1
|
Thulluru LP, Ghangrekar MM, Chowdhury S. Progress and perspectives on microbial electrosynthesis for valorisation of CO 2 into value-added products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117323. [PMID: 36716542 DOI: 10.1016/j.jenvman.2023.117323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/06/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Microbial electrosynthesis (MES) is a neoteric technology that facilitates biocatalysed synthesis of organic compounds with the aid of homoacetogenic bacteria, while feeding CO2 as an inorganic carbon source. Operating MES with surplus renewable electricity further enhances the sustainability of this innovative bioelectrochemical system (BES). However, several lacunae exist in the domain knowledge, stunting the widespread application of MES. Despite significant progress in this area over the past decade, the product yield efficiency is not on par with other contemporary technologies. This bottleneck can be overcome by adopting a holistic approach, i.e., applying innovative and integrated solutions to ensure a robust MES operation. Further, the widespread deployment of MES exclusively relies on its ability to mature a sessile biofilm over a biocompatible electrode, while offering minimal charge transfer resistance. Additionally, operating MES preferably at H2-generating reduction potential and valorising industrial off-gas as carbon substrate is crucial to accomplish economic sustainability. In light of the aforementioned, this review collates the latest progress in the design and development of MES-centred systems for valorisation of CO2 into value-added products. Specifically, it highlights the significance of inoculum pre-treatment for promoting biocatalytic activity and biofilm growth on the cathodic surface. In addition, it summarizes the diverse materials that are commonly used as electrodes in MES, with an emphasis on the importance of inexpensive, robust, and biocompatible electrode materials for the practical application of MES technology. Further, the review presents insights into media conditions, operational factors, and reactor configurations that affect the overall performance of MES process. Finally, the product range of MES, downstream processing requirements, and integration of MES with other environmental remediation technologies are also discussed.
Collapse
Affiliation(s)
- Lakshmi Pathi Thulluru
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Makarand M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
2
|
Ostermeyer P, Bonin L, Leon‐Fernandez LF, Dominguez‐Benetton X, Hennebel T, Rabaey K. Electrified bioreactors: the next power-up for biometallurgical wastewater treatment. Microb Biotechnol 2022; 15:755-772. [PMID: 34927376 PMCID: PMC8913880 DOI: 10.1111/1751-7915.13992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/23/2022] Open
Abstract
Over the past decades, biological treatment of metallurgical wastewaters has become commonplace. Passive systems require intensive land use due to their slow treatment rates, do not recover embedded resources and are poorly controllable. Active systems however require the addition of chemicals, increasing operational costs and possibly negatively affecting safety and the environment. Electrification of biological systems can reduce the use of chemicals, operational costs, surface footprint and environmental impact when compared to passive and active technologies whilst increasing the recovery of resources and the extraction of products. Electrification of low rate applications has resulted in the development of bioelectrochemical systems (BES), but electrification of high rate systems has been lagging behind due to the limited mass transfer, electron transfer and biomass density in BES. We postulate that for high rate applications, the electrification of bioreactors, for example, through the use of electrolyzers, may herald a new generation of electrified biological systems (EBS). In this review, we evaluate the latest trends in the field of biometallurgical and microbial-electrochemical wastewater treatment and discuss the advantages and challenges of these existing treatment technologies. We advocate for future research to focus on the development of electrified bioreactors, exploring the boundaries and limitations of these systems, and their validity upon treating industrial wastewaters.
Collapse
Affiliation(s)
- Pieter Ostermeyer
- Faculty of Bioscience EngineeringCenter of Microbial Ecology and Technology (CMET)Ghent UniversityCoupure Links 653GhentB‐9000Belgium
- CAPTUREFrieda Saeysstraat 1Ghent9000Belgium
| | - Luiza Bonin
- Faculty of Bioscience EngineeringCenter of Microbial Ecology and Technology (CMET)Ghent UniversityCoupure Links 653GhentB‐9000Belgium
- CAPTUREFrieda Saeysstraat 1Ghent9000Belgium
| | - Luis Fernando Leon‐Fernandez
- Separation and Conversion TechnologyFlemish Institute for Technological Research (VITO)Boeretang 200Mol2400Belgium
| | - Xochitl Dominguez‐Benetton
- Separation and Conversion TechnologyFlemish Institute for Technological Research (VITO)Boeretang 200Mol2400Belgium
| | - Tom Hennebel
- Faculty of Bioscience EngineeringCenter of Microbial Ecology and Technology (CMET)Ghent UniversityCoupure Links 653GhentB‐9000Belgium
- Group Research and Development, Competence Area Recycling and Extraction TechnologiesUmicoreWatertorenstraat 33OlenB‐2250Belgium
| | - Korneel Rabaey
- Faculty of Bioscience EngineeringCenter of Microbial Ecology and Technology (CMET)Ghent UniversityCoupure Links 653GhentB‐9000Belgium
- CAPTUREFrieda Saeysstraat 1Ghent9000Belgium
| |
Collapse
|
3
|
Becerril-Varela K, Serment-Guerrero JH, Manzanares-Leal GL, Ramírez-Durán N, Guerrero-Barajas C. Generation of electrical energy in a microbial fuel cell coupling acetate oxidation to Fe 3+ reduction and isolation of the involved bacteria. World J Microbiol Biotechnol 2021; 37:104. [PMID: 34037857 DOI: 10.1007/s11274-021-03077-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/21/2021] [Indexed: 01/16/2023]
Abstract
An iron reducing enrichment was obtained from sulfate reducing sludge and was evaluated on the capability of reducing Fe3+ coupled to acetate oxidation in a microbial fuel cell (MFC). Three molar ratios for acetate/Fe3+ were evaluated (2/16, 3.4/27 and 6.9/55 mM). The percentages of Fe3+ reduction were in a range of 80-90, 60-70 and 40-50% for the MFCs at closed circuit for the molar ratios of 2/16, 3.4/27 and 6.9/55 mM, respectively. Acetate consumption was in a range of 80-90% in all cases. The results obtained at closed circuit for current density were: 11.37 mA/m2, 4.5 mA/m2 and 7.37 mA/m2 for the molar ratios of 2/16, 3.4/27 and 6.9/55 mM, respectively. Some microorganisms that were isolated and identified in the MFCs were Azospira oryzae, Cupriavidus metallidurans CH34, Enterobacter bugandensis 247BMC, Citrobacter freundii ATCC8090 and Citrobacter murliniae CDC2970-59, these bacteria have been reported as exoelectrogens in MFC and in MFC involving metals removal but not all of them have been reported to utilize acetate as preferred substrate. The results demonstrate that the isolates can utilize acetate as the sole source of carbon and suggest that Fe3+ reduction was carried out by a combination of different mechanisms (direct contact and redox mediators) utilized by the bacteria identified in the MFC. Storage of the energy generated from the 2/16 mM MFC system arranged in a series of three demonstrated that it is possible to utilize the energy to charge a battery.
Collapse
Affiliation(s)
- Karina Becerril-Varela
- Laboratorio de Biotecnología Ambiental, Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Col. Barrio la Laguna Ticomán, 07340, Mexico City, Mexico
| | - Jorge H Serment-Guerrero
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares, 52750, Mexico City, Mexico
| | - Gauddy Lizeth Manzanares-Leal
- Laboratorio de Investigación en Microbiología Médica y Ambiental, Facultad de Medicina, Universidad Autónoma del Estado de México (UAEM), Paseo Tollocan Esq. Jesús Carranza, 50180, Toluca, Mexico
| | - Ninfa Ramírez-Durán
- Laboratorio de Investigación en Microbiología Médica y Ambiental, Facultad de Medicina, Universidad Autónoma del Estado de México (UAEM), Paseo Tollocan Esq. Jesús Carranza, 50180, Toluca, Mexico
| | - Claudia Guerrero-Barajas
- Laboratorio de Biotecnología Ambiental, Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Col. Barrio la Laguna Ticomán, 07340, Mexico City, Mexico.
| |
Collapse
|
4
|
Thatikayala D, Min B. Copper ferrite supported reduced graphene oxide as cathode materials to enhance microbial electrosynthesis of volatile fatty acids from CO 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144477. [PMID: 33736314 DOI: 10.1016/j.scitotenv.2020.144477] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Copper ferrite/reduced graphene oxide (CF/rGO) nanocomposites (NCs) was synthesized using the bio-combustion method and applied as a cathode catalyst in the microbial reduction of CO2 to volatile fatty acids (VFAs) in a single chamber microbial electrosynthesis system (MES). The synthesized NCs exhibited a porous network-like structure with a high surface area of CF/rGO (158.22 m2/g), which was 2.24 folds higher than that of CF. The Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) analysis for CF/rGO/Carbon cloth (Cc) revealed a high reduction current density of -7.3 A/m2 and a low charge transfer resistance of 2.8 Ω. The isobutyrate and acetate in MES-2 (Cu/rGO/Cc) were produced at 35.37 g/m2/d, which was 1.53 folds higher than that of MES-1 (bare Cc: 23.10 g/m2/d). The columbic efficiency (77.78%) and total VFA concentration (1941.13 ± 83 mg COD/L) were noted to be 1.97 and 1.6 folds higher for MES-2 than MES-1, respectively. The Tafel plot drawn from the CV curves exhibited an exchange current density value of MES-2 that was 3.46 A/m2, and this value was 1.19 and 33.92 folds higher than that of MES-1 and abiotic CF/rGO/Cc, respectively. Field emission scanning electron microscopy (FESEM) observations revealed enhanced rod-shaped bacteria had grown on the cathode suggesting excellent biocompatible and multi-length scale porosity of CF/rGO catalysts for enhanced colonization of microbes. The phyla Proteobacteria (Betaproteobacteria), Bacteroidetes, and Firmicutes were highly abundant as the dominant microbial communities on the cathode, which might played a major role in bioelectrochemical CO2 reduction to VFAs. The results from this study clearly demonstrate that the CF/rGO/Cc electrode could serve as a conductive element between microbes and bactericidal electrodes with excellent electrochemical properties to enable performance of the MES.
Collapse
Affiliation(s)
- Dayakar Thatikayala
- Department of Environment Science and Engineering, Kyung Hee University, Yongin, Republic of Korea
| | - Booki Min
- Department of Environment Science and Engineering, Kyung Hee University, Yongin, Republic of Korea.
| |
Collapse
|
5
|
Raes SMT, Jourdin L, Buisman CJN, Strik DPBTB. Bioelectrochemical Chain Elongation of Short‐Chain Fatty Acids Creates Steering Opportunities for Selective Formation ofn‐Butyrate,n‐Valerate orn‐Caproate. ChemistrySelect 2020. [DOI: 10.1002/slct.202002001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sanne M. T. Raes
- Environmental TechnologyWageningen University and Research, Axis-Z Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - Ludovic Jourdin
- Environmental TechnologyWageningen University and Research, Axis-Z Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - Cees J. N. Buisman
- Environmental TechnologyWageningen University and Research, Axis-Z Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - David P. B. T. B. Strik
- Environmental TechnologyWageningen University and Research, Axis-Z Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| |
Collapse
|
6
|
Jiang Y, May HD, Lu L, Liang P, Huang X, Ren ZJ. Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation. WATER RESEARCH 2019; 149:42-55. [PMID: 30419466 DOI: 10.1016/j.watres.2018.10.092] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Carbon-rich waste materials (solid, liquid, or gaseous) are largely considered to be a burden on society due to the large capital and energy costs for their treatment and disposal. However, solid and liquid organic wastes have inherent energy and value, and similar as waste CO2 gas they can be reused to produce value-added chemicals and materials. There has been a paradigm shift towards developing a closed loop, biorefinery approach for the valorization of these wastes into value-added products, and such an approach enables a more carbon-efficient and circular economy. This review quantitatively analyzes the state-of-the-art of the emerging microbial electrochemical technology (MET) platform and provides critical perspectives on research advancement and technology development. The review offers side-by-side comparison between microbial electrosynthesis (MES) and electro-fermentation (EF) processes in terms of principles, key performance metrics, data analysis, and microorganisms. The study also summarizes all the processes and products that have been developed using MES and EF to date for organic waste and CO2 valorization. It finally identifies the technological and economic potentials and challenges on future system development.
Collapse
Affiliation(s)
- Yong Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China; Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Harold D May
- Hollings Marine Laboratory, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Lu Lu
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA; Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Zhiyong Jason Ren
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA; Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
7
|
Jiang Y, Jianxiong Zeng R. Expanding the product spectrum of value added chemicals in microbial electrosynthesis through integrated process design-A review. BIORESOURCE TECHNOLOGY 2018; 269:503-512. [PMID: 30174268 DOI: 10.1016/j.biortech.2018.08.101] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Microbial electrosynthesis (MES) is a novel microbial electrochemical technology proposed for chemicals production with the storage of sustainable energy. However, the practical application of MES is currently restricted by the limited low market value of products in one-step conversion process, mostly acetate. A theme that is pervasive throughout this review is the challenges associated with the expanded product spectrum. Several recent research efforts to improve acetate production, using novel reactor configuration, renewable power supply, and various 3-D cathode are summarized. The importance of genetic modification, two-step hybrid process, as well as input substrates other than CO2 are highlighted in this review as the future research paths for higher value chemicals production. At last, how to integrate MES with existing biochemicals processes is proposed. Definitely, more studies are encouraged to evaluate the overall performances and economic efficiency of these integrated process designs to make MES more competitive.
Collapse
Affiliation(s)
- Yong Jiang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
8
|
Blázquez E, Gabriel D, Baeza JA, Guisasola A. Evaluation of key parameters on simultaneous sulfate reduction and sulfide oxidation in an autotrophic biocathode. WATER RESEARCH 2017; 123:301-310. [PMID: 28675843 DOI: 10.1016/j.watres.2017.06.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/13/2017] [Accepted: 06/18/2017] [Indexed: 06/07/2023]
Abstract
Bioelectrochemical systems (BESs) are being studied as an alternative technology for the treatment of several kinds of wastewaters with a lack of electron donor such as high-strength sulfate wastewaters. This study evaluates different parameters that influence the simultaneous sulfate reduction and sulfide oxidation in an autotrophic biocathode: ion-exchange membrane (IEM), cathodic pH and cathode potential. Two different membranes were studied to evaluate sulfate and sulfide adsorption and diffusion from the cathode to the anode, observing that a cation-exchange membrane (CEM) widely decreased these effects. Three different cathode pH (5.5, 7 and 8.5) were studied in a long-term operation observing that pH = 7 was the optimal for sulfate removal, achieving reduction rates around 150 mg S-SO42- L-1 d-1. Microbial community analysis of the cathode biofilm demonstrated a high abundance of sulfate-reducing bacteria (SRB, 67% at pH 7, 60% at pH 8.5 and 42% at pH 5.5), mainly Desulfovibrio sp. at pH 5.5 and 7 and Desulfonatronum sp. at pH 8.5. The cathode potential also was studied from -0.7 to -1.2 V vs. SHE achieving sulfate removal rates higher than 700 mg S-SO42- L-1 d-1 at cathode potentials from -1.0 to -1.2 V vs. SHE. Also, the highest cathodic recovery and the highest sulfur species imbalance were observed at a cathode potential of -1.0 V vs. SHE, which indicated a higher elemental sulfur production.
Collapse
Affiliation(s)
- Enric Blázquez
- GENOCOV, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - David Gabriel
- GENOCOV, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Juan Antonio Baeza
- GENOCOV, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Albert Guisasola
- GENOCOV, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
9
|
Jain P, Srikanth S, Kumar M, Sarma PM, Singh MP, Lal B. Bio-electro catalytic treatment of petroleum produced water: Influence of cathode potential upliftment. BIORESOURCE TECHNOLOGY 2016; 219:652-658. [PMID: 27544915 DOI: 10.1016/j.biortech.2016.08.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 06/06/2023]
Abstract
Treatment of petroleum produced water (PPW) was studied using bioelectrochemical system (BES) under uplifted cathode potential. The treatment efficiency in terms of COD and hydrocarbon removal was observed at 91.25% and 76.60% respectively, along with the reduction in TDS during BES operation under 400mV of cathode potential. There was also a reduction in concentration of sulfates, however, it was not significant at, since oxidative conditions are being maintained at anode. Improved oxidation of PPW at anode also resulted in good power output (-20.47mA) and also depicted improved fuel cell behaviour. The electrochemical analysis in terms of cyclic/linear sweep voltammetry also showed well correlation with the observed treatment efficiencies. The microbial dynamics of the BES after loading real field wastewater showed the dominance of species that are reported to be effective for petroleum crude oil degradation.
Collapse
Affiliation(s)
- Pratiksha Jain
- TERI University, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India
| | - Sandipam Srikanth
- Indian Oil Corporation Limited (IOCL), R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - Manoj Kumar
- Indian Oil Corporation Limited (IOCL), R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - Priyangshu M Sarma
- TERI University, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India; ONGC Energy Center, Oil and Natural Gas Corporation Limited (ONGC), SCOPE Minar, Laxmi Nagar, New Delhi 110092, India
| | - M P Singh
- Indian Oil Corporation Limited (IOCL), R&D Centre, Sector 13, Faridabad 121007, Haryana, India
| | - Banwari Lal
- TERI University, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India; The Energy and Resources Institute (TERI), India Habitat Centre, Lodhi Road, New Delhi 110003, India.
| |
Collapse
|
10
|
Kondaveeti S, Min B. Bioelectrochemical reduction of volatile fatty acids in anaerobic digestion effluent for the production of biofuels. WATER RESEARCH 2015; 87:137-44. [PMID: 26402877 DOI: 10.1016/j.watres.2015.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/30/2015] [Accepted: 09/05/2015] [Indexed: 05/05/2023]
Abstract
This study proves for the first time the feasibility of biofuel production from anaerobic digestion effluent via bioelectrochemical cell operation at various applied cell voltages (1.0, 1.5 and 2.0 V). An increase in cell voltage from 1 to 2 V resulted in more reduction current generation (-0.48 to -0.78 mA) at a lowered cathode potential (-0.45 to -0.84 mV vs Ag/AgCl). Various alcohols were produced depending on applied cell voltages, and the main products were butanol, ethanol, and propanol. Hydrogen and methane production were also observed in the headspace of the cell. A large amount of lactic acid was unexpectedly formed at all conditions, which might be the primary cause of the limited biofuel production. The addition of neutral red (NR) to the system could increase the cathodic reduction current, and thus more biofuels were produced with an enhanced alcohol formation compared to without a mediator.
Collapse
Affiliation(s)
- Sanath Kondaveeti
- Department of Environmental Science and Engineering, Kyung Hee University, 1 Seocheon-dong, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University, 1 Seocheon-dong, Yongin-si, Gyeonggi-do 446-701, Republic of Korea.
| |
Collapse
|
11
|
Jain P, Sharma M, Kumar M, Dureja P, Singh MP, Lal B, Sarma PM. Electrochemical removal of sulfate from petroleum produced water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 72:284-292. [PMID: 26177412 DOI: 10.2166/wst.2015.217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Petroleum produced water (PPW) is a waste-stream that entails huge cost on the petroleum industry. Along with other suspended and dissolved solids, it contains sulfate, which is a major hurdle for its alternative use intended toward enhanced oil recovery. This study proposes a two-step process for sulfate removal from PPW. A synthetic PPW was designed for the study using response surface methodology. During the first step, sulfate present in PPW was reduced to sulfide by anaerobic fermentation with 80% efficiency. In the second step, more than 70% of the accumulated sulfide was electrochemically oxidized. This integrated approach successfully removed sulfate from the synthetic wastewater indicating its applicability in the treatment of PPW and its subsequent applications in other oil field operations.
Collapse
Affiliation(s)
- Pratiksha Jain
- TERI University, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India E-mail: ; TERI, Darbari Seth Block, India Habitat Centre, Lodhi Road, New Delhi 110003, India
| | - Mohita Sharma
- TERI, Darbari Seth Block, India Habitat Centre, Lodhi Road, New Delhi 110003, India
| | - Manoj Kumar
- Indian Oil Corporation Limited (IOCL), R&D Centre, Faridabad 121007, Haryana, India
| | - Prem Dureja
- TERI, Darbari Seth Block, India Habitat Centre, Lodhi Road, New Delhi 110003, India
| | - M P Singh
- Indian Oil Corporation Limited (IOCL), R&D Centre, Faridabad 121007, Haryana, India
| | - Banwari Lal
- TERI University, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India E-mail: ; TERI, Darbari Seth Block, India Habitat Centre, Lodhi Road, New Delhi 110003, India
| | - Priyangshu M Sarma
- TERI University, 10, Institutional Area, Vasant Kunj, New Delhi 110070, India E-mail: ; TERI, Darbari Seth Block, India Habitat Centre, Lodhi Road, New Delhi 110003, India
| |
Collapse
|
12
|
Sharma M, Sarma PM, Pant D, Dominguez-Benetton X. Optimization of electrochemical parameters for sulfate-reducing bacteria (SRB) based biocathode. RSC Adv 2015. [DOI: 10.1039/c5ra04120a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study focuses on the effect of operational and physiochemical factors on a stable sulfate reducing bacteria biocathode and their effect on the electrochemical response thereof.
Collapse
Affiliation(s)
- Mohita Sharma
- TERI University
- New Delhi
- India
- The Energy and Resource Institute (TERI)
- IHC
| | | | - Deepak Pant
- Separation & Conversion Technologies
- VITO – Flemish Institute for Technological Research
- 2400 Mol
- Belgium
| | | |
Collapse
|
13
|
Nawani N, Binod P, Koutinas AA, Khan F. Special issue on International Conference on Advances in Biotechnology and Bioinformatics 2013. Preface. BIORESOURCE TECHNOLOGY 2014; 165:199-200. [PMID: 24906213 DOI: 10.1016/j.biortech.2014.05.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Neelu Nawani
- Department of Biotechnology, Dr. D.Y. Patil Institute of Biotechnology and Bioinformatics, Pune, India
| | - P Binod
- Centre for Biofuels & Biotechnology Division, CSIR-National Institute of Science and Technology, Trivandrum, India
| | - A A Koutinas
- Department of Chemistry, University of Patras, Patras, Greece
| | - Firoz Khan
- Department of Biotechnology, Dr. D.Y. Patil Institute of Biotechnology and Bioinformatics, Pune, India
| |
Collapse
|