1
|
Dolpatcha S, Phong HX, Thanonkeo S, Klanrit P, Yamada M, Thanonkeo P. Adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of Pichia kudriavzevii from lignocellulosic biomass. Sci Rep 2023; 13:21000. [PMID: 38017261 PMCID: PMC10684600 DOI: 10.1038/s41598-023-48408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/26/2023] [Indexed: 11/30/2023] Open
Abstract
Second-generation bioethanol production using lignocellulosic biomass as feedstock requires a highly efficient multistress-tolerant yeast. This study aimed to develop a robust yeast strain of P. kudriavzevii via the adaptive laboratory evolution (ALE) technique. The parental strain of P. kudriavzevii was subjected to repetitive long-term cultivation in medium supplemented with a gradually increasing concentration of acetic acid, the major weak acid liberated during the lignocellulosic pretreatment process. Three evolved P. kudriavzevii strains, namely, PkAC-7, PkAC-8, and PkAC-9, obtained in this study exhibited significantly higher resistance toward multiple stressors, including heat, ethanol, osmotic stress, acetic acid, formic acid, furfural, 5-(hydroxymethyl) furfural (5-HMF), and vanillin. The fermentation efficiency of the evolved strains was also improved, yielding a higher ethanol concentration, productivity, and yield than the parental strain, using undetoxified sugarcane bagasse hydrolysate as feedstock. These findings provide evidence that ALE is a practical approach for increasing the multistress tolerance of P. kudriavzevii for stable and efficient second-generation bioethanol production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Sureeporn Dolpatcha
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Huynh Xuan Phong
- Department of Microbial Biotechnology, Institute of Food and Biotechnology, Can Tho University, Can Tho, 900000, Vietnam
| | - Sudarat Thanonkeo
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Preekamol Klanrit
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Fermentation Research Center for Value Added Agricultural Products (FerVAAPs), Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Mamoru Yamada
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Pornthap Thanonkeo
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Fermentation Research Center for Value Added Agricultural Products (FerVAAPs), Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
2
|
Lee H, Jung Sohn Y, Jeon S, Yang H, Son J, Jin Kim Y, Jae Park S. Sugarcane wastes as microbial feedstocks: A review of the biorefinery framework from resource recovery to production of value-added products. BIORESOURCE TECHNOLOGY 2023; 376:128879. [PMID: 36921642 DOI: 10.1016/j.biortech.2023.128879] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Sugarcane industry is a major agricultural sector capable of producing sugars with byproducts including straw, bagasse, and molasses. Sugarcane byproducts are no longer wastes since they can be converted into carbon-rich resources for biorefinery if pretreatment of these is well established. Considerable efforts have been devoted to effective pretreatment techniques for each sugarcane byproduct to supply feedstocks in microbial fermentation to produce value-added fuels, chemicals, and polymers. These value-added chains, which start with low-value industrial wastes and end with high-value products, can make sugarcane-based biorefinery a more viable option for the modern chemical industry. In this review, recent advances in sugarcane valorization techniques are presented, ranging from sugarcane processing, pretreatment, and microbial production of value-added products. Three lucrative products, ethanol, 2,3-butanediol, and polyhydroxyalkanoates, whose production from sugarcane wastes has been widely researched, are being explored. Future studies and development in sugarcane waste biorefinery are discussed to overcome the challenges remaining.
Collapse
Affiliation(s)
- Haeyoung Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Subeen Jeon
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyoju Yang
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yu Jin Kim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
3
|
Mota IF, da Silva Burgal J, Antunes F, Pintado ME, Costa PS. High value-added lignin extracts from sugarcane by-products. Int J Biol Macromol 2023; 230:123144. [PMID: 36610579 DOI: 10.1016/j.ijbiomac.2023.123144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/21/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
This study evaluates the production of lignin bioactive extracts from sugarcane bagasse (SCB) and straw (SCS) alkaline black liquors using greener precipitating agents (methane sulfonic acid (MSA), formic acid (FA) and lactic acid (LA)) as replacers of sulfuric acid (SA), the most common one used in industry. Results showed that the highest precipitation yield was achieved by LA when applied to SCB (14.5 g extract/100 g SCB). Lignin SCB extracts were similar in composition in terms of total carbohydrates (61-70 %), lignin (22-30 %) and inorganics (1.6-2.6 %). Regarding the SCS extracts, similar yields were obtained among all extracts, however, differences in composition were observed between SA and greener precipitating agents, particularly in terms of sugar content. All extracts exhibited radical scavenging activity; overall the extracts were more effective in the scavenging of ABTS radical. FA was the most promising alternative to SA to recover lignin bioactive extracts. This work suggests organic acids as good candidates for obtaining valuable extracts from alkaline pulping of SCB and SCS instead of the conventional sulfuric acid.
Collapse
Affiliation(s)
- Inês F Mota
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - João da Silva Burgal
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | | | - Manuela E Pintado
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Patrícia S Costa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
4
|
Recent Advances in the Bioconversion of Waste Straw Biomass with Steam Explosion Technique: A Comprehensive Review. Processes (Basel) 2022. [DOI: 10.3390/pr10101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Waste straw biomass is an abundant renewable bioresource raw material on Earth. Its stubborn wooden cellulose structure limits straw lignocellulose bioconversion into value-added products (e.g., biofuel, chemicals, and agricultural products). Compared to physicochemical and other preprocessing techniques, the steam explosion method, as a kind of hydrothermal method, was considered as a practical, eco-friendly, and cost-effective method to overcome the above-mentioned barriers during straw lignocellulose bioconversion. Steam explosion pretreatment of straw lignocellulose can effectively improve the conversion efficiency of producing biofuels and value-added chemicals and is expected to replace fossil fuels and partially replace traditional chemical fertilizers. Although the principles of steam explosion destruction of lignocellulosic structures for bioconversion to liquid fuels and producing solid biofuel were well known, applications of steam explosion in productions of value-added chemicals, organic fertilizers, biogas, etc. were less identified. Therefore, this review provides insights into advanced methods of utilizing steam explosion for straw biomass conversion as well as their corresponding processes and mechanisms. Finally, the current limitations and prospects of straw biomass conversion with steam explosion technology were elucidated.
Collapse
|
5
|
Brenelli LB, Bhatia R, Djajadi DT, Thygesen LG, Rabelo SC, Leak DJ, Franco TT, Gallagher JA. Xylo-oligosaccharides, fermentable sugars, and bioenergy production from sugarcane straw using steam explosion pretreatment at pilot-scale. BIORESOURCE TECHNOLOGY 2022; 357:127093. [PMID: 35378280 DOI: 10.1016/j.biortech.2022.127093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the production of xylo-oligosaccharides (XOS) from sugarcane straw (SCS) using steam explosion (SE) pretreatment at pilot-scale, as well as co-production of fermentable sugars and lignin-rich residues for bioethanol and bioenergy, respectively. SE conditions 200 °C; 15 bar; 10 min led to 1) soluble XOS yields of up to 35 % (w/w) of initial xylan with ∼50 % of the recovered XOS corresponding to xylobiose and xylotriose, considered the most valuable sugars for prebiotic applications; 2) fermentable glucose yields from the enzymatic hydrolysis of SE-pretreated SCS of up to ∼78 %; 3) increase in the energy content of saccharified SCS residues (16 %) compared to the untreated material. From an integrated biorefinery perspective, it demonstrated the potential use of SCS for the production of value-added XOS ingredients as well as liquid and solid biofuel products.
Collapse
Affiliation(s)
- Lívia B Brenelli
- Interdisciplinary Center of Energy Planning, University of Campinas, Cora Coralina, 330, Campinas, São Paulo, Brazil; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | - Rakesh Bhatia
- Department of Agronomy and Plant Breeding, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Demi T Djajadi
- Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Lisbeth G Thygesen
- Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Sarita C Rabelo
- Department of Bioprocess and Biotechnology, School of Agriculture, São Paulo State University (UNESP), Avenida Universitária, 3780, Altos do Paraíso, São Paulo, Brazil
| | - David J Leak
- Department of Biology & Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Telma T Franco
- School of Chemical Engineering, University of Campinas (UNICAMP), Av. Albert Einstein, Campinas, São Paulo 13083-852, Brazil
| | - Joe A Gallagher
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| |
Collapse
|
6
|
Ranganathan S, Mahesh S, Suresh S, Nagarajan A, Z Sen T, M Yennamalli R. Experimental and computational studies of cellulases as bioethanol enzymes. Bioengineered 2022; 13:14028-14046. [PMID: 35730402 PMCID: PMC9345620 DOI: 10.1080/21655979.2022.2085541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bioethanol industries and bioprocesses have many challenges that constantly impede commercialization of the end product. One of the bottlenecks in the bioethanol industry is the challenge of discovering highly efficient catalysts that can improve biomass conversion. The current promising bioethanol conversion catalysts are microorganism-based cellulolytic enzymes, but lack optimization for high bioethanol conversion, due to biological and other factors. A better understanding of molecular underpinnings of cellulolytic enzyme mechanisms and significant ways to improve them can accelerate the bioethanol commercial production process. In order to do this, experimental methods are the primary choice to evaluate and characterize cellulase’s properties, but they are time-consuming and expensive. A time-saving, complementary approach involves computational methods that evaluate the same properties and improves our atomistic-level understanding of enzymatic mechanism of action. Theoretical methods in many cases have proposed research routes for subsequent experimental testing and validation, reducing the overall research cost. Having a plethora of tools to evaluate cellulases and the yield of the enzymatic process will aid in planning more optimized experimental setups. Thus, there is a need to connect the computational evaluation methods with the experimental methods to overcome the bottlenecks in the bioethanol industry. This review discusses various experimental and computational methods and their use in evaluating the multiple properties of cellulases.
Collapse
Affiliation(s)
- Shrivaishnavi Ranganathan
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Tirumalaisamudram, Thanjavur, India
| | - Sankar Mahesh
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Tirumalaisamudram, Thanjavur, India
| | - Sruthi Suresh
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Tirumalaisamudram, Thanjavur, India
| | - Ayshwarya Nagarajan
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Tirumalaisamudram, Thanjavur, India
| | - Taner Z Sen
- S. Department of Agriculture, Agricultural Research Service, Crop Improvement and Genetics Research UnitU., California, USA
| | - Ragothaman M Yennamalli
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Tirumalaisamudram, Thanjavur, India
| |
Collapse
|
7
|
Pereira B, Marcondes WF, Carvalho W, Arantes V. High yield biorefinery products from sugarcane bagasse: Prebiotic xylooligosaccharides, cellulosic ethanol, cellulose nanofibrils and lignin nanoparticles. BIORESOURCE TECHNOLOGY 2021; 342:125970. [PMID: 34583112 DOI: 10.1016/j.biortech.2021.125970] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
An integrated biorefining strategy was applied to fractionate Sugarcane bagasse (SCB) into its major constituents, enabling high-yield conversion of the fractionated materials into high-value coproducts alongside cellulosic ethanol. Pilot-scale steam explosion produced a hydrolysate rich in low molecular weight xylooligosaccharides that had a high in vitro efficacy as a prebiotic towards different bifidobacteria. Lignin recovered after alkaline treatment of the steam-exploded SCB was converted into uniform spherical lignin nanoparticles (11.3 nm in diameter) by a green mechanical method. The resulting cellulose was hydrolyzed at 17.5% (w/v) consistency and low enzyme loading (17.5 mg/g) to yield a pure glucose hydrolysate at a high concentration (100 g/L) and a cellulosic solid residue that was defibrillated by disc ultra-refining into homogeneous cellulose nanofibrils (20.5 nm in diameter). Statistical optimization of the cellulosic hydrolysate fermentation led to ethanol production of 67.1 g/L, with a conversion yield of 0.48 g/g and productivity of 1.40 g/L.h.
Collapse
Affiliation(s)
- Bárbara Pereira
- Nanobiotechnology and Bioproducts Laboratory, Department of Biotechnology, Lorena School of Engineering, University of São Paulo - Lorena/SP, Brazil
| | - Wilian F Marcondes
- Nanobiotechnology and Bioproducts Laboratory, Department of Biotechnology, Lorena School of Engineering, University of São Paulo - Lorena/SP, Brazil
| | - Walter Carvalho
- Biochemistry Laboratory, Department of Biotechnology, Lorena School of Engineering, University of São Paulo - Lorena/SP, Brazil
| | - Valdeir Arantes
- Nanobiotechnology and Bioproducts Laboratory, Department of Biotechnology, Lorena School of Engineering, University of São Paulo - Lorena/SP, Brazil.
| |
Collapse
|
8
|
Gomes MM, Sakamoto IK, Silva Rabelo CAB, Silva EL, Varesche MBA. Statistical optimization of methane production from brewery spent grain: Interaction effects of temperature and substrate concentration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112363. [PMID: 33756388 DOI: 10.1016/j.jenvman.2021.112363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 02/16/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
This study evaluated the effects of thermal pretreatment of brewery spent grain (BSG) (by autoclave 121 °C, 1.45 atm for 30 min) on methane production (CH4). Operation temperature (31-59 °C) and substrate concentration (8.3-19.7 g BSG.L-1) factors were investigated by Response Surface Methodology (RSM) and Central Composite Design (CCD). Values ranging from 81.1 ± 2.0 to 290.1 ± 3.5 mL CH4.g-1 TVS were obtained according to operation temperature and substrate concentration variation. The most adverse condition for methanogenesis (81.1 ± 2.0 mL CH4.g-1 TVS) was at 59 °C and 14 g BSG.L-1, in which there was increase in the organic matter concentration from 173.6 ± 4.94 to 3036 ± 7.78 mg.L-1) result of a higher final concentration of volatile fatty acids (VFA, 2662.7 mg.L-1). On the other hand, the optimum condition predicted by the statistical model was at 35 °C and 18 g BSG.L-1 (289.1 mL CH4.g-1 TVS), which showed decrease in the organic matter concentration of 78.6% and a lower final concentration of VFA (533.2 mg.L-1). Hydrogenospora and Methanosaeta were identified in this optimum CH4 production condition, where acetoclastic methanogenic pathway prevailed. The CH4 production enhancement was concomitant to acetic acid concentration decrease (from 578.9 to 135.7 mg.L-1).
Collapse
Affiliation(s)
- Marina Mauro Gomes
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Campus II, São Carlos, SP CEP, 13563-120, Brazil.
| | - Isabel Kimiko Sakamoto
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Campus II, São Carlos, SP CEP, 13563-120, Brazil
| | - Camila Abreu B Silva Rabelo
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Campus II, São Carlos, SP CEP, 13563-120, Brazil
| | - Edson Luiz Silva
- Center of Exact Sciences and Technology, Department of Chemical Engineering, Federal University of São Carlos, São Carlos, SP CEP, 13565-905, Brazil
| | - Maria Bernadete Amâncio Varesche
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Campus II, São Carlos, SP CEP, 13563-120, Brazil.
| |
Collapse
|
9
|
Tan J, Li Y, Tan X, Wu H, Li H, Yang S. Advances in Pretreatment of Straw Biomass for Sugar Production. Front Chem 2021; 9:696030. [PMID: 34164381 PMCID: PMC8215366 DOI: 10.3389/fchem.2021.696030] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022] Open
Abstract
Straw biomass is an inexpensive, sustainable, and abundant renewable feedstock for the production of valuable chemicals and biofuels, which can surmount the main drawbacks such as greenhouse gas emission and environmental pollution, aroused from the consumption of fossil fuels. It is rich in organic content but is not sufficient for extensive applications because of its natural recalcitrance. Therefore, suitable pretreatment is a prerequisite for the efficient production of fermentable sugars by enzymatic hydrolysis. Here, we provide an overview of various pretreatment methods to effectively separate the major components such as hemicellulose, cellulose, and lignin and enhance the accessibility and susceptibility of every single component. This review outlines the diverse approaches (e.g., chemical, physical, biological, and combined treatments) for the excellent conversion of straw biomass to fermentable sugars, summarizes the benefits and drawbacks of each pretreatment method, and proposes some investigation prospects for the future pretreatments.
Collapse
Affiliation(s)
- Jinyu Tan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China.,Institute of Crops Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yan Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Xiang Tan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Hongguo Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
10
|
Utilization of Barley Straw as Feedstock for the Production of Different Energy Vectors. Processes (Basel) 2021. [DOI: 10.3390/pr9040726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
During the bioethanol production process, vast amounts of residues are generated as process waste. To extract more value from lignocellulosic biomass and improve process economics, these residues should be used as feedstock in additional processes for the production of energy or fuels. In this paper, barley straw was used for bioethanol production and the residues were valorized using anaerobic digestion (AD) or used for the production of heat and power by combustion. A traditional three-step bioethanol production process was used, and the biomass residues obtained from different stages of the process were analyzed. Finally, mass and energy balances were calculated to quantify material flow and assess the different technological routes for biomass utilization. Up to 90 kg of ethanol could be produced from 1 t of biomass and additional biogas and energy generated from processing residues can increase the energy yield to over 220%. The results show that in terms of energy output, combustion was the preferable route for processing biomass residues. However, the production of biogas is also an attractive solution to increase revenue in the bioethanol production process.
Collapse
|
11
|
Environmentally Friendly Approach for the Production of Glucose and High-Purity Xylooligosaccharides from Edible Biomass Byproducts. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Xylooligosaccharides (XOS) production from sweet sorghum bagasse (SSB) has been barely studied using other edible biomasses. Therefore, we evaluated the XOS content as well as its purity by comparing the content of total sugars from SSB. An environmentally friendly approach involving autohydrolysis was employed, and the reaction temperature and time had variations in order to search for the conditions that would yield high-purity XOS. After autohydrolysis, the remaining solid residues, the glucan-rich fraction, were used as substrates to be enzymatically hydrolyzed for glucose conversion. The highest XOS was observed for total sugars (68.7%) at 190 °C for 5 min among the autohydrolysis conditions. However, we also suggested two alternative conditions, 180 °C for 20 min and 190 °C for 15 min, because the former condition might have the XOS at a low degree of polymerization with a high XOS ratio (67.6%), while the latter condition presented a high glucose to total sugar ratio (91.4%) with a moderate level XOS ratio (64.4%). Although it was challenging to conclude on the autohydrolysis conditions required to obtain the best result of XOS content and purity and glucose yield, this study presented approaches that could maximize the desired product from SSB, and additional processes to reduce these differences in conditions may warrant further research.
Collapse
|
12
|
Bouanati T, Colson E, Moins S, Cabrera JC, Eeckhaut I, Raquez JM, Gerbaux P. Microwave-assisted depolymerization of carrageenans from Kappaphycus alvarezii and Eucheuma spinosum: Controlled and green production of oligosaccharides from the algae biomass. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Saccharification of water hyacinth biomass by a combination of steam explosion with enzymatic technologies for bioethanol production. 3 Biotech 2020; 10:432. [PMID: 32999810 DOI: 10.1007/s13205-020-02426-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
In the present work, bioethanol was produced by sugar fermentation obtained from water hyacinth using a novelty hybrid method composed of steam explosion and enzymatic hydrolysis, using hydrolytic enzymes produced by solid-state fermentation and water hyacinth as substrate. The highest activity, 42 U for xylanase and 2 U for cellulase per gram of dry matter, respectively, was obtained. Steam explosion pretreatment was performed at 190 ℃ for 1, 5, and 10 min, using water hyacinth sampled from the Maria Lizamba Lagoon, the Arroyo Hondo and the Amapa River. The highest amounts of reducing sugars of water hyacinth were obtained form the samples from the lagoon (5.4 g/50 g of dry matter) after 10 min of treatment. Steamed biomass was hydrolysed using the enzymes obtained by solid-state fermentation, obtained reducing sugars (maximum 15.5 g/L); the efficiency of enzymatic hydrolysis was 0.51 g of reducing sugars per gram of water hyacinth. Finally, reducing sugars were fermented using Saccharomyces cerevisiae for conversion to ethanol, with the highest ethanol concentration (7.13 g/L) and an ethanol yield of 0.23 g/g of dry matter.
Collapse
|
14
|
Magalhães AI, de Carvalho JC, Thoms JF, Souza Silva R, Soccol CR. Second-generation itaconic acid: An alternative product for biorefineries? BIORESOURCE TECHNOLOGY 2020; 308:123319. [PMID: 32278999 DOI: 10.1016/j.biortech.2020.123319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
The ability to produce second-generation itaconic acid by Aspergillus terreus, and the inhibitory effects of hydrolysis by-products on the fermentation were evaluated by cultivation in a synthetic medium containing components usually present in a real hydrolysate broth from lignocellulosic biomasses. The results showed that A. terreus NRRL 1960 can produce itaconic acid and consume xylose completely, but the conversion is less than the fermentation using only glucose. In addition, compared to fermentation of glucose, or even xylose, the mix of both sugars resulted in a lower itaconic acid yield. In the inhibitory test, the final itaconic acid titer was reduced by acetic acid, furfural, and 5-hydroxymethylfurfural concentrations of, respectively, 188, 175, and 700 mg L-1. However, the presence of any amount of acetic acid proved to be detrimental to itaconic acid production. This research sheds some light on doubts about the biorefinery implementation of itaconic acid production.
Collapse
Affiliation(s)
- Antonio Irineudo Magalhães
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, P.O. Box 19011, ZIP Code 81531-990, Curitiba, Paraná, Brazil
| | - Júlio Cesar de Carvalho
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, P.O. Box 19011, ZIP Code 81531-990, Curitiba, Paraná, Brazil.
| | - Juliano Feliz Thoms
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, P.O. Box 19011, ZIP Code 81531-990, Curitiba, Paraná, Brazil
| | - Rafaeli Souza Silva
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, P.O. Box 19011, ZIP Code 81531-990, Curitiba, Paraná, Brazil
| | - Carlos Ricardo Soccol
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, P.O. Box 19011, ZIP Code 81531-990, Curitiba, Paraná, Brazil
| |
Collapse
|
15
|
Optimization of Xylose Recovery in Oil Palm Empty Fruit Bunches for Xylitol Production. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hardest obstacle to make use of lignocellulosic biomass by using green technology is the existence of lignin. It can hinder enzyme reactions with cellulose or hemicellulose as a substrate. Oil palm empty fruit bunches (OPEFBs) consist of hemicellulose with xylan as the main component. Xylitol production via fermentation could use this xylan since it can be converted into xylose. Several pretreatment processes were explored to increase sugar recovery from lignocellulosic biomass. Considering that hemicellulose is more susceptible to heat than cellulose, the hydrothermal process was applied to OPEFB before it was hydrolyzed enzymatically. The purpose of this study was to investigate the effect of temperature, solid loading, and pretreatment time on the OPEFB hydrothermal process. The xylose concentration in OPEFB hydrolysate was analyzed using high-performance liquid chromatography (HPLC). The results indicated that temperature was more important than pretreatment time and solid loading for OPEFB sugar recovery. The optimum temperature, solid loading, and pretreatment time for maximum xylose recovery from pretreated OPEFB were 165 °C, 7%, and 60 min, respectively, giving a xylose recovery of 0.061 g/g of pretreated OPEFB (35% of OPEFB xylan was recovered).
Collapse
|
16
|
|
17
|
Bhatia R, Winters A, Bryant DN, Bosch M, Clifton-Brown J, Leak D, Gallagher J. Pilot-scale production of xylo-oligosaccharides and fermentable sugars from Miscanthus using steam explosion pretreatment. BIORESOURCE TECHNOLOGY 2020; 296:122285. [PMID: 31715557 PMCID: PMC6920740 DOI: 10.1016/j.biortech.2019.122285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 05/12/2023]
Abstract
This study investigated pilot-scale production of xylo-oligosaccharides (XOS) and fermentable sugars from Miscanthus using steam explosion (SE) pretreatment. SE conditions (200 °C; 15 bar; 10 min) led to XOS yields up to 52 % (w/w of initial xylan) in the hydrolysate. Liquid chromatography-mass spectrometry demonstrated that the solubilised XOS contained bound acetyl- and hydroxycinnamate residues, physicochemical properties known for high prebiotic effects and anti-oxidant activity in nutraceutical foods. Enzymatic hydrolysis of XOS-rich hydrolysate with commercial endo-xylanases resulted in xylobiose yields of 380 to 500 g/kg of initial xylan in the biomass after only 4 h, equivalent to ~74 to 90 % conversion of XOS into xylobiose. Fermentable glucose yields from enzymatic hydrolysis of solid residues were 8 to 9-fold higher than for untreated material. In view of an integrated biorefinery, we demonstrate the potential for efficient utilisation of Miscanthus for the production of renewable sources, including biochemicals and biofuels.
Collapse
Affiliation(s)
- Rakesh Bhatia
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK.
| | - Ana Winters
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| | - David N Bryant
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| | - John Clifton-Brown
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| | - David Leak
- Department of Biology & Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Joe Gallagher
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| |
Collapse
|
18
|
Mihiretu GT, Chimphango AF, Görgens JF. Steam explosion pre-treatment of alkali-impregnated lignocelluloses for hemicelluloses extraction and improved digestibility. BIORESOURCE TECHNOLOGY 2019; 294:122121. [PMID: 31561152 DOI: 10.1016/j.biortech.2019.122121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
The application of steam explosion pre-treatment to extract xylan-rich biopolymers from alkali-impregnated lignocelluloses, while simultaneously increasing the enzymatic digestibility of cellulose, was investigated. Steam-enhanced extraction of xylan from sugarcane trash (SCT) and aspen wood (AW) was performed at varying temperatures (176-204 °C) and retention times (3-17 min) after the impregnation of biomass samples with sodium hydroxide at 1:20 (w/w) solid loading ratio. Xylan extraction and cellulose digestibility results were statistically analysed to fix the condition/s for significantly enhanced values. Accordingly, maximum xylan yields of 51 and 24%, and highest cellulose digestibility of 92 and 81%, were attained for SCT and AW respectively following their pre-treatment at 204 °C for 10 min. At this most-severe condition, neither xylose nor furfural - a degradation product from xylose - were observed in the hemicellulose extract, indicating steam explosion pre-treatment with alkali impregnation of lignocelluloses as viable biorefinery approach to co-produce xylan biopolymers and bioethanol.
Collapse
Affiliation(s)
- Gezahegn T Mihiretu
- Stellenbosch University, Process Engineering Department, Stellenbosch 7602, South Africa
| | - Annie F Chimphango
- Stellenbosch University, Process Engineering Department, Stellenbosch 7602, South Africa
| | - Johann F Görgens
- Stellenbosch University, Process Engineering Department, Stellenbosch 7602, South Africa.
| |
Collapse
|
19
|
Chuetor S, Champreda V, Laosiripojana N. Evaluation of combined semi-humid chemo-mechanical pretreatment of lignocellulosic biomass in energy efficiency and waste generation. BIORESOURCE TECHNOLOGY 2019; 292:121966. [PMID: 31419706 DOI: 10.1016/j.biortech.2019.121966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
A combination of chemo-mechanical pretreatment of lignocellulosic biomass was developed with objectives to evaluate and optimize the energy efficiency and waste generation occurred in the pretreatment process. Sugarcane bagasse (SCB) was chemically pretreated with alkaline and alkaline peroxide followed by mechanical size reduction and enzymatic hydrolysis. The high solid and low solid loading pretreatments were studied to compare the total energy consumption, energy efficiency as well as waste generation. SCBSHNa (1:5) namely semi-humid chemo-mechanical pretreatment was found as the most effective pretreatment by decreasing 65% of total energy consumption. Moreover, the SCBSHNa (1:5) achieved the highest energy efficiency resulting in 0.536 kg reducing sugars/kWh and generated 0.33 kg of waste/kg reducing sugars. The developed process represented the advantages on energy efficiency and less waste generation compared to the conventional chemical soaking pretreatment process.
Collapse
Affiliation(s)
- Santi Chuetor
- Deparment of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bang sue, Bangkok 10800, Thailand.
| | - Verawat Champreda
- BIOTEC-JGSEE Integrative Biorefinery Laboratory, Innovation Cluster 2 Building, Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand; Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Navadol Laosiripojana
- BIOTEC-JGSEE Integrative Biorefinery Laboratory, Innovation Cluster 2 Building, Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand; Joint Graduate School for Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140, Thailand
| |
Collapse
|
20
|
Eom T, Chaiprapat S, Charnnok B. Enhanced enzymatic hydrolysis and methane production from rubber wood waste using steam explosion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 235:231-239. [PMID: 30684808 DOI: 10.1016/j.jenvman.2019.01.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/14/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Rubber wood waste (RW) requires due to its recalcitrance a pretreatment step before efficient biochemical conversion is possible. Non chemical steam explosion pretreatment was adopted to enhance enzymatic hydrolysis and anaerobic digestion with severity from 2.70 to 4.35. RW treated at severity 4.35 (214 °C for 10 min) gave the highest 83.9 L CH4/kgVS effectiveness in anaerobic digestibility together with 45.2% hydrolysability in terms of glucan conversion. The intense pretreatment decreased particle size and degraded most of the hemicellulose, resulting in increased specific surface and better access for enzymes to cellulose. Additionally, the energy yield of steam exploded RW was enhanced by combined enzymatic hydrolysis with anaerobic digestion, in comparison to enzymatic hydrolysis or anaerobic digestion alone. This allowed for an efficient steam explosion pretreatment with co-production of sugar and methane. This study provides a technical approach for efficient biofuel production from RW after steam explosion pretreatment. Valorization of lignin-rich residue generated from the integrated process may increase value of RW, but assessing this requires further study.
Collapse
Affiliation(s)
- Tokla Eom
- Environmental Engineering, Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai Campus, Hat Yai, Songkhla, 90110, Thailand
| | - Sumate Chaiprapat
- Environmental Engineering, Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai Campus, Hat Yai, Songkhla, 90110, Thailand; PSU Energy Systems Research Institute (PERIN), Prince of Songkla University, Hat Yai Campus, Hat Yai, Songkhla, 90110, Thailand
| | - Boonya Charnnok
- PSU Energy Systems Research Institute (PERIN), Prince of Songkla University, Hat Yai Campus, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
21
|
Lignocellulolytic characterization and comparative secretome analysis of a Trichoderma erinaceum strain isolated from decaying sugarcane straw. Fungal Biol 2019; 123:330-340. [PMID: 30928041 DOI: 10.1016/j.funbio.2019.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 11/21/2022]
Abstract
The fungus Trichoderma reesei is employed in the production of most enzyme cocktails used by the lignocellulosic biofuels industry today. Despite significant improvements, the cost of the required enzyme preparations remains high, representing a major obstacle for the industrial production of these alternative fuels. In this study, a new Trichoderma erinaceum strain was isolated from decaying sugarcane straw. The enzyme cocktail secreted by the new isolate during growth in pretreated sugarcane straw-containing medium presented higher specific activities of β-glucosidase, endoxylanase, β-xylosidase and α-galactosidase than the cocktail of a wild T. reesei strain and yielded more glucose in the hydrolysis of pretreated sugarcane straw. A proteomic analysis of the two strains' secretomes identified a total of 86 proteins, of which 48 were exclusive to T. erinaceum, 35 were exclusive to T. reesei and only 3 were common to both strains. The secretome of T. erinaceum also displayed a higher number of carbohydrate-active enzymes than that of T. reesei (37 and 27 enzymes, respectively). Altogether, these results reveal the significant potential of the T. erinaceum species for the production of lignocellulases, both as a possible source of enzymes for the supplementation of industrial cocktails and as a candidate chassis for enzyme production.
Collapse
|
22
|
The Efficiency of Nitrogen and Flue Gas as Operating Gases in Explosive Decompression Pretreatment. ENERGIES 2018. [DOI: 10.3390/en11082074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As the pretreatment process is the most expensive and energy-consuming step in the overall second generation bioethanol production process, it is vital that it is studied and optimized in order to be able to develop the most efficient production process. The aim of this paper was to investigate chemical and physical changes in biomass during the process of applying the explosive decompression pretreatment method using two different gases—N2 and synthetic flue gas. The explosive decompression method is economically and environmentally attractive since no chemicals are used—rather it is pressure that is applied—and water is used to break down the biomass structure. Both pre-treatment methods were used at different temperatures. To be able to compare the effects of the pretreatment, samples from different process steps were gathered together and analysed. The results were used to assess the efficiency of the pretreatment, the chemical and physical changes in the biomass and, finally, the mass balances were compiled for the process during the different process steps of bioethanol production. The results showed that both pre-treatment methods are effective in hemicellulose dissolution, while the cellulose content decreases to a smaller degree. The high glucose and ethanol yields were gained with both explosive pretreatment methods at 175 °C (15.2–16.0 g glucose and 5.6–9.0 g ethanol per 100 g of dry biomass, respectively).
Collapse
|
23
|
Lorenzo-Hernando A, Martín-Juárez J, Bolado-Rodríguez S. Study of steam explosion pretreatment and preservation methods of commercial cellulose. Carbohydr Polym 2018; 191:234-241. [DOI: 10.1016/j.carbpol.2018.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/13/2018] [Accepted: 03/12/2018] [Indexed: 11/24/2022]
|
24
|
Manfredi AP, Ballesteros I, Sáez F, Perotti NI, Martínez MA, Negro MJ. Integral process assessment of sugarcane agricultural crop residues conversion to ethanol. BIORESOURCE TECHNOLOGY 2018; 260:241-247. [PMID: 29627651 DOI: 10.1016/j.biortech.2018.03.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 06/08/2023]
Abstract
This work focuses a whole process assessment on post-harvesting sugarcane residues for 2G ethanol production by different saccharification-fermentation conditions at high solids loading, performed after steam explosion, alkaline and acidic pretreatments. Carbohydrate recoveries and enzymatic digestibility results showed that alkali and steam explosion pretreatments were effective for the biomass assayed. Due to a significant improvement (60%) of the glucose released by combining hemicellulases and cellulases only after the NaOH pretreatment, the most favorable process settled comprised an alkali-based pretreatment followed by a pre-saccharification and simultaneous saccharification and fermentation (PSSF). The produced ethanol reached 4.8% (w/w) as a result of an 80% conversion of the glucose from the pretreated biomass. Finally, an ethanol concentration of 3.2% (w/w) was obtained by means of a steam explosion followed by PSSF, representing a suitable start point to further develop a low environmental impact alternative for ethanol production.
Collapse
Affiliation(s)
- Adriana Paola Manfredi
- Pilot Plant for Microbiological Industrial Processes PROIMI, National Scientific and Technical Research Council, T4000 San Miguel de Tucuman, Argentina; Faculty of Exact Sciences and Technology, National University of Tucuman, T4000 San Miguel de Tucuman, Argentina
| | - Ignacio Ballesteros
- Biofuels Unit of Renewable Energies Division, Center for Energy, Environmental and Technological Research CIEMAT, 28040 Madrid, Spain
| | - Felicia Sáez
- Biofuels Unit of Renewable Energies Division, Center for Energy, Environmental and Technological Research CIEMAT, 28040 Madrid, Spain
| | - Nora Inés Perotti
- Pilot Plant for Microbiological Industrial Processes PROIMI, National Scientific and Technical Research Council, T4000 San Miguel de Tucuman, Argentina; Faculty of Exact Sciences and Technology, National University of Tucuman, T4000 San Miguel de Tucuman, Argentina
| | - María Alejandra Martínez
- Pilot Plant for Microbiological Industrial Processes PROIMI, National Scientific and Technical Research Council, T4000 San Miguel de Tucuman, Argentina; Faculty of Exact Sciences and Technology, National University of Tucuman, T4000 San Miguel de Tucuman, Argentina.
| | - María José Negro
- Biofuels Unit of Renewable Energies Division, Center for Energy, Environmental and Technological Research CIEMAT, 28040 Madrid, Spain
| |
Collapse
|
25
|
Mokomele T, da Costa Sousa L, Balan V, van Rensburg E, Dale BE, Görgens JF. Ethanol production potential from AFEX™ and steam-exploded sugarcane residues for sugarcane biorefineries. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:127. [PMID: 29755586 PMCID: PMC5934847 DOI: 10.1186/s13068-018-1130-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/25/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Expanding biofuel markets are challenged by the need to meet future biofuel demands and mitigate greenhouse gas emissions, while using domestically available feedstock sustainably. In the context of the sugar industry, exploiting under-utilized cane leaf matter (CLM) in addition to surplus sugarcane bagasse as supplementary feedstock for second-generation ethanol production has the potential to improve bioenergy yields per unit land. In this study, the ethanol yields and processing bottlenecks of ammonia fibre expansion (AFEX™) and steam explosion (StEx) as adopted technologies for pretreating sugarcane bagasse and CLM were experimentally measured and compared for the first time. RESULTS Ethanol yields between 249 and 256 kg Mg-1 raw dry biomass (RDM) were obtained with AFEX™-pretreated sugarcane bagasse and CLM after high solids loading enzymatic hydrolysis and fermentation. In contrast, StEx-pretreated sugarcane bagasse and CLM resulted in substantially lower ethanol yields that ranged between 162 and 203 kg Mg-1 RDM. The ethanol yields from StEx-treated sugarcane residues were limited by the aggregated effect of sugar degradation during pretreatment, enzyme inhibition during enzymatic hydrolysis and microbial inhibition of S. cerevisiae 424A (LNH-ST) during fermentation. However, relatively high enzyme dosages (> 20 mg g-1 glucan) were required irrespective of pretreatment method to reach 75% carbohydrate conversion, even when optimal combinations of Cellic® CTec3, Cellic® HTec3 and Pectinex Ultra-SP were used. Ethanol yields per hectare sugarcane cultivation area were estimated at 4496 and 3416 L ha-1 for biorefineries using AFEX™- or StEx-treated sugarcane residues, respectively. CONCLUSIONS AFEX™ proved to be a more effective pretreatment method for sugarcane residues relative to StEx due to the higher fermentable sugar recovery and enzymatic hydrolysate fermentability after high solids loading enzymatic hydrolysis and fermentation by S. cerevisiae 424A (LNH-ST). The identification of auxiliary enzyme activities, adequate process integration and the use of robust xylose-fermenting ethanologens were identified as opportunities to further improve ethanol yields from AFEX™- and StEx-treated sugarcane residues.
Collapse
Affiliation(s)
- Thapelo Mokomele
- Department of Process Engineering, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, South Africa
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
| | - Leonardo da Costa Sousa
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
- Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI USA
| | - Venkatesh Balan
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
- Department of Engineering Technology, Biotechnology Program, School of Technology, University of Houston, 4800 Calhoun, Road, Houston, TX 77004 USA
| | - Eugéne van Rensburg
- Department of Process Engineering, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, South Africa
| | - Bruce E. Dale
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, USA
- Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI USA
| | - Johann F. Görgens
- Department of Process Engineering, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch, South Africa
| |
Collapse
|
26
|
Mulat DG, Huerta SG, Kalyani D, Horn SJ. Enhancing methane production from lignocellulosic biomass by combined steam-explosion pretreatment and bioaugmentation with cellulolytic bacterium Caldicellulosiruptor bescii. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:19. [PMID: 29422947 PMCID: PMC5787918 DOI: 10.1186/s13068-018-1025-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/13/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Biogas production from lignocellulosic biomass is generally considered to be challenging due to the recalcitrant nature of this biomass. In this study, the recalcitrance of birch was reduced by applying steam-explosion (SE) pretreatment (210 °C and 10 min). Moreover, bioaugmentation with the cellulolytic bacterium Caldicellulosiruptor bescii was applied to possibly enhance the methane production from steam-exploded birch in an anaerobic digestion (AD) process under thermophilic conditions (62 °C). RESULTS Overall, the combined SE and bioaugmentation enhanced the methane yield up to 140% compared to untreated birch, while SE alone contributed to the major share of methane enhancement by 118%. The best methane improvement of 140% on day 50 was observed in bottles fed with pretreated birch and bioaugmentation with lower dosages of C. bescii (2 and 5% of inoculum volume). The maximum methane production rate also increased from 4-mL CH4/g VS (volatile solids)/day for untreated birch to 9-14-mL CH4/g VS/day for steam-exploded birch with applied bioaugmentation. Bioaugmentation was particularly effective for increasing the initial methane production rate of the pretreated birch yielding 21-44% more methane than the pretreated birch without applied bioaugmentation. The extent of solubilization of the organic matter was increased by more than twofold when combined SE pretreatment and bioaugmentation was used in comparison with the methane production from untreated birch. The beneficial effects of SE and bioaugmentation on methane yield indicated that biomass recalcitrance and hydrolysis step are the limiting factors for efficient AD of lignocellulosic biomass. Microbial community analysis by 16S rRNA amplicon sequencing showed that the microbial community composition was altered by the pretreatment and bioaugmentation processes. Notably, the enhanced methane production by pretreatment and bioaugmentation was well correlated with the increase in abundance of key bacterial and archaeal communities, particularly the hydrolytic bacterium Caldicoprobacter, several members of syntrophic acetate oxidizing bacteria and the hydrogenotrophic Methanothermobacter. CONCLUSION Our findings demonstrate the potential of combined SE and bioaugmentation for enhancing methane production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Daniel Girma Mulat
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O.Box 5003, 1432 Ås, Norway
| | - Silvia Greses Huerta
- Department of Chemical Engineering, University of Valencia, P.O.Box 46100, Valencia, Spain
| | - Dayanand Kalyani
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O.Box 5003, 1432 Ås, Norway
| | - Svein Jarle Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O.Box 5003, 1432 Ås, Norway
| |
Collapse
|
27
|
Mulat DG, Dibdiakova J, Horn SJ. Microbial biogas production from hydrolysis lignin: insight into lignin structural changes. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:61. [PMID: 29541158 PMCID: PMC5844095 DOI: 10.1186/s13068-018-1054-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND The emerging cellulosic bioethanol industry will generate huge amounts of lignin-rich residues that may be converted into biogas by anaerobic digestion (AD) to increase the output of energy carriers from the biorefinery plants. The carbohydrates fraction of lignocellulosic biomass is degradable, whereas the lignin fraction is generally considered difficult to degrade during AD. The objective of this study was to investigate the feasibility of biogas production by AD from hydrolysis lignin (HL), prepared by steam explosion (SE) and enzymatic saccharification of birch. A novel nylon bag technique together with two-dimensional nuclear magnetic resonance spectroscopy, pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS), and Fourier transform infrared (FTIR) spectroscopy was used to identify recalcitrant and degradable structures in the lignin during AD. RESULTS The HL had a lignin content of 80% which included pseudo-lignin and condensed-lignin structures resulting from the SE pretreatment. The obtained methane yield from HL was almost twofold higher than the theoretical methane from the carbohydrate fraction alone, indicating that part of the lignin was converted to methane. Characterization of the undegradable material after AD revealed a substantial loss of signals characteristic for carbohydrates and lignin-carbohydrate complexes (LCC), indicating conversion of these chemical components to methane during AD. The β-O-4' linkage and resinol were not modified as such in AD, but major change was seen for the S/G ratio from 5.8 to 2.6, phenylcoumaran from 4.9 to 1.0%, and pseudo-lignin and condensed-lignin were clearly degraded. Scanning electron microscopy and simultaneous thermal analysis measurements demonstrated changes in morphology and thermal properties following SE pretreatment and AD. Our results showed that carbohydrate, LCC, pseudo-lignin, and condensed-lignin degradation had contributed to methane production. The energy yield for the combined ethanol production and biogas production was 8.1 MJ fuel per kg DM of substrate (4.9 MJ/kg from ethanol and 3.2 MJ/kg from methane). CONCLUSION This study shows the benefit of using a novel bag technique together with advanced analytical techniques to investigate the degradation mechanisms of lignin during AD, and also points to a possible application of HL produced in cellulosic bioethanol plants.
Collapse
Affiliation(s)
- Daniel Girma Mulat
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Janka Dibdiakova
- Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1432 Ås, Norway
| | - Svein Jarle Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|
28
|
Boboescu IZ, Gélinas M, Beigbeder JB, Lavoie JM. A two-step optimization strategy for 2nd generation ethanol production using softwood hemicellulosic hydrolysate as fermentation substrate. BIORESOURCE TECHNOLOGY 2017; 244:708-716. [PMID: 28822282 DOI: 10.1016/j.biortech.2017.07.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
Ethanol production using waste biomass represents a very attractive approach. However, there are considerable challenges preventing a wide distribution of these novel technologies. Thus, a fractional-factorial screening of process variables and Saccharomyces cerevisiae yeast inoculum conditions was performed using a synthetic fermentation media. Subsequently, a response-surface methodology was developed for maximizing ethanol yields using a hemicellulosic solution generated through the chemical hydrolysis of steam treatment broth obtained from residual softwood biomass. In addition, nutrient supplementation using starch-based ethanol production by-products was investigated. An ethanol yield of 74.27% of the theoretical maximum was observed for an initial concentration of 65.17g/L total monomeric sugars. The two-step experimental strategy used in this work represents the first successful attempt to developed and use a model to make predictions regarding the optimal ethanol production using both softwood feedstock residues as well as 1st generation ethanol production by-products.
Collapse
Affiliation(s)
- Iulian-Zoltan Boboescu
- Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Malorie Gélinas
- Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Jean-Baptiste Beigbeder
- Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Jean-Michel Lavoie
- Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
29
|
Lachos-Perez D, Tompsett GA, Guerra P, Timko MT, Rostagno MA, Martínez J, Forster-Carneiro T. Sugars and char formation on subcritical water hydrolysis of sugarcane straw. BIORESOURCE TECHNOLOGY 2017; 243:1069-1077. [PMID: 28764113 DOI: 10.1016/j.biortech.2017.07.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
Subcritical water has potential as an environmentally friendly solvent for applications including hydrolysis, liquefaction, extraction, and carbonization. Here, we report hydrolysis of sugarcane straw, an abundant byproduct of sugar production, in a semi-continuous reactor at reaction temperatures ranging from 190 to 260°C and at operating pressures of 9 and 16MPa. The target hydrolysis products were total reducing sugars. The main products of sugarcane straw hydrolysis were glucose, xylose, arabinose, and galactose in addition to 5- hydroxymethylfurfural and furfural as minor byproducts. Fourier transform infrared spectroscopy and thermogravimetric analysis provided additional information on the surface and bulk composition of the residual biomass. Char was present on samples treated at temperatures equal to and greater than 190°C. Samples treated at 260°C contained approximately 20wt% char, yet retained substantial hemicellulose and cellulose content. Hydrolysis temperature of 200°C provided the greatest TRS yield while minimizing char formation.
Collapse
Affiliation(s)
- D Lachos-Perez
- School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, n. 80, 13083-862 Campinas, SP, Brazil
| | - G A Tompsett
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Goddard Hall 123, Worcester, MA 01609, United States
| | - P Guerra
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Goddard Hall 123, Worcester, MA 01609, United States
| | - M T Timko
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Goddard Hall 123, Worcester, MA 01609, United States
| | - M A Rostagno
- School of Applied Sciences, University of Campinas (UNICAMP), Rua Pedro Zaccaria, n. 1300, 13484-350 Limeira, SP, Brazil
| | - Julian Martínez
- School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, n. 80, 13083-862 Campinas, SP, Brazil
| | - T Forster-Carneiro
- School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, n. 80, 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
30
|
Silva JFL, Selicani MA, Junqueira TL, Klein BC, Vaz Júnior S, Bonomi A. Integrated furfural and first generation bioethanol production: process simulation and techno-economic analysis. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2017. [DOI: 10.1590/0104-6632.20170343s20150643] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- J. F. L. Silva
- Centro Nacional de Pesquisa em Energia e Materiais, Brazil; UNICAMP, Brazil; Embrapa Agroenergia, Brazil
| | - M. A. Selicani
- Centro Nacional de Pesquisa em Energia e Materiais, Brazil
| | | | - B. C. Klein
- Centro Nacional de Pesquisa em Energia e Materiais, Brazil; UNICAMP, Brazil
| | | | - A. Bonomi
- Centro Nacional de Pesquisa em Energia e Materiais, Brazil; UNICAMP, Brazil
| |
Collapse
|
31
|
Hou X, Zhang L, Wizi J, Liao X, Ma B, Yang Y. Preparation and properties of cotton stalk bark fibers using combined steam explosion and laccase treatment. J Appl Polym Sci 2017. [DOI: 10.1002/app.45058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiuliang Hou
- Key Laboratory of Science & Technology of Eco-Textiles, Ministry of Education; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Li Zhang
- Key Laboratory of Science & Technology of Eco-Textiles, Ministry of Education; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Jakpa Wizi
- Key Laboratory of Science & Technology of Eco-Textiles, Ministry of Education; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Xiangru Liao
- Key Laboratory of Industrial Biotechnology Ministry of Education School of Biotechnology; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Bomou Ma
- Key Laboratory of Science & Technology of Eco-Textiles, Ministry of Education; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Yiqi Yang
- Department of Textiles Merchandising & Fashion Design; University of Nebraska-Lincoln; Lincoln Nebraska 68583-0802
- Department of Biological Systems Engineering; University of Nebraska-Lincoln; Lincoln Nebraska 685830802
| |
Collapse
|
32
|
Gezae Daful A, Görgens JF. Techno-economic analysis and environmental impact assessment of lignocellulosic lactic acid production. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2016.12.054] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Farzad S, Mandegari MA, Guo M, Haigh KF, Shah N, Görgens JF. Multi-product biorefineries from lignocelluloses: a pathway to revitalisation of the sugar industry? BIOTECHNOLOGY FOR BIOFUELS 2017; 10:87. [PMID: 28400858 PMCID: PMC5387292 DOI: 10.1186/s13068-017-0761-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/18/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Driven by a range of sustainability challenges, e.g. climate change, resource depletion and expanding populations, a circular bioeconomy is emerging and expected to evolve progressively in the coming decades. South Africa along with other BRICS countries (Brazil, Russia, India and China) represents the emerging bioeconomy and contributes significantly to global sugar market. In our research, South Africa is used as a case study to demonstrate the sustainable design for the future biorefineries annexed to existing sugar industry. Detailed techno-economic evaluation and Life Cycle Assessment (LCA) were applied to model alternative routes for converting sugarcane residues (bagasse and trash) to selected biofuel and/or biochemicals (ethanol, ethanol and lactic acid, ethanol and furfural, butanol, methanol and Fischer-Tropsch synthesis, with co-production of surplus electricity) in an energy self-sufficient biorefinery system. RESULTS Economic assessment indicated that methanol synthesis with an internal rate of return (IRR) of 16.7% and ethanol-lactic acid co-production (20.5%) met the minimum investment criteria of 15%, while the latter had the lowest sensitivity to market price amongst all the scenarios. LCA results demonstrated that sugarcane cultivation was the most significant contributor to environmental impacts in all of the scenarios, other than the furfural production scenario in which a key step, a biphasic process with tetrahydrofuran solvent, had the most significant contribution. CONCLUSION Overall, the thermochemical routes presented environmental advantages over biochemical pathways on most of the impact categories, except for acidification and eutrophication. Of the investigated scenarios, furfural production delivered the inferior environmental performance, while methanol production performed best due to its low reagent consumption. The combined techno-economic and environmental assessments identified the performance-limiting steps in the 2G biorefinery design for sugarcane industry and highlighted the technology development opportunities under circular bioeconomy context.
Collapse
Affiliation(s)
- Somayeh Farzad
- Department of Process Engineering, Stellenbosch University, Stellenbosch, 7600 South Africa
| | - Mohsen Ali Mandegari
- Department of Process Engineering, Stellenbosch University, Stellenbosch, 7600 South Africa
| | - Miao Guo
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Kathleen F. Haigh
- Department of Process Engineering, Stellenbosch University, Stellenbosch, 7600 South Africa
| | - Nilay Shah
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Johann F. Görgens
- Department of Process Engineering, Stellenbosch University, Stellenbosch, 7600 South Africa
| |
Collapse
|
34
|
Sun S, Chen W, Tang J, Wang B, Cao X, Sun S, Sun RC. Synergetic effect of dilute acid and alkali treatments on fractional application of rice straw. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:217. [PMID: 27777619 PMCID: PMC5069894 DOI: 10.1186/s13068-016-0632-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/04/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND The biorefinery based on an effective and economical process is to fractionate the three primary constituents (cellulose, hemicelluloses, and lignin) from lignocellulosic biomass, in which the constituents can be respectively converted into high-value-added products. In this study, a successive treatment with dilute acid (0.25-1.0 % aqueous H2SO4, 100-150 °C, 0.5-3.0 h) and alkali (1.5 % aqueous NaOH, 80 °C, 3 h) was performed to produce xylooligosaccharides (XOS), high-purity lignin, and cellulose-rich substrates to produce glucose for ethanol production from rice straw (RS). RESULTS During the dilute acid pretreatment, the maximum production of XOS (12.8 g XOS/100 g RS) with a relatively low level of byproducts was achieved at a relatively low temperature (130 °C) and a low H2SO4 concentration (0.5 %) for a reaction time of 2.0 h. During the alkali post-treatment, 14.2 g lignin with a higher purity of 99.2 % and 30.3 g glucose with a higher conversion rate by enzymatic hydrolysis were obtained from the successively treated substrates with 100 g RS as starting material. As the pretreatment temperature, H2SO4 concentration, or time increased, more β-O-4 linkages in lignins were cleaved, which resulted in an increase of phenolic OH groups in lignin macromolecules. The signal intensities of G2 and G6 in HSQC spectra gradually reduced and vanished, indicating that a condensation reaction probably occurred at C-2 and C-6 of guaiacyl with the side chains of other lignin. CONCLUSIONS The present study demonstrated that the successive treatments with dilute acid and alkali had a synergetic effect on the fractionation of the three main constituents in RS. It is believed that the results obtained will enhance the availability of the combined techniques in the lignocellulosic biorefinery for the application of the main components, cellulose, hemicelluloses, and lignin as biochemical and biofuels.
Collapse
Affiliation(s)
- Shaolong Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Weijing Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Jianing Tang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Bing Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Xuefei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Shaoni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Run-Cang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
35
|
Morais de Carvalho D, Martínez-Abad A, Evtuguin DV, Colodette JL, Lindström ME, Vilaplana F, Sevastyanova O. Isolation and characterization of acetylated glucuronoarabinoxylan from sugarcane bagasse and straw. Carbohydr Polym 2016; 156:223-234. [PMID: 27842817 DOI: 10.1016/j.carbpol.2016.09.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
Abstract
Sugarcane bagasse and straw are generated in large volumes as by-products of agro-industrial production. They are an emerging valuable resource for the generation of hemicellulose-based materials and products, since they contain significant quantities of xylans (often twice as much as in hardwoods). Heteroxylans (yields of ca 20% based on xylose content in sugarcane bagasse and straw) were successfully isolated and purified using mild delignification followed by dimethyl sulfoxide (DMSO) extraction. Delignification with peracetic acid (PAA) was more efficient than traditional sodium chlorite (NaClO2) delignification for xylan extraction from both biomasses, resulting in higher extraction yields and purity. We have shown that the heteroxylans isolated from sugarcane bagasse and straw are acetylated glucuronoarabinoxylans (GAX), with distinct molecular structures. Bagasse GAX had a slightly lower glycosyl substitution molar ratio of Araf to Xylp to (0.5:10) and (4-O-Me)GlpA to Xylp (0.1:10) than GAX from straw (0.8:10 and 0.1:10 respectively), but a higher degree of acetylation (0.33 and 0.10, respectively). A higher frequency of acetyl groups substitution at position α-(1→3) (Xyl-3Ac) than at position α-(1→2) (Xyl-2Ac) was confirmed for both bagasse and straw GAX, with a minor ratio of diacetylation (Xyl-2,3Ac). The size and molecular weight distributions for the acetylated GAX extracted from the sugarcane bagasse and straw were analyzed using multiple-detection size-exclusion chromatography (SEC-DRI-MALLS). Light scattering data provided absolute molar mass values for acetylated GAX with higher average values than did standard calibration. Moreover, the data highlighted differences in the molar mass distributions between the two isolation methods for both types of sugarcane GAX, which can be correlated with the different Araf and acetyl substitution patterns. We have developed an empirical model for the molecular structure of acetylated GAX extracted from sugarcane bagasse and straw with PAA/DMSO through the integration of results obtained from glycosidic linkage analysis, 1H NMR spectroscopy and acetyl quantification. This knowledge of the structure of xylans in sugarcane bagasse and straw will provide a better understanding of the isolation-structure-properties relationship of these biopolymers and, ultimately, create new possibilities for the use of sugarcane xylan in high-value applications, such as biochemicals and bio-based materials.
Collapse
Affiliation(s)
- Danila Morais de Carvalho
- Pulp and Paper Laboratory, Department of Forestry Engineering, Federal University of Viçosa, Av. P. H. Rolfs, S/N, Campus, 36570-900 Viçosa, Minas Gerais, Brazil; Department of Fibre and Polymer Technology, KTH, Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Antonio Martínez-Abad
- Division of Glycoscience, School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Dmitry V Evtuguin
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jorge Luiz Colodette
- Pulp and Paper Laboratory, Department of Forestry Engineering, Federal University of Viçosa, Av. P. H. Rolfs, S/N, Campus, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Mikael E Lindström
- Department of Fibre and Polymer Technology, KTH, Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Francisco Vilaplana
- Division of Glycoscience, School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden; Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH, Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Olena Sevastyanova
- Department of Fibre and Polymer Technology, KTH, Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden; Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH, Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
36
|
Environmental impact assessment of lignocellulosic lactic acid production: Integrated with existing sugar mills. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2016.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
37
|
|
38
|
Qin L, Liu L, Li WC, Zhu JQ, Li BZ, Yuan YJ. Evaluation of soluble fraction and enzymatic residual fraction of dilute dry acid, ethylenediamine, and steam explosion pretreated corn stover on the enzymatic hydrolysis of cellulose. BIORESOURCE TECHNOLOGY 2016; 209:172-9. [PMID: 26970919 DOI: 10.1016/j.biortech.2016.02.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 05/07/2023]
Abstract
This study is aimed to examine the inhibition of soluble fraction (SF) and enzymatic residual fraction (ERF) in dry dilute acid (DDA), ethylenediamine (EDA) and steam explosion (SE) pretreated corn stover (CS) on the enzymatic digestibility of cellulose. SF of DDA, EDA and SE pretreated CS has high xylose, soluble lignin and xylo-oligomer content, respectively. SF of EDA pretreated CS leads to the highest inhibition, followed by SE and DDA pretreated CS. Inhibition of ERF of DDA and SE pretreated CS is higher than that of EDA pretreated CS. The inhibition degree (A0/A) of SF is 1.76 and 1.21 times to that of ERF for EDA and SE pretreated CS, respectively. The inhibition degree of ERF is 1.05 times to that of SF in DDA pretreated CS. The quantitative analysis shows that SF of EDA pretreated CS, SF and ERF of SE pretreated CS cause significant inhibition during enzymatic hydrolysis.
Collapse
Affiliation(s)
- Lei Qin
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China
| | - Li Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China
| | - Wen-Chao Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China
| | - Jia-Qing Zhu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China.
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China
| |
Collapse
|
39
|
Terán-Hilares R, Reséndiz AL, Martínez RT, Silva SS, Santos JC. Successive pretreatment and enzymatic saccharification of sugarcane bagasse in a packed bed flow-through column reactor aiming to support biorefineries. BIORESOURCE TECHNOLOGY 2016; 203:42-49. [PMID: 26720138 DOI: 10.1016/j.biortech.2015.12.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/09/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
A packed bed flow-through column reactor (PBFTCR) was used for pretreatment and subsequent enzymatic hydrolysis of sugarcane bagasse (SCB). Alkaline pretreatment was performed at 70 °C for 4h with fresh 0.3M NaOH solution or with liquor recycled from a previous pretreatment batch. Scheffersomyces stipitis NRRL-Y7124 was used for fermentation of sugars released after enzymatic hydrolysis (20 FPU g(-1) of dry SCB). The highest results for lignin removal were 61% and 52%, respectively, observed when using fresh NaOH or the first reuse of the liquor. About 50% of cellulosic and 57% of hemicellulosic fractions of pretreated SCBs were enzymatically hydrolyzed and the maximum ethanol production was 23.4 g L(-1) (ethanol yield of 0.4 gp gs(-1)), with near complete consumption of both pentoses and hexoses present in the hydrolysate during the fermentation. PBFTCR as a new alternative for SCB-biorefineries is presented, mainly considering its simple configuration and efficiency for operating with a high solid:liquid ratio.
Collapse
Affiliation(s)
- R Terán-Hilares
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, CEP 12602-810, Lorena, São Paulo, Brazil.
| | - A L Reséndiz
- Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional, CP 07738 Distrito Federal, Mexico
| | - R T Martínez
- Unidad Profesional Interdisciplinaria de Biotecnología (UPIBI), Instituto Politécnico Nacional, CP 07738 Distrito Federal, Mexico
| | - S S Silva
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, CEP 12602-810, Lorena, São Paulo, Brazil
| | - J C Santos
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, CEP 12602-810, Lorena, São Paulo, Brazil
| |
Collapse
|
40
|
Liu ZH, Chen HZ. Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading. BIORESOURCE TECHNOLOGY 2016; 201:15-26. [PMID: 26615497 DOI: 10.1016/j.biortech.2015.11.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 05/17/2023]
Abstract
Simultaneous saccharification and co-fermentation (SSCF) of steam exploded corn stover (SECS) was investigated at 5-25% solid loadings compared with other conversion processes. SECS was washed with a 15-fold excess of deionized water to remove inhibitors of hydrolysis and fermentation. The concentration, yield, and productivity of ethanol was 34.3g/L, 90.0%, 2.61g/L/h in the co-fermentation of 60g/L glucose and 10g/L xylose by Saccharomyces cerevisiae IPE003. Ethanol concentration and productivity increased with increasing solid loading while ethanol yield decreased in all conversion processes of SECS. Glucan and xylan conversion was 82.0% and 82.1% in SSCF at 20% solid loading, respectively, while the concentration, yield and productivity of ethanol was 60.8g/L, 75.3% and 0.63g/L/h. The feeding strategy of SECS addition within 24h improved the SSCF performance. Therefore, SSCF increased ethanol productivity and was an effective conversion process for ethanol production at high solid loading.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Zhang Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
41
|
Abstract
Cotton stalk bark fiber (CSBF) was extracted at high temperature and under high pressure, under the condition of the alkali content of 11 wt%. Experimental results proved that the extraction yield of CSBF was 27.3 wt%, and the residual alkali concentration was 2.1 wt%. Then five kinds of modifiers including methyl methacrylate (MMA), MMA plus initiator, epoxy propane, copper ethanolamine, and silane coupling agent were chosen to modify the surface of CSBF. It was found by measuring water retention value (WRV) that these five kinds of modifiers were all effective and the silane coupling agent was best modifier among all. The optimal modifying conditions of silane coupling agent were obtained: modifier concentration was 5%, the mixing temperature was 20°C, the mixing time was 1 h, and vacuum drying time was 1 h. Under the optimal condition, the WRV of the modified CSBF was 89%. It is expected that these modified CSBF may be a filler with strengthening effect in wood plastic composites (WPC) fields.
Collapse
|
42
|
Scholl AL, Menegol D, Pitarelo AP, Fontana RC, Zandoná Filho A, Ramos LP, Dillon AJP, Camassola M. Ethanol production from sugars obtained during enzymatic hydrolysis of elephant grass (Pennisetum purpureum, Schum.) pretreated by steam explosion. BIORESOURCE TECHNOLOGY 2015; 192:228-37. [PMID: 26038327 DOI: 10.1016/j.biortech.2015.05.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 05/11/2023]
Abstract
In this work, steam explosion was used a pretreatment method to improve the conversion of elephant grass (Pennisetum purpureum) to cellulosic ethanol. This way, enzymatic hydrolysis of vaccum-drained and water-washed steam-treated substrates was carried out with Penicillium echinulatum enzymes while Saccharomyces cerevisiae CAT-1 was used for fermentation. After 48 h of hydrolysis, the highest yield of reducing sugars was obtained from vaccum-drained steam-treated substrates that were produced after 10 min at 200 °C (863.42 ± 62.52 mg/g). However, the highest glucose yield was derived from water-washed steam-treated substrates that were produced after 10 min at 190 °C (248.34 ± 6.27 mg/g) and 200 °C (246.00 ± 9.60 mg/g). Nevertheless, the highest ethanol production was obtained from water-washed steam-treated substrates that were produced after 6 min at 200 °C. These data revealed that water washing is a critical step for ethanol production from steam-treated elephant grass and that pretreatment generates a great deal of water soluble inhibitory compounds for hydrolysis and fermentation, which were partly characterized as part of this study.
Collapse
Affiliation(s)
- Angélica Luisi Scholl
- University of Caxias do Sul, Enzyme and Biomass Laboratory, 1130 Francisco Vargas Street, Caxias do Sul, RS 95070-560, Brazil
| | - Daiane Menegol
- University of Caxias do Sul, Enzyme and Biomass Laboratory, 1130 Francisco Vargas Street, Caxias do Sul, RS 95070-560, Brazil
| | - Ana Paula Pitarelo
- Federal University of Paraná, Department of Chemistry, Research Center in Applied Chemistry (CEPESQ), P.O. Box 19032, Curitiba, PR 81531-980, Brazil; Cane Technology Center (CTC), Fazenda Santo Antônio, Piracicaba, SP 13400-907, Brazil.
| | - Roselei Claudete Fontana
- University of Caxias do Sul, Enzyme and Biomass Laboratory, 1130 Francisco Vargas Street, Caxias do Sul, RS 95070-560, Brazil
| | - Arion Zandoná Filho
- Federal University of Paraná, Department of Chemistry, Research Center in Applied Chemistry (CEPESQ), P.O. Box 19032, Curitiba, PR 81531-980, Brazil
| | - Luiz Pereira Ramos
- Federal University of Paraná, Department of Chemistry, Research Center in Applied Chemistry (CEPESQ), P.O. Box 19032, Curitiba, PR 81531-980, Brazil; INCT in Energy and Environment (INCT E&A), Federal University of Paraná, Department of Chemistry, Curitiba, PR 81531-980, Brazil.
| | - Aldo José Pinheiro Dillon
- University of Caxias do Sul, Enzyme and Biomass Laboratory, 1130 Francisco Vargas Street, Caxias do Sul, RS 95070-560, Brazil
| | - Marli Camassola
- University of Caxias do Sul, Enzyme and Biomass Laboratory, 1130 Francisco Vargas Street, Caxias do Sul, RS 95070-560, Brazil.
| |
Collapse
|
43
|
Chen HZ, Liu ZH. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products. Biotechnol J 2015; 10:866-85. [DOI: 10.1002/biot.201400705] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/13/2015] [Accepted: 03/25/2015] [Indexed: 11/09/2022]
|
44
|
Sugarcane Straw and Its Cellulose Fraction as Raw Materials for Obtainment of Textile fibers and Other Bioproducts. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
45
|
|
46
|
Sharma S, Kumar R, Gaur R, Agrawal R, Gupta RP, Tuli DK, Das B. Pilot scale study on steam explosion and mass balance for higher sugar recovery from rice straw. BIORESOURCE TECHNOLOGY 2015; 175:350-7. [PMID: 25459842 DOI: 10.1016/j.biortech.2014.10.112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 05/15/2023]
Abstract
Pretreatment of rice straw on pilot scale steam explosion has been attempted to achieve maximum sugar recovery. Three different reaction media viz. water, sulfuric acid and phosphoric acid (0.5%, w/w) were explored for pretreatment by varying operating temperature (160, 180 and 200°C) and reaction time (5 and 10min). Using water and 0.5% SA showed almost similar sugar recovery (∼87%) at 200 and 180°C respectively. However, detailed studies showed that the former caused higher production of oligomeric sugars (13.56g/L) than the later (3.34g/L). Monomeric sugar, followed the reverse trend (7.83 and 11.62g/L respectively). Higher oligomers have a pronounced effect in reducing enzymatic sugar yield as observed in case of water. Mass balance studies for water and SA assisted SE gave total saccharification yield as 81.8% and 77.1% respectively. However, techno-economical viability will have a trade-off between these advantages and disadvantages offered by the pretreatment medium.
Collapse
Affiliation(s)
- Sandeep Sharma
- DBT-IOC Centre for Advanced Bioenergy Research, Indian Oil Corporation Ltd., Research and Development Centre, Sector-13, Faridabad 121007, India
| | - Ravindra Kumar
- DBT-IOC Centre for Advanced Bioenergy Research, Indian Oil Corporation Ltd., Research and Development Centre, Sector-13, Faridabad 121007, India
| | - Ruchi Gaur
- DBT-IOC Centre for Advanced Bioenergy Research, Indian Oil Corporation Ltd., Research and Development Centre, Sector-13, Faridabad 121007, India
| | - Ruchi Agrawal
- DBT-IOC Centre for Advanced Bioenergy Research, Indian Oil Corporation Ltd., Research and Development Centre, Sector-13, Faridabad 121007, India
| | - Ravi P Gupta
- DBT-IOC Centre for Advanced Bioenergy Research, Indian Oil Corporation Ltd., Research and Development Centre, Sector-13, Faridabad 121007, India
| | - Deepak K Tuli
- DBT-IOC Centre for Advanced Bioenergy Research, Indian Oil Corporation Ltd., Research and Development Centre, Sector-13, Faridabad 121007, India.
| | - Biswapriya Das
- Indian Oil Corporation Ltd., Research and Development Centre, Sector-13, Faridabad 121007, India
| |
Collapse
|
47
|
Michelin M, Ruiz HA, Silva DP, Ruzene DS, Teixeira JA, Polizeli MLTM. Cellulose from Lignocellulosic Waste. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_52] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
48
|
Pereira SC, Maehara L, Machado CMM, Farinas CS. 2G ethanol from the whole sugarcane lignocellulosic biomass. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:44. [PMID: 25774217 PMCID: PMC4359543 DOI: 10.1186/s13068-015-0224-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/09/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND In the sugarcane industry, large amounts of lignocellulosic residues are generated, which includes bagasse, straw, and tops. The use of the whole sugarcane lignocellulosic biomass for the production of second-generation (2G) ethanol can be a potential alternative to contribute to the economic viability of this process. Here, we conducted a systematic comparative study of the use of the lignocellulosic residues from the whole sugarcane lignocellulosic biomass (bagasse, straw, and tops) from commercial sugarcane varieties for the production of 2G ethanol. In addition, the feasibility of using a mixture of these residues from a selected variety was also investigated. RESULTS The materials were pretreated with dilute acid and hydrolyzed with a commercial enzymatic preparation, after which the hydrolysates were fermented using an industrial strain of Saccharomyces cerevisiae. The susceptibility to enzymatic saccharification was higher for the tops, followed by straw and bagasse. Interestingly, the fermentability of the hydrolysates showed a different profile, with straw achieving the highest ethanol yields, followed by tops and bagasse. Using a mixture of the different sugarcane parts (bagasse-straw-tops, 1:1:1, in a dry-weight basis), it was possible to achieve a 55% higher enzymatic conversion and a 25% higher ethanol yield, compared to use of the bagasse alone. For the four commercial sugarcane varieties evaluated using the same experimental set of conditions, it was found that the variety of sugarcane was not a significant factor in the 2G ethanol production process. CONCLUSIONS Assessment of use of the whole lignocellulosic sugarcane biomass clearly showed that 2G ethanol production could be significantly improved by the combined use of bagasse, straw, and tops, when compared to the use of bagasse alone. The lower susceptibility to saccharification of sugarcane bagasse, as well as the lower fermentability of its hydrolysates, can be compensated by using it in combination with straw and tops (sugarcane trash). Furthermore, given that the variety was not a significant factor for the 2G ethanol production process within the four commercial sugarcane varieties evaluated here, agronomic features such as higher productivity and tolerance of soil and climate variations can be used as the criteria for variety selection.
Collapse
Affiliation(s)
| | - Larissa Maehara
- />Embrapa Instrumentation, Rua XV de Novembro 1452, 13560-970 São Carlos, SP Brazil
- />Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905 São Carlos, SP Brazil
| | | | - Cristiane Sanchez Farinas
- />Embrapa Instrumentation, Rua XV de Novembro 1452, 13560-970 São Carlos, SP Brazil
- />Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luiz, km 235, 13565-905 São Carlos, SP Brazil
| |
Collapse
|
49
|
Szczerbowski D, Pitarelo AP, Zandoná Filho A, Ramos LP. Sugarcane biomass for biorefineries: Comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohydr Polym 2014; 114:95-101. [DOI: 10.1016/j.carbpol.2014.07.052] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/07/2014] [Accepted: 07/18/2014] [Indexed: 11/26/2022]
|
50
|
Sun YG, Ma YL, Wang LQ, Wang FZ, Wu QQ, Pan GY. Physicochemical properties of corn stalk after treatment using steam explosion coupled with acid or alkali. Carbohydr Polym 2014; 117:486-493. [PMID: 25498662 DOI: 10.1016/j.carbpol.2014.09.066] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 09/09/2014] [Accepted: 09/18/2014] [Indexed: 11/15/2022]
Abstract
The aim of this study was to evaluate comparatively the effects of different pretreatments including steam explosion, acid, and alkali, alone or in combination, on the structural properties and thermal stability of corn stalk. All of the treated treatments decreased the contents of hemicellulose and lignin and thereby increased the content of cellulose in corn stalks. But the combined treatments with alkali and steam explosion under 0.4-0.6 MPa were better as compared with other treatments based on the removals of hemicellulose and lignin, and about 71.58-79.59% of hemicellulose and 64.32-71.83% of lignin were removed. Treatment with steam explosion coupled with acid or alkali changed the bonding distribution and surface morphology and increased the crystallinity and thermal stability of corn stalks, and the degradation temperature reached over 350 °C. These results suggest that steam explosion coupled with alkali is a better method for the depolymerization of corn stalk polymer.
Collapse
Affiliation(s)
- Yong-Gang Sun
- State Key Laboratory Cultivation Base of Energy Sources and Chemical Engineering, Ningxia University, Yinchuan 750021, China; College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Yu-Long Ma
- State Key Laboratory Cultivation Base of Energy Sources and Chemical Engineering, Ningxia University, Yinchuan 750021, China; College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Li-Qiong Wang
- State Key Laboratory Cultivation Base of Energy Sources and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Feng-Zhi Wang
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Qian-Qian Wu
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Guan-Yu Pan
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|