of organic matter and can produce organic fertilizer and insect protein. In this study, we investigated the potential of PBL to utilize and convert SMSs from Auricularia auricula (SMS-AA) and Lentinula edodes (SMS-LE) cultivation. The results showed that the PBL were able to feed on SMS-AA and SMS-LE and form nutrient-enriched organic fertilizer with a low phytotoxicity and high humic acid content. Further analysis of the organic carbon dynamics suggested that PBL can efficiently digest and utilize lignin. This study demonstrates a new strategy for the utilization of SMSs originating from woodchips, and provides a new model for further investigations on the mechanism of lignin decomposition.
Collapse
Affiliation(s)
- Panpan Wei
- Northeast Agricultural University, No. 600 Changjiang Street Xiangfang District, HarBin 150030, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Yimei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Deqiang Lai
- Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou 061001, China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Chunqin Liu
- Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou 061001, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing 100193, China.
| | - Rongmei Liu
- Northeast Agricultural University, No. 600 Changjiang Street Xiangfang District, HarBin 150030, China.
| |
Collapse
|
22
|
Mazza L, Xiao X, Ur Rehman K, Cai M, Zhang D, Fasulo S, Tomberlin JK, Zheng L, Soomro AA, Yu Z, Zhang J. Management of chicken manure using black soldier fly (Diptera: Stratiomyidae) larvae assisted by companion bacteria. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 102:312-318. [PMID: 31707320 DOI: 10.1016/j.wasman.2019.10.055] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Black soldier fly (BSF) is used for the management of organic waste, but research has hardly explored the effect of companion bacteria when chicken manure (CHM) is converted to insect biomass. In this study, we isolated nine bacterial species (FE01, FE02, FE03, FE04, FE05, FE06, FE07, FE08, FE09) from BSF eggs and one (BSF-CL) from the larval gut. These companion bacteria were inoculated into CHM along with BSF larvae (BSFL). Larval growth and manure conversion rates were determined. Results indicated that almost all bacteria individual bacteria in this study significantly promote BSFL growth. BSFL reared in manure with the species Kocuria marina (FE01), Lysinibacillus boronitolerans (FE04), Proteus mirabilis (FE08) and Bacillus subtilis (BSF-CL) had higher weight gain and manure reduction rates compared to the control. These four strains used were then examined as a poly-bacteria community experiment to determine BSFL growth and manure conversion. Manure inoculated with the poly-bacteria Group3 (FE01:FE04:FE08:BSF-CL = 4:1:1:1) and then fed to BSFL resulted in 28.6% more weight gain than the control. The greatest manure reduction rate (52.91%) was reached when companion bacteria were mixed at a ratio of 1:1:1:4. Additionally, the companion bacteria influenced the nutritional value of BSFL. Crude protein content in Group1 (FE01:FE04:FE08:BSF-CL = 1:1:1:1) was significantly larger than that of the control. Crude fat content in Group3 was significantly larger than that of the control. BSFL companion bacteria and their poly-bacteria compound improved manure conversion efficiency and nutrient accumulation in BSFL, reduced CHM quantity, increased larvae biomass, with potential economic gains in CHM management.
Collapse
Affiliation(s)
- Lorenzo Mazza
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | - Xiaopeng Xiao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kashif Ur Rehman
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Livestock and Dairy Development Department, Poultry Research Institute, Rawalpindi, Pakistan
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dingnan Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Salvatore Fasulo
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy
| | | | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Abdul Aziz Soomro
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
23
|
Cai M, Ma S, Hu R, Tomberlin JK, Thomashow LS, Zheng L, Li W, Yu Z, Zhang J. Rapidly mitigating antibiotic resistant risks in chicken manure by Hermetia illucens bioconversion with intestinal microflora. Environ Microbiol 2019; 20:4051-4062. [PMID: 30318817 DOI: 10.1111/1462-2920.14450] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/18/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022]
Abstract
Antibiotic resistance genes (ARGs) in animal manure are an environmental concern due to naturally occurring bacteria being exposed to these wastes and developing multidrug resistance. The bioconversion of manure with fly larvae is a promising alternative for recycling these wastes while attenuating ARGs. We investigated the impact of black soldier fly (BSF, Hermetia illucens) larval bioconversion of chicken manure on the persistence of associated ARGs. Compared with traditional composting or sterile larval treatments (by 48.4% or 88.7%), non-sterile BSF larval treatments effectively reduced ARGs and integrin genes by 95.0% during 12 days, due to rapid decreases in concentrations of the genes and associated bacteria as they passed through the larval gut and were affected by intestinal microbes. After larval treatments, bacterial community composition differed significantly, with the percentage of Firmicutes possibly carrying ARGs reduced by 65.5% or more. On average, human pathogenic bacteria populations declined by 70.7%-92.9%, effectively mitigating risks of these bacteria carrying ARGs. Environmental pH, nitrogen content and antibiotic concentrations were closely related to both bacterial community composition and targeted gene attenuation in larval systems. Selective pressures of larval gut environments with intestinal microbes, larval bacteriostasis and reformulation of manure due to larval digestion contributed to ARG attenuation.
Collapse
Affiliation(s)
- Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Centre of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shiteng Ma
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Centre of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ruiqi Hu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Centre of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Linda S Thomashow
- USDA-Agricultural Research Service, Washington State University, Pullman, WA, USA
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Centre of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wu Li
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Centre of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Centre of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Centre of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Gao Q, Deng W, Gao Z, Li M, Liu W, Wang X, Zhu F. Effect of sulfonamide pollution on the growth of manure management candidate Hermetia illucens. PLoS One 2019; 14:e0216086. [PMID: 31067258 PMCID: PMC6505776 DOI: 10.1371/journal.pone.0216086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/12/2019] [Indexed: 11/28/2022] Open
Abstract
Antibiotics are commonly used in livestock and poultry farming. Residual antibiotics in manure may lead to antibiotic pollution of soil, surface water, and groundwater through land application and run-off rainfall. The black soldier fly (BSF) Hermetia illucens is a good candidate for manure management. We evaluated the effect of sulfonamide pollution on the growth of H. illucens. Four treatments were considered with a sulfonamide content in the feed of 0 (control group), 0.1, 1, and 10 mg/kg. The control larvae were fed without sulfonamide. Survival and development status of the individuals were recorded daily. The weights of the fifth instar larvae, prepupae, and pupae were checked. Antioxidant enzyme activity was determined with the fifth instar larvae. The results showed that a low (0.1 and 1 mg/kg) concentration of sulfonamides had no effects on larval survival, pupation, and eclosion of BSFs. A high sulfonamide concentration of 10 mg/kg had a significant effect on the survival of larvae and pupae and on the body weight of larvae, prepupae and pupae. Peak of the cumulated pupation rate and eclosion rate in the sulfonamide treatment of 10 mg/kg was very low. Pupation and eclosion in this group peaked later than that of the control and low sulfonamide concentration treatment groups (0.1 mg/kg and 1 mg/kg). Larvae from the sulfonamides group showed lower antioxidase activities than that of the control. In sulfonamide groups, the activity of peroxidase and superoxide dismutase was reduced in a concentration-dependent manner. Sulfamonomethoxine, sulfamethoxazole, and sulfamethazine were not detected in the harvested prepupae. Only sulfadiazine was discovered in the sulfonamide treatments of 1 and 10 mg/kg. In conclusion, BSFs can tolerate certain concentrations of sulfonamide contamination.
Collapse
Affiliation(s)
- Qiao Gao
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, China
| | - Wenhui Deng
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, China
| | - Zhenghui Gao
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, China
| | - Mengya Li
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, China
| | - Wen Liu
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, China
| | - Xiaoping Wang
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, China
| | - Fen Zhu
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
25
|
Jiang C, Jin W, Tao X, Zhang Q, Zhu J, Feng S, Xu X, Li H, Wang Z, Zhang Z. Black soldier fly larvae (Hermetia illucens) strengthen the metabolic function of food waste biodegradation by gut microbiome. Microb Biotechnol 2019; 12:528-543. [PMID: 30884189 PMCID: PMC6465238 DOI: 10.1111/1751-7915.13393] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 02/06/2019] [Accepted: 02/13/2019] [Indexed: 12/15/2022] Open
Abstract
Vermicomposting using black soldier fly (BSF) larvae (Hermetia illucens) has gradually become a promising biotechnology for waste management, but knowledge about the larvae gut microbiome is sparse. In this study, 16S rRNA sequencing, SourceTracker, and network analysis were leveraged to decipher the influence of larvae gut microbiome on food waste (FW) biodegradation. The microbial community structure of BSF vermicompost (BC) changed greatly after larvae inoculation, with a peak colonization traceable to gut bacteria of 66.0%. The relative abundance of 11 out of 21 metabolic function groups in BC were significantly higher than that in natural composting (NC), such as carbohydrate-active enzymes. In addition, 36.5% of the functional genes in BC were significantly higher than those in NC. The changes of metabolic functions and functional genes were significantly correlated with the microbial succession. Moreover, the bacteria that proliferated in vermicompost, including Corynebacterium, Vagococcus, and Providencia, had strong metabolic abilities. Systematic and complex interactions between the BSF gut and BC bacteria occurred over time through invasion, altered the microbial community structure, and thus evolved into a new intermediate niche favourable for FW biodegradation. The study highlights BSF gut microbiome as an engine for FW bioconversion, which is conducive to bioproducts regeneration from wastes.
Collapse
Affiliation(s)
- Cheng‐Liang Jiang
- College of Environmental and Resource SciencesZheJiang UniversityHangZhou310058China
| | - Wei‐Zheng Jin
- HangZhou GuSheng Biotechnology Co. LtdHangZhou311108China
| | - Xin‐Hua Tao
- College of Environmental and Resource SciencesZheJiang UniversityHangZhou310058China
| | - Qian Zhang
- HangZhou GuSheng Biotechnology Co. LtdHangZhou311108China
| | - Jun Zhu
- Department of Biological and Agricultural EngineeringUniversity of ArkansasFayettevilleAR72701USA
| | - Shi‐Yun Feng
- College of Environmental and Resource SciencesZheJiang UniversityHangZhou310058China
| | - Xin‐Hua Xu
- College of Environmental and Resource SciencesZheJiang UniversityHangZhou310058China
| | - Hong‐Yi Li
- College of Environmental and Resource SciencesZheJiang UniversityHangZhou310058China
| | - Ze‐Hua Wang
- College of Agriculture and BiotechnologyZheJiang UniversityHangZhou310058China
| | - Zhi‐Jian Zhang
- College of Environmental and Resource SciencesZheJiang UniversityHangZhou310058China
| |
Collapse
|
26
|
Rehman KU, Ur Rehman R, Somroo AA, Cai M, Zheng L, Xiao X, Ur Rehman A, Rehman A, Tomberlin JK, Yu Z, Zhang J. Enhanced bioconversion of dairy and chicken manure by the interaction of exogenous bacteria and black soldier fly larvae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 237:75-83. [PMID: 30780056 DOI: 10.1016/j.jenvman.2019.02.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/02/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
Generation of insects' biomass from lignocellulose rich organic wastes is of significant challenges in reducing the environmental impact of wastes and in sustaining feed and food security. This research looked at the effects of lignocellulotic exogenous bacteria in the black soldier fly (BSF) organic waste conversion system for biomass production and lignocellulose biodegradation of dairy and chicken manures. Six exogenous bacteria were investigated for cellulolytic activity with carboxymethyl cellulose and found that these tested bacterial strains degrade the cellulose. In this study; a co-conversion process using Hermetia illucens larvae to convert the previously studied best mixing ratio of dairy manure (DM) and chicken manure (CHM) (2:3) and cellulose degrading bacteria was established to enhance the larval biomass production, waste reduction and manure nutrient degradation. BSF larvae assisted by MRO2 (R5) has the best outcome measures: survival rate (99.1%), development time (19.0 d), manure reduction rate (48.7%), bioconversion rate (10.8%), food conversion ratio (4.5), efficiency of conversion of ingestion (22.3), cellulose (72.9%), hemicellulose (68.5%), lignin (32.8%), and nutrient utilization (protein, 71.2% and fat, 67.8%). By analyzing the fiber structural changes by scanning electron microscopy and Fourier-transformed infrared spectroscopy (FT-IR), we assume that exogenous bacteria assist the BSF larvae that trigger lead to structural and chemical modification of fibers. We hypothesized that these surface and textural changes are beneficial to the associated gut bacteria, thereby helping to larval growth and reduce waste. The finding of the investigation showed that enhanced conversion of DM and CHM by BSF larvae assisted with lignocellulotic exogenous bacteria could play key role in the manure management.
Collapse
Affiliation(s)
- Kashif Ur Rehman
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Livestock and Dairy Development Department, Poultry Research Institute, Rawalpindi, Government of Punjab, Pakistan
| | | | - Abdul Aziz Somroo
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiaopeng Xiao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | - Abdul Rehman
- Livestock and Dairy Development Department, Poultry Research Institute, Rawalpindi, Government of Punjab, Pakistan
| | | | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
27
|
Li H, Wan Q, Zhang S, Wang C, Su S, Pan B. Housefly larvae (Musca domestica) significantly accelerates degradation of monensin by altering the structure and abundance of the associated bacterial community. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:418-426. [PMID: 30553153 DOI: 10.1016/j.ecoenv.2018.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Vermicomposting of livestock manure using housefly larvae is a promising biotechnology for waste reduction and control of antibiotic pollution. Monensin (MON), an ionophore polyether antibiotic (IPA), is widely used in broiler feed to control coccidiosis. However, MON residues in litter have become a major source of pollution in the environment. In this work, we studied the efficiency of housefly larvae (Musca domestica) on monensin attenuation during a 12-day laboratory scale vermicomposting experiment. We observed a 94.99% reduction in MON concentration after four days in treatment groups, while it took twelve days to remove more than 94.71% of MON in the control group. We found that the bacterial community composition of the substrate was reshaped by housefly larvae. From the treatment groups, three MON-degrading bacterial strains were isolated and identified as Acinetobacter sp., Stenotrophomonas sp. and Alcaligenes sp. based on 16 S rRNA gene sequence analysis. These three strains were among dominant the bacteria in treated substrates, showing between 52.80% and 89.25% degradation of MON in mineral salt medium within 28 days. Furthermore, two MON-degrading bacteria (Stenotrophomonas sp. and Alcaligenes sp.) were more abundant in treatment groups and larvae gut groups compared with those in control groups. The abundance enhancement of MON-degrading bacteria was related to the change in ambient temperature and pH in the substrates, which were affected by housefly larvae activities. Our results confirm that housefly larvae can significantly accelerate degradation of MON in chicken manure by increasing the abundance of MON-degrading bacteria.
Collapse
Affiliation(s)
- Hao Li
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Qiang Wan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Shudong Zhang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Chuanwen Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Shanchun Su
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Baoliang Pan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| |
Collapse
|
28
|
Gold M, Tomberlin JK, Diener S, Zurbrügg C, Mathys A. Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 82:302-318. [PMID: 30509593 DOI: 10.1016/j.wasman.2018.10.022] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/17/2018] [Accepted: 10/12/2018] [Indexed: 06/09/2023]
Abstract
Processing of biowaste with larvae of the black soldier fly, Hermetia illucens L. (Diptera: Stratiomyidae), is an emerging waste treatment technology. Larvae grown on biowaste can be a relevant raw material for animal feed production and can therefore provide revenues for financially viable waste management systems. In addition, when produced on biowaste, insect-based feeds can be more sustainable than conventional feeds. Among others, the scalability of the technology will depend on the availability of large amounts of biowaste with a high process performance (e.g. bioconversion of organic matter to proteins and lipids) and microbial and chemical product safety. Currently, in contrast to other waste treatment technologies, such as composting or anaerobic digestion, the process performance is variable and the processes driving the decomposition of biowaste macronutrients, inactivation of microbes and fate of chemicals is poorly understood. This review presents the first summary of the most important processes involved in black soldier fly larvae (BSFL) treatment, based on the available knowledge concerning five well-studied fly species. This is a starting point to increase understanding regarding the processes of this technology, with the potential to increase its efficiency and uptake, and support the development of appropriate regulations. Based on this review, formulating different types of biowaste, e.g. to produce a diet with a similar protein content, a balanced amino acid profile and/or pre- and co-treatment of biowaste with beneficial microbes, has the potential to increase process performance. Following harvest, larvae require heat or other treatments for microbial inactivation and safety.
Collapse
Affiliation(s)
- Moritz Gold
- ETH Zurich: Swiss Federal Institute of Technology Zurich, Institute of Food, Nutrition and Health, Sustainable Food Processing Laboratory, Schmelzbergstrasse 9, 8092 Zurich, Switzerland; Eawag: Swiss Federal Institute of Aquatic Science and Technology, Sandec: Department Sanitation, Water and Solid Water for Development, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Jeffery K Tomberlin
- Texas A&M University, Department of Entomology, 370 Olsen Boulevard, College Station, TX 77843, USA
| | - Stefan Diener
- Biovision Foundation, Heinrichstrasse 147, 8005 Zurich, Switzerland
| | - Christian Zurbrügg
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Sandec: Department Sanitation, Water and Solid Water for Development, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Alexander Mathys
- ETH Zurich: Swiss Federal Institute of Technology Zurich, Institute of Food, Nutrition and Health, Sustainable Food Processing Laboratory, Schmelzbergstrasse 9, 8092 Zurich, Switzerland.
| |
Collapse
|
29
|
Xiao X, Mazza L, Yu Y, Cai M, Zheng L, Tomberlin JK, Yu J, van Huis A, Yu Z, Fasulo S, Zhang J. Efficient co-conversion process of chicken manure into protein feed and organic fertilizer by Hermetia illucens L. (Diptera: Stratiomyidae) larvae and functional bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:668-676. [PMID: 29654970 DOI: 10.1016/j.jenvman.2018.03.122] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/17/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
A chicken manure management process was carried out through co-conversion of Hermetia illucens L. larvae (BSFL) with functional bacteria for producing larvae as feed stuff and organic fertilizer. Thirteen days co-conversion of 1000 kg of chicken manure inoculated with one million 6-day-old BSFL and 109 CFU Bacillus subtilis BSF-CL produced aging larvae, followed by eleven days of aerobic fermentation inoculated with the decomposing agent to maturity. 93.2 kg of fresh larvae were harvested from the B. subtilis BSF-CL-inoculated group, while the control group only harvested 80.4 kg of fresh larvae. Chicken manure reduction rate of the B. subtilis BSF-CL-inoculated group was 40.5%, while chicken manure reduction rate of the control group was 35.8%. The weight of BSFL increased by 15.9%, BSFL conversion rate increased by 12.7%, and chicken manure reduction rate increased by 13.4% compared to the control (no B. subtilis BSF-CL). The residue inoculated with decomposing agent had higher maturity (germination index >92%), compared with the no decomposing agent group (germination index ∼86%). The activity patterns of different enzymes further indicated that its production was more mature and stable than that of the no decomposing agent group. Physical and chemical production parameters showed that the residue inoculated with the decomposing agent was more suitable for organic fertilizer than the no decomposing agent group. Both, the co-conversion of chicken manure by BSFL with its synergistic bacteria and the aerobic fermentation with the decomposing agent required only 24 days. The results demonstrate that co-conversion process could shorten the processing time of chicken manure compared to traditional compost process. Gut bacteria could enhance manure conversion and manure reduction. We established efficient manure co-conversion process by black soldier fly and bacteria and harvest high value-added larvae mass and biofertilizer.
Collapse
Affiliation(s)
- Xiaopeng Xiao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Lorenzo Mazza
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China; University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Via F. Stagno D'Alcontres n.31, 98166 Messina, Italy
| | - Yongqiang Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | | | - Jeffrey Yu
- Texas Academy of Mathematics and Science, University of North Texas 1155 Union Circle #311070, Denton, TX 76203-5017, USA
| | - Arnold van Huis
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Salvatore Fasulo
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Via F. Stagno D'Alcontres n.31, 98166 Messina, Italy
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
30
|
Tracing heavy metals in 'swine manure - maggot - chicken' production chain. Sci Rep 2017; 7:8417. [PMID: 28827547 PMCID: PMC5566944 DOI: 10.1038/s41598-017-07317-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/23/2017] [Indexed: 01/29/2023] Open
Abstract
With the development of large-scale livestock farming, manure pollution has drawn much attention. Conversion by insects is a rapid and cost-effective new method for manure management. Swine manure conversion with maggots (Musca domestica larvae) has developed, and the harvested maggots are often used as animal feed. However, the flow of heavy metals from manure to downstream processes cannot be ignored, and therefore, heavy metal content was measured in untreated raw manure, maggot-treated manure, harvested maggots and maggot-eating chickens (chest muscle and liver) to evaluate potential heavy metal risks. The levels of zinc, copper, chromium, selenium, cadmium and lead had significant differences between untreated raw manure and maggot-treated manure. The concentrations of all detected heavy metals, except for cadmium and selenium, in maggots met the limits established by the feed or feed additive standards of many countries. The bioaccumulation factor (BAF) of heavy metals decreased with the increase of the maggot instar, indicating that heavy metals were discharged from the bodies of maggots with the growth of maggots. Also, the contents of overall heavy metals in chickens fed harvested maggots met the standards for food. In conclusion, regarding heavy metals, it is eco-safe to use maggots in manure management.
Collapse
|
31
|
Rehman KU, Cai M, Xiao X, Zheng L, Wang H, Soomro AA, Zhou Y, Li W, Yu Z, Zhang J. Cellulose decomposition and larval biomass production from the co-digestion of dairy manure and chicken manure by mini-livestock (Hermetia illucens L.). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 196:458-465. [PMID: 28342340 DOI: 10.1016/j.jenvman.2017.03.047] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 03/11/2017] [Accepted: 03/16/2017] [Indexed: 05/06/2023]
Abstract
World trends toward the modern dairies intensification on large production units cause massive animal manure production and accumulation. Improper handling of manure produced by industrial farm operation greatly deteriorates the major environmental media including air, water and soil. The black soldier fly utilizes organic waste and converts it into larvae biomass to be used as livestock feed and into residues to be used as bio-fertilizer. However, due to the high ratio of cellulose, hemicellulose and lignin in dairy manure, this conversion is difficult. Therefore, dairy manure treated with chicken manure was digested by Hermetia illucens. In this paper, we found that the co-digestion process significantly enhanced the larval production, waste mass reduction, rate of larvae conversion, feed conversion ratio, nutrient reduction and fibers utilization. Whereas 40% dairy manure and 60% chicken manure group show better results than other manure mixtures and had a significantly increased the cellulose consumption by 61.19%, hemicellulose consumption by 53.22% and lignin consumption by 42.23% compared with 49.89%, 49.77% and 31.95%, respectively, in the dairy-only manure group. Finally, scanning electron microscopy was used to analyze the structural changes of dairy manure, chicken manure and their co-digestion mixtures. The scan electron microscopy showed the deterioration in the structure of dairy and chicken manure fibers by Hermetia illucens. Moreover, the carbon-nitrogen ratio was decreased in all end products of post vermicomposting. The results suggest that the co-digestion of 40% dairy manure with 60% chicken manure is an appropriate proportion for dairy manure management with the black soldier fly.
Collapse
Affiliation(s)
- Kashif Ur Rehman
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Livestock and Dairy Development Department, Government of Punjab, Pakistan
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaopeng Xiao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Wang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Abdul Aziz Soomro
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yusha Zhou
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wu Li
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
32
|
Zhang S, Huang J, Hu R, Guo G, Shang X, Wu J. Characterization of a new multifunctional beta-glucosidase from Musca domestica. Biotechnol Lett 2017; 39:1219-1227. [DOI: 10.1007/s10529-017-2351-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/05/2017] [Indexed: 01/31/2023]
|
33
|
Gao Q, Wang X, Wang W, Lei C, Zhu F. Influences of chromium and cadmium on the development of black soldier fly larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:8637-8644. [PMID: 28197942 DOI: 10.1007/s11356-017-8550-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/01/2017] [Indexed: 06/06/2023]
Abstract
The black soldier fly Hermetia illucens is a good candidate for waste management. The harvested insects are rich in protein and have the potential to be used in animal feed. However, people are wary about heavy metals in waste. Therefore, it is necessary to understand how the uptake of heavy metals could affect H. illucens and where and to what extent metals are accumulated by the black soldier fly. Based on these considerations, developmental parameters were investigated in the different life stages of H. illucens fed an increasing concentration gradient of cadmium (Cd) and chromium (Cr); additionally, Cd and Cr distribution in the body parts of H. illucens at the different life stages was monitored. We found that Cd and Cr have no effects on larvae survival and eclosion rate, but they do have effects on larvae duration and pupation rate. Both Cd and Cr were transferred into larvae, prepupae, and pupae. While the concentrations of Cd in larvae and prepupae were much higher than that in their diets, the opposite case was observed with Cr. The concentrations of Cd and Cr in H. illucens decreased in later development stages. In individual larva and prepupa, Cd and Cr were mainly included in the body and not in the integument. In the pupa, the puparium contained higher Cd and Cr concentrations than the pupa body. The distribution of Cd and Cr in the different life stages and body parts may present a potential strategy for how H. illucens tolerate and remove heavy metal stress.
Collapse
Affiliation(s)
- Qiao Gao
- Hubei International Cooperation Base for Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoyun Wang
- Hubei International Cooperation Base for Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wanqiang Wang
- Hubei International Cooperation Base for Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaoliang Lei
- Hubei International Cooperation Base for Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fen Zhu
- Hubei International Cooperation Base for Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
34
|
Hao X, Hu H, Li X, Jiang D, Zhu L, Bai L. Adaptability comparison of E. fetida in vermicomposting against sludge from livestock wastewater treatment plant based on their several growth stages. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15452-15459. [PMID: 27117153 DOI: 10.1007/s11356-016-6300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/14/2016] [Indexed: 06/05/2023]
Abstract
Vermicomposting is a low-cost, eco-efficient process to deal with organic wastes. Mixtures of swine manure (SM), cow dung (CD), and animal wastewater treatment plant sludge (S) were applied as feeds, and Eisenia fetida was employed in this study to investigate the vermicomposting efficiency based on their several growth stages. The hatching test resulted in a 100 % hatching rate in S60SM40 (60 % S + 40 % SM) mixture, while 4.40 hatchlings per cocoon were observed. The growth of infancy performed best in 0-20 % CD mixtures (0.05 ± 0.002 g), followed by in SM + CD (0.04 ± 0.003 g). The highest growth rate of young and adult E. fetida was noticed in CD + S mixtures (11.14 ± 0.01 and 6.00 ± 0.02 mg/d/worm, respectively), while the higher cocoon production of adults was noticed in S + SM mixtures especially in S40SM60 (537 ± 5 worms). Moreover, the conversion of solids; the modified pH value; the reduction in total organic carbon (TOC); total Kjeldahl nitrogen (TKN), NH4-N, NO3-N, and C:N ratio; and the rich in total available phosphorus (TAP) and total potassium (TK) content by young and adult E. fetida were related to the growth of worms. Such work would benefit understanding and to increase the efficiency of vermicompost processing of different wastes.
Collapse
Affiliation(s)
- Xiaoxia Hao
- College of Animal Science and Technology, Sichuan Agricultural University, 211 Huiming Ave, Chengdu, Sichuan, 611130, China
| | - Hongwen Hu
- Neijiang Academy of Agricultural Sciences, Neijing, Sichuan, 641000, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, 211 Huiming Ave, Chengdu, Sichuan, 611130, China
| | - Dongmei Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, 211 Huiming Ave, Chengdu, Sichuan, 611130, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, 211 Huiming Ave, Chengdu, Sichuan, 611130, China
| | - Lin Bai
- College of Animal Science and Technology, Sichuan Agricultural University, 211 Huiming Ave, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
35
|
The antibiotic resistome of swine manure is significantly altered by association with the Musca domestica larvae gut microbiome. ISME JOURNAL 2016; 11:100-111. [PMID: 27458785 DOI: 10.1038/ismej.2016.103] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/12/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023]
Abstract
The overuse of antibiotics as veterinary feed additives is potentially contributing to a significant reservoir of antibiotic resistance in agricultural farmlands via the application of antibiotic-contaminated manure. Vermicomposting of swine manure using housefly larvae is a promising biotechnology for waste reduction and control of antibiotic pollution. To determine how vermicomposting influences antibiotic resistance traits in swine manure, we explored the resistome and associated bacterial community dynamics during larvae gut transit over 6 days of treatment. In total, 94 out of 158 antibiotic resistance genes (ARGs) were significantly attenuated (by 85%), while 23 were significantly enriched (3.9-fold) following vermicomposting. The manure-borne bacterial community showed a decrease in the relative abundance of Bacteroidetes, and an increase in Proteobacteria, specifically Ignatzschineria, following gut transit. ARG attenuation was significantly correlated with changes in microbial community succession, especially reduction in Clostridiales and Bacteroidales. Six genomes were assembled from the manure, vermicompost (final product) and gut samples, including Pseudomonas, Providencia, Enterococcus, Bacteroides and Alcanivorax. Transposon-linked ARGs were more abundant in gut-associated bacteria compared with those from manure and vermicompost. Further, ARG-transposon gene cassettes had a high degree of synteny between metagenomic assemblies from gut and vermicompost samples, highlighting the significant contribution of gut microbiota through horizontal gene transfer to the resistome of vermicompost. In conclusion, the larvae gut microbiome significantly influences manure-borne community succession and the antibiotic resistome during animal manure processing.
Collapse
|
36
|
Wang H, Wang S, Li H, Wang B, Zhou Q, Zhang X, Li J, Zhang Z. Decomposition and humification of dissolved organic matter in swine manure during housefly larvae composting. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2016; 34:465-473. [PMID: 26987735 DOI: 10.1177/0734242x16636675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Housefly larvae (Musca domestica) composting has been increasingly adopted as an efficient practice to achieve value-added swine manure bioconversion, but few researches have evaluated the features of compost maturity by examining the biochemical compositions of dissolved organic matter (DOM) in compost. Here, we adopted spectrum fingerprint technologies to explore the related transformation mechanisms of DOM in compost by conducting field investigations in a full-scale housefly larvae composting farm. The 1-week composting with larvae significantly decreased DOM concentrations from 192.9 to 77.1 g kg(-1) The hydrolysis of proteins and lipids were enhanced during composting, as well as a build-up of aromatic substances, while contents of fulvic- and humic-like substances were augmented on Day 5 and Day 6 (ranged from 0.04 to 0.65 and 0.11 to 0.59 for Fmax, respectively). Compared with traditional composting without the aid of larvae, the stronger biodegradation of DOM and the subsequent formation of humus in compost, led to a higher level of aromaticity and humification under housefly larvae bioconversion, generating a more stable bio-product for downstream utilisation.
Collapse
Affiliation(s)
- Hang Wang
- College of Environmental and Resource Sciences, ZheJiang University, HangZhou, China National Plateau Wetlands Research Center, Southwest Forestry University, Kunming, China
| | - ShunYao Wang
- College of Environmental and Resource Sciences, ZheJiang University, HangZhou, China
| | - HongYi Li
- College of Environmental and Resource Sciences, ZheJiang University, HangZhou, China
| | - Bei Wang
- College of Environmental and Resource Sciences, ZheJiang University, HangZhou, China
| | - QianSheng Zhou
- College of Environmental and Resource Sciences, ZheJiang University, HangZhou, China
| | - XinMing Zhang
- College of Environmental and Resource Sciences, ZheJiang University, HangZhou, China
| | - Jing Li
- College of Environmental and Resource Sciences, ZheJiang University, HangZhou, China HangZhou Wufumei Bio-tech Co. Ltd, YuHang, China
| | - ZhiJian Zhang
- College of Environmental and Resource Sciences, ZheJiang University, HangZhou, China China Academy of West Region Development, ZheJiang University, HangZhou, China
| |
Collapse
|
37
|
Housefly Larva Vermicomposting Efficiently Attenuates Antibiotic Resistance Genes in Swine Manure, with Concomitant Bacterial Population Changes. Appl Environ Microbiol 2015; 81:7668-79. [PMID: 26296728 DOI: 10.1128/aem.01367-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/09/2015] [Indexed: 01/23/2023] Open
Abstract
Manure from swine treated with antimicrobials as feed additives is a major source for the expansion of the antibiotic resistance gene (ARG) reservoir in the environment. Vermicomposting via housefly larvae (Musca domestica) can be efficiently used to treat manure and regenerate biofertilizer, but few studies have investigated its effect on ARG attenuation. Here, we tracked the abundances of 9 ARGs and the composition and structure of the bacterial communities in manure samples across 6 days of full-scale manure vermicomposting. On day 6, the abundances of genes encoding tetracycline resistance [tet(M), tet(O), tet(Q), and tet(W)] were reduced (P < 0.05), while those of genes encoding sulfonamide resistance (sul1 and sul2) were increased (P < 0.05) when normalized to 16S rRNA. The abundances of tetracycline resistance genes were correlated (P < 0.05) with the changing concentrations of tetracyclines in the manure. The overall diversity and richness of the bacteria significantly decreased during vermicomposting, accompanied by a 100 times increase in the relative abundance of Flavobacteriaceae spp. Variations in the abundances of ARGs were correlated with the changing microbial community structure and the relative abundances of the family Ruminococcaceae, class Bacilli, or phylum Proteobacteria. Vermicomposting, as a waste management practice, can reduce the overall abundance of ARGs. More research is warranted to assess the use of this waste management practice as a measure to attenuate the dissemination of antimicrobial residues and ARGs from livestock production before vermicompost can be safely used as biofertilizer in agroecosystems.
Collapse
|
38
|
Yang S, Xie J, Hu N, Liu Y, Zhang J, Ye X, Liu Z. Bioconversion of Gibberellin Fermentation Residue into Feed Supplement and Organic Fertilizer Employing Housefly (Musca domestica L.) Assisted by Corynebacterium variabile. PLoS One 2015; 10:e0110809. [PMID: 25992605 PMCID: PMC4439168 DOI: 10.1371/journal.pone.0110809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/23/2014] [Indexed: 11/25/2022] Open
Abstract
The accumulation of a considerable quantity of gibberellin fermentation residue (GFR) during gibberellic acid A3 (GA3) production not only results in the waste of many resources, but also poses a potential hazard to the environment, indicating that the safe treatment of GFR has become an urgent issue for GA3 industry. The key to recycle GFR is converting it into an available resource and removing the GA3 residue. To this end, we established a co-bioconversion process in this study using house fly larvae (HFL) and microbes (Corynebacterium variabile) to convert GFR into insect biomass and organic fertilizer. About 85.5% GA3 in the GFR was removed under the following optimized solid-state fermentation conditions: 60% GFR, 40% rice straw powder, pH 8.5 and 6 days at 26°C. A total of 371g housefly larvae meal and 2,064g digested residue were bio-converted from 3,500g raw GFR mixture contaning1, 400g rice straw in the unit of (calculated) dry matter. HFL meal derived from GFR contained 56.4% protein, 21.6% fat, and several essential amino acids, suggesting that it is a potential alternative animal feed protein source. Additionally, the digested GFR could be utilized as an organic fertilizer with a content of 3.2% total nitrogen, 2.0% inorganic phosphorus, 1.3% potassium and 91.5% organic matter. This novel GFR bio-conversion method can mitigate potential environmental pollution and recycle the waste resources.
Collapse
Affiliation(s)
- Sen Yang
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, P. R. China
| | - Jiufeng Xie
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, P. R. China
| | - Nan Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P. R. China
| | - Yixiong Liu
- Jiang Xi New Reyphon Biochemical Co., LTD, Ji An City, JiangXi, P. R. China
| | - Jiner Zhang
- Jiang Xi New Reyphon Biochemical Co., LTD, Ji An City, JiangXi, P. R. China
| | - Xiaobin Ye
- Jiang Xi New Reyphon Biochemical Co., LTD, Ji An City, JiangXi, P. R. China
| | - Ziduo Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- * E-mail:
| |
Collapse
|
39
|
Doan TT, Henry-des-Tureaux T, Rumpel C, Janeau JL, Jouquet P. Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: a three year mesocosm experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 514:147-54. [PMID: 25659313 DOI: 10.1016/j.scitotenv.2015.02.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/30/2014] [Accepted: 02/02/2015] [Indexed: 05/22/2023]
Abstract
Compost, vermicompost and biochar amendments are thought to improve soil quality and plant yield. However, little is known about their long-term impact on crop yield and the environment in tropical agro-ecosystems. In this study we investigated the effect of organic amendments (buffalo manure, compost and vermicompost) and biochar (applied alone or with vermicompost) on plant yield, soil fertility, soil erosion and water dynamics in a degraded Acrisol in Vietnam. Maize growth and yield, as well as weed growth, were examined for three years in terrestrial mesocosms under natural rainfall. Maize yield and growth showed high inter-annual variability depending on the organic amendment. Vermicompost improved maize growth and yield but its effect was rather small and was only significant when water availability was limited (year 2). This suggests that vermicompost could be a promising substrate for improving the resistance of agrosystems to water stress. When the vermicompost-biochar mixture was applied, further growth and yield improvements were recorded in some cases. When applied alone, biochar had a positive influence on maize yield and growth, thus confirming its interest for improving long-term soil productivity. All organic amendments reduced water runoff, soil detachment and NH₄(+) and NO₃(-) transfer to water. These effects were more significant with vermicompost than with buffalo manure and compost, highlighting that the beneficial influence of vermicompost is not limited to its influence on plant yield. In addition, this study showed for the first time that the combination of vermicompost and biochar may not only improve plant productivity but also reduce the negative impact of agriculture on water quality.
Collapse
Affiliation(s)
- Thuy Thu Doan
- IRD, UMR 242 iEES Paris, équipe BioPhys, 32 Avenue H. Varagnat, 93143 Bondy Cedex, France; Soil and Fertilizer Research Institute, Dong Ngac, Tu Liem, Hanoi, Viet Nam
| | - Thierry Henry-des-Tureaux
- Soil and Fertilizer Research Institute, Dong Ngac, Tu Liem, Hanoi, Viet Nam; NAFRI, National University of Vientiane, BP 811, Vientiane, Laos
| | - Cornelia Rumpel
- UMR iEES Paris, équipe EcoIso, Campus AgroParisTech, Bâtiment EGER, 78850 Thiverval-Grignon, France
| | - Jean-Louis Janeau
- IRD, UMR 242 iEES Paris, équipe BioPhys, 32 Avenue H. Varagnat, 93143 Bondy Cedex, France; Soil and Fertilizer Research Institute, Dong Ngac, Tu Liem, Hanoi, Viet Nam
| | - Pascal Jouquet
- IRD, UMR 242 iEES Paris, équipe BioPhys, 32 Avenue H. Varagnat, 93143 Bondy Cedex, France; IFCWS, Civil Engineering Department, Indian Institute of Science, 560012 Bangalore, India.
| |
Collapse
|
40
|
Čičková H, Newton GL, Lacy RC, Kozánek M. The use of fly larvae for organic waste treatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 35:68-80. [PMID: 25453313 DOI: 10.1016/j.wasman.2014.09.026] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 07/11/2014] [Accepted: 09/30/2014] [Indexed: 06/04/2023]
Abstract
The idea of using fly larvae for processing of organic waste was proposed almost 100 years ago. Since then, numerous laboratory studies have shown that several fly species are well suited for biodegradation of organic waste, with the house fly (Musca domestica L.) and the black soldier fly (Hermetia illucens L.) being the most extensively studied insects for this purpose. House fly larvae develop well in manure of animals fed a mixed diet, while black soldier fly larvae accept a greater variety of decaying organic matter. Blow fly and flesh fly maggots are better suited for biodegradation of meat processing waste. The larvae of these insects have been successfully used to reduce mass of animal manure, fecal sludge, municipal waste, food scrapes, restaurant and market waste, as well as plant residues left after oil extraction. Higher yields of larvae are produced on nutrient-rich wastes (meat processing waste, food waste) than on manure or plant residues. Larvae may be used as animal feed or for production of secondary products (biodiesel, biologically active substances). Waste residue becomes valuable fertilizer. During biodegradation the temperature of the substrate rises, pH changes from neutral to alkaline, ammonia release increases, and moisture decreases. Microbial load of some pathogens can be substantially reduced. Both larvae and digested residue may require further treatment to eliminate pathogens. Facilities utilizing natural fly populations, as well as pilot and full-scale plants with laboratory-reared fly populations have been shown to be effective and economically feasible. The major obstacles associated with the production of fly larvae from organic waste on an industrial scale seem to be technological aspects of scaling-up the production capacity, insufficient knowledge of fly biology necessary to produce large amounts of eggs, and current legislation. Technological innovations could greatly improve performance of the biodegradation facilities and decrease production costs.
Collapse
Affiliation(s)
- Helena Čičková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; Scientica s.r.o., Hybešova 33, 831 06 Bratislava, Slovakia.
| | - G Larry Newton
- Department of Animal and Dairy Science, University of Georgia Tifton Campus, 2360 Rainwater Road, Tifton, GA 31793, USA.
| | - R Curt Lacy
- Department of Agricultural and Applied Economics, University of Georgia Tifton Campus, 2360 Rainwater Road, Tifton, GA 31793, USA.
| | - Milan Kozánek
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia.
| |
Collapse
|
41
|
Zhang Z, Shen J, Wang H, Liu M, Wu L, Ping F, He Q, Li H, Zheng C, Xu X. Attenuation of veterinary antibiotics in full-scale vermicomposting of swine manure via the housefly larvae (Musca domestica). Sci Rep 2014; 4:6844. [PMID: 25354896 PMCID: PMC5381375 DOI: 10.1038/srep06844] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/15/2014] [Indexed: 02/04/2023] Open
Abstract
Animal waste from concentrated swine farms is widely considered to be a source of environmental pollution, and the introduction of veterinary antibiotics in animal manure to ecosystems is rapidly becoming a major public health concern. A housefly larvae (Musca domestica) vermireactor has been increasingly adopted for swine manure value-added bioconversion and pollution control, but few studies have investigated its efficiency on antibiotic attenuation during manure vermicomposting. In this study we explored the capacity and related attenuation mechanisms of antibiotic degradation and its linkage with waste reduction by field sampling during a typical cycle (6 days) of full-scale larvae manure vermicomposting. Nine antibiotics were dramatically removed during the 6-day vermicomposting process, including tetracyclines, sulfonamides, and fluoroquinolones. Of these, oxytetracycline and ciprofloxacin exhibited the greater reduction rate of 23.8 and 32.9 mg m−2, respectively. Environmental temperature, pH, and total phosphorus were negatively linked to the level of residual antibiotics, while organic matter, total Kjeldahl nitrogen, microbial respiration intensity, and moisture exhibited a positive effect. Pyrosequencing data revealed that the dominant phyla related to Firmicutes, Bacteroidetes, and Proteobacteria accelerated manure biodegradation likely through enzyme catalytic reactions, which may enhance antibiotic attenuation during vermicomposting.
Collapse
Affiliation(s)
- ZhiJian Zhang
- 1] Institute of Environmental Sciences, College of Environmental and Resource Sciences, ZheJiang University, HangZhou, 310058, China [2] China Academy of West Region Development, ZheJiang University, HangZhou, 310058, China
| | - JianGuo Shen
- Agro-technology Extension Center at YuHang District, HangZhou, 311100, China
| | - Hang Wang
- Institute of Environmental Sciences, College of Environmental and Resource Sciences, ZheJiang University, HangZhou, 310058, China
| | - Meng Liu
- Institute of Environmental Sciences, College of Environmental and Resource Sciences, ZheJiang University, HangZhou, 310058, China
| | - LongHua Wu
- Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, NanJing, 210008, China
| | - Fan Ping
- Institute of Environmental Sciences, College of Environmental and Resource Sciences, ZheJiang University, HangZhou, 310058, China
| | - Qiang He
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, 37996-2010, USA
| | - HongYi Li
- Institute of Environmental Sciences, College of Environmental and Resource Sciences, ZheJiang University, HangZhou, 310058, China
| | - ChangFeng Zheng
- HangZhou TianYuan Agriculture Development Co., Ltd. HaiTuo Ave 55, XiaoShan District, HangZhou, 321103, China
| | - XinHua Xu
- Institute of Environmental Sciences, College of Environmental and Resource Sciences, ZheJiang University, HangZhou, 310058, China
| |
Collapse
|
42
|
Uz I, Tavali IE. Short-term effect of vermicompost application on biological properties of an alkaline soil with high lime content from Mediterranean region of Turkey. ScientificWorldJournal 2014; 2014:395282. [PMID: 25254238 PMCID: PMC4164805 DOI: 10.1155/2014/395282] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/13/2014] [Indexed: 11/18/2022] Open
Abstract
This study was conducted to investigate direct short-term impact of vermicompost on some soil biological properties by monitoring changes after addition of vermicompost as compared to farmyard manure in an alkaline soil with high lime content from semiarid Mediterranean region of Turkey. For this purpose, mixtures of soil and organic fertilizers in different doses were incubated under greenhouse condition. Soil samples collected in regular intervals were analyzed for biological parameters including dehydrogenase, β-glucosidase, urease, alkaline phosphatase activities, and total number of aerobic mesophilic bacteria. Even though soil dehydrogenase activity appeared to be dose-independent based on overall evaluation, organic amendments were found to elevate dehydrogenase activity when sampling periods are evaluated individually. β-glucosidase, urease, alkaline phosphatase activity, and aerobic mesophilic bacterial numbers in vermicompost treatments fluctuated but remained significantly above the control. A slight but statistically significant difference was detected between organic amendments in terms of urease activity. Vermicompost appeared to more significantly increase bacterial number in soil. Clearly, vermicompost has a potential to be used as an alternative to farmyard manure to improve and maintain soil biological activity in alkaline calcareous soils from the Mediterranean region of Turkey. Further studies are needed to assess its full potential for these soils.
Collapse
Affiliation(s)
- Ilker Uz
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Akdeniz University, 07070 Antalya, Turkey
| | - Ismail Emrah Tavali
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Akdeniz University, 07070 Antalya, Turkey
| |
Collapse
|
43
|
Li H, Hu J, Zhang Z, Wang H, Ping F, Zheng C, Zhang H, He Q. Insight into the effect of hydrogenation on efficiency of hydrothermal liquefaction and physico-chemical properties of biocrude oil. BIORESOURCE TECHNOLOGY 2014; 163:143-151. [PMID: 24813386 DOI: 10.1016/j.biortech.2014.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/02/2014] [Accepted: 04/05/2014] [Indexed: 06/03/2023]
Abstract
Hydrothermal liquefaction of Nannochloropsis salina (N. salina) and larvae-vermicompost were conducted under both non-hydrogenating and hydrogenating subcritical conditions using H2 and Ni-Mo/Al2O3. Hydrogenation raised biocrude yields from 33.2% to 43.5% (vermicompost) and 55.6% to 78.5% (N. salina), whereas high heat values increased from 32.89 to 34.24 MJ/kg (vermicompost) and 36.30 to 37.53 MJ/kg (N. salina). Compared with the non-hydrogenated HTL process, the contents of acids, amides, phenols, and alcohols decreased, whereas hydrocarbons content increased. More branched cyclic nitrogenous compounds were detected in the hydrogenated biocrudes, whereas the aromatic/hetero-aromatic functionality was somewhat decreased. Smaller molecular weights and polydispersity index of the hydrogenated biocrudes were also detected. Results show that hydrogenation enhanced the removal of hydrophilic functional groups and the stabilization of radicals, thereby leading to the inhibition of loss of mass toward liquid and gaseous products and the upgrading of oil quality.
Collapse
Affiliation(s)
- HongYi Li
- College of Environmental and Resource Sciences, ZheJiang University, 886th YuHangTang Ave, HangZhou 310058, China
| | - Jiao Hu
- College of Environmental and Resource Sciences, ZheJiang University, 886th YuHangTang Ave, HangZhou 310058, China
| | - ZhiJian Zhang
- College of Environmental and Resource Sciences, ZheJiang University, 886th YuHangTang Ave, HangZhou 310058, China; China Academy of West Region Development, ZheJiang University, 886th YuHangTang Ave, HangZhou 310058, China.
| | - Hang Wang
- College of Environmental and Resource Sciences, ZheJiang University, 886th YuHangTang Ave, HangZhou 310058, China
| | - Fan Ping
- College of Environmental and Resource Sciences, ZheJiang University, 886th YuHangTang Ave, HangZhou 310058, China
| | - ChangFeng Zheng
- HangZhou TianYuan Agriculture Development Co., Ltd., HaiTuo Ave 55, XiaoShan District, HangZhou 321103, China
| | - HaiLuo Zhang
- College of Environmental and Resource Sciences, ZheJiang University, 886th YuHangTang Ave, HangZhou 310058, China
| | - Qiang He
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996-2010, USA
| |
Collapse
|