1
|
Zhao F, Zhang X, Xu Z, Feng C, Pan W, Lu L, Luo W. Review of hydraulic conditions optimization for constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122377. [PMID: 39243655 DOI: 10.1016/j.jenvman.2024.122377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/01/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Hydraulic conditions exert a comprehensive and vital influence on constructed wetlands (CWs). However, research on this subject is relatively limited. Hydraulic parameters can be categorized into design and operational parameters based on their properties. The design parameters are represented by the hydraulic gradient, substrate porosity, and aspect ratio, while operational parameters are represented by the hydraulic retention time, hydraulic loading rate, and water depth. These parameters directly or indirectly affect the operational lifespan and pollutant removal performance of CWs. Currently, the primary measures for optimizing the hydraulic conditions of CWs involve hydraulic structure and numerical simulation optimization methods. In this review, we aimed to elucidate the impact of hydraulic conditions on CW performance and summarize current optimization strategies. By highlighting the significance of hydraulic parameters in enhancing pollutant removal and extending operational lifespan, this review provides valuable insights for improving CW design and management. The findings will be useful for researchers and practitioners seeking to optimize CW systems and advance the application of nature-based solutions for wastewater treatment.
Collapse
Affiliation(s)
- Fangxing Zhao
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xinwen Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Zhenghe Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Chengye Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Weiyan Pan
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Le Lu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Wancheng Luo
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| |
Collapse
|
2
|
Wang Y, Guan Q, Jiao W, Li J, Zhao R, Zhang X, Fan W, Wang C. Isolation, identification and transcriptome analysis of triadimefon-degrading strain Enterobacter hormaechei TY18. Biodegradation 2024; 35:551-564. [PMID: 38530488 DOI: 10.1007/s10532-024-10076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024]
Abstract
Triadimefon, a type of triazole systemic fungicide, has been extensively used to control various fungal diseases. However, triadimefon could lead to severe environmental pollution, and even threatens human health. To eliminate triadimefon residues, a triadimefon-degrading bacterial strain TY18 was isolated from a long-term polluted site and was identified as Enterobacter hormaechei. Strain TY18 could grow well in a carbon salt medium with triadimefon as the sole nitrogen source, and could efficiently degrade triadimefon. Under triadimefon stress, a total of 430 differentially expressed genes (DEGs), including 197 up-regulated and 233 down-regulated DEGs, were identified in strain TY18 using transcriptome sequencing (RNA-Seq). Functional classification and enrichment analysis revealed that these DEGs were mainly related to amino acid transport and metabolism, carbohydrate transport and metabolism, small molecule and pyrimidine metabolism. Interestingly, the DEGs encoding monooxygenase and hydrolase activity acting on carbon-nitrogen were highly up-regulated, might be mainly responsible for the metabolism in triadimefon. Our findings in this work suggest that strain E. hormaechei TY18 could efficiently degrade triadimefon for the first time. They provide a great potential to manage triadimefon biodegradation in the environment successfully.
Collapse
Affiliation(s)
- Yan Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Qi Guan
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Wenhui Jiao
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Experiment Teaching Center, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jiangbo Li
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Rui Zhao
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiqian Zhang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Weixin Fan
- Experiment Teaching Center, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Chunwei Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
3
|
Morelle J, Parlanti E, Lecarpentier T, Laverman AM. Impact of water level management on organic carbon availability and nitrogen transformations in wetland sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174643. [PMID: 39009159 DOI: 10.1016/j.scitotenv.2024.174643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/17/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
The impact of water level management via water retention on benthic carbon and nitrogen fluxes was studied in a wetland of the Seine estuary. Carbon and inorganic nitrogen fluxes at the sediment-water interface were determined during periods of intermittent and permanent immersion along a lateral gradient. In addition to fluxes, nitrate reduction rates, quantity and quality of both sedimentary and dissolved organic carbon, and organic matter lability via external enzymatic activities were analyzed. During both periods, the sediments subject to water level management facilitated nitrogen removal, with potential NO3- fluxes averaging -109 ± 31 nmol NO3- cm-2 h-1 under permanent immersion and -34 ± 13 nmol NO3- cm-2 h-1 under intermittent immersion. During permanent immersion, more water retention favors a higher input of dissolved organic matter including fresh and labile compounds, which most likely explained the significantly higher NO3- influxes. Intermittent immersion resulted in a lower quantity of retained dissolved organic matter, which likely explains the low N fluxes. The results of this study indicate the implementation of water retention strategies can markedly enhance NO3- removal by increasing the availability of organic matter. This underscores the importance of considering water-level management of wetlands to sustain the ecological functions of these valuable ecosystems, which are often the first barriers against environmental disturbance.
Collapse
Affiliation(s)
- Jérôme Morelle
- Univ. Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, Rennes, France.
| | - Edith Parlanti
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Thomas Lecarpentier
- Maison de l'estuaire, Réserve Naturelle Nationale de l'Estuaire de la Seine, 76600 Le Havre, France
| | - Anniet M Laverman
- Univ. Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, Rennes, France
| |
Collapse
|
4
|
Kushwaha A, Goswami L, Kim BS, Lee SS, Pandey SK, Kim KH. Constructed wetlands for the removal of organic micropollutants from wastewater: Current status, progress, and challenges. CHEMOSPHERE 2024; 360:142364. [PMID: 38768790 DOI: 10.1016/j.chemosphere.2024.142364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
In this work, the practical utility of constructed wetlands (CWs) is described as a promising treatment option for micropollutants (MPs) in wastewater with the aid of their eco-friendly, low-energy, economically feasible, and ecologically sustainable nature. This paper offers a comprehensive review on CW technology with respect to the key strategies for MP removal such as phytoremediation, substrate adsorption, and microbial degradation. It explores the important factors controlling the performance of CWs (e.g., in terms of configurations, substrates, plant-microbe interactions, temperature, pH, oxygen levels, hydraulic loading rate, and retention time) along with the discussions on the pivotal role of microbial populations in CWs and plant-microbe cooperative remediation dynamics, particularly in relation to diverse organic MP patterns in CWs. As such, this review aims to provide valuable insights into the key strategies for optimizing MP treatment and for enhancing the efficacy of CW systems. In addition, the process-based models of constructed wetlands along with the numerical simulations based on the artificial neural network (ANN) method are also described in association with the data exploratory techniques. This work is thus expected to help open up new possibilities for the application of plant-microbe cooperative remediation approaches against diverse patterns of organic MPs present in CWs.
Collapse
Affiliation(s)
- Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sang Soo Lee
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Sudhir Kumar Pandey
- Department of Botany, Guru Ghasidas Vishwavidyalaya (a central University) Bilaspur, Chhattisgarh, 495009, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
5
|
Ilyas H, Rousseau DPL. Advances in the process-based models of constructed wetlands and a way forward for integrating emerging organic contaminants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44518-44541. [PMID: 38955972 DOI: 10.1007/s11356-024-34036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024]
Abstract
This research examines advancements in the development of process-based models of constructed wetlands (CWs) tailored for simulating conventional water quality parameters (CWQPs). Despite the promising potential of CWs for emerging organic contaminant (EOC) removal, the available CW models do not yet integrate EOC removal processes. This study explores the need and possibility of integrating EOCs into existing CW models. Nevertheless, a few researchers have developed process-based models of other wastewater treatment systems (e.g., activated sludge systems) to simulate certain EOCs. The EOC removal processes observed in other wastewater treatment systems are analogous to those in CWs. Therefore, the corresponding equations governing these processes can be tailored and integrated into existing CW models, similarly to what was done successfully in the past for CWQPs. This study proposed the next generation of CW models, which outlines 12 areas for future work: integrating EOC removal processes; ensuring data availability for model calibration and validation; considering quantitative and sensitive parameters; quantifying microorganisms in CWs; modifying biofilm dynamics models; including pH, aeration, and redox potential; integrating clogging and plant sub-models; modifying hydraulic sub-model; advancing computer technology and programming; and maintaining a balance between simplicity and complexity. These suggestions provide valuable insights for enhancing the design and operational features of current process-based models of CWs, facilitating improved simulation of CWQPs, and integration of EOCs into the modelling framework.
Collapse
Affiliation(s)
- Huma Ilyas
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500, Kortrijk, Belgium.
| | - Diederik P L Rousseau
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500, Kortrijk, Belgium
| |
Collapse
|
6
|
Dey P, Osborne JW, Lincy KB. An insight on the plausible biological and non-biological detoxification of heavy metals in tannery waste: A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 258:119451. [PMID: 38906443 DOI: 10.1016/j.envres.2024.119451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
A key challenge for the tannery industries is the volume of tannery waste water (TWW) generated during the processing of leather, releasing various forms of toxic heavy metals resulting in uncontrolled discharge of tannery waste (TW) into the environment leading to pollution. The pollutants in TW includes heavy metals such as chromium (Cr), cadmium (Cd), lead (Pb) etc, when discharged above the permissible limit causes ill effects on humans. Therefore, several researchers have reported the application of biological and non-biological methods for the removal of pollutants in TW. This review provides insights on the global scenario of tannery industries and the harmful effects of heavy metal generated by tannery industry on micro and macroorganisms of the various ecological niches. It also provides information on the process, advantages and disadvantages of non-biological methods such as electrochemical oxidation, advanced oxidation processes, photon assisted catalytic remediation, adsorption and membrane technology. The various biological methods emphasised includes strategies such as constructed wetland, vermitechnology, phytoremediation, bioaugmentation, quorum sensing and biofilm in the remediation of heavy metals from tannery wastewater (TWW) with special emphasize on chromium.
Collapse
Affiliation(s)
- Parry Dey
- School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Jabez W Osborne
- VIT School of Agricultural Innovations and Advanced Learning (VAIAL) Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| | - Kirubhadharsini B Lincy
- School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
7
|
Shi X, Wang L, Chen A, Yu W, Liu Y, Huang X, Long X, Du Y, Qu D. Enhancing water quality and ecosystems of reclaimed water-replenished river: A case study of Dongsha River, Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172024. [PMID: 38547989 DOI: 10.1016/j.scitotenv.2024.172024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
The use of reclaimed water for urban river replenishment has raised concerns regarding its impact on water quality and aquatic ecosystems. This study aims to reveal the improvements seen in an urban river undergoing a practical water eco-remediation after being replenished with reclaimed water. A one-year monitoring of water quality, phytoplankton, and zooplankton was carried out in Dongsha River undergoing eco-remediation in Beijing, China. The results showed that compared to the unrestored river, the concentrations of COD, NH4+-N, TP, and TN decreased by 28.22 ± 7.88 %, 40.24 ± 11.77 %, 44.17 ± 17.29 %, and 28.66 ± 10.39 % in the restoration project area, respectively. The concentration of Chlorophyll-a in the restoration area was maintained below 40 μg/L. During summer, when algal growth is vigorous, the density of Cyanophyta in the unrestored river decreased from 46.84 × 104cells/L to 16.32 × 104cells/L in the restored area, while that of Chlorophyta decreased from 41.61 × 104cells/L to 11.87 × 104cells/L, a reduction of 65.16 % and 71.47 %, respectively. The dominant phytoplankton species were replaced with Bacillariophyta, such as Synedra sp. and Nitzschia sp., indicating that the restoration of aquatic plants reduces the risk of Cyanophyta blooms. Zooplankton species also changed in the restoration area, especially during summer. The density of pollution-tolerant Rotifer and Protozoa decreased by 31.06 % and 27.22 %, while the density of clean water indicating Cladocera increased by 101.19 %. We further calculated the diversity and evenness index of phytoplankton and zooplankton within and outside the restoration area. The results showed that the Shannon-Weaver index for phytoplankton and zooplankton in the restoration area was 2.1 and 1.91, which was higher than those in the river (1.84 and 1.82). This further confirmed that aquatic plant restoration has positive effects. This study can provide a practical reference and theoretical basis for the implementation of water ecological restoration projects in other reclaimed water rivers in China.
Collapse
Affiliation(s)
- Xinlei Shi
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Liping Wang
- School of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Ai Chen
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Wenze Yu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yongze Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Xueli Huang
- Beijing Shanheyuan Environmental Technology Co., Ltd, Shahe Town, Changping District, Beijing 102206, China
| | - Xiaoyan Long
- Beijing Shanheyuan Environmental Technology Co., Ltd, Shahe Town, Changping District, Beijing 102206, China
| | - Yuqi Du
- Beijing Shanheyuan Environmental Technology Co., Ltd, Shahe Town, Changping District, Beijing 102206, China
| | - Dan Qu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
8
|
Munir R, Muneer A, Sadia B, Younas F, Zahid M, Yaseen M, Noreen S. Biochar imparted constructed wetlands (CWs) for enhanced biodegradation of organic and inorganic pollutants along with its limitation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:425. [PMID: 38573498 DOI: 10.1007/s10661-024-12595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
The remediation of polluted soil and water stands as a paramount task in safeguarding environmental sustainability and ensuring a dependable water source. Biochar, celebrated for its capacity to enhance soil quality, stimulate plant growth, and adsorb a wide spectrum of contaminants, including organic and inorganic pollutants, within constructed wetlands, emerges as a promising solution. This review article is dedicated to examining the effects of biochar amendments on the efficiency of wastewater purification within constructed wetlands. This comprehensive review entails an extensive investigation of biochar's feedstock selection, production processes, characterization methods, and its application within constructed wetlands. It also encompasses an exploration of the design criteria necessary for the integration of biochar into constructed wetland systems. Moreover, a comprehensive analysis of recent research findings pertains to the role of biochar-based wetlands in the removal of both organic and inorganic pollutants. The principal objectives of this review are to provide novel and thorough perspectives on the conceptualization and implementation of biochar-based constructed wetlands for the treatment of organic and inorganic pollutants. Additionally, it seeks to identify potential directions for future research and application while addressing prevailing gaps in knowledge and limitations. Furthermore, the study delves into the potential limitations and risks associated with employing biochar in environmental remediation. Nevertheless, it is crucial to highlight that there is a significant paucity of data regarding the influence of biochar on the efficiency of wastewater treatment in constructed wetlands, with particular regard to its impact on the removal of both organic and inorganic pollutants.
Collapse
Affiliation(s)
- Ruba Munir
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Amna Muneer
- Department of Physics, Government College Women University, Faisalabad, 38000, Pakistan
| | - Bushra Sadia
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38000, Pakistan
| | - Fazila Younas
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Muhammad Zahid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Yaseen
- Department of Physics, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Saima Noreen
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
9
|
Zhao L, Fu D, Wu X, Liu C, Yuan X, Wang S, Duan C. Opposite response of constructed wetland performance in nitrogen and phosphorus removal to short and long terms of operation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:120002. [PMID: 38169257 DOI: 10.1016/j.jenvman.2023.120002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Constructed wetlands (CWs) have been widely used for treating polluted water since the 1950s, with applications in over 50 countries worldwide. Most studies investigating the pollutant removal efficiency of these wetlands have focused on differences among wetland designs, operation strategies, and environmental conditions. However, there still remains a gap in understanding the variation in wetland pollutant removal efficiency over different time scales. Therefore, the main aim of the study is to address this gap by conducting a global meta-analysis to estimate the variation in nitrogen (N) and phosphorus (P) removal by wetland in short- and long-term pollutant treatment. The findings of this study indicated that the total efficiencies of N and P removal increased during short-term wetland operation but decreased during long-term operation. However, for surface flow CWs specifically, the efficiencies of N and P removal increased during short-term operation and remained stable during long-term operation. Moreover, the study discovered that wetland N removal efficiency was influenced by seasons, with an increase in spring and summer and a decrease in autumn and winter. Conversely, there was no significant seasonal effect on P removal efficiency. Additionally, high hydraulic load impaired wetland N and P removal efficiency during long-term operation. This study offers a critical review of the role of wetlands in wastewater treatment and provides valuable reference data for the design and selection of CWs types during wastewater treatment in the aspect of sustainability.
Collapse
Affiliation(s)
- Luoqi Zhao
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan, 650091, China
| | - Denggao Fu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan, 650091, China
| | - Xiaoni Wu
- School of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China
| | - Change Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan, 650091, China
| | - Xinqi Yuan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan, 650091, China
| | - Sichen Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan, 650091, China
| | - Changqun Duan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan, 650091, China.
| |
Collapse
|
10
|
Wang Y, Chen Y, Lu S, Guo X. Development and trends of constructed wetland substrates over the past 30 years: a literature visualization analysis based on CiteSpace. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14537-14552. [PMID: 38308167 DOI: 10.1007/s11356-024-32139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Constructed wetland substrates (CWSs) have received considerable attention owing to their importance in adsorbing and degrading pollutants, providing growth attachment points for microorganisms, and supporting wetland plants. There are differences in the configurations and functions of constructed wetlands (CWs) for treating different water bodies and sewage, resulting in a wide variety of substrates. Research on the application and mechanism of CWSs is not sufficiently systematic. Therefore, the current research advancements and hotspots must be identified. Hence, we used CiteSpace to analyze 1955 English publications from the core collection database of the Web of Science to assess the current state of the CWS research field. Based on the cooperative network analysis, the roles of various countries, institutions, and authors in research on CWSs were reviewed. Keyword co-occurrence and cluster analyses were used to discuss the transformation of CWSs from removing traditional pollutants to emerging pollutants and the transition from incorporating natural substrates to artificial substrates. Finally, we underscored the need for more emphasis to be placed on the collocation and application of the CWSs at different latitudes. Furthermore, the substrate micro-interface process and its effects on the interaction patterns of pollutants and microorganisms should be thoroughly investigated to provide theoretical guidance for the development of wetland applications and mechanisms.
Collapse
Affiliation(s)
- Yongqiang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yi Chen
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaochun Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
11
|
Yang L, Shen K, Xu X, Xiao D, Cao H, Lin Y, Zheng X, Zhao M, Han W. Adding Corbicula fluminea altered the effect of plant species diversity on greenhouse gas emissions and nitrogen removal from constructed wetlands in the low-temperature season. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168092. [PMID: 37879465 DOI: 10.1016/j.scitotenv.2023.168092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Plant species diversity is crucial in greenhouse gas emissions and nitrogen removal from constructed wetlands (CWs). However, previous studies have overlooked the impact of benthos on cumulative greenhouse gas emissions during the low-temperature season in CWs. In this study, we established 66 vertical flow CWs with three levels of species richness (1, 2, and 4 species) and eleven species compositions. The Corbicula fluminea was added or not added at each diversity level and monitored greenhouse gas emissions and effluent nitrogen concentration. Our findings indicated that (1) in microcosms without C. fluminea, high species richness significantly increased effluent nitrogen concentrations (NO3--N, NH4+-N, and TIN), but plant species richness did not affect cumulative CH4, N2O, and CO2 emissions. The presence of Hemerocallis fulva significantly increased cumulative CO2 emissions, while the presence of Iris tectorum significantly increased effluent nitrogen (NO3--N and TIN) concentrations and cumulative N2O emissions; (2) in microcosms with C. fluminea, the lowest cumulative CH4 emissions occurred when there were two species, but plant species richness did not affect cumulative CO2 and N2O emissions. The presence of H. fulva significantly increased cumulative CH4 emissions, while the presence of Reineckea carnea significantly increased effluent nitrogen (NO3--N, NH4+- N, TIN) concentrations; (3) at the same diversity level, the addition of C. fluminea significantly increased cumulative CH4 and N2O emissions, as well as effluent nitrogen concentrations. These results demonstrate that C. fluminea alters the effect of plant species diversity on cumulative greenhouse gas emissions and nitrogen removal from CWs during the low-temperature season. We recommend using a two-species mixture to reduce greenhouse gas emissions. However, we caution against using plant compositions with H. fulva or I. tectorum for effective wastewater treatment and greenhouse gas reduction in CWs.
Collapse
Affiliation(s)
- Luping Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China
| | - Kai Shen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China
| | - Xile Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China
| | - Derong Xiao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China; National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325035, People's Republic of China; Institute for Eco-environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China
| | - Huijuan Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China
| | - Yishi Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China; National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325035, People's Republic of China; Institute for Eco-environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China; National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325035, People's Republic of China; Institute for Eco-environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China
| | - Wenjuan Han
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China; National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325035, People's Republic of China; Institute for Eco-environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, Zhejiang, People's Republic of China.
| |
Collapse
|
12
|
Qi Y, Zhong Y, Luo L, He J, Feng B, Wei Q, Zhang K, Ren H. Subsurface constructed wetlands with modified biochar added for advanced treatment of tailwater: Performance and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167533. [PMID: 37793458 DOI: 10.1016/j.scitotenv.2023.167533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
The limitations of conventional substrates in treating wastewater treatment plant tailwater are evident in subsurface flow constructed wetlands, and the emergence of biochar presents a solution to this problem. The objective of this study was to assess and prioritize the efficacy of various modified reed biochar in removing pollutants when used as fillers in wetland systems. To achieve this, we established multiple simulation systems of vertical groundwater flow wetlands, each filled with different modified reed biochar. The reed biochar was prepared and modified using Pingluo reed poles from Ningxia. We monitored the quality of the effluent water and the diversity of the microbial community in order to evaluate the pollutant removal performance of the modified biochar under different hydraulic retention times in a laboratory setting. The findings indicated that a hydraulic retention time of 24-48 h was found to be optimal for each wetland system. Furthermore, the composite modified biochar system with KMnO4 and ZnCl2 exhibited higher levels of dissolved oxygen and lower conductivity, resulting in superior pollutant removal performance. Specifically, the system achieved removal rates of 89.94 % for COD, 85.88 % for TP, 91.05 % for TN, and 92.76 % for NH3-N. Additionally, the 16S rRNA high-throughput sequencing analysis revealed that the system displayed high Chao1, Shannon, and Simpson indices of 6548.75, 10.1965, and 0.9944, respectively. The predominant bacterial phyla observed in the wetland system were Proteobacteria, Bacteroidetes, Chloroflexi, Patescibacteria, Firmicutes, and Actinobacteria. Additionally, the denitrifying bacterial class, Rhodobacteriaceae, was found to have the highest content ratio in this system. This finding serves as confirmation that the KMnO4 and ZnCl2 composite modified biochar can significantly enhance water purification performance. Consequently, this study offers valuable insights for wastewater treatment plants seeking to implement vertical submersible artificial wetland tailwater improvement projects.
Collapse
Affiliation(s)
- Yarong Qi
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Yanxia Zhong
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, People's Republic of China; Ningxia University Northwest State Key Laboratory of Land Degradation and Ecological Restoration Cultivation Base, Yinchuan 750021, People's Republic of China.
| | - Lingling Luo
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, People's Republic of China; Ningxia University Northwest State Key Laboratory of Land Degradation and Ecological Restoration Cultivation Base, Yinchuan 750021, People's Republic of China
| | - Jing He
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, People's Republic of China; Ningxia University Northwest State Key Laboratory of Land Degradation and Ecological Restoration Cultivation Base, Yinchuan 750021, People's Republic of China
| | - Bo Feng
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Qiqi Wei
- School of the Environment & Ecology XiaMen University, XiaMen 361005, People's Republic of China
| | - Koukou Zhang
- School of Geography and Planning, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Huiqin Ren
- School of Geography and Planning, Ningxia University, Yinchuan 750021, People's Republic of China
| |
Collapse
|
13
|
Yang L, Jin X, Hu Y, Zhang M, Wang H, Jia Q, Yang Y. Technical structure and influencing factors of nitrogen and phosphorus removal in constructed wetlands. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:271-289. [PMID: 39219130 PMCID: wst_2023_414 DOI: 10.2166/wst.2023.414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Constructed wetlands purify water quality by synergistically removing nitrogen and phosphorus pollutants from water, among other pollutants such as organic matter through a physical, chemical, and biological composite remediation mechanism formed between plants, fillers, and microorganisms. Compared with large-scale centralized wastewater treatment systems with high cost and energy consumption, the construction and operation costs of artificial wetlands are relatively low, do not require large-scale equipment and high energy consumption treatment processes, and have the characteristics of green, environmental protection, and sustainability. Gradually, constructed wetlands are widely used to treat nitrogen and phosphorus substances in wastewater. Therefore, this article discusses in detail the role and interaction of the main technical structures (plants, microorganisms, and fillers) involved in nitrogen and phosphorus removal in constructed wetlands. At the same time, it analyses the impact of main environmental parameters (such as pH and temperature) and operating conditions (such as hydraulic load and hydraulic retention time, forced ventilation, influent carbon/nitrogen ratio, and feeding patterns) on nitrogen and phosphorus removal in wetland systems, and addresses the problems currently existing in relevant research, the future research directions are prospected in order to provide theoretical references for scholars' research.
Collapse
Affiliation(s)
- Lei Yang
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China; Key Laboratory of Ecological Environment Protection and Restoration in the Yellow River Basin of Henan Province, Zhengzhou, Henan 450003, China E-mail:
| | - Xiaohui Jin
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China; Key Laboratory of Ecological Environment Protection and Restoration in the Yellow River Basin of Henan Province, Zhengzhou, Henan 450003, China
| | - Yawei Hu
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China; Key Laboratory of Ecological Environment Protection and Restoration in the Yellow River Basin of Henan Province, Zhengzhou, Henan 450003, China
| | - Mingqi Zhang
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China
| | - Huihui Wang
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China
| | - Qian Jia
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China
| | - Yafei Yang
- Yellow River Engineering Consulting Co., Ltd., Zhengzhou, Henan 450003, China
| |
Collapse
|
14
|
Qu Y, Yang Y, Sonne C, Chen X, Yue X, Gu H, Lam SS, Peng W. Phytosphere purification of urban domestic wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122417. [PMID: 37598935 DOI: 10.1016/j.envpol.2023.122417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
Industrialization and overpopulation have polluted aquatic environments with significant impacts on human health and wildlife. The main pollutants in urban sewage are nitrogen, phosphorus, heavy metals and organic pollutants, which need to be treated with sewage, and the use of aquatic plants to purify wastewater has high efficiency and low cost. However, the effectiveness and efficiency of phytoremediation are also affected by temperature, pH, microorganisms and other factors. The use of biochar can reduce the cost of wastewater purification, and the combination of biochar and nanotechnology can improve the efficiency of wastewater purification. Some aquatic plants can enrich pollutants in wastewater, so it can be considered to plant these aquatic plants in constructed wetlands to achieve the effect of purifying wastewater. Biochar treatment technology can purify wastewater with high efficiency and low cost, and can be further applied to constructed wetlands. In this paper, the latest research progress of various pollutants in wastewater purification by aquatic plants is reviewed, and the efficient treatment technology of wastewater by biochar is discussed. It provides theoretical basis for phytoremediation of urban sewage pollution in the future.
Collapse
Affiliation(s)
- Yimeng Qu
- Henan Province International Collaboration Lab of Forest Resources Utilization,School of Forestry,Henan Agricultural University,Zhengzhou 450002,China
| | - Yafeng Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization,School of Landscape Architecture,Henan Agricultural University,Zhengzhou 450002,China
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, Roskilde DK-4000, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Xiangmeng Chen
- Henan Province International Collaboration Lab of Forest Resources Utilization,School of Science,Henan Agricultural University,Zhengzhou 450002,China
| | - Xiaochen Yue
- Henan Province International Collaboration Lab of Forest Resources Utilization,School of Forestry,Henan Agricultural University,Zhengzhou 450002,China
| | - Haiping Gu
- Henan Province International Collaboration Lab of Forest Resources Utilization,School of Forestry,Henan Agricultural University,Zhengzhou 450002,China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization,School of Forestry,Henan Agricultural University,Zhengzhou 450002,China.
| |
Collapse
|
15
|
Jena G, Dutta K, Daverey A. Surfactants in water and wastewater (greywater): Environmental toxicity and treatment options. CHEMOSPHERE 2023; 341:140082. [PMID: 37689147 DOI: 10.1016/j.chemosphere.2023.140082] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Surfactant, an emerging pollutant present in greywater, raises the toxicity levels in the water body. Soap, detergent, and personal care items add surfactant to greywater. Due to excessive washing and cleaning procedures brought on by the COVID-19 pandemic, the release of surfactants in greywater has also increased. Considering the environmental toxicity and problems it creates during the treatment, it's essential to remove surfactants from the wastewater. This review intends to explain and address the environmental toxicity of the surfactant released via greywater and current techniques for surfactant removal from wastewater. Various physical, chemical, and biological methods are reported. Modern adsorbents such as hydrophilic silica nanoparticles, chitosan, fly ash, and iron oxide remove surfactants by adsorption. Membrane filtration effectively removes surfactants but is not cost-effective. Coagulants (chemical and natural coagulants) neutralize surfactant charges and help remove them as bigger particles. Electrocoagulation/electroflotation causes surfactants to coagulate and float. Microorganisms break down surfactants in microbial fuel cells to generate power. Surfactants are removed by natural processes and plants in constructed wetlands where traditional aerobic and anaerobic approaches use microbes to break down surfactants. Constructed wetlands, natural coagulation-flocculation, and microbial fuel cells are environmentally beneficial methods to remove surfactants from wastewater.
Collapse
Affiliation(s)
- Gyanaranjan Jena
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Kasturi Dutta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun, Uttarakhand, 248012, India.
| |
Collapse
|
16
|
Faisal AAH, Taha DS, Hassan WH, Lakhera SK, Ansar S, Pradhan S. Subsurface flow constructed wetlands for treating of simulated cadmium ions-wastewater with presence of Canna indica and Typha domingensis. CHEMOSPHERE 2023; 338:139469. [PMID: 37442380 DOI: 10.1016/j.chemosphere.2023.139469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
The presence of toxic cadmium ions in the wastewater resulted from industrial sector forms the critical issue for public health and ecosystem. This study determines the ability of four vertical subsurface flow constructed wetlands units in the treatment of simulated wastewater laden with cadmium ions. This was achieved through using sewage sludge byproduct as alternative for the traditional sand to be substrate for aforementioned units in order to satisfy the sustainable concepts; however, Canna indica and Typha domingensis can apply to enhance the cadmium removal. The performance of constructed wetlands has been evaluated through monitoring of the pH, dissolved oxygen (DO), temperature, and concentrations of cadmium (Cd) in the effluents for retention time (0.5-120 h) and metal concentration (5-40 mg/L). The results demonstrated that the Cd removal percentage was exceeded 82% beyond 5 days and for concentration of 5 mg/L; however, this percentage was decreased with smaller retention time and higher metal concentration. The Grau second-order kinetic model accurately simulated the measurements of effluent Cd concentrations as a function of retention times. The FT-IR analysis indicated the existence of certain functional groups capable of enhancing the Cd removal. The treated wastewater's pH, DO, temperature, total dissolved solids (TDS), and electrical conductivity (EC) all meet the requirements for irrigation water.
Collapse
Affiliation(s)
- Ayad A H Faisal
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq.
| | - Duaa S Taha
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Waqed H Hassan
- College of Engineering, University of Warith Al-Anbiyaa, Kerbala, Iraq; Department of Civil Engineering, College of Engineering, University of Kerbala, Kerbala 56001, Iraq.
| | - Sandeep Kumar Lakhera
- Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Samjhana Pradhan
- Department of Chemistry, College of Sciences and Engineering, Idaho State University, USA
| |
Collapse
|
17
|
Kumar S, Sangwan V, Kumar M, Deswal S. A survey on constructed wetland publications in the past three decades. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:992. [PMID: 37491676 DOI: 10.1007/s10661-023-11516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 06/13/2023] [Indexed: 07/27/2023]
Abstract
Decentralised wastewater treatment systems, such as constructed wetlands, are becoming increasingly popular these days because they are more economical and cost-effective than conventional plants. The primary objective of this review paper is to determine the number of studies that have been conducted on constructed wetlands, specifically 'free water surface flow constructed wetlands', 'horizontal subsurface flow constructed wetlands', 'vertical subsurface flow constructed wetlands', and 'hybrid constructed wetlands'. In addition, the paper examines the status of research publications on constructed wetlands by country, author, and journal. Based on the review, it has been found that although constructed wetland technology is economical and cost-effective, it is still not among the top 10 effluent treatment methods. Compared to other constructed wetland systems, 'hybrid constructed wetlands' have received minimal attention. Based on the search results, 4639 documents published between 1989 and 2021 have been extracted from the online edition of SCI-EXPANDED, Web of Science. The documents associated with constructed wetlands are divided into eight main document types. Articles and proceedings papers are the most common document type, accounting for 93% of all publications, followed by reviews (4%), meeting abstracts (1.3%), corrections (0.56%), editorial materials (0.38%), news items (0.2%), letters (0.04%), and book reviews (0.02%).
Collapse
Affiliation(s)
- Suresh Kumar
- Department of Civil Engineering, National Institute of Technology, Kurukshetra, 136119, Haryana, India.
| | - Vikramaditya Sangwan
- Department of Civil Engineering, National Institute of Technology, Kurukshetra, 136119, Haryana, India
| | - Manoj Kumar
- Department of Hydro and Renewable Energy, Indian Institute of Technology, Roorkee, 247667, India
| | - Surinder Deswal
- Department of Civil Engineering, National Institute of Technology, Kurukshetra, 136119, Haryana, India
| |
Collapse
|
18
|
Zhang NC, A D, Chao YQ, Li HY, Li C, Lin QQ, Li YY, Qiu RL. Mechanism of polycyclic aromatic hydrocarbons degradation in the rhizosphere of Phragmites australis: Organic acid co-metabolism, iron-driven, and microbial response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121608. [PMID: 37044257 DOI: 10.1016/j.envpol.2023.121608] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Microbial co-metabolism is crucial for the efficient biodegradation of polycyclic aromatic hydrocarbons (PAHs); however, their intrinsic mechanisms remain unclear. To explore the co-metabolic degradation of PAHs, root organic acids (ROAs) (phenolic ROAs: caffeic acid [CA] and ferulic acid [FA]; non-phenolic ROAs: oxalic acid [OA]) were exogenously added as co-metabolic substrates under high (HFe) and low (LFe) iron levels in this study. The results demonstrated that more than 90% of PAHs were eliminated from the rhizosphere of Phragmites australis. OA can promote the enrichment of unrelated degrading bacteria and non-specific dioxygenases. FA with a monohydroxy structure can activate hydroxylase; however, it relies on phytosiderophores released by plants (such as OA) to adapt to stress. Therefore, non-specific co-metabolism occurred in these units. The best performance for PAH removal was observed in the HFe-CA unit because: (a) HFe concentrations enriched the Fe-reducing and denitrifying bacteria and promoted the rate-limiting degradation for PAHs as the enzyme cofactor; (b) CA with a dihydroxyl structure enriched the related degrading bacteria, stimulated specific dioxygenase, and activated Fe to concentrate around the rhizosphere simultaneously to perform the specific co-metabolism. Understanding the co-metabolic degradation of PAHs will help improve the efficacy of rhizosphere-mediated remediation.
Collapse
Affiliation(s)
- Ni-Chen Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Dan A
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yuan-Qing Chao
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hai-Yan Li
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Charles Li
- Department of Public Health, California State University, East Bay, CA, 94542, USA
| | - Qing-Qi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ya-Ying Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
19
|
Chen Z, Zhang C, Liu Z, Song C, Xin S. Effects of Long-Term (17 Years) Nitrogen Input on Soil Bacterial Community in Sanjiang Plain: The Largest Marsh Wetland in China. Microorganisms 2023; 11:1552. [PMID: 37375054 PMCID: PMC10300847 DOI: 10.3390/microorganisms11061552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Increased nitrogen (N) input from natural factors and human activities may negatively impact the health of marsh wetlands. However, the understanding of how exogenous N affects the ecosystem remains limited. We selected the soil bacterial community as the index of ecosystem health and performed a long-term N input experiment, including four N levels of 0, 6, 12, and 24 gN·m-2·a-1 (denoted as CK, C1, C2, and C3, respectively). The results showed that a high-level N (24 gN·m-2·a-1) input could significantly reduce the Chao index and ACE index for the bacterial community and inhibit some dominant microorganisms. The RDA results indicated that TN and NH4+ were the critical factors influencing the soil microbial community under the long-term N input. Moreover, the long-term N input was found to significantly reduce the abundance of Azospirillum and Desulfovibrio, which were typical N-fixing microorganisms. Conversely, the long-term N input was found to significantly increase the abundance of Nitrosospira and Clostridium_sensu_stricto_1, which were typical nitrifying and denitrifying microorganisms. Increased soil N content has been suggested to inhibit the N fixation function of the wetland and exert a positive effect on the processes of nitrification and denitrification in the wetland ecosystem. Our research can be used to improve strategies to protect wetland health.
Collapse
Affiliation(s)
- Zhenbo Chen
- Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116023, China
| | - Chi Zhang
- Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116023, China
| | - Zhihong Liu
- Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116023, China
| | - Changchun Song
- Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116023, China
| | - Shuai Xin
- Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
20
|
Montoya A, Tejeda A, Sulbarán-Rangel B, Zurita F. Treatment of tequila vinasse mixed with domestic wastewater in two types of constructed wetlands. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:3072-3082. [PMID: 37387431 PMCID: wst_2023_189 DOI: 10.2166/wst.2023.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Tequila vinasse (TV) is a high-strength effluent generated during the production of tequila, with a chemical oxygen demand (COD) concentration of up to 74 g/L. In this study, the treatment of TV was evaluated in a 27-week study in two types of constructed wetlands (CWs), namely horizontal subsurface flow wetlands (HSSFWs) and vertical upflow wetlands (VUFWs). The pre-settled and neutralized TV was diluted at 10, 20, 30, and 40% with domestic wastewater (DWW). Volcanic rock (tezontle) was used as the substrate and Arundo donax and Iris sibirica as emergent vegetation. The two systems showed similar high removal efficiencies for COD, biochemical oxygen demand (BOD5), turbidity, total suspended solids (TSS), true colour (TC), electrical conductivity (EC), and total nitrogen (TN). The highest average percentages of removal were obtained at 40% of dilution: 95.4 and 95.8% for COD, 98.1 and 98.2% for turbidity, 91.8 and 95.9% for TSS, and 86.5 and 86.4% for TC in the HSSFWs and the VUFWs, respectively. This study demonstrates the potential of CWs for TV treatment as a major step in a treatment system.
Collapse
Affiliation(s)
- Arturo Montoya
- Environmental Quality Research Center, Centro Universitario de la Ciénega, University of Guadalajara, Ocotlán, Jalisco, Mexico E-mail:
| | - Allan Tejeda
- Environmental Quality Research Center, Centro Universitario de la Ciénega, University of Guadalajara, Ocotlán, Jalisco, Mexico
| | - Belkis Sulbarán-Rangel
- Department of Water and Energy Studies, Centro Universitario de Tonalá, University of Guadalajara, Av. Nuevo Periférico 555, Ejido San José Tateposco, Tonalá, Jalisco 45425, México
| | - Florentina Zurita
- Environmental Quality Research Center, Centro Universitario de la Ciénega, University of Guadalajara, Ocotlán, Jalisco, Mexico
| |
Collapse
|
21
|
Lei Y, Wagner T, Rijnaarts H, de Wilde V, Langenhoff A. The removal of micropollutants from treated effluent by batch-operated pilot-scale constructed wetlands. WATER RESEARCH 2023; 230:119494. [PMID: 36571965 DOI: 10.1016/j.watres.2022.119494] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Micropollutants (MPs), such as pharmaceuticals and antibiotics, are present in the environment at low concentrations (ng/L-μg/L). A constructed wetland (CW) is a nature-based wastewater treatment technology, which can be used to remove MPs from wastewater treatment plant effluent. This study aimed to improve MP removal of CWs by optimizing the design of batch-operated CW. Three pilot-scale CWs were built to study the effect of two design-features: the use of a support matrix (a mixture of bark and biochar) and continuous aeration. The use of bark-biochar as support matrix increased the removal of 11 of 12 studied MPs compared to the CW filled with conventional material sand. The highest improved removal by the addition of bark-biochar was more than 40% (median) for irbesartan, carbamazepine, hydrochlorothiazide and benzotriazole. Aerating the bed of the bark-biochar CW did not change MP removal. Besides, the presence of bark-biochar also enhanced the removal of total nitrogen during 10 months of operation, but no improvement was observed on the total organic carbon and total phosphorus removal. Considering the application in a batch-operated CW, MP removal can be greatly enhanced by replacing sand with bark-biochar that will act as MP adsorbing matrix.
Collapse
Affiliation(s)
- Yu Lei
- Environmental Technology, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Thomas Wagner
- Environmental Technology, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Huub Rijnaarts
- Environmental Technology, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Vinnie de Wilde
- Environmental Technology, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Alette Langenhoff
- Environmental Technology, Wageningen University & Research, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
22
|
Li D, Li K, Liu Y, Wang L, Liu N, Huang S. Synergistic PAH biodegradation by a mixed bacterial consortium: based on a multi-substrate enrichment approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24606-24616. [PMID: 36344887 DOI: 10.1007/s11356-022-23960-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) contamination in the environment involves multiple PAHs and various intermediates produced during the microbial metabolic process. A multi-substrate enrichment approach was proposed to develop a mixed bacterial community (MBC) from the activated sludge of a coking wastewater plant. The degradation performance of MBC was evaluated under different initial concentrations of PAHs (25-200 mg/L), temperature (20-35 °C), pH (5.0-9.0), salinity (0-10 g/L NaCl), and coexisting substrates (catechol, salicylic acid, and phthalic acid). The results showed that the degradation rates of phenanthrene and pyrene in all treatments were up to (99 ± 0.71)% and (99 ± 0.90)% after incubation of 5 days, respectively, indicating excellent biodegradation ability of PAHs by MBC. Furthermore, 16S rRNA gene amplicon sequencing analysis revealed that Pseudomonas was dominant, while Burkholderia had the largest proportion in acidic (pH = 5.0) and saline (10 g/L NaCl) environments. However, the proportion of dominant bacteria in MBC was markedly affected by intermediate metabolites. It was shown that MBC had a higher degradation rate of PAHs in the coexisting matrix due to the timely clearance of intermediates reducing the metabolic burden. Overall, our study provided valuable information to help design an effective strategy for the bioremediation of PAHs in complex environments.
Collapse
Affiliation(s)
- Dan Li
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1, Daxue Road, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Yanzehua Liu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1, Daxue Road, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Liping Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1, Daxue Road, Xuzhou, Jiangsu, 221116, People's Republic of China.
| | - Na Liu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1, Daxue Road, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Shaomeng Huang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1, Daxue Road, Xuzhou, Jiangsu, 221116, People's Republic of China
| |
Collapse
|
23
|
Xu W, Yang B, Wang H, Wang S, Jiao K, Zhang C, Li F, Wang H. Improving the removal efficiency of nitrogen and organics in vertical-flow constructed wetlands: the correlation of substrate, aeration and microbial activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21683-21693. [PMID: 36274076 DOI: 10.1007/s11356-022-23746-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Four vertical-flow CWs (VFCWs) with different substrates and aeration conditions were studied on nutrient-removal capacity from synthetic wastewater. Zeolite substrate VFCWs (none-aerated: VFCW-1, aerated: VFCW-3) paralleled with ceramsite (none-aerated:VFCW-2, aerated: VFCW-4) were used to study the removal efficiencies of N and organics, the bacterial community, and the related functional genes. The results indicated that the pollutant removal efficiency was significantly enhanced by intermittent aeration. VFCW-4 (ceramsite with aeration) demonstrated a significant potential to remove NH4+-N (89%), NO3--N (78%), TN (71%), and COD (65%). VFCW-3 and VFCW-4 had high abundances of Amx, amoA, and nirK genes, which was related to NH4+-N and NO2--N removal. The microbial diversity and structure varied with aeration and substrate conditions. Proteobacteria, Actinobacteria, Candidatus, and Acidobacteria were the main bacteria phyla, with the average proportion of 38%, 21%, 19%, and 7% in the VFCWs. Intermittent aeration increased the abundance of Acidobacteria, which was conducive to the removal of organic matters. Overall, ceramsite substrate combined with intermittent aeration has a great potential in removing pollutants in VFCWs.
Collapse
Affiliation(s)
- Wenxue Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Baoshan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
- Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan, 250022, China
| | - Hui Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
- Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan, 250022, China.
| | - Shuzhi Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Keqin Jiao
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Chuanfeng Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Feng Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Haixia Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| |
Collapse
|
24
|
Muduli M, Choudhary M, Ray S. Remediation and characterization of emerging and environmental pollutants from residential wastewater using a nature-based system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45750-45767. [PMID: 36707474 DOI: 10.1007/s11356-023-25553-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/21/2023] [Indexed: 01/29/2023]
Abstract
The nature-based systems (NBS) are nature inspired, unflagging, efficient, and budget friendly ideas that evolved as ideal technologies for wastewater treatment. The present study deals with the purification of residential wastewater through the NBS, covering three seasons. The NBS embedded with the Canna lily effectively eliminated organic matter, nutrients, and heavy metals. Nearly 57.2-75.2% COD, 69.9-83.2% BOD, 73.4-90.6% TSS, 51.1-71.6% PO43--P, 66.3-84.8% NH4+-N, 52-61.5% NO3--N, and 68-70.6% NO2--N removal were achieved. Heavy metals like Al, Cr, Mn, Fe, Ni, Cu, Zn, Mo, and Pb were removed, with a 98.25% reduction in the total bacterial count. The pollutant removal's kinetics was calculated using first-order kinetics. The mass removal rate of BOD was high in monsoon (22.3 g/m2/d), and COD was high in summer (36.4 g/m2/d). Organic compound removal (65.2%), including emerging pollutants, was observed by gas chromatography-mass spectrometry (GCMS) analysis of water and Canna samples. Wavelength dispersive X-ray fluorescence spectrometer (WDXRF) studied the elements and oxides retention by media and accumulation by the plant. The CHN content of the Canna and its morphological study was checked using the carbon CHNS analyzer and scanning electron microscope-energy dispersive X-ray (SEM-EDX), respectively. The performance of the NBS was validated using variance, correlation, and principal component analysis (PCA). This study shows the NBS effects on the remediation of environmental and emerging contaminants from residential wastewater and further use it for horticultural activities, thereby achieving sustainable development goals.
Collapse
Affiliation(s)
- Monali Muduli
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Meena Choudhary
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanak Ray
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
25
|
Zhang H, Wang XC, Zheng Y, Dzakpasu M. Removal of pharmaceutical active compounds in wastewater by constructed wetlands: Performance and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116478. [PMID: 36272291 DOI: 10.1016/j.jenvman.2022.116478] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/22/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The occurrence of pharmaceutical active compounds (PhACs) in aquatic environments is a cause for concern due to potential adverse effects on human and ecosystem health. Constructed wetlands (CWs) are cost-efficient and sustainable wastewater treatment systems for the removal of these PhACs. The removal processes and mechanisms comprise a complex interplay of photodegradation, biodegradation, phytoremediation, and sorption. This review synthesized the current knowledge on CWs for the removal of 20 widely detected PhACs in wastewater. In addition, the major removal mechanisms and influencing factors are discussed, enabling comprehensive and critical understanding for optimizing the removal of PhACs in CWs. Consequently, potential strategies for intensifying CWs system performance for PhACs removal are discussed. Overall, the results of this review showed that CWs performance in the elimination of some pharmaceuticals was on a par with conventional wastewater treatment plants (WWTPs) and, for others, it was above par. Furthermore, the findings indicated that system design, operational, and environmental factors played important but highly variable roles in the removal of pharmaceuticals. Nonetheless, although CWs were proven to be a more cost-efficient and sustainable technology for pharmaceuticals removal than other engineered treatment systems, there were still several research gaps to be addressed, mainly including the fate of a broad range of emerging contaminants in CWs, identification of specific functional microorganisms, transformation pathways of specific pharmaceuticals, assessment of transformation products and the ecotoxicity evaluation of CWs effluents.
Collapse
Affiliation(s)
- Hengfeng Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yucong Zheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Mawuli Dzakpasu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| |
Collapse
|
26
|
Sun S, Zhang M, Gu X, He S, Tang L. Microbial response mechanism of plants and zero valent iron in ecological floating bed: Synchronous nitrogen, phosphorus removal and greenhouse gas emission reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116326. [PMID: 36182841 DOI: 10.1016/j.jenvman.2022.116326] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/26/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Iron-based ecological floating beds (EFBs) are often used to treat the secondary effluent from wastewater treatment plant to enhance the denitrification process. However, the impact and necessity of plants on iron-based EFBs have not been systematically studied. In this research, two iron-based EFBs with and without plants (EFB-P and EFB) were performed to investigate the response of plants on nutrient removal, GHG emissions, microbial communities and functional genes. Results showed the total nitrogen and total phosphorus removal in EFB-P was 45-79% and 48-72%, respectively, while that in EFB was 31-67% and 44-57%. Meanwhile, plants could decrease CH4 emission flux (0-3.89 mg m-2 d-1) and improve CO2 absorption (4704-22321 mg m-2 d-1). Plants could increase the abundance of Nitrosospira to 1.6% which was a kind of nitrifying bacteria dominant in plant rhizosphere. Among all denitrification related genera, Simplicispira (13.08%) and Novosphingobium (6.25%) accounted for the highest proportion of plant rhizosphere and iron scrap, respectively. Anammox bacteria such as Candidatus_Brocadia was more enriched on iron scraps with the highest proportion was 1.21% in EFB-P, and 2.20% in EFB. Principal co-ordinates analysis showed that plants were the critical factor determining microbial community composition. TN removal pathways were mixotrophic denitrification and anammox in EFB-P while TP removal pathways were plant uptake and phosphorus-iron coprecipitation. In general, plants play an important directly or indirectly role in iron-based EFBs systems, which could not only improve nutrients removal, but also minimize the global warming potential and alleviate the greenhouse effect to a certain extent.
Collapse
Affiliation(s)
- Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 20092, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai, 200031, PR China.
| | - Li Tang
- Shanghai Engineering Research Center of Landscape Water Environment, Shanghai, 200031, PR China; Shanghai Landscape Architecture Design Institute, Shanghai, 200031, PR China
| |
Collapse
|
27
|
Dey Chowdhury S, Bhunia P, Surampalli RY. Vermifiltration: Strategies and techniques to enhance the organic and nutrient removal performance from wastewater. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10826. [PMID: 36518049 DOI: 10.1002/wer.10826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The vermifiltration (VF) technology has gained significant attention as a green alternative for remediating domestic and industrial wastewater over the last few decades. Of late, the implementation of various modifications to the orthodox VF technology, including tweaks in the design and operation of the vermifilters, has been portrayed in the available literature. However, owing to the scatteredness of the available information, the knowledge regarding the execution of the modified vermifilters is still inadequate. Hence, an effort has been made to comprehensively overview the innovative strategies and techniques adopted to improve the organic and nutrient removal potential of the VFs from wastewater. In addition, future perspectives have been recognized to design more efficient and sustainable VFs. This review explores more of such novel tactics to improve the performance of the VF technology regarding organic and nutrient removal from wastewater. PRACTITIONER POINTS: Innovative strategies and techniques implemented to VF technology were comprehensively overviewed. Design modification and advantages of each innovation were highlighted. The pollutant removal performance of every modification was emphasized. Modified vermifilters were better than the conventional vermifilters in terms of organic and nutrient removal from the wastewater.
Collapse
Affiliation(s)
- Sanket Dey Chowdhury
- Environmental Engineering, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Puspendu Bhunia
- Environmental Engineering, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Rao Y Surampalli
- Global Institute for Energy, Environment, and Sustainability, Lenexa, Kansas, USA
| |
Collapse
|
28
|
Tejeda A, Valencia-Botín AJ, Zurita F. Resistance evaluation of Canna indica, Cyperus papyrus, Iris sibirica, and Typha latifolia to phytotoxic characteristics of diluted tequila vinasses in wetland microcosms. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022:1-10. [PMID: 36382673 DOI: 10.1080/15226514.2022.2145266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tequila vinasse has a high contaminating capacity due to its physicochemical characteristics. Efficient and low-cost alternative treatments are required to reduce and control the environmental impacts caused by raw vinasse discharges, mainly from micro and small factories. One option is wetland technologies in which vegetation plays an important role in the proper functioning of the system; thus, the species to be used must be properly selected based on their resistance and tolerance to the toxic effects of vinasse. Therefore, this study aims to evaluate the resistance of four macrophyte species to tequila vinasse in wetland microcosms that is, Canna indica, Cyperus papyrus, Iris sibirica, and Typha latifolia which were exposed to 5, 7, 10, 12, and 15% of vinasse diluted with domestic wastewater. The control parameters (relative content, evapotranspiration, pH, electrical conductivity, and apparent color) showed that the plants in general developed stress symptoms. However, statistical analysis revealed a significant difference (p < 0.05) between plant species and vinasse treatments, further evidencing that I. sibirica is the species with the greatest potential to be used as emergent vegetation in treatment wetlands for the purification of tequila vinasse.
Collapse
Affiliation(s)
- Allan Tejeda
- Environmental Quality Research Center, Centro Universitario de la Ciénega, University of Guadalajara, Ocotlán, Mexico
| | - Alberto J Valencia-Botín
- Environmental Quality Research Center, Centro Universitario de la Ciénega, University of Guadalajara, Ocotlán, Mexico
| | - Florentina Zurita
- Environmental Quality Research Center, Centro Universitario de la Ciénega, University of Guadalajara, Ocotlán, Mexico
| |
Collapse
|
29
|
Chen C, Luo J, Bu C, Zhang W, Ma L. Efficacy of a large-scale integrated constructed wetland for pesticide removal in tail water from a sewage treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156568. [PMID: 35688240 DOI: 10.1016/j.scitotenv.2022.156568] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/11/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
The higher and higher detection frequencies of micro-pollutants such as pesticides in water are nowadays intensifying the investigation for strategies to provide effective engineering methods that could mitigate such substances. Traditional sewage treatment plants (STP) do not design specific processes for micro-pollutants removal in water. As an environmentally-friendly measure, some laboratory-scale wetlands have been proved to be effective in the removal of pesticides in water, but such studies are rarely carried out in large-scale wetlands, especially when they are adopted as a polishing step of STPs. Therefore, the further removals of micro-pollutants in tail water of STPs through the large-scale wetlands and the relevant removal mechanism are still knowledge gaps. In this study, 44 target pesticides were detected in the water of a large-scale integrated constructed wetland (ICW) for four seasons. The ICW was established to further process the tail water from a STP, whose drainage was from domestic sewage of local residents. There were 19, 16, 17, and 19 pesticides detected in spring, summer, autumn, and winter, respectively. The removal values for Σ19 pesticides ranged from 49.99% to 84.96% during the study period, and the removal of these pesticides followed significant seasonal trends, which was likely because the microorganisms responsible for biotic degradation were markedly influenced by seasonal temperature fluctuations. Proteobacteria, Chloroflexi, Acidobacteria, Planctomycetes, and Bacteroidetes were the dominant phyla, and might be associated with the biodegradation of organic pollutants in the ICW. Removal of pesticides by the ICW resulted in overall toxicity reductions in water, but butachlor and chlorpyrifos were still at non-ignorable ecological risks. This study highlights the potential of constructed wetlands for micro-pollutants removal in water as a polishing step in STPs.
Collapse
Affiliation(s)
- Chong Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiahong Luo
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Chengcheng Bu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Weiwei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Limin Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
30
|
Liu W, Chu Y, Tan Q, Chen J, Yang L, Ma L, Zhang Y, Wu Z, He F. Cold temperature mediated nitrate removal pathways in electrolysis-assisted constructed wetland systems under different influent C/N ratios and anode materials. CHEMOSPHERE 2022; 295:133867. [PMID: 35143860 DOI: 10.1016/j.chemosphere.2022.133867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/23/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Electrolysis had proven to be useful for the enhanced performance in constructed wetlands (CWs). While at cold temperature, the nitrate removal pathways, plant physiological characteristics and microbial community structure in electrolysis-assisted CWs were unclear. Therefore, the purification performance of three electrolysis-assisted horizontal subsurface-flow constructed wetlands (E-HSCWs) with different anodes and a control system in cold seasons were evaluated in this study. E-HSCWs showed a 2.02-83.21% increase of total nitrogen (TN) removal when compared to control, and the gaps were enlarged with increasing C/N (chemical oxygen demand/total nitrogen, COD/TN) ratios. Nitrite accumulation in E-HSCWs presented a first increase then went down trend with increasing C/N ratios, compared to a steady increase in control system. The optimum C/N ratio was 8 in E-HSCWs for both TN and COD removal. Moreover, Ti|IrO2-Ta2O5 (Ti) anode showed the highest potential for TN and COD removal. Less root weight, shorter root length and reduced TN and total phosphorus (TP) contents in roots were observed in wetland plants (Iris sibirica) of E-HSCWs. In E-HSCWs with Fe and C anodes, the nitrate removal was mainly accomplished by autotrophic denitrifier Hydrogenophaga. While in E-HSCWs with Ti anode, the synergistic effect of autotrophic denitrifier Hydrogenophaga and heterotrophic denitrifiers Acidovorax, Simplicispira, Zoogloea accounted for the nitrate removal. These results showed that E-HSCWs at proper C/N ratio of 8 would be promising for nitrate removal at cold temperature.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yifan Chu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qiyang Tan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jinmei Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lingli Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lin Ma
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| |
Collapse
|
31
|
Purification of Micro-Polluted Lake Water by Biofortification of Vertical Subsurface Flow Constructed Wetlands in Low-Temperature Season. WATER 2022. [DOI: 10.3390/w14060896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, a novel lab-scale biofortification-combination system (BCS) of Oenanthe javanica and Bacillus series was developed to improve the treatment ability of vertical subsurface flow constructed wetlands (VSFCW) at low temperatures (0–10 °C). The results showed that BCS-VSFCW overcame the adverse effects of low temperature and achieved the deep removal of nutrients. In addition, the removal rates of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) by BCS-VSFCW were 38.65%, 28.20%, 18.82%, and 14.57% higher than those of blank control, respectively. During the experiment, Oenanthe javanica and low temperature tolerant Bacillus complemented each other in terms of microbial activity and plant uptake. Therefore, VSFCW combined with Oenanthe javanica and low temperature tolerant Bacillus has a promising future in low temperature (<10 °C) areas of northern China.
Collapse
|
32
|
Gorito AM, Lado Ribeiro AR, Pereira MFR, Almeida CMR, Silva AMT. Advanced oxidation technologies and constructed wetlands in aquaculture farms: What do we know so far about micropollutant removal? ENVIRONMENTAL RESEARCH 2022; 204:111955. [PMID: 34454936 DOI: 10.1016/j.envres.2021.111955] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Aquaculture is the fastest growing animal food-producing sector. Water is the central resource for aquaculture, and it is essential that its quality be preserved. Micropollutants (MPs) can reach aquaculture through anthropogenic addition or inlet water, and may cause harmful effects such as endocrine disruption and antibiotic resistance, adversely affecting the fish species being farmed. Furthermore, the discharge of aquaculture effluents into the environment may contribute to the deterioration of water courses. In this sense, the implementation of environmentally responsible measures in aquaculture farms is imperative for the protection of ecosystems and human health. The European Commission (EC) has recently launched a guiding document promoting ecological aquaculture practices; however, options for water treatment are still lacking. Conventional processes are not designed to deal with MPs; this review article consolidates relevant information on the application of advanced oxidation technologies (AOTs) and constructed wetlands (CWs) as potential strategies in this regard. Although 161 studies on the application of AOTs or CWs in aquaculture have already been published, only 34 focused on MPs (28 on AOTs and 6 on CWs), whereas the others reported the removal of contaminants such as bacteria, organic matter, solids and inorganic ions. No study coupling both treatments has been reported to date for the removal of MPs from aquaculture waters. AOTs and CWs are prospective alternatives for the treatment of aquacultural aqueous matrices. However, the type of aquaculture activity and the specifications of these available technologies should be considered while selecting the most suitable treatment option.
Collapse
Affiliation(s)
- Ana M Gorito
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Ana R Lado Ribeiro
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - M Fernando R Pereira
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - C Marisa R Almeida
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
33
|
Younas F, Niazi NK, Bibi I, Afzal M, Hussain K, Shahid M, Aslam Z, Bashir S, Hussain MM, Bundschuh J. Constructed wetlands as a sustainable technology for wastewater treatment with emphasis on chromium-rich tannery wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126926. [PMID: 34449346 DOI: 10.1016/j.jhazmat.2021.126926] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/30/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Water scarcity is a major threat to agriculture and humans due to over abstraction of groundwater, rapid urbanization and improper use in industrial processes. Industrial consumption of water is lower than the abstraction rate, which ultimately produces large amounts of wastewater such as from tannery industry containing high concentration of chromium (Cr). Chromium-contaminated tannery industry wastewater is used for irrigation of food crops, resulting in food safety and public health issues globally. In contrast to conventional treatment technologies, constructed wetlands (CWs) are considered as an eco-friendly technique to treat various types of wastewaters, although their application and potential have not been discussed and elaborated for Cr treatment of tannery wastewater. This review briefly describes Cr occurrence, distribution and speciation in aquatic ecosystems. The significance of wetland plant species, microorganisms, various bedding media and adsorbents have been discussed with a particular emphasis on the removal and detoxification of Cr in CWs. Also, the efficiency of various types of CWs is elaborated for advancing our understanding on Cr removal efficiency and Cr partitioning in various compartments of the CWs. The review covers important aspects to use CWs for treatment of Cr-rich tannery wastewater that are key to meet UN's Sustainable Development Goals.
Collapse
Affiliation(s)
- Fazila Younas
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan.
| | - Muhammad Afzal
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| | - Khalid Hussain
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Zubair Aslam
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Safdar Bashir
- Department of Soil and Environmental Science, Ghazi University, Dera Ghazi Khan 32200, Pakistan
| | - Muhammad Mahroz Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba 4350, Queensland, Australia
| |
Collapse
|
34
|
Potential Use of Constructed Wetland Systems for Rural Sanitation and Wastewater Reuse in Agriculture in the Moroccan Context. ENERGIES 2021. [DOI: 10.3390/en15010156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Located in a semi-arid to arid region, Morocco is confronting increasing water scarcity challenges. In the circular economy paradigm, the reuse of treated wastewater in agriculture is currently considered a possible solution to mitigate water shortage and pollution problems. In recent years, Morocco has made significative progress in urban wastewater treatment under the National Wastewater Program (PNA). However, rural sanitation has undergone significant delays. Therefore, an alternative technology for wastewater treatment and reuse in rural areas is investigated in this review, considering the region’s economic, social, and regulatory characteristics. Constructed wetlands (CWs) are a simple, sustainable, and cost-effective technology that has yet to be fully explored in Morocco. CWs, indeed, appear to be suitable for the treatment and reuse of wastewater in remote rural areas if they can produce effluent that meets the standards of agricultural irrigation. In this review, 29 studies covering 16 countries and different types of wastewater were collected and studied to assess the treatment efficiency of different types of CWs under different design and operational parameters, as well as their potential application in agricultural reuse. The results demonstrated that the removal efficiency of conventional contamination such as organic matter and suspended solids is generally high. CWs also demonstrated a remarkable capacity to remove heavy metals and emerging contaminants such as pharmaceuticals, care products, etc. The removal of microbial contamination, on the other hand, is challenging, and does not satisfy the standards all the time. However, it can be improved using hybrid constructed wetlands or by adding polishing treatment. In addition, several studies reported that CWs managed to produce effluent that met the requirements of wastewater reuse in agriculture of different countries or organisations including Morocco.
Collapse
|
35
|
Patyal V, Jaspal D, Khare K. Materials in constructed wetlands for wastewater remediation: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2853-2872. [PMID: 34595802 DOI: 10.1002/wer.1648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The wastewater treatment industry is constantly evolving to abate emerging contaminants and to meet stringent legislative requirements. The existing technologies need to be modified, or new innovative treatment techniques need to be developed to ensure environmental protection and secure sustainability in the future. Emphasis is mainly on nutrient recovery, energy-efficient systems, zero waste generation, and environmentally friendly techniques. Constructed wetlands (CWs) have evolved as natural, eco-friendly, economical, and low-maintenance alternatives for wastewater remediation. These wetlands employ several materials as adsorbents for the treatment, commonly known as media/substrate. This review paper presents an assessment of various materials that can be used as substrates in CWs for the efficient removal of organic and non-biodegradable pollutants in different types of wastewaters. The effect of pH, mineral composition, specific surface area, and porosity of various natural materials and agricultural and industrial wastes used as media in CWs for wastewater remediation was discussed. The study showed that different substrates like alum sludge, limestone, coal slags, rice husk, and sand had removal efficiency for chemical oxygen demand (COD): 71.8%-82%, total phosphorous (TP): 77%-80%, and total nitrogen (TN): 52%-82% for different types of wastewaters. It also highlights the challenges related to the long-term sustainability of these materials. PRACTITIONER POINTS: Physicochemical characteristics influence the removal efficiency of the materials Life of media is also important along with removal efficiency and cost The sustainability of materials is very crucial for the overall performance of the system.
Collapse
Affiliation(s)
- Vandana Patyal
- Department of Civil Engineering, Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Pune, India
| | - Dipika Jaspal
- Department of Applied Science, Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Pune, India
| | - Kanchan Khare
- Department of Civil Engineering, Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Pune, India
| |
Collapse
|
36
|
Wang X, Bai J, Tian Y, Wang T, Zhou X, Zhang C. Synergistic effects of natural ventilation and animal disturbance on oxygen transfer, pollutants removal and microbial activity in constructed wetlands. CHEMOSPHERE 2021; 283:131175. [PMID: 34157618 DOI: 10.1016/j.chemosphere.2021.131175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/11/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the feasibility of combining natural ventilation and animal disturbance in constructed wetlands (CWs) and the joint effects on oxygen transfer, microbial activity, organics, and nitrogen removal. The results showed that natural ventilation extended the habitat depth of earthworms by approximately 10 cm by significantly improving oxygen transfer in CWs; in turn, the earthworms slightly promoted the addition of oxygen inside CWs through burrowing activity. Therefore, the interaction between natural ventilation and animal disturbance in CWs mutually reinforced oxygen transfer, enzymatic activity, and the ammonification, nitrification, and aerobic degradation of organics. Additionally, the combination of natural ventilation and animal disturbance in CWs promoted the oxygen transfer rate by 42.1%-68.2%; promoted catalase, urease, and dehydrogenase activity by 19.3%-24.8%, 17.4%-22.3%, and 18.1%-25.6%, respectively; and promoted COD and NH3-N removal loads by 48.6%-74.2% and 94.9%-135.3%, respectively. To achieve higher total nitrogen removal, moderate wind speeds (≤1 m/s in this study) are recommended to simultaneously create aerobic and anoxic/anaerobic conditions. Although natural ventilation reduced the microbial diversity in CWs by promoting the abundance of aerobes, the combination of natural ventilation and animal disturbance was generally conducive to improving microbial diversity. The relationship between wind speed and oxygen transfer rate and COD and NH3-N removal loads in naturally ventilated CWs conformed to cubic equations.
Collapse
Affiliation(s)
- Xiaoou Wang
- Key Laboratory of Clean Energy Utilization and Pollutant Control in Tianjin, School of Energy and Environmental Engineering, Hebei University of Technology, China
| | - Jun Bai
- Key Laboratory of Clean Energy Utilization and Pollutant Control in Tianjin, School of Energy and Environmental Engineering, Hebei University of Technology, China
| | - Yimei Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Tao Wang
- Key Laboratory of Clean Energy Utilization and Pollutant Control in Tianjin, School of Energy and Environmental Engineering, Hebei University of Technology, China
| | - Xiaoxuan Zhou
- Key Laboratory of Clean Energy Utilization and Pollutant Control in Tianjin, School of Energy and Environmental Engineering, Hebei University of Technology, China
| | - Changping Zhang
- Key Laboratory of Clean Energy Utilization and Pollutant Control in Tianjin, School of Energy and Environmental Engineering, Hebei University of Technology, China.
| |
Collapse
|
37
|
Wang X, Zhu H, Yan B, Shutes B, Bañuelos G, Wen H, Cheng R. Improving denitrification efficiency in constructed wetlands integrated with immobilized bacteria under high saline conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117592. [PMID: 34171725 DOI: 10.1016/j.envpol.2021.117592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/18/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Constructed wetlands (CWs) inoculated with exogenous microbes have great potential for removing pollutants in adverse environments. The rapid loss of functional bacteria and the high cost of repeated additions of inoculum, however, limit the practical application of this technology. In this study, C-F2 immobilized bacteria (i.e., immobilized salt-tolerant bacterium Alishewanella sp. F2 incorporated with a carbon source) were developed and utilized in CWs for solving the above problems. A 60-day experiment demonstrated that bioaugmented CWs (Bio-CWs) with the addition of C-F2 immobilized bacteria into the bottom gravel layer of CW microcosms (B-CF2 treatment) exhibited high nitrogen removal efficiency under a saline condition (electrical conductivity of 15 mS/cm). We measured mean nitrate nitrogen (NO3--N) and total nitrogen (TN) removal percentages of 97.8% and 88.1%, respectively, which were significantly (p < 0.05) higher than those in Bio-CWs with microbial inoculum (MI-F2 treatment, 63.5% and 78.2%) and unbioaugmented CWs (CK, 48.7% and 67.2%). The TN content of the entire plant was significantly (p < 0.05) increased in B-CF2 (636.06 mg/microcosm) compared with CK (372.06 mg/microcosm). The relative abundances of the genera Alishewanella (i.e., the exogenous bacterium, 5.5%), Clostridium-XlVa (8.8%) and Bacteroides (21.1%) in B-CF2 were significantly (p < 0.05) higher than in MI-F2 and CK, which improved the denitrification capacity of CWs. Overall, a high denitrification efficiency and durability were achieved in the newly developed Bio-CWs (i.e., B-CF2 treatment) with immobilized bacteria under saline conditions, which provides an alternative technology for the rapid removal of nitrogen from saline wastewater.
Collapse
Affiliation(s)
- Xinyi Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China.
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China
| | - Brian Shutes
- Department of Natural Sciences, Middlesex University, Hendon, London, NW4 4BT, UK
| | - Gary Bañuelos
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA, 93648-9757, USA
| | - Huiyang Wen
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China
| | - Rui Cheng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China
| |
Collapse
|
38
|
Malyan SK, Yadav S, Sonkar V, Goyal VC, Singh O, Singh R. Mechanistic understanding of the pollutant removal and transformation processes in the constructed wetland system. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1882-1909. [PMID: 34129692 DOI: 10.1002/wer.1599] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/12/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Constructed wetland systems (CWs) are biologically and physically engineered systems to mimic the natural wetlands which can potentially treat the wastewater from the various point and nonpoint sources of pollution. The present study aims to review the various mechanisms involved in the different types of CWs for wastewater treatment and to elucidate their role in the effective functioning of the CWs. Several physical, chemical, and biological processes substantially influence the pollutant removal efficiency of CWs. Plants species Phragmites australis, Typha latifolia, and Typha angustifolia are most widely used in CWs. The rate of nitrogen (N) removal is significantly affected by emergent vegetation cover and type of CWs. Hybrid CWs (HCWS) removal efficiency for nutrients, metals, pesticides, and other pollutants is higher than a single constructed wetland. The contaminant removal efficiency of the vertical subsurface flow constructed wetlands (VSSFCW) commonly used for the treatment of domestic and municipal wastewater ranges between 31% and 99%. Biochar/zeolite addition as substrate material further enhances the wastewater treatment of CWs. Innovative components (substrate materials, plant species) and factors (design parameters, climatic conditions) sustaining the long-term sink of the pollutants, such as nutrients and heavy metals in the CWs should be further investigated in the future. PRACTITIONER POINTS: Constructed wetland systems (CWs) are efficient natural treatment system for on-site contaminants removal from wastewater. Denitrification, nitrification, microbial and plant uptake, sedimentation and adsorption are crucial pollutant removal mechanisms. Phragmites australis, Typha latifolia, and Typha angustifolia are widely used emergent plants in constructed wetlands. Hydraulic retention time (HRT), water flow regimes, substrate, plant, and microbial biomass substantially affect CWs treatment performance.
Collapse
Affiliation(s)
- Sandeep K Malyan
- Research Management and Outreach Division, National Institute of Hydrology, Roorkee, India
| | - Shweta Yadav
- Research Management and Outreach Division, National Institute of Hydrology, Roorkee, India
| | - Vikas Sonkar
- Research Management and Outreach Division, National Institute of Hydrology, Roorkee, India
| | - V C Goyal
- Research Management and Outreach Division, National Institute of Hydrology, Roorkee, India
| | - Omkar Singh
- Research Management and Outreach Division, National Institute of Hydrology, Roorkee, India
| | - Rajesh Singh
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand, India
| |
Collapse
|
39
|
Aguilar L, Gallegos Á, Martín Pérez L, Arias CA, Rubio R, Haulani L, García Raurich J, Pallarés M, de Pablo J, Morató J. Effect of intermittent induced aeration on nitrogen removal and denitrifying-bacterial community structure in Cork and gravel vertical flow pilot-scale treatment wetlands. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:1121-1130. [PMID: 34415215 DOI: 10.1080/10934529.2021.1967652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
In this work, we have evaluated the impact of intermittent induced aeration in total nitrogen (TN), ammonia (NH4-N) and nitrate-nitrogen (NO3-N) removal in four pilot-scale vertical flow constructed wetlands (VFCW) (two aerated two non-aerated) using cork by-product or gravel as the filter material and planted with Phragmites australis. Both aerated and non-aerated systems achieved high COD and BOD5 elimination rates (≥ 90%) at the end of the 5-month test period. However, the aerated systems presented maximal COD and BOD5 removal from the third month of operation onwards since air supply favored the oxidative bioprocesses occurring within the wetlands. Cork and gravel aerated VFCW also proved to be more efficient (p < 0.05) in NO3-N removal than the non-aerated systems and this upgraded performance was correlated with a significant higher relative abundance of the nirS gene. The aerated systems also showed a slightly improved NH4-N removal. Noticeably, cork VFCW showed higher TN removal mean values (∼35%) than gravel wetlands (27-28%) regardless aeration. Moreover, cork VFCW showed higher relative abundance of the nosZ gene. Our results demonstrated a better nitrogen elimination for the aerated cork pilot-scale VFCW, and this behavior was correlated with a higher abundance of both nirS and nosZ, two of the key functional genes involved in nitrogen metabolism.
Collapse
Affiliation(s)
- Lorena Aguilar
- UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - Ángel Gallegos
- UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - Leonardo Martín Pérez
- UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya, Terrassa, Spain
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO-UCA, CONICET), Fac. de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA-Rosario), Rosario (Santa Fe), Argentina
| | - Carlos A Arias
- Department of Biological Sciences, University of Aarhus, Arhus C, Denmark
- Aarhus University Centre for Water Technology WATEC, Aarhus University, Aarhus C, Denmark
| | - Raquel Rubio
- UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - Leila Haulani
- UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - Josep García Raurich
- Centro de Investigación en Seguridad y Control Alimentario (CRESCA), Depto. de Ingeniería Química, Universidad Politécnica de Cataluña-BarcelonaTech, Terrassa, Spain
| | - Marc Pallarés
- Grupo de Desarrollo Empresarial, I + D+i, S.L, C/Colom, Terrassa, Spain
| | - Joan de Pablo
- Resource Recovery and Environmental Management (R2EM), Depto. de Ingeniería Química, Universidad Politécnica de Cataluña-BarcelonaTech, Barcelona, Spain
| | - Jordi Morató
- UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya, Terrassa, Spain
| |
Collapse
|
40
|
Li Y, Bai X, Ding R, Lv W, Long Y, Wei L, Xiang F, Wang R. Removal of phosphorus and ammonium from municipal wastewater treatment plant effluent by manganese ore in a simulated constructed wetland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41169-41180. [PMID: 33779909 DOI: 10.1007/s11356-021-13555-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Natural manganese ore (NM) is selected as a distinguished constructed wetland (CW) substrate for nutrient pollutants removal, however, the study on municipal wastewater treatment plant (WWTP) effluent treatment remains scarce. The current study was to investigate the sorption characteristics of NM and the removal efficiency of ammonium and phosphorus from one WWTP effluent in a simulated vertical flow NM constructed wetland (NM-VFCW). Results indicated that NM could effectively sorb ammonium and phosphorus within 24 h, and the desorption ratio was less than 7%. The sorption of ammonium and phosphorus enhanced when increasing the particle size of NM, but was not sensitive with temperature. The removal efficiencies for ammonium and phosphorus were 65% and 76% in NM-VFCW, which were 61% and 31% in gravel VFCW. The much higher removal efficiency for phosphorus was mainly attributed to the precipitation of phosphorus which was identified by the SEM and EDS spectrum. Therefore, the manganese ore sand is highlighted as a powerful substrate for simultaneous advanced removal of phosphorus and ammonium in constructed wetland systems.
Collapse
Affiliation(s)
- Yungui Li
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xueying Bai
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Ruonan Ding
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wenxuan Lv
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Ying Long
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Liang Wei
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Fachun Xiang
- Agricultural Products Quality Safety Inspection and Testing Center, Mianyang, 621010, China
| | - Rong Wang
- School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
41
|
Diffuse Water Pollution from Agriculture: A Review of Nature-Based Solutions for Nitrogen Removal and Recovery. WATER 2021. [DOI: 10.3390/w13141893] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The implementation of nature-based solutions (NBSs) can be a suitable and sustainable approach to coping with environmental issues related to diffuse water pollution from agriculture. NBSs exploit natural mitigation processes that can promote the removal of different contaminants from agricultural wastewater, and they can also enable the recovery of otherwise lost resources (i.e., nutrients). Among these, nitrogen impacts different ecosystems, resulting in serious environmental and human health issues. Recent research activities have investigated the capability of NBS to remove nitrogen from polluted water. However, the regulating mechanisms for nitrogen removal can be complex, since a wide range of decontamination pathways, such as plant uptake, microbial degradation, substrate adsorption and filtration, precipitation, sedimentation, and volatilization, can be involved. Investigating these processes is beneficial for the enhancement of the performance of NBSs. The present study provides a comprehensive review of factors that can influence nitrogen removal in different types of NBSs, and the possible strategies for nitrogen recovery that have been reported in the literature.
Collapse
|
42
|
Xiao J, Huang J, Wang M, Huang M, Wang Y. The fate and long-term toxic effects of NiO nanoparticles at environmental concentration in constructed wetland: Enzyme activity, microbial property, metabolic pathway and functional genes. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125295. [PMID: 33609865 DOI: 10.1016/j.jhazmat.2021.125295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/22/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
Although the potential threats of metallic oxide nanoparticles (MNPs) to constructed wetland (CW) have been broadly reported, limited information is available regarding the long-term impact of nickel oxide nanoparticles (NiO NPs) on CWs at the environmentally relevant concentrations. Here, we comprehensively elucidated the responses in the treatment performance, enzyme activities, microbial properties, metabolic pathways and functional genes of CWs to chronic exposure of NiO NPs (0.1 and 1 mg/L) for 120 days, with a quantitative analysis on the fate and migration of NiO NPs within CWs. Nitrogen removal evidently declined under the long-term exposure to NiO NPs. Besides, NiO NPs induced a deterioration in phosphorus removal, but gradually restored over time. The activities of dehydrogenase (DHA), phosphatase (PST), urease (URE), ammonia oxygenase (AMO) and nitrate reductase (NAR) were inhibited to some extent under NiO NPs stress. Furthermore, NiO NPs exposure reduced bacterial diversity, shifted microbial composition and obviously inhibited the transcription of the ammonia oxidizing and denitrifying functional genes. The results of nickel mass balance indicated that the major removal mechanism of NiO NPs in CWs was through substrate adsorption and plants uptake. Thus, the ecological impacts of prolonged NiO NPs exposure at environmental concentrations should not be neglected.
Collapse
Affiliation(s)
- Jun Xiao
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Juan Huang
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China.
| | - Mingyu Wang
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Minjie Huang
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Ying Wang
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| |
Collapse
|
43
|
Wang X, Zhu H, Yan B, Shutes B, Bañuelos G, Cheng R. Response of the microbial community to salt stress and its stratified effect in constructed wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18089-18101. [PMID: 33405146 DOI: 10.1007/s11356-020-11937-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Nitrogen removal in constructed wetlands (CWs) may be inhibited by salinity. The clarification of the response of microbial community to salt stress is a premise for developing strategies to improve nitrogen removal efficiency in CWs under saline conditions. Results showed that the ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3--N), and total nitrogen (TN) removal percentages significantly (p < 0.05) decreased in CWs with increasing salinity. The structure and abundance of the microbial community varied with different salinity levels and sampling depths in CWs. Compared with a non-saline condition, the abundances of some bacteria with a denitrification function (e.g., Arthrobacter) significantly (p < 0.05) decreased in CWs under saline conditions (i.e., EC of 15 and 30 mS/cm). Aerobic bacteria (e.g., Sphingomonas) exhibited more abundance in soil and upper gravel samples in CWs than those in bottom gravel samples, while the abundance of some denitrifying bacteria (e.g., Thauera and Azoarcus) was significantly (p < 0.05) higher in bottom gravel samples compared with soil and upper gravel samples, respectively. This study provides both microbiological evidence for explaining the impact of salt stress on nitrogen removal in CWs and scientific reference for developing enhanced strategies to improve the nitrogen removal capacity of CWs.
Collapse
Affiliation(s)
- Xinyi Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
- Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China.
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China
| | - Brian Shutes
- Department of Natural Sciences, Middlesex University, Hendon, London, NW4 4BT, UK
| | - Gary Bañuelos
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA, 93648-9757, USA
| | - Rui Cheng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China
| |
Collapse
|
44
|
Wang J, Wang W, Xiong J, Li L, Zhao B, Sohail I, He Z. A constructed wetland system with aquatic macrophytes for cleaning contaminated runoff/storm water from urban area in Florida. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111794. [PMID: 33341472 DOI: 10.1016/j.jenvman.2020.111794] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/22/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
A community of aquatic macrophytes has an important role in reducing nutrient load and organic and inorganic contaminants in storm/runoff water. However, minimal information is available regarding the efficiency of constructed wetlands for cleaning runoff water from urban areas, especially in the tropical and subtropical regions. This study investigated the effectiveness of constructed wetland integrated with aquatic macrophytes for removal of chemical and microbial contaminants in the storm/runoff water from the urban areas. Water samples were monthly collected in the constructed wetland from the inlet of storm/runoff water, middle and outlet of discharge, and analyzed for physical and chemical properties, concentrations of nutrients, metals, and fecal coliform (FC) during the period of November, 2016 to April, 2018 in St. Lucie county, Florida, USA. The dominant plant species in the constructed wetland included cattail (Typha latifolia), waterthyme (Hydrilla verticillata) and water hyacinth (Eichhornia crassipes), and periphyton filamentous algae (Spirogyra). The improvement of pH and electrical conductivity (EC) was not obvious, but the concentration of total suspended solids was significantly reduced. This system was effective in the removal of fecal coliform (by 68%) and particulate phosphorus (P, 72%), followed by total P (42%) and N (35%). Concentrations of metallic pollutants including cadmium (Cd), lead (Pb), chromium (Cr), and copper (Cu) were mostly below the detection limit (<1 ppb) except for zinc (Zn), of which concentration was reduced by 23%. The removal of FC was consistently effective all the year round, whereas the removal of total N, P and particulate-P was effective in spring and summer, and less in autumn and winter. These results indicate that constructed wetland with a natural aquatic plant community can effectively reduce the loads of nutrients, metals, and fecal coliforms in water column. Regular harvest of aquatic macrophytes communities and collecting litters may further improve the system efficiency for cleaning storm water from urban areas.
Collapse
Affiliation(s)
- Jinqi Wang
- University of Florida, Institute of Food and Agricultural Sciences, Department of Soil and Water Sciences/Indian River Research and Education Center, Fort Pierce, FL, 34945, USA
| | - Weimu Wang
- University of Florida, Institute of Food and Agricultural Sciences, Department of Soil and Water Sciences/Indian River Research and Education Center, Fort Pierce, FL, 34945, USA
| | - Jibing Xiong
- University of Florida, Institute of Food and Agricultural Sciences, Department of Soil and Water Sciences/Indian River Research and Education Center, Fort Pierce, FL, 34945, USA
| | - Liguang Li
- University of Florida, Institute of Food and Agricultural Sciences, Department of Soil and Water Sciences/Indian River Research and Education Center, Fort Pierce, FL, 34945, USA
| | - Biying Zhao
- University of Florida, Institute of Food and Agricultural Sciences, Department of Soil and Water Sciences/Indian River Research and Education Center, Fort Pierce, FL, 34945, USA
| | - Irfan Sohail
- University of Florida, Institute of Food and Agricultural Sciences, Department of Soil and Water Sciences/Indian River Research and Education Center, Fort Pierce, FL, 34945, USA
| | - Zhenli He
- University of Florida, Institute of Food and Agricultural Sciences, Department of Soil and Water Sciences/Indian River Research and Education Center, Fort Pierce, FL, 34945, USA.
| |
Collapse
|
45
|
Wang H, Chang H, Zhang C, Feng C, Wu F. Occurrence of Chlorinated Paraffins in a Wetland Ecosystem: Removal and Distribution in Plants and Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:994-1003. [PMID: 33415977 DOI: 10.1021/acs.est.0c05694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Constructed wetlands (CWs) are of great socioeconomic significance because they can remove anthropogenic compounds from aquatic environments. However, no information is available about the removal of persistent chlorinated paraffins by CWs. This study investigates the occurrences, fates, and mass balances of short-chain chlorinated paraffins (SCCPs), medium-chain chlorinated paraffins (MCCPs), and long-chain chlorinated paraffins (LCCPs) in a CW ecosystem. MCCPs were the predominant compounds in water, sediments, and plants within the system. The amounts of SCCPs, MCCPs, and LCCPs entering the wetland were 3.3, 6.8, and 3.4 g/day, respectively. Overall removal efficiencies were 51-78%, 76-86%, and 76-91% for SCCPs, MCCPs, and LCCPs, respectively, and the greatest reduction in CPs was observed in the subsurface flow wetland unit. CPs were predominantly adsorbed onto the sediment and bioaccumulated in the plants, and their organic carbon-water partitioning and plant-water accumulation increased as the carbon and chlorine numbers increased. Sediment sorption (12-38%) and degradation (12-50%) contributed the most to the removal of CPs, but bioaccumulation of CPs in plants (3.8-12%) should not be neglected. Wetlands can economically remove large amounts of CPs, but sediment in the wetland systems could be a sink for CP pollutants.
Collapse
Affiliation(s)
- Hongping Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hong Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Cunxu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
46
|
Zhu T, Gao J, Huang Z, Shang N, Gao J, Zhang J, Cai M. Comparison of performance of two large-scale vertical-flow constructed wetlands treating wastewater treatment plant tail-water: Contaminants removal and associated microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111564. [PMID: 33126198 DOI: 10.1016/j.jenvman.2020.111564] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
The removal efficiency of contaminants in large-scale integrated vertical-flow constructed wetland (IVCW) and vertical-flow constructed wetland (VCW) for wastewater treatment plant (WWTP) tail-water was evaluated, and the microbial community was also investigated in this study. The results for 14 months study period indicated that 40.05% chemical oxygen demand (COD), 45.47% ammonia nitrogen (NH4+-N), 62.55% total phosphorus (TP), 55.53% total nitrogen (TN) and 57.20% total suspended solids (TSS) average removal efficiencies were achieved in the IVCW. There was a poor performance of TN removal in the VCW, with an average removal efficiency of 38.13%. There was no significant seasonal difference in TP removal, and a strong positive correlation between influent TP load and removed load. The high-throughput sequencing analysis revealed that Proteobacteria, Planctomycetes, Bacteroidetes and Acidobacteria were dominant in nature and wetland systems. The relative abundance of nitrifying bacteria, denitrifying bacteria and anammox bacteria confirmed that nitrification, denitrification and anammox may be the main processes for nitrogen removal in the IVCW.
Collapse
Affiliation(s)
- Tongdou Zhu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jingqing Gao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Zhenzhen Huang
- School of Water Conservancy and Engineering, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Na Shang
- Zhengzhou Yuanzhihe Environmental Protection Technology Co., Ltd., Zhengzhou, 450000, PR China
| | - Jianlei Gao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jinliang Zhang
- Yellow River Engineering Consulting Co., Ltd., Zhengzhou, 450003, PR China
| | - Ming Cai
- Yellow River Engineering Consulting Co., Ltd., Zhengzhou, 450003, PR China
| |
Collapse
|
47
|
Huang J, Wang J, Jia L. Removal of zinc(II) from livestock and poultry sewage by a zinc(II) resistant bacteria. Sci Rep 2020; 10:21027. [PMID: 33273584 PMCID: PMC7713077 DOI: 10.1038/s41598-020-78138-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/19/2020] [Indexed: 11/23/2022] Open
Abstract
In order to remediate Zn-contaminated livestock and poultry sewage, a zinc-resistant bacterial strain was screened and isolated from the manure of livestock and poultry and identified by molecular biology. The optimal conditions for removing zinc(II) from strain XZN4 were determined by single-factor experiments as follows: within 3 times of repeated use, pH value was 5, initial concentration of zinc(II) was 100 mg/L, the amount of bacteria was 6 g/L, the temperature was 25-30 °C, and the removal equilibrium time was 60 min. Then, through adsorption isotherm model, scanning electron microscope image, energy dispersive spectrum analysis, infrared spectrum analysis and sterilization control experiment, it was found that the removal of zinc(II) by bacteria was single-molecule layer adsorption, which was carried out in coordination with degradation. The influence of different concentrations of copper(II), ammonia nitrogen, phosphorus, and chlortetracycline on the removal of zinc(II) from livestock and poultry sewage by XZN4 strain in the actual application was discussed. The bacteria can reduce the concentration of zinc(II) from the complex livestock and poultry waste water to below the discharge standard, and has a strong environmental tolerance, the highest removal rate reached 88.6% and the highest removal amount reached 10.30 mg/L. The screening and application of XZN4 strain can thus be of great significance for the microbial treatment of zinc(II) in complex livestock and poultry sewage. The results will provide guidance for the microbial remediation of heavy metal pollution.
Collapse
Affiliation(s)
- Jiang Huang
- Key Laboratory of Straw Biology and Utilization, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- College of Resource and Environment, Jilin Agricultural University, Changchun, Jilin, China
| | - Jihong Wang
- Key Laboratory of Straw Biology and Utilization, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China.
| | - Lan Jia
- College of Resource and Environment, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
48
|
Zhang M, Chen C, Zhou S, Yang J, Qiu H, Zhao D, An S. Operation strategy for constructed wetlands in dry seasons with insufficient influent wastewater. BIORESOURCE TECHNOLOGY 2020; 317:124049. [PMID: 32871330 DOI: 10.1016/j.biortech.2020.124049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Using vertical flow constructed wetlands (VFCWs) with different influent wastewater volumes and feeding modes, this study aimed to identify the optimal operation strategy for dry seasons under wastewater deficiency. Using half the influent wastewater volume (HIWV) did not necessarily improve the removal efficiency (RE) of the chemical oxygen demand (COD), NH4+-N, NO3--N and total nitrogen. In the HIWV treatments, intermittent resting did not result in significantly different pollutant REs, whereas strategies involving partial saturation and prolongation of the hydraulic retention time (HRT) slightly decreased the pollutant REs compared with those obtained in the constant feeding mode. Of the three HIWV strategies, the intermittent resting mode achieved the highest anaerobic ammoxidation, the dominant pathway for nitrogen removal in the systems, and thus stimulated nitrogen transformation. The intermittent resting mode forms part of the recommended operation strategy for VFCWs in dry seasons with wastewater deficiency.
Collapse
Affiliation(s)
- Miao Zhang
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Chen Chen
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Shenyan Zhou
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Jiqiang Yang
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Han Qiu
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Dehua Zhao
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China.
| | - Shuqing An
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| |
Collapse
|
49
|
Reliability and Efficiency of Pollutant Removal in Four-Stage Constructed Wetland of SSVF-SSHF-SSHF-SSVF Type. WATER 2020. [DOI: 10.3390/w12113153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present paper reports pollutant removal efficiencies and reliability for a four-stage hybrid constructed wetland (HCW) consisting of the following sequence of subsurface (SS), vertical flow (VF) and horizontal flow (HF) beds: SSVF-SSHF-SSHF-SSVF. The experiments were carried out over a period of three years, with sampling done in each season: winter, spring, summer and autumn. Grab samples of wastewater collected from different stages of treatment were tested for total suspended solids (TSS), BOD5, COD, total nitrogen (TN) and total phosphorus (TP). The wetland was found to have a very high efficiency of removal of suspended solids and organics, with relatively little seasonal variability. The three-year average TSS removal efficiency was approximately 92.7%. The effectiveness of elimination of organic compounds was very high throughout the study period at 96.6% BOD5 and 95% COD. The effluent from the four-stage system had significantly lower contents of TN and TP compared to the wastewater discharged from the first two beds of this facility.
Collapse
|
50
|
Rahman ME, Bin Halmi MIE, Bin Abd Samad MY, Uddin MK, Mahmud K, Abd Shukor MY, Sheikh Abdullah SR, Shamsuzzaman SM. Design, Operation and Optimization of Constructed Wetland for Removal of Pollutant. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8339. [PMID: 33187288 PMCID: PMC7698012 DOI: 10.3390/ijerph17228339] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 01/30/2023]
Abstract
Constructed wetlands (CWs) are affordable and reliable green technologies for the treatment of various types of wastewater. Compared to conventional treatment systems, CWs offer an environmentally friendly approach, are low cost, have fewer operational and maintenance requirements, and have a high potential for being applied in developing countries, particularly in small rural communities. However, the sustainable management and successful application of these systems remain a challenge. Therefore, after briefly providing basic information on wetlands and summarizing the classification and use of current CWs, this study aims to provide and inspire sustainable solutions for the performance and application of CWs by giving a comprehensive review of CWs' application and the recent development of their sustainable design, operation, and optimization for wastewater treatment. To accomplish this objective, thee design and management parameters of CWs, including macrophyte species, media types, water level, hydraulic retention time (HRT), and hydraulic loading rate (HLR), are discussed. Besides these, future research on improving the stability and sustainability of CWs are highlighted. This article provides a tool for researchers and decision-makers for using CWs to treat wastewater in a particular area. This paper presents an aid for informed analysis, decision-making, and communication. The review indicates that major advances in the design, operation, and optimization of CWs have greatly increased contaminant removal efficiencies, and the sustainable application of this treatment system has also been improved.
Collapse
Affiliation(s)
- Md Ekhlasur Rahman
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.E.R.); (M.Y.B.A.S.); (M.K.U.)
- Divisional Laboratory, Soil Resource Development Institute, Krishi Khamar Sarak, Farmgate, Dhaka-1215, Bangladesh;
| | - Mohd Izuan Effendi Bin Halmi
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.E.R.); (M.Y.B.A.S.); (M.K.U.)
| | - Mohd Yusoff Bin Abd Samad
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.E.R.); (M.Y.B.A.S.); (M.K.U.)
| | - Md Kamal Uddin
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.E.R.); (M.Y.B.A.S.); (M.K.U.)
| | - Khairil Mahmud
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mohd Yunus Abd Shukor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical & Process Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia;
| | - S M Shamsuzzaman
- Divisional Laboratory, Soil Resource Development Institute, Krishi Khamar Sarak, Farmgate, Dhaka-1215, Bangladesh;
| |
Collapse
|