1
|
Schroedter L, Schneider R, Venus J. Transforming waste wood into pure L-(+)-lactic acid: Efficient use of mixed sugar media through cell-recycled continuous fermentation. BIORESOURCE TECHNOLOGY 2024; 419:132010. [PMID: 39719203 DOI: 10.1016/j.biortech.2024.132010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
Lignocellulosic media, containing diverse sugars and growth inhibitor compounds, pose great challenges to fermentation processes. This study tested thermophile Heyndrickxia coagulans strains for the production of L-(+)-lactic acid from waste wood hydrolysate. H. coagulans A166 reached high titers of up to 94.6 g·L-1 lactic acid in batch studies, tolerating furfuralic compounds, however, productivity was affected by carbon catabolite repression. Within cell-recycled continuous fermentation studies, this limitation was overcome by determining optimal initial dilution rates: complete and concurrent utilization of mixed sugars was realized at 7.6 g·L-1·h-1 productivity - an increase by factor 4.5-5.8 compared to batch studies. Work on synthetic media enabled process durations of up to 188 h, providing further insights into the process behavior and offering cues for further optimization. Employing inhibitor compound tolerant H. coagulans A166 at optimal initial dilution rate, cell-recycled continuous fermentation is a promising approach to enhance lactic acid production from lignocellulose media.
Collapse
Affiliation(s)
- Linda Schroedter
- Leibniz Institute for Agricultural Engineering and Bioeconomy e. V. (ATB), Department Microbiome Biotechnology, Max-Eyth-Allee 100, Potsdam 14469, Germany.
| | - Roland Schneider
- Leibniz Institute for Agricultural Engineering and Bioeconomy e. V. (ATB), Department Microbiome Biotechnology, Max-Eyth-Allee 100, Potsdam 14469, Germany.
| | - Joachim Venus
- Leibniz Institute for Agricultural Engineering and Bioeconomy e. V. (ATB), Department Microbiome Biotechnology, Max-Eyth-Allee 100, Potsdam 14469, Germany.
| |
Collapse
|
2
|
Rana AK, Thakur VK. Advances and new horizons in metabolic engineering of heterotrophic bacteria and cyanobacteria for enhanced lactic acid production. BIORESOURCE TECHNOLOGY 2024; 419:131951. [PMID: 39647717 DOI: 10.1016/j.biortech.2024.131951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/21/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Bacteria species such as E.Coli, Lactobacilli, and pediococci play an important role as starter strains in fermentation food or polysaccharides into lactic acid. These bacteria were metabolically engineered using multiple proven genome editing methods to enhance relevant phenotypes. The efficacy of these procedures varies depending on the editing tool used and researchers' ability to pick suitable recombinants, which significantly increased genome engineering throughput. Cyanobacteria produce oxygenic photosynthesis and play an important role in carbon dioxide fixing. The fixed carbon dioxide is then retained as polysaccharides in cells and metabolised into various low carbon molecules such as lactate, succinate, and ethanol. Lactate is used as a building ingredient in various bioplastics, food additives, and medicines. This review covers the recent advances in lactic acid production through metabolic and genetic engineering in bacteria and cyanobacteria.
Collapse
Affiliation(s)
- A K Rana
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, Edinburgh, UK; Department of Chemistry, Sri Sai University, Palampur 176061, India
| | - V K Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Pérez-Morales G, Caspeta L, Merino E, Cevallos MA, Gosset G, Martinez A. Simultaneous saccharification and fermentation for D-lactic acid production using a metabolically engineered Escherichia coli adapted to high temperature. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:132. [PMID: 39488702 PMCID: PMC11531696 DOI: 10.1186/s13068-024-02579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Escherichia coli JU15 is a metabolically engineered strain capable to metabolize C5 and C6 sugars with a high yield of D-lactic acid production at its optimal growth temperature (37 °C). The simultaneous saccharification and fermentation process allow to use lignocellulosic biomass as a cost-effective and high-yield strategy. However, this process requires microorganisms capable of growth at a temperature close to 50 °C, at which the activity of cellulolytic enzymes works efficiently. RESULTS The thermotolerant strain GT48 was generated by adaptive laboratory evolution in batch and chemostat cultures under temperature increments until 48 °C. The strain GT48 was able to grow and ferment glucose to D-lactate at 47 °C. It was found that a pH of 6.3 conciliated with GT48 growth and cellulase activity of a commercial cocktail. Hence, this pH was used for the SSF of a diluted acid-pretreated corn stover (DAPCS) at a solid load of 15% (w/w), 15 FPU/g-DAPCS, and 47 °C. Under such conditions, the strain GT48 exhibited remarkable performance, producing D-lactate at a level of 1.41, 1.42, and 1.48-fold higher in titer, productivity, and yield, respectively, compared to parental strain at 45 °C. CONCLUSIONS In general, our results show for the first time that a thermal-adapted strain of E. coli is capable of being used in the simultaneous saccharification and fermentation process without pre-saccharification stage at high temperatures.
Collapse
Affiliation(s)
- Gilberto Pérez-Morales
- Department of Cellular Engineering and Biocatalyst. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Luis Caspeta
- Department of Cellular Engineering and Biocatalyst. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Enrique Merino
- Department of Molecular Microbiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Miguel A Cevallos
- Program of Evolutionary Genomics, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 2000, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Guillermo Gosset
- Department of Cellular Engineering and Biocatalyst. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Alfredo Martinez
- Department of Cellular Engineering and Biocatalyst. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México.
| |
Collapse
|
4
|
Maresca E, Aulitto M, Contursi P. Harnessing the dual nature of Bacillus (Weizmannia) coagulans for sustainable production of biomaterials and development of functional food. Microb Biotechnol 2024; 17:e14449. [PMID: 38593329 PMCID: PMC11003712 DOI: 10.1111/1751-7915.14449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024] Open
Abstract
Bacillus coagulans, recently renamed Weizmannia coagulans, is a spore-forming bacterium that has garnered significant interest across various research fields, ranging from health to industrial applications. The probiotic properties of W. coagulans enhance intestinal digestion, by releasing prebiotic molecules including enzymes that facilitate the breakdown of not-digestible carbohydrates. Notably, some enzymes from W. coagulans extend beyond digestive functions, serving as valuable biotechnological tools and contributing to more sustainable and efficient manufacturing processes. Furthermore, the homofermentative thermophilic nature of W. coagulans renders it an exceptional candidate for fermenting foods and lignocellulosic residues into L-(+)-lactic acid. In this review, we provide an overview of the dual nature of W. coagulans, in functional foods and for the development of bio-based materials.
Collapse
Affiliation(s)
- Emanuela Maresca
- Department of BiologyUniversity of Naples “Federico II”NaplesItaly
| | - Martina Aulitto
- Department of BiologyUniversity of Naples “Federico II”NaplesItaly
- Institute for Polymers, Composites and Biomaterials—IPCB, National Research Council of Italy (CNR)PozzuoliItaly
| | - Patrizia Contursi
- Department of BiologyUniversity of Naples “Federico II”NaplesItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro‐Environmental TechnologyUniversity of Naples “Federico II”PorticiItaly
- Task Force on Microbiome StudiesUniversity of Naples “Federico II”NaplesItaly
| |
Collapse
|
5
|
Yue S, Zhang M. Global trends and future prospects of lactic acid production from lignocellulosic biomass. RSC Adv 2023; 13:32699-32712. [PMID: 37942446 PMCID: PMC10628742 DOI: 10.1039/d3ra06577d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
Lignocellulosic biomass (LCB) stands as a substantial and sustainable resource capable of addressing energy and environmental challenges. This study employs bibliometric analysis to investigate research trends in lactic acid (LA) production from LCB spanning the years 1991 to 2022. The analysis reveals a consistent growth trajectory with minor fluctuations in LA production from LCB. Notably, there's a significant upswing in publications since 2009. Bioresource Technology and Applied Microbiology and Biotechnology emerge as the top two journals with extensive contributions in the realm of LA production from LCB. China takes a prominent position in this research domain, boasting the highest total publication count (736), betweenness centrality value (0.30), and the number of collaborating countries (42), surpassing the USA and Japan by a considerable margin. The author keywords analysis provides valuable insights into the core themes in LA production from LCB. Furthermore, co-citation reference analysis delineates four principal domains related to LA production from LCB, with three associated with microbial conversion and one focused on chemical catalytic conversion. Additionally, this study examines commonly used LCB, microbial LA producers, and compares microbial fermentation to chemical catalytic conversion for LCB-based LA production, providing comprehensive insights into the current state of this field and suggesting future research directions.
Collapse
Affiliation(s)
- Siyuan Yue
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University Fukuoka 819-0395 Japan
- Institute of Microbiology, Jiangxi Academy of Sciences Nanchang Jiangxi Province 330096 China
| | - Min Zhang
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University Fukuoka 819-0395 Japan
- Jiangxi Copper Technology Research Institute, Jiangxi Copper Corporation Nanchang Jiangxi Province 330096 China
| |
Collapse
|
6
|
Liu YJ, Zhang Y, Chi F, Chen C, Wan W, Feng Y, Song X, Cui Q. Integrated lactic acid production from lignocellulosic agricultural wastes under thermal conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118281. [PMID: 37290309 DOI: 10.1016/j.jenvman.2023.118281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
The production of lactic acid (LA) from agricultural wastes attracts great attention because of the sustainability and abundance of lignocellulosic feedstocks, as well as the increasing demand for biodegradable polylactic acid. In this study, we isolated a thermophilic strain Geobacillus stearothermophilus 2H-3 for use in robust production of L-(+)LA under the optimal conditions of 60 °C, pH 6.5, which were consistent with the whole-cell-based consolidated bio-saccharification (CBS) process. Sugar-rich CBS hydrolysates derived from various agricultural wastes, including corn stover, corncob residue, and wheat straw, were used as the carbon sources for 2H-3 fermentation by directly inoculating 2H-3 cells into the CBS system, without intermediate sterilization, nutrient supplementation, or adjustment of fermentation conditions. Thus, we successfully combined two whole-cell-based steps into a one-pot successive fermentation process to efficiently produce LA with high optical purity (99.5%), titer (51.36 g/L), and yield (0.74 g/gbiomass). This study provides a promising strategy for LA production from lignocellulose through CBS and 2H-3 fermentation integration.
Collapse
Affiliation(s)
- Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian National Laboratory for Clean Energy, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuedong Zhang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian National Laboratory for Clean Energy, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fang Chi
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian National Laboratory for Clean Energy, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chaoyang Chen
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian National Laboratory for Clean Energy, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Weijian Wan
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian National Laboratory for Clean Energy, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian National Laboratory for Clean Energy, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojin Song
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian National Laboratory for Clean Energy, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian National Laboratory for Clean Energy, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Chauhan S, Mitra S, Yadav M, Kumar A. Microbial production of lactic acid using organic wastes as low-cost substrates. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Abstract
Lactic acid is a natural organic acid with diverse of applications in food, pharmaceutical, cosmetics, and chemical industry. Recently, the demand of lactic acid has been grown due to its utilization for polylactic acid production. Microbial production of lactic acid production is preferable due to optical purity of product, utilization of low cost substrates, and low energy requirement. Lignocellulosic biomass and other organic wastes are considered potential raw materials for cost-effective production of lactic acid. The raw materials are either hydrolyzed by enzymes or dilute acids to release the reducing sugars that are fermented in to lactic acid. This review has been focussed on microbial production of lactic acid using different organic wastes as low cost substrate.
Collapse
Affiliation(s)
- Sushmita Chauhan
- Department of Biotechnology, School of Engineering and Technology , Sharda University , Greater Noida , India
| | - Shreya Mitra
- Department of Biotechnology, School of Engineering and Technology , Sharda University , Greater Noida , India
| | - Mukesh Yadav
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , Haryana , India
| | - Amit Kumar
- Department of Biotechnology, School of Engineering and Technology , Sharda University , Greater Noida , India
| |
Collapse
|
8
|
Zhang Z, Yang D, Liu L, Chang Z, Peng N. Effective gossypol removal from cottonseed meal through optimized solid-state fermentation by Bacillus coagulans. Microb Cell Fact 2022; 21:252. [PMID: 36456988 PMCID: PMC9714218 DOI: 10.1186/s12934-022-01976-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/19/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Cottonseed meal (CSM) is the main by-product of the cottonseed oil extraction process with high protein content, which is an important protein source for feed industry. However, CSM contains free gossypol (FG), a toxic substance that is detrimental to animal health and greatly limits its application. Microbial fermentation is currently considered to be one of the most effective methods to reduce FG and other anti-nutritional factors in CSM. Previously, yeast and bacteria species are used for degradation of FG in CSM, but showing less detoxification efficiency. Bacillus coagulans combines the properties of both lactic acid bacteria and Bacillus, producing both lactic acid and spores, and is considered a potential probiotic. In this study, we aimed to evaluate and optimize the effect of the solid-state fermentation process using a Bacillus coagulans to gossypol removal contained cottonseed meal. RESULTS 36 B. coagulans strains were isolated and found to have the ability to remove free gossypol. Through the evaluation of strains and optimization of fermentation conditions including fermentation temperature, ratio of material to water, inoculation amount, fermentation time and pH, we have established a solid-state fermentation process using a Bacillus coagulans strain S17 on CSM substrate with 1:1 of the material-to-water ratio, 15% (v/w) seed inoculation, 2% expanded corn flour, 1% bran, and 0.3%-0.8% metal irons at 40 °C for 52 h. After fermentation, the FG content in CSM was reduced from 923.80 to 167.90 mg/kg with 81.83% detoxification efficiency. Meanwhile, the crude protein content in CSM increased from 47.98 to 52.82%, and importantly, the spore concentration of strain S17 reached 1.68 × 1010 CFU/g dry material. CONCLUSION The study showed that B. coagulans have the potential strong ability to degrade free gossypol through cottonseed meal fermentation. This study presents a feasible process for improving the resource utilization rate and nutritional value of CSM via solid-state fermentation through B. coagulans S17.
Collapse
Affiliation(s)
- Zhenting Zhang
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China ,grid.413458.f0000 0000 9330 9891School of Public Health, Guizhou Medical University, Guiyang, 550025 Guizhou People’s Republic of China
| | - Danlu Yang
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
| | - Ling Liu
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
| | - Zhangbing Chang
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
| | - Nan Peng
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China ,National Engineering Research Center of Microbial Pesticides, Wuhan, 430070 Hubei People’s Republic of China
| |
Collapse
|
9
|
Malacara-Becerra A, Melchor-Martínez EM, Sosa-Hernández JE, Riquelme-Jiménez LM, Mansouri SS, Iqbal HMN, Parra-Saldívar R. Bioconversion of Corn Crop Residues: Lactic Acid Production through Simultaneous Saccharification and Fermentation. SUSTAINABILITY 2022; 14:11799. [DOI: 10.3390/su141911799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Lactic acid (LA) is a chemical building block with wide applications in the food, cosmetics, and chemical industries. Its polymer polylactic acid further increases this range of applications as a green and biocompatible alternative to petrol-based plastics. Corn is the fourth largest crop in the world, and its residues represent a potentially renewable feedstock for industrial lactic acid production through simultaneous saccharification and fermentation (SSF). The main goal of this work is to summarize and compare the pretreatment methods, enzymatic formulations and microbial strains that have been combined in a SSF setup for bioconversion of corn crop residues into LA. Additionally, the main concerns of scaling-up and the innovation readiness level towards commercial implementation of this technology are also discussed. The analysis on commercial implementation renders the current state of SSF technology unsustainable, mainly due to high wastewater generation and saccharification costs. Nonetheless, there are promising strategies that are being tested and are focused on addressing these issues. The present work proves that the study and optimization of SSF as a biorefinery framework represents a step towards the adoption of potentially sustainable waste management practices.
Collapse
Affiliation(s)
- Alonso Malacara-Becerra
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - L. María Riquelme-Jiménez
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Seyed Soheil Mansouri
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
10
|
Son J, Baritugo KA, Lim SH, Lim HJ, Jeong S, Lee JY, Choi JI, Joo JC, Na JG, Park SJ. Microbial cell factories for the production of three-carbon backbone organic acids from agro-industrial wastes. BIORESOURCE TECHNOLOGY 2022; 349:126797. [PMID: 35122981 DOI: 10.1016/j.biortech.2022.126797] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
At present, mass production of basic and valuable commodities is dependent on linear petroleum-based industries, which ultimately makes the depletion of finite natural reserves and accumulation of non-biodegradable and hazardous wastes. Therefore, an ecofriendly and sustainable solution should be established for a circular economy where infinite resources, such as agro-industrial wastes, are fully utilized as substrates in the production of target value-added chemicals. Hereby, recent advances in metabolic engineering strategies and techniques used in the development of microbial cell factories for enhanced production of three-carbon platform chemicals such as lactic acid, propionic acid, and 3-hydroxypropionic acid are discussed. Further developments and future perspectives in the production of these organic acids from agro-industrial wastes from the dairy, sugar, and biodiesel industries are also highlighted to demonstrate the importance of waste-based biorefineries for organic acid production.
Collapse
Affiliation(s)
- Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kei-Anne Baritugo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hye Jin Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seona Jeong
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Yeon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
11
|
Ostervold L, Perez Bakovic SI, Hestekin J, Greenlee LF. Electrochemical biomass upgrading: degradation of glucose to lactic acid on a copper(ii) electrode. RSC Adv 2021; 11:31208-31218. [PMID: 35496889 PMCID: PMC9041372 DOI: 10.1039/d1ra06737k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022] Open
Abstract
Biomass upgrading - the conversion of biomass waste into value-added products - provides a possible solution to reduce global dependency on nonrenewable resources. This study investigates the possibility of green biomass upgrading for lactic acid production by electrochemically-driven degradation of glucose. Herein we report an electrooxidized copper(ii) electrode which exhibits a turnover frequency of 5.04 s-1 for glucose conversion. Chronoamperometry experiments under varied potentials, alkalinity, and electrode preparation achieved a maximum lactic acid yield of 23.3 ± 1.2% and selectivity of 31.1 ± 1.9% (1.46 V vs. RHE, 1.0 M NaOH) for a room temperature and open-to-atmosphere reaction. Comparison between reaction conditions revealed lactic acid yield depends on alkalinity and applied potential, while pre-oxidation of the copper had a negligible effect on yield. Post-reaction cyclic voltammetry studies indicated no loss in reactivity for copper(ii) electrodes after a 30 hour reaction. Finally, a mechanism dependent on solvated Cu2+ species is proposed as evidenced by similar product distributions in electrocatalytic and thermocatalytic systems.
Collapse
Affiliation(s)
- Lars Ostervold
- Department of Chemical Engineering, Pennsylvania State University University Park PA USA .,Ralph E. Martin Department of Chemical Engineering Fayetteville AR USA
| | | | - Jamie Hestekin
- Ralph E. Martin Department of Chemical Engineering Fayetteville AR USA
| | - Lauren F Greenlee
- Department of Chemical Engineering, Pennsylvania State University University Park PA USA .,Ralph E. Martin Department of Chemical Engineering Fayetteville AR USA
| |
Collapse
|
12
|
Recent Advances in Lactic Acid Production by Lactic Acid Bacteria. Appl Biochem Biotechnol 2021; 193:4151-4171. [PMID: 34519919 DOI: 10.1007/s12010-021-03672-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023]
Abstract
Lactic acid can synthesize high value-added chemicals such as poly lactic acid. In order to further minimize the cost of lactic acid production, some effective strategies (e.g., effective mutagenesis and metabolic engineering) have been applied to increase productive capacity of lactic acid bacteria. In addition, low-cost cheap raw materials (e.g., cheap carbon source and cheap nitrogen source) are also used to reduce the cost of lactic acid production. In this review, we summarized the recent developments in lactic acid production, including efficient strain modification technology (high-efficiency mutagenesis means, adaptive laboratory evolution, and metabolic engineering), the use of low-cost cheap raw materials, and also discussed the future prospects of this field, which could promote the development of lactic acid industry.
Collapse
|
13
|
Biorefinery Concept Employing Bacillus coagulans: LX-Lignin and L-(+)-Lactic Acid from Lignocellulose. Microorganisms 2021; 9:microorganisms9091810. [PMID: 34576705 PMCID: PMC8466333 DOI: 10.3390/microorganisms9091810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/15/2021] [Accepted: 08/21/2021] [Indexed: 12/02/2022] Open
Abstract
A new biorefinery concept is proposed that integrates the novel LX-Pretreatment with the fermentative production of L-(+)-lactic acid. Lignocellulose was chosen as a substrate that does not compete with the provision of food or feed. Furthermore, it contains lignin, a promising new chemical building material which is the largest renewable source for aromatic compounds. Two substrates were investigated: rye straw (RS) as a residue from agriculture, as well as the fibrous digestate of an anaerobic biogas plant operated with energy corn (DCS). Besides the prior production of biogas from energy corn, chemically exploitable LX-Lignin was produced from both sources, creating a product with a low carbohydrate and ash content (90.3% and 88.2% of acid insoluble lignin). Regarding the cellulose fraction of the biomass, enzymatic hydrolysis and fermentation experiments were conducted, comparing a separate (SHF), simultaneous (SSF) and prehydrolyzed simultaneous saccharification and fermentation (PSSF) approach. For this purpose, thermophilic B. coagulans 14-300 was utilized, reaching 38.0 g L−1 LA in 32 h SSF from pretreated RS and 18.3 g L−1 LA in 30 h PSSF from pretreated DCS with optical purities of 99%.
Collapse
|
14
|
An aptly industrialized bioprocess for lactic acid production from corn stover using thermotolerant microbial consortia. Bioprocess Biosyst Eng 2021; 44:2445-2454. [PMID: 34304345 DOI: 10.1007/s00449-021-02616-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Chemical pretreatment of lignocellulosic biomass is a critical step in the conversion of lignocellulose to biofuels and biochemical. The main drawback of this pretreatment process is the formation of inhibitors which exhibit combined toxicity to microorganisms and result to low product concentrations and yields. In this study, the selection of microbial consortia by enrichment on hydrolysate of H2SO4-pretreated corn stover (pre-CS) without detoxification has been investigated as an efficient way to develop new strategies for lignocellulose utilization. The analysis of cattle stomach-dervied microbial consortia domesticated to degrade hydrolysate of pre-CS to produce lactic acid (LA) at different temperatures was investigated. Bacterial 16S rRNA gene amplicon sequencing analyses indicated that the three microbial consortia were taxonomically distinct and Enterococcus became dominant at high temperature. The highest glucose consumption rate was observed at 45 °C, while the three microbial consortia showed similar consumption rates of xylose and arabinose. The selected microbial consortia DUT37, DUT45 and DUT47 showed preferable resistances to inhibitors in hydrolysate of pre-CS and abilities of xylose utilization. A batch simultaneous saccharification and fermentation (SSF) process was developed by microbial consortium DUT47 at 47 °C to produce LA from pre-CS under non-detoxified and non-sterile conditions. The LA concentration and yield were 43.73 g/L and 0.50 g/g-corn stover (CS), respectively. Microbial consortium DUT47 has been shown to be suitable for LA production from H2SO4-pretreated corn stover without detoxification due to its thermophilic growth characteristics, robust tolerance of inhibitors, and the simultaneous utilization of glucose and xylose.
Collapse
|
15
|
Enhanced lactic acid production from P 2O 5-pretreated biomass by domesticated Pediococcus pentosaceus without detoxification. Bioprocess Biosyst Eng 2021; 44:2153-2166. [PMID: 34057575 DOI: 10.1007/s00449-021-02591-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Expensive cellulase and complex detoxification procedures increase the cost of biomass lactic acid fermentation. Therefore, it is of great significance to develop a robust method to ferment lactic acid using biomass by avoiding cellulase and detoxification. This study demonstrates the advantage of combining mechanocatalytic P2O5 pre-treatment and strain domestication. We show that an enzyme-free mechanocatalytic saccharification process by combining mix-milling of P2O5 with biomass and successive hydrolysis produces a fermentable hydrolysate with much less inhibitory compounds than the hydrolysates obtained by conventional methods; only 5-HMF, furfural and acetic acid were detected in the biomass hydrolysate, and no phenolic inhibitors were detected. Pretreatment of biomass with P2O5 not only avoided cellulase, but also obtained less toxic hydrolysate. Furthermore, the Pediococcus pentosaceus strain gained superior inhibitor tolerance through domestication. It could tolerate 17.1 g/L acetic acid, 12.5 g/L 5-HMF, 11.9 g/L guaiacol and 11.5 g/L furfural and showed activity in decomposing furfural and 5-HMF for self-detoxification, allowing efficient lactic acid fermentation from biomass hydrolysate without detoxification. The lactic acid concentration and conversion rate fermented by domesticated bacteria were increased by 113.5% and 22.4%, respectively. In addition, the domesticated bacteria could utilize glucose and xylose simultaneously to produce lactic acid selectively. The combination of P2O5 pre-treatment and strain domestication to ferment lactic acid is applied to several biomass feedstocks, including corn stalk, corn stalk residue and rice husk residue. Lactic acid concentrations of 29.8 g/L, 31.1 g/L, and 46.2 g/L were produced from the hydrolysates of corn stalk, corn stalk residue and rice husk residue, respectively.
Collapse
|
16
|
Yao K, Liu D, Brennan CS. Gelatinised and hydrolysed corn starch is a cost‐effective carbon source with higher production of L‐lactic acid by
Bacillus coagulans
compared with glucose. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Kun Yao
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou510640China
| | - Dong‐Mei Liu
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou510640China
| | - Charles S. Brennan
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou510640China
- Centre for Food Research and Innovation Department of Wine, Food and Molecular Biosciences Lincoln University Lincoln85084New Zealand
| |
Collapse
|
17
|
Tian X, Liu X, Zhang Y, Chen Y, Hang H, Chu J, Zhuang Y. Metabolic engineering coupled with adaptive evolution strategies for the efficient production of high-quality L-lactic acid by Lactobacillus paracasei. BIORESOURCE TECHNOLOGY 2021; 323:124549. [PMID: 33406469 DOI: 10.1016/j.biortech.2020.124549] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 05/26/2023]
Abstract
The main indicators for industrial production of high-quality lactic acid at elevated temperatures are high titer, productivity, yield, and optical purity. However, no such strains have been reported to meet all these requirements simultaneously. In this study, a high optical purity L-lactic acid producing strain is developed through the CRISPR-Cas9 gene editing platform. Further, adaptive evolution was used to breed and select a high-performance strain (NCBIO01-M2-ldhL1-HT) that could efficiently produce L-lactic acid at a high temperature of 45℃. This strain produced 221.0 g/L of L-lactic acid in open fermentation with high initial glucose concentration. Also, L-lactic acid productivity and yield was above 7.5 g/L/h and 0.96 g/g respectively, as well as the optical purity of L-lactic acid in the fermentation broth exceeded 99.1%. In short, this breeding strain possess high potential to be considered for the commercial production of polymer-grade L-lactic acid.
Collapse
Affiliation(s)
- Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuehua Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yifan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haifeng Hang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
18
|
Simultaneous saccharification and lactic acid fermentation of the cellulosic fraction of municipal solid waste using Bacillus smithii. Biotechnol Lett 2020; 43:667-675. [PMID: 33219874 PMCID: PMC7873104 DOI: 10.1007/s10529-020-03049-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/13/2020] [Indexed: 11/13/2022]
Abstract
Objective A primary drawback to simultaneous saccharification and fermentation (SSF) processes is the incompatibility of the temperature and pH optima for the hydrolysis and fermentation steps—with the former working best at 50–55 °C and pH 4.5–5.5. Here, nine thermophilic Bacillus and Parageobacillus spp. were evaluated for growth and lactic acid fermentation at high temperature and low pH. The most promising candidate was then carried forward to demonstrate SSF using the cellulosic fraction from municipal solid waste (MSW) as a feedstock. Results B. smithii SA8Eth was identified as the most promising candidate and in a batch SSF maintained at 55 °C and pH 5.0, using a cellulase dose of 5 FPU/g glucan, it produced 5.1 g/L lactic acid from 2% (w/v) MSW cellulosic pulp in TSB media. Conclusion This work has both scientific and industrial relevance, as it evaluates a number of previously untrialled bacterial hosts for their compatibility with lignocellulosic SSF for lactic acid production and successfully identifies B. smithii as a potential candidate for such a process. Electronic supplementary material The online version of this article (10.1007/s10529-020-03049-y) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Expeditious production of concentrated glucose-rich hydrolysate from sugarcane bagasse and its fermentation to lactic acid with high productivity. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Vishnu Prasad J, Sahoo TK, Naveen S, Jayaraman G. Evolutionary engineering of Lactobacillus bulgaricus reduces enzyme usage and enhances conversion of lignocellulosics to D-lactic acid by simultaneous saccharification and fermentation. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:171. [PMID: 33088341 PMCID: PMC7566127 DOI: 10.1186/s13068-020-01812-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/06/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND Simultaneous saccharification and fermentation (SSF) of pre-treated lignocellulosics to biofuels and other platform chemicals has long been a promising alternative to separate hydrolysis and fermentation processes. However, the disparity between the optimum conditions (temperature, pH) for fermentation and enzyme hydrolysis leads to execution of the SSF process at sub-optimal conditions, which can affect the rate of hydrolysis and cellulose conversion. The fermentation conditions could be synchronized with hydrolysis optima by carrying out the SSF at a higher temperature, but this would require a thermo-tolerant organism. Economically viable production of platform chemicals from lignocellulosic biomass (LCB) has long been stymied because of the significantly higher cost of hydrolytic enzymes. The major objective of this work is to develop an SSF strategy for D-lactic acid (D-LA) production by a thermo-tolerant organism, in which the enzyme loading could significantly be reduced without compromising on the overall conversion. RESULTS A thermo-tolerant strain of Lactobacillus bulgaricus was developed by adaptive laboratory evolution (ALE) which enabled the SSF to be performed at 45 °C with reduced enzyme usage. Despite the reduction of enzyme loading from 15 Filter Paper Unit/gLCB (FPU/gLCB) to 5 FPU/gLCB, we could still achieve ~ 8% higher cellulose to D-LA conversion in batch SSF, in comparison to the conversion by separate enzymatic hydrolysis and fermentation processes at 45 °C and pH 5.5. Extending the batch SSF to SSF with pulse-feeding of 5% pre-treated biomass and 5 FPU/gLCB, at 12-h intervals (36th-96th h), resulted in a titer of 108 g/L D-LA and 60% conversion of cellulose to D-LA. This is one among the highest reported D-LA titers achieved from LCB. CONCLUSIONS We have demonstrated that the SSF strategy, in conjunction with evolutionary engineering, could drastically reduce enzyme requirement and be the way forward for economical production of platform chemicals from lignocellulosics. We have shown that fed-batch SSF processes, designed with multiple pulse-feedings of the pre-treated biomass and enzyme, can be an effective way of enhancing the product concentrations.
Collapse
Affiliation(s)
- J. Vishnu Prasad
- Bioprocess and Metabolic Engineering Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036 India
| | - Tridweep K. Sahoo
- Bioprocess and Metabolic Engineering Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036 India
| | - S. Naveen
- Present Address: Indian Institute of Technology, BHU, Varanasi, India
| | - Guhan Jayaraman
- Bioprocess and Metabolic Engineering Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036 India
| |
Collapse
|
21
|
Abedi E, Hashemi SMB. Lactic acid production - producing microorganisms and substrates sources-state of art. Heliyon 2020; 6:e04974. [PMID: 33088933 PMCID: PMC7566098 DOI: 10.1016/j.heliyon.2020.e04974] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 09/16/2020] [Indexed: 01/18/2023] Open
Abstract
Lactic acid is an organic compound produced via fermentation by different microorganisms that are able to use different carbohydrate sources. Lactic acid bacteria are the main bacteria used to produce lactic acid and among these, Lactobacillus spp. have been showing interesting fermentation capacities. The use of Bacillus spp. revealed good possibilities to reduce the fermentative costs. Interestingly, lactic acid high productivity was achieved by Corynebacterium glutamicum and E. coli, mainly after engineering genetic modification. Fungi, like Rhizopus spp. can metabolize different renewable carbon resources, with advantageously amylolytic properties to produce lactic acid. Additionally, yeasts can tolerate environmental restrictions (for example acidic conditions), being the wild-type low lactic acid producers that have been improved by genetic manipulation. Microalgae and cyanobacteria, as photosynthetic microorganisms can be an alternative lactic acid producer without carbohydrate feed costs. For lactic acid production, it is necessary to have substrates in the fermentation medium. Different carbohydrate sources can be used, from plant waste as molasses, starchy, lignocellulosic materials as agricultural and forestry residues. Dairy waste also can be used by the addition of supplementary components with a nitrogen source.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran
| | | |
Collapse
|
22
|
Zhang Z, Li Y, Zhang J, Peng N, Liang Y, Zhao S. High-Titer Lactic Acid Production by Pediococcus acidilactici PA204 from Corn Stover through Fed-Batch Simultaneous Saccharification and Fermentation. Microorganisms 2020; 8:microorganisms8101491. [PMID: 32998448 PMCID: PMC7600695 DOI: 10.3390/microorganisms8101491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
Lignocellulose comprised of cellulose and hemicellulose is one of the most abundant renewable feedstocks. Lactic acid bacteria have the ability to ferment sugar derived from lignocellulose. In this study, Pediococcus acidilactici PA204 is a lactic acid bacterium with a high tolerance of temperature and high-efficiency utilization of xylose. We developed a fed-batch simultaneous saccharification and fermentation (SSF) process at 37 °C (pH 6.0) using the 30 FPU (filter paper units)/g cellulase and 20 g/L corn steep powder in a 5 L bioreactor to produce lactic acid (LA). The titer, yield, and productivity of LA produced from 12% (w/w) NaOH-pretreated and washed stover were 92.01 g/L, 0.77 g/g stover, and 1.28 g/L/h, respectively, and those from 15% NaOH-pretreated and washed stover were 104.11 g/L, 0.69 g/g stover, and 1.24 g/L/h, respectively. This study develops a feasible fed-batch SSF process for LA production from corn stover and provides a promising candidate strain for high-titer and -yield lignocellulose-derived LA production.
Collapse
Affiliation(s)
- Zhenting Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (Y.L.); (J.Z.); (N.P.); (Y.L.)
| | - Yanan Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (Y.L.); (J.Z.); (N.P.); (Y.L.)
| | - Jianguo Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (Y.L.); (J.Z.); (N.P.); (Y.L.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (Y.L.); (J.Z.); (N.P.); (Y.L.)
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (Y.L.); (J.Z.); (N.P.); (Y.L.)
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Z.); (Y.L.); (J.Z.); (N.P.); (Y.L.)
- Correspondence: ; Tel.: +86-27-8728-1267; Fax: +86-27-8728-0670
| |
Collapse
|
23
|
Shao L, Chen H, Li Y, Li J, Chen G, Wang G. Pretreatment of corn stover via sodium hydroxide-urea solutions to improve the glucose yield. BIORESOURCE TECHNOLOGY 2020; 307:123191. [PMID: 32203870 DOI: 10.1016/j.biortech.2020.123191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Because of the abundance and renewability of lignocellulosic biomass, lignocellulose-derived biofuels and chemicals are promising alternatives to fossil resources. In this study, we developed a strategy for pretreating lignocellulose (corn stover) using a sodium hydroxide-urea solution (SUs) and evaluated changes in the efficiency and structure. The results showed that treatment with 6% NaOH/12% urea at 80 °C for 20 min gave a glucose yield of 0.54 g/g corn stover. Recycling of the NaOH/urea was also explored, and the average glucose yield over four pretreatment cycles was 0.44 g/g corn stover. The structural characteristics of corn stover were investigated by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry. Compared with untreated corn stover, NaOH/urea-pretreated corn stover had more micropores, mesopores, and macropores, higher crystallinity, and a higher cellulose content. This pretreatment process is economical and efficient and has good application prospects for lignocellulose biorefinery.
Collapse
Affiliation(s)
- Lianyue Shao
- College of Life Science, Jilin Agricultural University, Jilin 130118, China
| | - Huan Chen
- College of Life Science, Jilin Agricultural University, Jilin 130118, China
| | - Yanli Li
- College of Life Science, Jilin Agricultural University, Jilin 130118, China
| | - Jiannan Li
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 95306, United States
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Jilin 130118, China; Key Laboratory of Straw Biology and Utilization, Education Ministry of China, Jilin Agricultural University, Jilin 130118, China
| | - Gang Wang
- College of Life Science, Jilin Agricultural University, Jilin 130118, China; Key Laboratory of Straw Biology and Utilization, Education Ministry of China, Jilin Agricultural University, Jilin 130118, China.
| |
Collapse
|
24
|
Mostafa YS, Alamri SA, Hashem M, Nafady NA, Abo-Elyousr KA, Mohamed ZA. Thermostable Cellulase Biosynthesis from Paenibacillus alvei and its Utilization in Lactic Acid Production by Simultaneous Saccharification and Fermentation. Open Life Sci 2020; 15:185-197. [PMID: 33987475 PMCID: PMC8114780 DOI: 10.1515/biol-2020-0019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/18/2019] [Indexed: 02/02/2023] Open
Abstract
Cellulosic date palm wastes may have beneficial biotechnological applications for eco-friendly utilization. This study reports the isolation of thermophilic cellulase-producing bacteria and their application in lactic acid production using date palm leaves. The promising isolate was identified as Paenibacillus alvei by 16S rRNA gene sequencing. Maximum cellulase production was acquired using alkaline treated date palm leaves (ATDPL) at 48 h and yielded 4.50 U.mL-1 FPase, 8.11 U.mL-1 CMCase, and 2.74 U.mL-1 β-glucosidase. The cellulase activity was optimal at pH 5.0 and 50°C with good stability at a wide temperature (40-70°C) and pH (4.0-7.0) range, demonstrating its suitability in simultaneous saccharification and fermentation. Lactic acid fermentation was optimized at 4 days, pH 5.0, 50°C, 6.0% cellulose of ATDPL, 30 FPU/ g cellulose, 1.0 g. L-1 Tween 80, and 5.0 g. L-l yeast extract using Lactobacillus delbrueckii. The conversion efficiency of lactic acid from the cellulose of ATDPL was 98.71%, and the lactic acid productivity was 0.719 g. L-1 h-1. Alkaline treatment exhibited a valuable effect on the production of cellulases and lactic acid by reducing the lignin content and cellulose crystallinity. The results of this study offer a credible procedure for using date palm leaves for microbial industrial applications.
Collapse
Affiliation(s)
- Yasser S. Mostafa
- King Khalid University, Faculty of Science, Biology Department, AbhaSaudi Arabia
| | - Saad A. Alamri
- King Khalid University, Faculty of Science, Biology Department, AbhaSaudi Arabia
- Prince Sultan Bin Abdulaziz Center for Environmental and Tourism Research and Studies, King Khalid University, AbhaSaudi Arabia
| | - Mohamed Hashem
- King Khalid University, Faculty of Science, Biology Department, AbhaSaudi Arabia
- Assiut University, Faculty of Science, Botany and Microbiology Department, Assiut, Egypt
| | - Nivien A. Nafady
- Assiut University, Faculty of Science, Botany and Microbiology Department, Assiut, Egypt
| | | | - Zakaria A. Mohamed
- King Abdulaziz University, Faculty of Meteorology, Environmental and Arid Land Agriculture, Department of Arid Land Agriculture, JeddahSaudi Arabia
| |
Collapse
|
25
|
Chen H, Su Z, Wang Y, Wang B, Si Z, Lu J, Su C, Ren W, Chen H, Cai D, Qin P. Lactic acid production from pretreated corn stover with recycled streams. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Production of D-Lactic Acid by the Fermentation of Orange Peel Waste Hydrolysate by Lactic Acid Bacteria. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation6010001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lactic acid is one the most interesting monomer candidates to replace some petroleum- based monomers. The application of conventional poly-lactic acid (PLA) is limited due to insufficient thermal properties. This limitation can be overcome by blending poly-D and poly-L-lactic acid. The main problem is the limited knowledge of D-lactic acid (D-LA) production. Efficient biochemical processes are being developed in order to synthesize D-LA from orange peel waste (OPW). OPW is an interesting renewable raw material for biorefinery processes of biocatalytic, catalytic or thermal nature owing to its low lignin and ash content. Bioprocessing of the pretreated OPW is carried out by enzymatic hydrolysis and fermentation of the released sugars to produce D-LA. Several strains of the species Lactobacillus delbrueckii ssp. bulgaricus have been evaluated for the production of D-LA from OPW hydrolysate using Lactobacillus delbrueckii ssp. delbrueckii CECT 286 as a reference strain since its performance in this kind of substrate have been widely reported in previous studies. Preliminary results show that Lactobacillus delbrueckii ssp. bulgaricus CECT 5037 had the best performance with a yield of 84% w/w for D-LA production and up to 95% (e.e.).
Collapse
|
27
|
Han X, Li L, Wei C, Zhang J, Bao J. Facilitation of l-Lactic Acid Fermentation by Lignocellulose Biomass Rich in Vitamin B Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7082-7086. [PMID: 31199642 DOI: 10.1021/acs.jafc.9b02297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vitamins are important nutrients for many fermentations, but they are generally costly. Agricultural lignocellulose biomass contains considerable amounts of vitamin B compounds, but these water-soluble vitamins are easily lost into wastewater discharge during pretreatment or detoxification of lignocellulose in biorefinery processes. Here, we showed that the dry acid pretreatment and biodetoxification process allowed the preservation of significant amounts of vitamin B, which promoted l-lactic acid fermentation efficiency significantly. Supplementation with specific vitamin B compounds, VB3 and VB5, into corn stover hydrolysate led to further increases of cellulosic l-lactic acid yield and fermentation rates. This study provided a new solution for the enhancement of biorefinery fermentation efficiency by using vitamin B compounds in lignocellulose biomass.
Collapse
Affiliation(s)
- Xushen Han
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Li Li
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Chengxiang Wei
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Jian Zhang
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|
28
|
Jiang S, Xu P, Tao F. l-Lactic acid production by Bacillus coagulans through simultaneous saccharification and fermentation of lignocellulosic corncob residue. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Bio-detoxification Bacteria Isolated from Dye-Polluted Soils Promote Lactic Acid Production from Ammonia Pretreated Corn Stover. Appl Biochem Biotechnol 2019; 189:129-143. [PMID: 30906971 DOI: 10.1007/s12010-019-02993-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
Abstract
Agro-stovers are the most abundant substrates for producing lactic acid, which has great potential application in the production of biodegradable and biocompatible polylactic acid polymers. However, chemical pretreatments on agro-stovers generate inhibitors that repress the subsequent lactic acid fermentation. In this study, three bacterial strains (Enterococcus faecalis B101, Acinetobacter calcoaceticus C1, and Pseudomonas aeruginosa CS) isolated from dye-polluted soils could utilize phenolic inhibitor mimics (vanillin, 4- hydroxybenzaldehyde, or syringaldehyde) from alkaline pretreated corn stovers as a sole carbon source. Lactic acid titer increased from 27.42 g/L (Bacillus coagulans LA204 alone) to 44.76 g/L (CS and LA204) using 50 g/L glucose with 1 g/L 4-hydroxybenzaldehyde added. Lactic acid production from 50 g/L ammonia pretreated corn stover was increased nearly twofold by inoculating phenolic degradation bacteria and lactic acid bacteria (C1& Lactobacillus pentosus FL0421). In the control (FL0421 alone), only 16.98 g/L of lactic acid was produced. The isolated and identified strains degraded the phenolic compounds and increased the lactic acid production from glucose and ammonia pretreated corn stover. These characteristics of the strains support industrial application with efficient in situ detoxification of phenolic compounds during lactic acid production from agro-stovers using simultaneous saccharification and fermentation (SSF).
Collapse
|
30
|
Aulitto M, Fusco S, Nickel DB, Bartolucci S, Contursi P, Franzén CJ. Seed culture pre-adaptation of Bacillus coagulans MA-13 improves lactic acid production in simultaneous saccharification and fermentation. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:45. [PMID: 30858882 PMCID: PMC6394018 DOI: 10.1186/s13068-019-1382-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/20/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Lignocellulosic biomass is an abundant and sustainable feedstock, which represents a promising raw material for the production of lactic acid via microbial fermentation. However, toxic compounds that affect microbial growth and metabolism are released from the biomass upon thermochemical pre-treatment. So far, susceptibility of bacterial strains to biomass-derived inhibitors still represents a major barrier to lactic acid production from lignocellulose. Detoxification of the pre-treated lignocellulosic material by water washing is commonly performed to alleviate growth inhibition of the production microorganism and achieve higher production rates. RESULTS In this study, we assessed the feasibility of replacing the washing step with integrated cellular adaptation during pre-culture of Bacillus coagulans MA-13 prior to simultaneous saccharification and lactic acid fermentation of steam exploded wheat straw. Using a seed culture pre-exposed to 30% hydrolysate led to 50% shorter process time, 50% higher average volumetric and 115% higher average specific productivity than when using cells from a hydrolysate-free seed culture. CONCLUSIONS Pre-exposure of B. coagulans MA-13 to hydrolysate supports adaptation to the actual production medium. This strategy leads to lower process water requirements and combines cost-effective seed cultivation with physiological pre-adaptation of the production strain, resulting in reduced lactic acid production costs.
Collapse
Affiliation(s)
- Martina Aulitto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Salvatore Fusco
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - David Benjamin Nickel
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | | | - Patrizia Contursi
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Carl Johan Franzén
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
31
|
Zheng Z, Jiang T, Zou L, Ouyang S, Zhou J, Lin X, He Q, Wang L, Yu B, Xu H, Ouyang J. Simultaneous consumption of cellobiose and xylose by Bacillus coagulans to circumvent glucose repression and identification of its cellobiose-assimilating operons. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:320. [PMID: 30519284 PMCID: PMC6271610 DOI: 10.1186/s13068-018-1323-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/23/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND The use of inedible lignocellulosic biomasses for biomanufacturing provides important environmental and economic benefits for society. Efficient co-utilization of lignocellulosic biomass-derived sugars, primarily glucose and xylose, is critical for the viability of lignocellulosic biorefineries. However, the phenomenon of glucose repression prevents co-utilization of both glucose and xylose in cellulosic hydrolysates. RESULTS To circumvent glucose repression, co-utilization of cellobiose and xylose by Bacillus coagulans NL01 was investigated. During co-fermentation of cellobiose and xylose, B. coagulans NL01 simultaneously consumed the sugar mixtures and exhibited an improved lactic acid yield compared with co-fermentation of glucose and xylose. Moreover, the cellobiose metabolism of B. coagulans NL01 was investigated for the first time. Based on comparative genomic analysis, two gene clusters that encode two different operons of the cellobiose-specific phosphoenolpyruvate-dependent phosphotransferase system (assigned as CELO1 and CELO2) were identified. For CELO1, five genes were arranged as celA (encoding EIIAcel), celB (encoding EIIBcel), celC (encoding EIICcel), pbgl (encoding 6-phospho-β-glucosidase), and celR (encoding a transcriptional regulator), and these genes were found to be ubiquitous in different B. coagulans strains. Based on gene knockout results, CELO1 was confirmed to be responsible for the transport and assimilation of cellobiose. For CELO2, the five genes were arranged as celR, celB, celA, celX (encoding DUF871 domain-containing protein), and celC, and these genes were only found in some B. coagulans strains. However, through a comparison of cellobiose fermentation by NL01 and DSM1 that only possess CELO1, it was observed that CELO2 might also play an important role in the utilization of cellobiose in vivo despite the fact that no pbgl gene was found. When CELO1 or CELO2 was expressed in Escherichia coli, the recombinant strain exhibited distinct cellobiose uptake and consumption. CONCLUSIONS This study demonstrated the cellobiose-assimilating pathway of B. coagulans and provided a new co-utilization strategy of cellobiose and xylose to overcome the obstacles that result from glucose repression in a biorefinery system.
Collapse
Affiliation(s)
- Zhaojuan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Ting Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Lihua Zou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Shuiping Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Jie Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Xi Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Qin He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Limin Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 People’s Republic of China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 People’s Republic of China
| | - Haijun Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| |
Collapse
|
32
|
Dun Y, Li Y, Xu J, Hu Y, Zhang C, Liang Y, Zhao S. Simultaneous fermentation and hydrolysis to extract chitin from crayfish shell waste. Int J Biol Macromol 2018; 123:420-426. [PMID: 30439435 DOI: 10.1016/j.ijbiomac.2018.11.088] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 10/09/2018] [Accepted: 11/12/2018] [Indexed: 11/30/2022]
Abstract
Chitin is the second-most abundant bioresource and widely used in the food, agricultural, textile, biomedical, and pharmaceutical industries. However, an efficient, environmentally friendly, and economically feasible process for chitin extraction from shellfish waste remains to be explored. This study aimed to extract chitin from crayfish shell waste powder (CSP) by removing Ca2+ and protein, using Bacillus coagulans LA204 and proteinase K. A simultaneous enzymatic hydrolysis and fermentation process was conducted at 50 °C with 5% (w/v) CSP, 5% (w/v) glucose, 1000 U proteinase k g-1 CSP, and 10% inoculation of B. coagulans LA204 in a 5-L bioreactor under non-sterile conditions. After 48 h of fermentation, the deproteinization efficiency, demineralization efficiency, and chitin recovery reached 93%, 91%, and 94%, respectively. 1 mol additional glucose efficiently removed 0.91 mol calcium carbonate and 93% of the removed protein was hydrolyzed to acid-soluble protein. Simultaneous enzymatic hydrolysis and fermentation was a new strategy and a competitive biological method for chitin extraction.
Collapse
Affiliation(s)
- Yaohao Dun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongqiang Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiahui Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanliang Hu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Collaborative Innovation Center for Industrial Fermentation, Wuhan 430068, China; Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Changyi Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Collaborative Innovation Center for Industrial Fermentation, Wuhan 430068, China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Collaborative Innovation Center for Industrial Fermentation, Wuhan 430068, China.
| |
Collapse
|
33
|
Production of D-lactic acid by Lactobacillus delbrueckii ssp. delbrueckii from orange peel waste: techno-economical assessment of nitrogen sources. Appl Microbiol Biotechnol 2018; 102:10511-10521. [PMID: 30324487 DOI: 10.1007/s00253-018-9432-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
In this study, the effect of several organic nitrogen sources (namely peptone, meat extract-ME, yeast extract-YE, and corn steep liquor-CSL) on D-lactic acid production by Lactobacillus delbrueckii ssp. delbrueckii has been studied. While lactic acid bacteria (LAB) are well-known for their complex nutritional requirements, organic nitrogen source-related cost can be as high as 38% of total operational costs (OPEX), being its nature and concentration critical factors in the growth and productivity of the selected strain. Corn steep liquor (CSL) has been chosen for its adequacy, on the grounds of the D-lactic acid yield, productivity, and its cost per kilogram of product. Finally, orange peel waste hydrolysate supplemented with 37 g/l CSL has been employed for D-lactic acid production, reaching a final yield of 88% and a productivity of 2.35 g/l h. CSL cost has been estimated at 90.78$/ton of D-lactate.
Collapse
|
34
|
Biodetoxification of Phenolic Inhibitors from Lignocellulose Pretreatment using Kurthia huakuii LAM0618 T and Subsequent Lactic Acid Fermentation. Molecules 2018; 23:molecules23102626. [PMID: 30322101 PMCID: PMC6222552 DOI: 10.3390/molecules23102626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/21/2018] [Accepted: 09/28/2018] [Indexed: 01/13/2023] Open
Abstract
Phenolic inhibitors generated during alkaline pretreatment of lignocellulosic biomasses significantly hinder bacterial growth and subsequent biofuel and biochemical production. Water rinsing is an efficient method for removing these compounds. Nevertheless, this method often generates a great amount of wastewater, and leads to the loss of solid fiber particles and fermentable sugars. Kurthia huakuii LAM0618T, a recently identified microorganism, was herein shown to be able to efficiently transform phenolic compounds (syringaldehyde, hydroxybenzaldehyde, and vanillin) into less toxic acids. Taking advantage of these properties, a biodetoxification method was established by inoculating K. huakuii LAM0618T into the NH3/H2O2-pretreated unwashed corn stover to degrade phenolic inhibitors and weak acids generated during the pretreatment. Subsequently, 33.47 and 17.91 g/L lactic acid was produced by Bacillus coagulans LA204 at 50 °C through simultaneous saccharification and fermentation (SSF) from 8% (w/w) of NH3/H2O2-pretreated corn stover with or without K. huakuii LAM0618T-biodetoxification, indicating biodetoxification significantly increased lactic acid titer and yield. Importantly, using 15% (w/w) of the NH3/H2O2-pretreated K. huakuii LAM0618T-biodetoxified corn stover as a substrate through fed-batch simultaneous saccharification and fermentation, high titer and high yield of lactic acid (84.49 g/L and 0.56 g/g corn stover, respectively, with a productivity of 0.88 g/L/h) were produced by Bacillus coagulans LA204. Therefore, this study reported the first study on biodetoxification of alkaline-pretreated lignocellulosic material, and this biodetoxification method could replace water rinsing for removal of phenolic inhibitors and applied in biofuel and biochemical production using the alkaline-pretreated lignocellulosic bioresources.
Collapse
|
35
|
Han X, Hong F, Liu G, Bao J. An Approach of Utilizing Water-Soluble Carbohydrates in Lignocellulose Feedstock for Promotion of Cellulosic l-Lactic Acid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10225-10232. [PMID: 30207160 DOI: 10.1021/acs.jafc.8b03592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Agricultural lignocellulose biomass generally contains certain amounts of water-soluble carbohydrates (WSC) such as glucose, fructose, or sucrose. These sugars are generally degraded in pretreatment at high temperature or discharged with wastewater in a detoxification process. This study proposed an approach of utilizing frequently ignored water-soluble carbohydrates for promotion of cellulosic l-lactic acid production. A simple solid state fermentation was performed during a corn stover storage period to convert the sugars into l-lactic acid and then a dry biorefining technology was applied to convert cellulose and hemicellulose fractions into the same l-lactic acid product. The 5-hydroxymethylfurfural (HMF) formation in pretreatment was significantly reduced and the consequent biodetoxification time was shortened. l-Lactic acid production was increased from 130.2 g/L to 139.0 g/L, and the minimum l-lactic acid selling price was reduced by 5.9%. This study provided an important option of biorefinery processing technology for production of value added biochemicals.
Collapse
Affiliation(s)
- Xushen Han
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Feng Hong
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620 , China
| | - Gang Liu
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|
36
|
Mladenović D, Pejin J, Kocić-Tanackov S, Djukić-Vuković A, Mojović L. Enhanced Lactic Acid Production by Adaptive Evolution of Lactobacillus paracasei on Agro-industrial Substrate. Appl Biochem Biotechnol 2018; 187:753-769. [DOI: 10.1007/s12010-018-2852-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/25/2018] [Indexed: 01/18/2023]
|
37
|
Konuray G, Erginkaya Z. Potential Use of Bacillus coagulans in the Food Industry. Foods 2018; 7:foods7060092. [PMID: 29899254 PMCID: PMC6025323 DOI: 10.3390/foods7060092] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 01/16/2023] Open
Abstract
Probiotic microorganisms are generally considered to beneficially affect host health when used in adequate amounts. Although generally used in dairy products, they are also widely used in various commercial food products such as fermented meats, cereals, baby foods, fruit juices, and ice creams. Among lactic acid bacteria, Lactobacillus and Bifidobacterium are the most commonly used bacteria in probiotic foods, but they are not resistant to heat treatment. Probiotic food diversity is expected to be greater with the use of probiotics, which are resistant to heat treatment and gastrointestinal system conditions. Bacillus coagulans (B. coagulans) has recently attracted the attention of researchers and food manufacturers, as it exhibits characteristics of both the Bacillus and Lactobacillus genera. B. coagulans is a spore-forming bacterium which is resistant to high temperatures with its probiotic activity. In addition, a large number of studies have been carried out on the low-cost microbial production of industrially valuable products such as lactic acid and various enzymes of B. coagulans which have been used in food production. In this review, the importance of B. coagulans in food industry is discussed. Moreover, some studies on B. coagulans products and the use of B. coagulans as a probiotic in food products are summarized.
Collapse
Affiliation(s)
- Gözde Konuray
- Department of Food Engineering, Cukurova University, Adana 01330, Turkey.
| | - Zerrin Erginkaya
- Department of Food Engineering, Cukurova University, Adana 01330, Turkey.
| |
Collapse
|
38
|
Qiu Z, Gao Q, Bao J. Engineering Pediococcus acidilactici with xylose assimilation pathway for high titer cellulosic l-lactic acid fermentation. BIORESOURCE TECHNOLOGY 2018; 249:9-15. [PMID: 29035728 DOI: 10.1016/j.biortech.2017.09.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 05/26/2023]
Abstract
Xylose-assimilating pathways were constructed in the parental Pediococcus acidilactici strain and evolutionarily adapted to yield a highly stable co-fermentation strain for l-lactic acid production. The phosphoketolase pathway (PK) was blocked for reduction of acetic acid generation by disrupting phosphoketolase (pkt) gene. The pentose phosphate pathway (PPP) was reconstructed for xylose assimilation by integrating four heterologous genes encoding transketolase (tkt), transaldolase (tal), xylose isomerase (xylA) and xylulokinase (xylB) into the P. acidilactici chromosome. The xylose-assimilating ability of the constructed strain was significantly improved by long term adaptive evolution. The engineered strain was applied to the simultaneous saccharification and co-fermentation (SSCF) under high solids loading of wheat straw. The l-lactic acid titer, productivity and xylose conversion reached the record high at 130.8±1.6g/L, 1.82±0.0g/L/h, and 94.9±0.0%, respectively. This study provided an important strain and process prototype for production of high titer cellulosic l-lactic acid.
Collapse
Affiliation(s)
- Zhongyang Qiu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiuqiang Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
39
|
Qiu Z, Gao Q, Bao J. Constructing xylose-assimilating pathways in Pediococcus acidilactici for high titer d-lactic acid fermentation from corn stover feedstock. BIORESOURCE TECHNOLOGY 2017; 245:1369-1376. [PMID: 28601396 DOI: 10.1016/j.biortech.2017.05.128] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Xylose-assimilating pathway was constructed in a d-lactic acid producing Pediococcus acidilactici strain and evolutionary adapted to yield a co-fermentation strain P. acidilactici ZY15 with 97.3g/L of d-lactic acid and xylose conversion of 92.6% obtained in the high solids content simultaneous saccharification and co-fermentation (SSCF) of dry dilute acid pretreated and biodetoxified corn stover feedstock. The heterologous genes encoding xylose isomerase (xylA) and xylulokinase (xylB) were screened and integrated into the P. acidilactici chromosome. The metabolic flux to acetic acid in phosphoketolase pathway was re-directed to pentose phosphate pathway by substituting the endogenous phosphoketolase gene (pkt) with the heterologous transketolase (tkt) and transaldolase (tal) genes. The xylose-assimilating ability of the newly constructed P. acidilactici strain was significantly improved by adaptive evolution. This study provided an important strain and process prototype for high titer d-lactic acid production from lignocellulose feedstock with efficient xylose assimilation.
Collapse
Affiliation(s)
- Zhongyang Qiu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiuqiang Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
40
|
Production and Characteristics of a Novel Xylose- and Alkali-tolerant GH 43 β-xylosidase from Penicillium oxalicum for Promoting Hemicellulose Degradation. Sci Rep 2017; 7:11600. [PMID: 28912429 PMCID: PMC5599605 DOI: 10.1038/s41598-017-11573-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/23/2017] [Indexed: 11/09/2022] Open
Abstract
β-xylosidase is a pivotal enzyme for complete degradation of xylan in hemicelluloses of lignocelluloses, and the xylose- and alkali-tolerant β-xylosidase with high catalytic activity is very attractive for promoting enzymatic hydrolysis of alkaline-pretreated lignocellulose. In this study, a novel intracellular glycoside hydrolase family 43 β-xylosidase gene (xyl43) from Penicillium oxalicum 114-2 was successfully high-level overexpressed in Pichia pastoris, and the secreted enzyme was characterized. The β-xylosidase Xyl43 exhibited great pH stability and high catalytic activity in the range of pH 6.0 to 8.0, and high tolerance to xylose with the Ki value of 28.09 mM. The Xyl43 could effectively promote enzymatic degradation of different source of xylan and hemicellulose contained in alkaline-pretreated corn stover, and high conversion of xylan to xylose could be obtained.
Collapse
|
41
|
Chen Z, Wan C. Non-sterile fermentations for the economical biochemical conversion of renewable feedstocks. Biotechnol Lett 2017; 39:1765-1777. [PMID: 28905262 DOI: 10.1007/s10529-017-2429-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/31/2017] [Indexed: 01/17/2023]
Abstract
Heavy reliance on petroleum-based products drives continuous exploitation of fossil fuels, and results in serious environmental and climate problems. To address such an issue, there is a shift from petroleum sources to renewable ones. Biochemical conversion via fermentation is a primary platform for converting renewable sources to biofuels and bulk chemicals. In order to provide cost-competitive alternatives, it is imperative to develop efficient, cost-saving, and robust fermentation processes. Non-sterile fermentation offers several benefits compared to sterile fermentation, including elimination of sterility, reduced maintenance requirements, relatively simple bioreactor design, and simplified operation. Thus, cost effectiveness of non-sterile fermentation makes it a practical platform for low cost, large volume production of biofuels and bulk chemicals. Many approaches have been developed to conduct non-sterile fermentation without sacrificing the yields and productivities of fermentation products. This review focuses on the strategies for conducting non-sterile fermentation. The challenges facing non-sterile fermentation are also discussed.
Collapse
Affiliation(s)
- Zhu Chen
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - Caixia Wan
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
42
|
Li C, Gai Z, Wang K, Jin L. Engineering Bacillus licheniformis as a thermophilic platform for the production of l-lactic acid from lignocellulose-derived sugars. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:235. [PMID: 29046721 PMCID: PMC5637338 DOI: 10.1186/s13068-017-0920-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/03/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bacillus licheniformis MW3 as a GRAS and thermophilic strain is a promising microorganism for chemical and biofuel production. However, its capacity to co-utilize glucose and xylose, the major sugars found in lignocellulosic biomass, is severely impaired by glucose-mediated carbon catabolite repression (CCR). In this study, a "dual-channel" process was implemented to engineer strain MW3 for simultaneous utilization of glucose and xylose, using l-lactic acid as a target product. RESULTS A non-phosphotransferase system (PTS) glucose uptake route was activated via deletion of the glucose transporter gene ptsG and introduction of the galactose permease gene galP. After replacing the promoter of glucokinase gene glck with the strong promoter Pals, the engineered strain recovered glucose consumption and utilized glucose and xylose simultaneously. Meanwhile, to improve the consumption rate of xylose in this strain, several measures were undertaken, such as relieving the regulation of the xylose repressor XylR, reducing the catabolite-responsive element, and optimizing the rate-limiting step. Knockout of ethanol and acetic acid pathway genes further increased lactic acid yield by 6.2%. The resultant strain, RH15, was capable of producing 121.9 g/L l-lactic acid at high yield (95.3%) after 40 h of fermentation from a mixture of glucose and xylose. When a lignocellulosic hydrolysate was used as the substrate, 99.3 g/L l-lactic acid was produced within 40 h, with a specific productivity of 2.48 g/[L h] and a yield of 94.6%. CONCLUSIONS Our engineered strain B. licheniformis RH15 could thermophilically produced l-lactic acid from lignocellulosic hydrolysate with relatively high concentration and productivity at levels that were competitive with most reported cases of l-lactic acid-producers. Thus, the engineered strain might be used as a platform for the production of other chemicals. In addition to engineering the B. licheniformis strain, the "dual-channel" process might serve as an alternative method for engineering a variety of other strains.
Collapse
Affiliation(s)
- Chao Li
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200092 People’s Republic of China
| | - Zhongchao Gai
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200092 People’s Republic of China
| | - Liping Jin
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200092 People’s Republic of China
| |
Collapse
|
43
|
Biorefinery-Based Lactic Acid Fermentation: Microbial Production of Pure Monomer Product. SYNTHESIS, STRUCTURE AND PROPERTIES OF POLY(LACTIC ACID) 2017. [DOI: 10.1007/12_2016_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Zhou J, Ouyang J, Xu Q, Zheng Z. Cost-effective simultaneous saccharification and fermentation of l-lactic acid from bagasse sulfite pulp by Bacillus coagulans CC17. BIORESOURCE TECHNOLOGY 2016; 222:431-438. [PMID: 27750196 DOI: 10.1016/j.biortech.2016.09.119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
The main barriers to cost-effective lactic acid production from lignocellulose are the high cost of enzymes and the ineffective utilization of the xylose within the hydrolysate. In the present study, the thermophilic Bacillus coagulans strain CC17 was used for the simultaneous saccharification and fermentation (SSF) of bagasse sulfite pulp (BSP) to produce l-lactic acid. Unexpectedly, SSF by CC17 required approximately 33.33% less fungal cellulase than did separate hydrolysis and fermentation (SHF). More interestingly, CC17 can co-ferment cellobiose and xylose without any exogenous β-glucosidase in SSF. Moreover, adding xylanase could increase the concentration of lactic acid produced via SSF. Up to 110g/L of l-lactic acid was obtained using fed-batch SSF, resulting in a lactic acid yield of 0.72g/g cellulose. These results suggest that SSF using CC17 has a remarkable advantage over SHF and that a potentially low-cost and highly-efficient fermentation process can be established using this protocol.
Collapse
Affiliation(s)
- Jie Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, China; Key Laboratory of Forest Tree Genetics and Genetic Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qianqian Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, China
| | - Zhaojuan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
45
|
Comparison of high-titer lactic acid fermentation from NaOH- and NH 3-H 2O 2-pretreated corncob by Bacillus coagulans using simultaneous saccharification and fermentation. Sci Rep 2016; 6:37245. [PMID: 27853308 PMCID: PMC5112544 DOI: 10.1038/srep37245] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/25/2016] [Indexed: 11/09/2022] Open
Abstract
Lignocellulose is one of the most abundant renewable feedstocks that has attracted considerable attention as a substrate for biofuel and biochemical production. One such biochemical product, lactic acid, is an important fermentation product because of its great potential for the production of biodegradable and biocompatible polylactic acid. High-titer lactic acid production from lignocellulosic materials has been achieved recently; however, it requires biodetoxification or results in large amounts of waste washing water. In this study, we employed two alkaline pretreatment methods and compared their effects on lactic acid fermentation of pretreated corncob by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile conditions. The lactic acid titer, yield, and productivity from 16% (w/w) NaOH-pretreated and washed corncob were 122.99 g/L, 0.77 g/g corncob, and 1.37 g/L/h, respectively, and from 16% NH3-H2O2-pretreated and washed corncob were 118.60 g/L, 0.74 g/g corncob, and 1.32 g/L/h, respectively. Importantly, the lactic acid titer, yield, and productivity from 18.4% NH3-H2O2-pretreated and unwashed corncob by using fed-batch simultaneous saccharification and fermentation reached 79.47 g/L, 0.43 g/g corncob, and 1.10 g/L/h, respectively, demonstrating that this method is possible for industrial applications and saves washing water.
Collapse
|
46
|
van der Pol EC, Eggink G, Weusthuis RA. Production of l(+)-lactic acid from acid pretreated sugarcane bagasse using Bacillus coagulans DSM2314 in a simultaneous saccharification and fermentation strategy. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:248. [PMID: 27872661 PMCID: PMC5111225 DOI: 10.1186/s13068-016-0646-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/13/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Sugars derived from lignocellulose-rich sugarcane bagasse can be used as feedstock for production of l(+)-lactic acid, a precursor for renewable bioplastics. In our research, acid-pretreated bagasse was hydrolysed with the enzyme cocktail GC220 and fermented by the moderate thermophilic bacterium Bacillus coagulans DSM2314. Saccharification and fermentation were performed simultaneously (SSF), adding acid-pretreated bagasse either in one batch or in two stages. SSF was performed at low enzyme dosages of 10.5-15.8 FPU/g DW bagasse. RESULTS The first batch SSF resulted in an average productivity of 0.78 g/l/h, which is not sufficient to compete with lactic acid production processes using high-grade sugars. Addition of 1 g/l furfural to precultures can increase B. coagulans resistance towards by-products present in pretreated lignocellulose. Using furfural-containing precultures, productivity increased to 0.92 g/l/h, with a total lactic acid production of 91.7 g in a 1-l reactor containing 20% W/W DW bagasse. To increase sugar concentrations, bagasse was solubilized with a liquid fraction, obtained directly after acid pretreatment. Solubilizing the bagasse fibres with water increased the average productivity to 1.14 g/l/h, with a total lactic acid production of 84.2 g in a 1-l reactor. Addition of bagasse in two stages reduced viscosity during SSF, resulting in an average productivity in the first 23 h of 2.54 g/l/h, similar to productivities obtained in fermentations using high-grade sugars. Due to fast accumulation of lactic acid, enzyme activity was repressed during two-stage SSF, resulting in a decrease in productivity and a slightly lower total lactic acid production of 75.6 g. CONCLUSIONS In this study, it is shown that an adequate production of lactic acid from lignocellulose was successfully accomplished by a two-stage SSF process, which combines acid-pretreated bagasse, B. coagulans precultivated in the presence of furfural as microorganism, and GC220 as enzyme cocktail. The process may be further improved by enhancing enzyme hydrolysis activities at high lactic acid concentrations.
Collapse
Affiliation(s)
- Edwin C. van der Pol
- Bioprocess Engineering, Wageningen University and Research, PO Box 16, 6700 AA Wageningen, The Netherlands
- Food and Biobased Research, Wageningen University and Research, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - Gerrit Eggink
- Bioprocess Engineering, Wageningen University and Research, PO Box 16, 6700 AA Wageningen, The Netherlands
- Food and Biobased Research, Wageningen University and Research, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - Ruud A. Weusthuis
- Bioprocess Engineering, Wageningen University and Research, PO Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
47
|
Ma K, Hu G, Pan L, Wang Z, Zhou Y, Wang Y, Ruan Z, He M. Highly efficient production of optically pure l-lactic acid from corn stover hydrolysate by thermophilic Bacillus coagulans. BIORESOURCE TECHNOLOGY 2016; 219:114-122. [PMID: 27479802 DOI: 10.1016/j.biortech.2016.07.100] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 05/13/2023]
Abstract
A thermophilic strain Bacillus coagulans (NBRC 12714) was employed to produce l-lactic acid from corn stover hydrolysate in membrane integrated continuous fermentation. The strain NBRC 12714 metabolized glucose and xylose by the Embden-Meyerhof-Parnas pathway (EMP) and the pentose phosphate pathway (PPP), producing l-lactic acid with optical purity >99.5%. The overall l-lactic acid titer of 92g/l with a yield of 0.91g/g and a productivity of 13.8g/l/h were achieved at a dilution rate of 0.15h(-1). The productivity obtained was 1.6-fold than that of conventional continuous fermentation without cell recycling, and also was the highest among the relevant studies ever reported. These results indicated that the process developed had great potential for economical industrial production of l-lactic acid from lignocellulosic biomass.
Collapse
Affiliation(s)
- Kedong Ma
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, PR China
| | - Guoquan Hu
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Liwei Pan
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, PR China
| | - Zichao Wang
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, PR China
| | - Yi Zhou
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, PR China
| | - Yanwei Wang
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Zhiyong Ruan
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China.
| |
Collapse
|
48
|
Ren X, Wang J, Yu H, Peng C, Hu J, Ruan Z, Zhao S, Liang Y, Peng N. Anaerobic and sequential aerobic production of high-titer ethanol and single cell protein from NaOH-pretreated corn stover by a genome shuffling-modified Saccharomyces cerevisiae strain. BIORESOURCE TECHNOLOGY 2016; 218:623-630. [PMID: 27416512 DOI: 10.1016/j.biortech.2016.06.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 06/06/2023]
Abstract
In this study, a Saccharomyces cerevisiae recombinant strain 14 was constructed through genome shuffling method by transferring the whole genomic DNA of Candida intermedia strain 23 into a thermo-tolerant S. cerevisiae strain. The recombinant strain 14 combined the good natures of both parent strains that efficiently produced ethanol from glucose and single cell protein from xylose with 54.6% crude protein and all essential amino acids except cysteine at 35°C. Importantly, the recombinant strain 14 produced 64.07g/L ethanol from 25%(w/v) NaOH-pretreated and washed corn stover with the ethanol yield of 0.26g/g total stover by fed-batch simultaneous saccharification and fermentation and produced 66.50g/L dry cell mass subsequently from the residual hydrolysate and ethanol. Therefore, this study represents a feasible method to comprehensively utilize hexose and pentose in lignocellulosic materials.
Collapse
Affiliation(s)
- Xueliang Ren
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Juncong Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Hui Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Chunlan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Jinlong Hu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Zhiyong Ruan
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Hubei Collaborative Innovation Center for Industrial Fermentation, Wuhan 430068, PR China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Hubei Collaborative Innovation Center for Industrial Fermentation, Wuhan 430068, PR China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Hubei Collaborative Innovation Center for Industrial Fermentation, Wuhan 430068, PR China; Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
49
|
Zhang Y, Zeng F, Hohn K, Vadlani PV. Metabolic flux analysis of carbon balance inLactobacillusstrains. Biotechnol Prog 2016; 32:1397-1403. [DOI: 10.1002/btpr.2361] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/23/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Yixing Zhang
- Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry; Kansas State University; Manhattan Kansas
| | - Fan Zeng
- Dept. of Chemical Engineering; Kansas State University; Manhattan Kansas
| | - Keith Hohn
- Dept. of Chemical Engineering; Kansas State University; Manhattan Kansas
| | - Praveen V. Vadlani
- Dept. of Chemical Engineering; Kansas State University; Manhattan Kansas
- Dept. of Grain Science and Industry, Bioprocessing and Renewable Energy Laboratory; Kansas State University; Manhattan Kansas
| |
Collapse
|
50
|
Hu J, Lin Y, Zhang Z, Xiang T, Mei Y, Zhao S, Liang Y, Peng N. High-titer lactic acid production by Lactobacillus pentosus FL0421 from corn stover using fed-batch simultaneous saccharification and fermentation. BIORESOURCE TECHNOLOGY 2016; 214:74-80. [PMID: 27128191 DOI: 10.1016/j.biortech.2016.04.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/07/2016] [Accepted: 04/09/2016] [Indexed: 06/05/2023]
Abstract
Because the cost of refined sugar substrate and limit of worldwide food availability, lignocellulosic materials are attractive for use in lactic acid (LA) production. In this study, we found Lactobacillus pentosus strain FL0421 produced LA with high yields (0.52-0.82g/g stover) from five NaOH-pretreated and washed agro stovers through simultaneous saccharification and fermentation (SSF). We developed a fed-batch SSF process at 37°C and pH 6.0 using the cellulase of 30FPU/g stover and 10g/L yeast extract in a 5-L bioreactor to produce LA from 14% (w/w) NaOH-pretreated and washed corn stover under non-sterile condition. The LA-titer, yield and productivity reached 92.30g/L, 0.66g/g stover and 1.92g/L/h, respectively; and acetic acid titer and yield reached 34.27g/L and 0.24g/g stover. This study presented a feasible process for LA production from agro stovers and provided a candidate strain for genetic engineering for high-titer and -yield lignocellulosic LA production.
Collapse
Affiliation(s)
- Jinlong Hu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Yanxu Lin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Zhenting Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Ting Xiang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Yuxia Mei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Hubei Collaborative Innovation Center for Industrial Fermentation, Wuhan 430068, Hubei, PR China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Hubei Collaborative Innovation Center for Industrial Fermentation, Wuhan 430068, Hubei, PR China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Hubei Collaborative Innovation Center for Industrial Fermentation, Wuhan 430068, Hubei, PR China; Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|