1
|
Bobadilla LF, Azancot L, González-Castaño M, Ruíz-López E, Pastor-Pérez L, Durán-Olivencia FJ, Ye R, Chong K, Blanco-Sánchez PH, Wu Z, Reina TR, Odriozola JA. Biomass gasification, catalytic technologies and energy integration for production of circular methanol: New horizons for industry decarbonisation. J Environ Sci (China) 2024; 140:306-318. [PMID: 38331510 DOI: 10.1016/j.jes.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 02/10/2024]
Abstract
The Intergovernmental Panel on Climate Change (IPCC) recognises the pivotal role of renewable energies in the future energy system and the achievement of the zero-emission target. The implementation of renewables should provide major opportunities and enable a more secure and decentralised energy supply system. Renewable fuels provide long-term solutions for the transport sector, particularly for applications where fuels with high energy density are required. In addition, it helps reducing the carbon footprint of these sectors in the long-term. Information on biomass characteristics feedstock is essential for scaling-up gasification from the laboratory to industrial-scale. This review deals with the transformation biogenic residues into a valuable bioenergy carrier like biomethanol as the liquid sunshine based on the combination of modified mature technologies such as gasification with other innovative solutions such as membranes and microchannel reactors. Tar abatement is a critical process in product gas upgrading since tars compromise downstream processes and equipment, for this, membrane technology for upgrading syngas quality is discussed in this paper. Microchannel reactor technology with the design of state-of-the-art multifunctional catalysts provides a path to develop decentralised biomethanol synthesis from biogenic residues. Finally, the development of a process chain for the production of (i) methanol as an intermediate energy carrier, (ii) electricity and (iii) heat for decentralised applications based on biomass feedstock flexible gasification, gas upgrading and methanol synthesis is analysed.
Collapse
Affiliation(s)
- Luis F Bobadilla
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, Sevilla 41092, Spain.
| | - Lola Azancot
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Miriam González-Castaño
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Estela Ruíz-López
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Laura Pastor-Pérez
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Francisco J Durán-Olivencia
- Departamento de Ingeniería, Universidad Loyola Andalucía, Avda. de Las Universidades s/n, Sevilla 41704, Spain
| | - Runping Ye
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Katie Chong
- Energy and Bioproducts Research Institute (EBRI), Aston University, Birmingham, B4 7ET, United Kingdom
| | - Paula H Blanco-Sánchez
- Energy and Bioproducts Research Institute (EBRI), Aston University, Birmingham, B4 7ET, United Kingdom
| | - Zenthao Wu
- Energy and Bioproducts Research Institute (EBRI), Aston University, Birmingham, B4 7ET, United Kingdom
| | - Tomás R Reina
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, Sevilla 41092, Spain; Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - José A Odriozola
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, Sevilla 41092, Spain; Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, United Kingdom
| |
Collapse
|
2
|
Khunnonkwao P, Thitiprasert S, Jaiaue P, Khumrangsee K, Cheirsilp B, Thongchul N. The outlooks and key challenges in renewable biomass feedstock utilization for value-added platform chemical via bioprocesses. Heliyon 2024; 10:e30830. [PMID: 38770303 PMCID: PMC11103475 DOI: 10.1016/j.heliyon.2024.e30830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
The conversion of renewable biomass feedstock into value-added products via bioprocessing platforms has become attractive because of environmental and health concerns. Process performance and cost competitiveness are major factors in the bioprocess design to produce desirable products from biomass feedstock. Proper pretreatment allows delignification and hemicellulose removal from the liquid fraction, allowing cellulose to be readily hydrolyzed to monomeric sugars. Several industrial products are produced via sugar fermentation using either naturally isolated or genetically modified microbes. Microbial platforms play an important role in the synthesis of several products, including drop-in chemicals, as-in products, and novel compounds. The key elements in developing a fermentation platform are medium formulation, sterilization, and active cells for inoculation. Downstream bioproduct recovery may seem like a straightforward chemical process, but is more complex, wherein cost competitiveness versus recovery performance becomes a challenge. This review summarizes the prospects for utilizing renewable biomass for bioprocessing.
Collapse
Affiliation(s)
- Panwana Khunnonkwao
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Sitanan Thitiprasert
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Phetcharat Jaiaue
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Katsaya Khumrangsee
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Benjamas Cheirsilp
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Nuttha Thongchul
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
3
|
Mukhtar H, Ullah N, Younas M, Feroze N, Ali N, Fatehizadeh A, Rezakazemi M. Torrefaction interpretation through morphological and chemical transformations of agro-waste to porous carbon-based biofuel. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115426. [PMID: 37683430 DOI: 10.1016/j.ecoenv.2023.115426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
In the current study, two agro-waste lignocellulosic corncob (CC) and rice husk (RH) were thermally torrefied at 200-300 °C into a porous carbon-enriched biofuel. The scanning electron microscopy (SEM) of produced biofuel confirmed the rounded, homogenous, and spherical structure of the produced biofuels with higher porosity at a temperature between 250 and 300 °C with 60 min retention time. Brunauer-Emmett-Teller (BET) analysis indicated the high surface area (CC: 1.19-2.87 m2 g-1 and RH: 1.22-2.67 m2 g-1) and pore volume (CC: 1.23-2.81 ×10-3 m3 g-1 and RH: 1.46-2.58 ×10-3 m3 g-1). Crystallinity index decline percent (CC= 62.87% and RH=57.10%) estimated thermal stability and rise in amorphous cellulose reformation during (250-300 °C)/60 min that would efficiently hydrolyze during oxidative pyrolysis carbon reactive sites the rise in surface area and total pore's volume, having higher conversion rate as compared to raw materials. Carbon content was upgraded to 94% by eliminating hydrogen and oxygen from lignocellulosic agro-waste to produce energy-dense CC and RH. The lignin macromolecule transformation extent was estimated by O/C trend, which was equal to 63% and 47% for CC and RH, respectively, at 300 °C for 60 min. Due to low bulk density and pre-grinding energy requirements, torrefied biofuel with decomposed fibrous structure have lower transportation costs.
Collapse
Affiliation(s)
- Hina Mukhtar
- Department of Chemical Engineering, NFC Institute of Engineering & Fertilizer Research, 38090 Faisalabad, Pakistan; Department of Chemical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan
| | - Nehar Ullah
- Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, University of Engineering & Technology, 25120 Peshawar, Pakistan
| | - Mohammad Younas
- Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, University of Engineering & Technology, 25120 Peshawar, Pakistan.
| | - Nadeem Feroze
- Department of Chemical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan
| | - Najaf Ali
- Department of Chemical Engineering, NFC Institute of Engineering & Fertilizer Research, 38090 Faisalabad, Pakistan
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
4
|
Mohanakrishna G, Modestra JA. Value addition through biohydrogen production and integrated processes from hydrothermal pretreatment of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2023; 369:128386. [PMID: 36423757 DOI: 10.1016/j.biortech.2022.128386] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Bioenergy production is the most sought-after topics at the crunch of energy demand, climate change and waste generation. In view of this, lignocellulosic biomass (LCB) rich in complex organic content has the potential to produce bioenergy in several forms following the pretreatment. Hydrothermal pretreatment that employs high temperatures and pressures is gaining momentum for organics recovery from LCB which can attain value-addition. Diverse bioprocesses such as dark fermentation, anaerobic digestion etc. can be utilized following the pretreatment of LCB which can result in biohydrogen and biomethane production. Besides, integration approaches for LCB utilization that enhance process efficiency and additional products such as biohythane production as well as application of solid residue obtained after LCB pretreatment were discussed. Importance of hydrothermal pretreatment as one of the suitable strategies for LCB utilization is emphasized suggesting its future potential in large scale energy recovery.
Collapse
Affiliation(s)
- Gunda Mohanakrishna
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India.
| | - J Annie Modestra
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden
| |
Collapse
|
5
|
Zhang Y, Ding Z, Shahadat Hossain M, Maurya R, Yang Y, Singh V, Kumar D, Salama ES, Sun X, Sindhu R, Binod P, Zhang Z, Kumar Awasthi M. Recent advances in lignocellulosic and algal biomass pretreatment and its biorefinery approaches for biochemicals and bioenergy conversion. BIORESOURCE TECHNOLOGY 2023; 367:128281. [PMID: 36370945 DOI: 10.1016/j.biortech.2022.128281] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
As the global demand for sustainable energy increases, lignocellulosic (such as agricultural residues, forest biomass, municipal waste, and dedicated energy crops) and algal (including macroalgae and microalgae) biomass have attracted considerable attention, because of their high availability of carbohydrates. This is a potential feedstock to produce biochemical and bioenergy. Pretreatment of biomass can disrupt their complex structure, increasing conversion efficiency and product yield. Therefore, this review comprehensively discusses recent advances in different pretreatments (physical, chemical, physicochemical, and biological pretreatments) for lignocellulosic and algal biomass and their biorefining methods. Life cycle assessment (LCA) which enables the quantification of the environmental impact assessment of a biorefinery also be introduced. Biorefinery processes such as raw material acquisition, extraction, production, waste accumulation, and waste conversion are all monitored under this concept. Nevertheless, there still exist some techno-economic barriers during biorefinery and extensive research is still needed to develop cost-effective processes.
Collapse
Affiliation(s)
- Yue Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, the United States of America
| | - Zheli Ding
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan Province 571101, China
| | - Md Shahadat Hossain
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, the United States of America
| | - Rupesh Maurya
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Yulu Yang
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou City, 730000, Gansu Province, China
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, the United States of America
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou City, 730000, Gansu Province, China
| | - Xinwei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
6
|
Biomass valorization by integrating ultrasonication and deep eutectic solvents: Delignification, cellulose digestibility and solvent reuse. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
A theoretical study on hydrodeoxygenation of phenol over MoS2 supported single-atom Fe catalyst. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Uthirakrishnan U, Godvin Sharmila V, Merrylin J, Adish Kumar S, Dharmadhas JS, Varjani S, Rajesh Banu J. Current advances and future outlook on pretreatment techniques to enhance biosolids disintegration and anaerobic digestion: A critical review. CHEMOSPHERE 2022; 288:132553. [PMID: 34653493 DOI: 10.1016/j.chemosphere.2021.132553] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Waste activated sludge (biosolids) treatment is intensely a major problem around the globe. Anaerobic treatment is indeed a fundamental and most popular approach to convert organic wastes into bioenergy, which could be used as a carbon-neutral renewable and clean energy thus eradicating pathogens and eliminating odor. Due to the sheer intricate biosolid matrix (such as exopolymeric substances) and rigid cell structure, hydrolysis becomes a rate-limiting phase. Numerous different pretreatment strategies were proposed to hasten this rate-limiting hydrolysis and enhance the productivity of anaerobic digestion. This study discusses an overview of previous scientific advances in pretreatment options for enhancing biogas production. In addition, the limitations addressed along with the effects of inhibitors in biosolids towards biogas production and strategies to overcome discussed. This review elaborated the cost analysis of various pretreatment methods towards the scale-up process. This review abridges the existing research on augmenting AD efficacy by recognizing the associated knowledge gaps and suggesting future research.
Collapse
Affiliation(s)
- Ushani Uthirakrishnan
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, Chinnakolambakkam, Chengalpattu, 603308, Tamil Nadu, India
| | - V Godvin Sharmila
- Department of Civil Engineering, Rohini College of Engineering and Technology, Kanyakumari, Tamil Nadu, India
| | - J Merrylin
- Department of Food Science and Nutrition, Sarah Tucker College, Tirunelveli, 627002, Tamil Nadu, India
| | - S Adish Kumar
- Department of Civil Engineering, University V.O.C College of Engineering, Anna University Thoothukudi Campus, Tamil Nadu, India
| | - Jeba Sweetly Dharmadhas
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641-021, Tamil Nadu, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, 610005, India.
| |
Collapse
|
9
|
Zhang N, Xu H, Xie J, Cui JY, Yang J, Zhao J, Tong Y, Jiang J. Screening of Cucumber Fusarium Wilt Bio-Inhibitor: High Sporulation Trichoderma harzianum Mutant Cultured on Moso Bamboo Medium. Front Microbiol 2022; 12:763006. [PMID: 35035385 PMCID: PMC8759106 DOI: 10.3389/fmicb.2021.763006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/13/2021] [Indexed: 11/15/2022] Open
Abstract
Cucumber fusarium wilt is a soil-borne disease which causes serious production decrease in cucumber cultivation world widely. Extensive using of chemical pesticides has caused serious environmental pollution and economic losses, therefore, it is particularly urgent to develop efficient, safe and pollution-free biopesticide. In this study, a mutant strain of Trichoderma harzianum cultivated in moso bamboo medium was proved to be an efficient bio-inhibitor of the disease. The mutant strain T. harzianum T334, was obtained by three microwave mutagenesis cycles with an irradiation power of 600 W and irradiation time of 40 s. In contrast to the original strain, the inhibition rate on cucumber fusarium wilt of the strain T334 increased from 63 to 78%. In this work, disk milling pretreatment of moso bamboo has shown significant beneficial effects on both biotransformation and sporulation of T334. Its sporulation reached 3.7 × 109 cfu/g in mushroom bags with 90% bamboo stem powder (pretreated by disk milli), 9.5% bamboo leaf powder and 0.5% wheat bran when the ratio of solid to liquid was 4:6, the inoculum amount was 10%, and the culture temperature was 28°C. These results provide an alternative bioinhibitor for the control of cucumber fusarium wilt, and a potential usage of moso bamboo in the production of microbial pesticide.
Collapse
Affiliation(s)
- Ning Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Nanjing, China.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Hao Xu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Nanjing, China.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Jingcong Xie
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Nanjing, China.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Jie-Yu Cui
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jing Yang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Nanjing, China.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Jian Zhao
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Nanjing, China.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Yajuan Tong
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Nanjing, China.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Laboratory for Biomass Chemical Utilization, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Nanjing, China.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
10
|
Kustov LM, Kustov AL, Salmi T. Processing of lignocellulosic polymer wastes using microwave irradiation. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Banerjee A, Show BK, Chaudhury S, Balachandran S. Biological pretreatment for enhancement of biogas production. COST EFFECTIVE TECHNOLOGIES FOR SOLID WASTE AND WASTEWATER TREATMENT 2022:101-114. [DOI: 10.1016/b978-0-12-822933-0.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
12
|
Del Río PG, Gullón B, Wu J, Saddler J, Garrote G, Romaní A. Current breakthroughs in the hardwood biorefineries: Hydrothermal processing for the co-production of xylooligosaccharides and bioethanol. BIORESOURCE TECHNOLOGY 2022; 343:126100. [PMID: 34626760 DOI: 10.1016/j.biortech.2021.126100] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The development of lignocellulosic biorefineries requires a first stage of pretreatment which enables the efficient valorization of all fractions present in this renewable material. In this sense, this review aims to show the main advantages of hydrothermal treatment as a first step of a biorefinery infrastructure using hardwood as raw material, as well as, main drawback to overcome. Hydrothermal treatment of hardwood highlights for its high selectivity for hemicelluloses solubilization as xylooligosaccharides (XOS). Nevertheless, the suitable conditions for XOS production are inadequate to achieve an elevate cellulose to glucose conversion. Hence, several strategies namely the combination of hydrothermal treatment with delignification process, in situ modification of lignin and the mixture with another renewable resources (concretely, seaweeds, and by-products generated in the food industry with high sugar content) were pinpointed as promising alternative to increase the final ethanol concentration coupled with XOS recovery in the hydrolysate.
Collapse
Affiliation(s)
- Pablo G Del Río
- Universidade de Vigo, Departamento de Enxeñería Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Beatriz Gullón
- Universidade de Vigo, Departamento de Enxeñería Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Jie Wu
- Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jack Saddler
- Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Gil Garrote
- Universidade de Vigo, Departamento de Enxeñería Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Aloia Romaní
- Universidade de Vigo, Departamento de Enxeñería Química, Facultade de Ciencias, 32004 Ourense, Spain.
| |
Collapse
|
13
|
Sarkar O, Rova U, Christakopoulos P, Matsakas L. Organosolv pretreated birch sawdust for the production of green hydrogen and renewable chemicals in an integrated biorefinery approach. BIORESOURCE TECHNOLOGY 2022; 344:126164. [PMID: 34699962 DOI: 10.1016/j.biortech.2021.126164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Sustainable production of fuels and chemicals is the most important way to reduce the carbon footprint in the environment. Forest based abundant lignocellulosic biomass as a renewable feedstock can be an attractive source of biofuels and biochemicals. This study evaluated the production of hydrogen (H2) along with platform chemicals from an organosol pretreated birch sawdust (SD). Acidogenic fermentation (AF) of pretreated SD resulted in production of green H2 (121.4 mL/gVS) along with short (17.8 g/L) and medium (2.64 g/L) chain carboxylic acids. Further integration of AF with anaerobic digestion (AD) in a biorefinery framework offered production of biomethane (bioCH4: 246 mL/gVS) from the leftover SD from AF. Integration of bioH2 with bioCH4 at different time interval of digestion showed 8-14 L biohythane formation ran with a H2 fraction of 1.6-0.3 H2/(H2 + CH4) documenting energy content of 8-9.08 kJ/gVS.
Collapse
Affiliation(s)
- Omprakash Sarkar
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87 Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87 Luleå, Sweden.
| |
Collapse
|
14
|
Bonardd S, Díaz Díaz D, Leiva A, Saldías C. Chromophoric Dendrimer-Based Materials: An Overview of Holistic-Integrated Molecular Systems for Fluorescence Resonance Energy Transfer (FRET) Phenomenon. Polymers (Basel) 2021; 13:4404. [PMID: 34960954 PMCID: PMC8705239 DOI: 10.3390/polym13244404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Dendrimers (from the Greek dendros → tree; meros → part) are macromolecules with well-defined three-dimensional and tree-like structures. Remarkably, this hyperbranched architecture is one of the most ubiquitous, prolific, and recognizable natural patterns observed in nature. The rational design and the synthesis of highly functionalized architectures have been motivated by the need to mimic synthetic and natural-light-induced energy processes. Dendrimers offer an attractive material scaffold to generate innovative, technological, and functional materials because they provide a high amount of peripherally functional groups and void nanoreservoirs. Therefore, dendrimers emerge as excellent candidates since they can play a highly relevant role as unimolecular reactors at the nanoscale, acting as versatile and sophisticated entities. In particular, they can play a key role in the properties of light-energy harvesting and non-radiative energy transfer, allowing them to function as a whole unit. Remarkably, it is possible to promote the occurrence of the FRET phenomenon to concentrate the absorbed energy in photoactive centers. Finally, we think an in-depth understanding of this mechanism allows for diverse and prolific technological applications, such as imaging, biomedical therapy, and the conversion and storage of light energy, among others.
Collapse
Affiliation(s)
- Sebastián Bonardd
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez S/N, La Laguna, 38206 Tenerife, Spain; (S.B.); (D.D.D.)
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna, 38206 Tenerife, Spain
| | - David Díaz Díaz
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez S/N, La Laguna, 38206 Tenerife, Spain; (S.B.); (D.D.D.)
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna, 38206 Tenerife, Spain
- Institutfür Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Angel Leiva
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul, Santiago, CL 7820436, USA;
| | - César Saldías
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul, Santiago, CL 7820436, USA;
| |
Collapse
|
15
|
Influence of Torrefaction Temperature and Climatic Chamber Operation Time on Hydrophobic Properties of Agri-Food Biomass Investigated Using the EMC Method. ENERGIES 2021. [DOI: 10.3390/en14175299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Due to the tendency for excessive moisture adsorption by raw, unprocessed biomass, various methods of biomass valorization are in use, allowing for the improvement of physical–chemical biomass properties, including hydrophobicity. One of the methods is torrefaction, which changes the hydrophilic properties of the biomass to hydrophobic. Therefore, in this study, the influence of the torrefaction temperature and the exposure time to moisture adsorption conditions on the hydrophobic properties of waste biomass from the agri-food industry (lemon peel, mandarin peel, grapefruit peel, and butternut-squash peel) were analyzed. The torrefaction was carried out at the following temperatures: 200, 220, 240, 260, 280, 300, and 320 °C. The hydrophobic properties were determined by using the EMC (Equilibrium Moisture Content) method, conducting an experiment in the climatic chamber at atmospheric pressure, a temperature of 25 °C, and relative humidity of 80%. The total residence time of the material in the climate chamber was 24 h. It was shown that the torrefaction process significantly improves the hydrophobic properties of waste biomass. Concerning dried raw (unprocessed) material, the EMC (24 h) coefficient was 0.202 ± 0.004 for lemon peels, 0.223 ± 0.001 for grapefruit peels, 0.237 ± 0.004 for mandarin peels, and 0.232 ± 0.004 for butternut squash, respectively. After the torrefaction process, the EMC value decreased by 24.14–56.96% in relation to the dried raw material, depending on the type of organic waste. However, no correlation between the improvement of hydrophobic properties and increasing the torrefaction temperature was observed. The lowest values of the EMC coefficient were determined for the temperatures of 260 °C (for lemon peel, EMC = 0.108 ± 0.001; for mandarin peel, EMC = 0.102 ± 0.001), 240 °C (for butternut-squash peel, EMC = 0.176 ± 0.002), and 220 °C (for grapefruit peel, EMC = 0.114 ± 0.008). The experiment also showed a significant logarithmic trend in the dependence of the EMC coefficient on the operating time of the climatic chamber. It suggests that there is a limit of water adsorption by the material and that a further increase of the exposure time does not change this balance.
Collapse
|
16
|
Mahima J, Sundaresh RK, Gopinath KP, Rajan PSS, Arun J, Kim SH, Pugazhendhi A. Effect of algae (Scenedesmus obliquus) biomass pre-treatment on bio-oil production in hydrothermal liquefaction (HTL): Biochar and aqueous phase utilization studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146262. [PMID: 33714809 DOI: 10.1016/j.scitotenv.2021.146262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Environmental concerns due to fossil fuel usage has turned the research interest towards biomass and bioenergy field. Renewable biomass such as microalgae provides numerous advantages as they can grow in wastewater; sequester carbon dioxide, economical and eco-friendly. In this study, effect of pretreatment of microalgae (Scenedesmus obliquus) biomass using post-hydrothermal liquefaction wastewater (PHWW) for bio-oil production through hydrothermal liquefaction at a temperature of 300 °C was studied. Results showed liquefaction of pre-treated biomass yielded 48.53% bio-oil whereas 28.35% was resulted from biomass without pretreatment. The analysis of higher heating value of bio-oil showed that pretreated biomass oil has 36.19 MJ.Kg-1 against non-pretreated biomass oil, which has 28.88 MJ.Kg-1. Bio-oil (pretreated biomass) analysis revealed that 60% of compounds are in diesel and gasoline range with 58.09% of energy recovery. Bio-oil was rich in hydrocarbons of C7-C21 range with less oxygenated compounds. Carbon balance showed that an increase of 13% of carbon was sequestered in solid residue obtained from pretreated biomass and about 146% of increase also obtained in bio-oil.
Collapse
Affiliation(s)
- Jain Mahima
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | - Ramesh Kumar Sundaresh
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | | | - Panneer Selvam Sundar Rajan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | - Jayaseelan Arun
- Centre for Waste Management, International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 600119, Tamil Nadu, India
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
17
|
Effect of surface structure and Pd doping of Fe catalysts on the selective hydrodeoxygenation of phenol. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.07.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Sinitsyn AP, Sinitsyna OA. Bioconversion of Renewable Plant Biomass. Second-Generation Biofuels: Raw Materials, Biomass Pretreatment, Enzymes, Processes, and Cost Analysis. BIOCHEMISTRY (MOSCOW) 2021; 86:S166-S195. [PMID: 33827407 DOI: 10.1134/s0006297921140121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review discusses various aspects of renewable plant biomass conversion and production of the second-generation biofuels, including the types of plant biomass, its composition and reaction ability in the enzymatic hydrolysis, and various pretreatment methods for increasing the biomass reactivity. Conversion of plant biomass into sugars requires the use of a complex of enzymes, the composition of which should be adapted to the biomass type and the pretreatment method. The efficiency of enzymatic hydrolysis can be increased by optimizing the composition of the enzymatic complex and by increasing the catalytic activity and operational stability of its constituent enzymes. The availability of active enzyme producers also plays an important role. Examples of practical implementation and scaling of processes for the production of second-generation biofuels are presented together with the cost analysis of bioethanol production.
Collapse
Affiliation(s)
- Arkadij P Sinitsyn
- Bakh Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia. .,Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga A Sinitsyna
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
19
|
Oleaginous Yeasts as Cell Factories for the Sustainable Production of Microbial Lipids by the Valorization of Agri-Food Wastes. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020050] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The agri-food industry annually produces huge amounts of crops residues and wastes, the suitable management of these products is important to increase the sustainability of agro-industrial production by optimizing the entire value chain. This is also in line with the driving principles of the circular economy, according to which residues can become feedstocks for novel processes. Oleaginous yeasts represent a versatile tool to produce biobased chemicals and intermediates. They are flexible microbial factories able to grow on different side-stream carbon sources such as those deriving from agri-food wastes, and this characteristic makes them excellent candidates for integrated biorefinery processes through the production of microbial lipids, known as single cell oils (SCOs), for different applications. This review aims to present an extensive overview of research progress on the production and use of oleaginous yeasts and present discussions on the current bottlenecks and perspectives of their exploitation in different sectors, such as foods, biofuels and fine chemicals.
Collapse
|
20
|
Arun J, Gopinath KP, Sivaramakrishnan R, Shyam S, Mayuri N, Manasa S, Pugazhendhi A. Hydrothermal liquefaction of Prosopis juliflora biomass for the production of ferulic acid and bio-oil. BIORESOURCE TECHNOLOGY 2021; 319:124116. [PMID: 32957046 DOI: 10.1016/j.biortech.2020.124116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 05/22/2023]
Abstract
The objective of this work was to study the hydrothermal liquefaction (HTL) of Prosopis juliflora biomass for the production of ferulic acid and bio-oil. Biomass was processed with various solvents (NaOH, KOH, HCl and H2SO4) to produce ferulic acid (FA). FA oxidation was carried out using the Nano ZnO catalyst to produce an optimum vanillin yield of 0.3 g at 70 °C with 0.4% catalyst loading for a time of 60 min. The spent solid residue was then processed using HTL at 5 MPa pressure and a temperature range of 240-340 °C. Various biomass loading (2.5 g to 12.5 g) was taken for a fixed water content of 200 mL. Bio-oil optimum yield was 22.5 wt% for 10 g/200 mL of biomass loading ratio. The optimum temperature was 300 °C for a processing time of 1 h. The catalyst showed the reusable capability of two three consecutive cycles.
Collapse
Affiliation(s)
- Jayaseelan Arun
- Center for Waste Management - 'International Research Center', Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 600 119, Tamil Nadu, India
| | | | - Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sivaprasad Shyam
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - Namasivayam Mayuri
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - Sadhasivan Manasa
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
21
|
Comparing Low-Temperature Hydrothermal Pretreatments through Convective Heating versus Microwave Heating for Napier Grass Digestion. Processes (Basel) 2020. [DOI: 10.3390/pr8101221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study investigates the effects of convective hydrothermal pretreatment (CHTP) compared to microwave pretreatment (MWP) on the anaerobic digestion of hybrid Napier grass for biomethane production. For rapid estimation of methane yield (YCH4), enzymatic hydrolyzability (EH), whose test lasts only 2 days was used as a surrogate parameter instead of the biochemical methane potential (BMP) assay that normally takes 45–60 days. The relationship between EH and BMP was successfully modeled with satisfactory accuracy (R2 = 0.9810). From CHTP results, quadratic regression characterised by p < 0.0001 and R2 = 0.8364 shows that YCH4 increase was clearly sensitive to detention time at all CHTP temperatures. The maximal YCH4 achieved of 301.5 ± 3.0 mL CH4/gVSadd was 53.2% higher than the control. Then, MWP was employed at various power levels and microwave exposure times. Changes in lignocellulosic structure by Fourier-transform infrared spectroscopy (FTIR) and energy balance demonstrate that MWP caused more damage to plant cells, which proved more effective than CHTP. In the best conditions, approximately 50% of energy was needed for MWP to achieve the equivalent improvement in YCH4. However, CHTP is a more suitable option since waste heat, i.e., from a biogas CHP (combined heat and power) unit, could be used, as opposed to the electricity required for MWP.
Collapse
|
22
|
Li T, Wang L, Chen Z, Li C, Li X, Sun D. Structural changes and enzymatic hydrolysis yield of rice bran fiber under electron beam irradiation. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Alternative Fuels from Forestry Biomass Residue: Torrefaction Process of Horse Chestnuts, Oak Acorns, and Spruce Cones. ENERGIES 2020. [DOI: 10.3390/en13102468] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The global energy system needs new, environmentally friendly, alternative fuels. Biomass is a good source of energy with global potential. Forestry biomass (especially wood, bark, or trees fruit) can be used in the energy process. However, the direct use of raw biomass in the combustion process (heating or electricity generation) is not recommended due to its unstable and low energetic properties. Raw biomass is characterized by high moisture content, low heating value, and hydrophilic propensities. The initial thermal processing and valorization of biomass improves its properties. One of these processes is torrefaction. In this study, forestry biomass residues such as horse chestnuts, oak acorns, and spruce cones were investigated. The torrefaction process was carried out in temperatures ranging from 200 °C to 320 °C in a non-oxidative atmosphere. The raw and torrefied materials were subjected to a wide range of tests including proximate analysis, fixed carbon content, hydrophobicity, density, and energy yield. The analyses indicated that the torrefaction process improves the fuel properties of horse chestnuts, oak acorns, and spruce cones. The properties of torrefied biomass at 320 °C were very similar to hard coal. In the case of horse chestnuts, an increase in fixed carbon content from 18.1% to 44.7%, and a decrease in volatiles from 82.9% to 59.8% were determined. Additionally, torrefied materials were characterized by their hydrophobic properties. In terms of energy yield, the highest value was achieved for oak acorns torrefied at 280 °C and amounted to 1.25. Moreover, higher heating value for the investigated forestry fruit residues ranged from 24.5 MJ·kg−1 to almost 27.0 MJ·kg−1 (at a torrefaction temperature of 320 °C).
Collapse
|
24
|
Vieira S, Barros MV, Sydney ACN, Piekarski CM, de Francisco AC, Vandenberghe LPDS, Sydney EB. Sustainability of sugarcane lignocellulosic biomass pretreatment for the production of bioethanol. BIORESOURCE TECHNOLOGY 2020; 299:122635. [PMID: 31882200 DOI: 10.1016/j.biortech.2019.122635] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 05/12/2023]
Abstract
The sustainability of a biofuel is severely affected by the technological route of its production. Chemical pretreatment can be considered the traditional method of decomposition of the lignocellulose into its mono and oligomeric units, which can be further bioconverted to ethanol. The evaluation of the recent advances in chemical pretreatments of sugarcane bagasse, especially diluted acids, alkaline, organosolv and ionic liquids, identified the critical points for sustainability. In this context, chemicals recovery and reutilization or their substitution by green solvents, heat and electricity generation through bioenergy, reutilization of water from evaporators, vinasse concentration and the upgrading of lignin were discussed as strategic routes for developing sustainable chemical-based lignocellulose pretreatment. The advances in the technologies that allow greater fractionation of lignocellulosic biomass should be focused on the minimization of the use of natural resources, effluent generation and energy expenditure.
Collapse
Affiliation(s)
- Sabrina Vieira
- Universidade Tecnológica Federal do Paraná UTFPR - Campus Ponta Grossa, Department of Bioprocess Engineering and Biotechnology, 84016-210 Ponta Grossa, Paraná, Brazil
| | - Murillo Vetroni Barros
- Universidade Tecnológica Federal do Paraná UTFPR - Campus Ponta Grossa, Sustainable Production Systems Laboratory (LESP), 84016-210 Ponta Grossa, Paraná, Brazil
| | - Alessandra Cristine Novak Sydney
- Universidade Tecnológica Federal do Paraná UTFPR - Campus Ponta Grossa, Department of Bioprocess Engineering and Biotechnology, 84016-210 Ponta Grossa, Paraná, Brazil
| | - Cassiano Moro Piekarski
- Universidade Tecnológica Federal do Paraná UTFPR - Campus Ponta Grossa, Sustainable Production Systems Laboratory (LESP), 84016-210 Ponta Grossa, Paraná, Brazil
| | - Antônio Carlos de Francisco
- Universidade Tecnológica Federal do Paraná UTFPR - Campus Ponta Grossa, Sustainable Production Systems Laboratory (LESP), 84016-210 Ponta Grossa, Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Eduardo Bittencourt Sydney
- Universidade Tecnológica Federal do Paraná UTFPR - Campus Ponta Grossa, Department of Bioprocess Engineering and Biotechnology, 84016-210 Ponta Grossa, Paraná, Brazil.
| |
Collapse
|
25
|
Shahabuddin M, Krishna BB, Bhaskar T, Perkins G. Advances in the thermo-chemical production of hydrogen from biomass and residual wastes: Summary of recent techno-economic analyses. BIORESOURCE TECHNOLOGY 2020; 299:122557. [PMID: 31918971 DOI: 10.1016/j.biortech.2019.122557] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
This article outlines the prospects and challenges of hydrogen production from biomass and residual wastes, such as municipal solid waste. Recent advances in gasification and pyrolysis followed by reforming are discussed. The review finds that the thermal efficiency of hydrogen from gasification is ~50%. The levelized cost of hydrogen (LCOH) from biomass varies from ~2.3-5.2 USD/kg at feedstock processing scales of 10 MWth to ~2.8-3.4 USD/kg at scales above 250 MWth. Preliminary estimates are that the LCOH from residual wastes could be in the range of ~1.4-4.8 USD/kg, depending upon the waste gate fee and project scale. The main barriers to development of waste to hydrogen projects include: waste pre-treatment, technology maturity, syngas conditioning, the market for clean hydrogen, policies to incentivize pioneer projects and technology competitiveness. The main opportunity is to produce low cost clean hydrogen, which is competitive with alternative production routes.
Collapse
Affiliation(s)
- M Shahabuddin
- Department of Chemical Engineering, Monash University, Clayton 3800, Australia
| | - Bhavya B Krishna
- Academy of Scientific and Innovation Research (AcSIR) at CSIR Indian Institute of Petroleum (IIP), Dehradun 248005, Uttarakhand, India; Materials Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, Uttarakhand, India
| | - Thallada Bhaskar
- Academy of Scientific and Innovation Research (AcSIR) at CSIR Indian Institute of Petroleum (IIP), Dehradun 248005, Uttarakhand, India; Materials Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, Uttarakhand, India
| | - Greg Perkins
- Martin Parry Technology, Brisbane 4001, Australia; School of Chemical Engineering, University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
26
|
High Purity and Low Molecular Weight Lignin Nano-Particles Extracted from Acid-Assisted MIBK Pretreatment. Polymers (Basel) 2020; 12:polym12020378. [PMID: 32046247 PMCID: PMC7077479 DOI: 10.3390/polym12020378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 11/17/2022] Open
Abstract
A simple and economical biorefinery method, organosolv methyl isobutyl ketone (MIBK) pretreatment assisted by Lewis acid ferric trichloride hydrolysis, was proposed for fractionating the lignin from extractive-free Eucalyptus powder at the nanoscale, accompanied by another product furfural, derived from hemicellulose. Under the conditions (180 °C, 1 h) optimized based on the best yield of furfural, 40.13% of the acid-insoluble lignin (AIL) could be obtained with a high purity of 100%, a low molecular weight of 767 (Mn) and improved thermostability. The extracted lignin was characterized by its chemical structure, thermostability, homogeneity, molecular weight, and morphology as compared with milled wood lignin (MWL). The results showed significant variations in chemical structures of the extracted lignin during the pretreatment. Specifically, the aryl ether linkage and phenylcoumarans were broken severely while the resinols were more resistant. The G-type lignin was more sensitive to degradation than the S-type, and after the pretreatment, H-type lignin was formed, indicating the occurrence of a demethoxylation reaction at high temperature. Moreover, the lignin nano-particles were identified visually by AFM and TEM images. The dynamic light scattering (DLS) showed that the average diameter of the measured samples was 131.8 nm, with the polydispersity index (PDI) of 0.149. The MIBK-lignin nano-particles prepared in our laboratory exhibit high potentials in producing high functional and valuable materials for the application in wide fields.
Collapse
|
27
|
Cai C, Wang L, Wang G, Hao J, Bai X, Wang Z, Wang D. Effects of dry explosion pretreatment on physicochemical and fuel properties of hybrid pennisetum (Pennisetum americanum × P. purpureum). BIORESOURCE TECHNOLOGY 2020; 297:122508. [PMID: 31816573 DOI: 10.1016/j.biortech.2019.122508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 05/12/2023]
Abstract
Pretreatment of lignocellulose is a critical step in biomass exploitation. This paper proposed a dry explosion pretreatment based on steam explosion in order to improve energy efficiency and treatment effects. A laboratory simulation test bench was built. Hybrid pennisetum was selected as the experimental material. Dry explosion pretreatment under different conditions (temperature: 200, 225, 250, 275 °C, time: 10, 20 min) was conducted. The results showed that dry explosion had lower energy consumption level than steam explosion. Moreover, dry explosion enhanced fuel properties of biomass. The crystallinity of treated samples decreased greatly at high treatment severity. Multiple pyrolysis properties of samples increased first and then decreased with the increase of treatment severity, which was mainly due to dry explosion changing the proportion and nature of the components. These results showed that dry explosion pretreatment can effectively convert biomass into intermediate materials that are beneficial for thermochemical applications.
Collapse
Affiliation(s)
- Chen Cai
- Department of Agricultural Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Liuqing Wang
- Department of Agricultural Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guanghui Wang
- Department of Agricultural Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Jia Hao
- Department of Agricultural Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaopeng Bai
- Department of Agricultural Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhiqin Wang
- Department of Agricultural Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Decheng Wang
- Department of Agricultural Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
28
|
The Influence of Torrefaction Temperature on Hydrophobic Properties of Waste Biomass from Food Processing. ENERGIES 2019. [DOI: 10.3390/en12244609] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The annual potential of waste biomass production from food processing in Europe is 16.9 million tonnes. Unfortunately, most of these organic wastes are utilized without the energy gain, mainly due to the high moisture content and the ability to the fast rotting and decomposition. One of the options to increase its value in terms of energy applications is to valorize its properties. Torrefaction process is one of the pre-treatment technology of raw biomass that increases the quality of the fuel, especially in the context of resistance to moisture absorption. However, little is known about the influence of torrefaction temperature on the degree of valorization of some specific waste biomass. The aim of this paper was to analyze the influence of the temperature of the torrefaction on the hydrophobic properties of waste biomass, such as black currant pomace, apple pomace, orange peels, walnut shells, and pumpkin seeds. The torrefaction process was carried out at temperatures of 200 °C, 220 °C, 240 °C, 260 °C, 280 °C, and 300 °C. The hydrophobic properties were analyzed using the water drop penetration time (WDPT) test. The torrefied waste biomass was compared with the raw material dried at 105 °C. The obtained results revealed that subjecting the biomass to the torrefaction process improved its hydrophobic properties. Biomass samples changed their hydrophobic properties from hydrophilic to extremely hydrophobic depending on the temperature of the process. Apple pomace was the most hydrophilic sample; its water drop penetration was under 60 s. Black currant and apple pomaces reached extremely hydrophobic properties at a temperature of 300 °C, only. In the case of orange peels, walnut shells, and pumpkin seeds, already at the temperature of 220 °C, the samples were characterized by severely hydrophobic properties with a penetration time over 1000 s. At the temperature of 260 °C, orange peels, walnut shells, and pumpkin seeds reached extremely hydrophobic properties. Furthermore, in most cases, the increase of torrefaction temperature improved the resistance to moisture absorption, which is probably related to the removal of hydroxyl groups and structural changes occurring during this thermal process.
Collapse
|
29
|
Jayakishan B, Nagarajan G, Arun J. Co-thermal liquefaction of Prosopis juliflora biomass with paint sludge for liquid hydrocarbons production. BIORESOURCE TECHNOLOGY 2019; 283:303-307. [PMID: 30921583 DOI: 10.1016/j.biortech.2019.03.103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
In this study, Prosopis juliflora biomass was co-liquefied with hydrocarbons rich paint waste for next generation fuel (bio-oil) production. Co-liquefaction (HTL) was performed at varying biomass to paint waste ratios (1:0, 0:1, 1:1, 2:1 and 1:2) at different temperatures from 340 to 440 °C for a holding time of 60 min. Bentonite catalyst was added from 1 to 5% wt. to the HTL reactor. Gas Chromatography-Mass Spectroscopy (GC-MS) and Fourier Transform Infrared Spectroscopy (FTIR) analysis were carried out for bio-oil and HTL aqueous phase. Maximum bio-oil yield was around 49.26% wt. at 420 °C, 2:1 blend and 4% wt. of bentonite catalyst. Energy and carbon recovery of bio-oil was around 70% and 96% respectively. Additionally, HTL aqueous phase was analysed and it showed presence of acids molecules in it. The gas from HTL process contained Carbon dioxide (46.25%), Carbon monoxide (6.38%), Methane (9.35%) and hydrogen (24.53%).
Collapse
Affiliation(s)
- B Jayakishan
- Department of Mechanical Engineering, SSN College of Engineering, Kalavakkam, 603110 Tamil Nadu, India
| | - G Nagarajan
- I. C. Engines Engineering Division, Department of Mechanical Engineering, College of Engineering, Anna University, Guindy, 600025 Tamil Nadu, India.
| | - J Arun
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam, 603110 Tamil Nadu, India
| |
Collapse
|
30
|
Choosing Physical, Physicochemical and Chemical Methods of Pre-Treating Lignocellulosic Wastes to Repurpose into Solid Fuels. SUSTAINABILITY 2019. [DOI: 10.3390/su11133604] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Various methods of physical, chemical and combined physicochemical pre-treatments for lignocellulosic biomass waste valorisation to value-added feedstock/solid fuels for downstream processes in chemical industries have been reviewed. The relevant literature was scrutinized for lignocellulosic waste applicability in advanced thermochemical treatments for either energy or liquid fuels. By altering the overall naturally occurring bio-polymeric matrix of lignocellulosic biomass waste, individual components such as cellulose, hemicellulose and lignin can be accessed for numerous downstream processes such as pyrolysis, gasification and catalytic upgrading to value-added products such as low carbon energy. Assessing the appropriate lignocellulosic pre-treatment technology is critical to suit the downstream process of both small- and large-scale operations. The cost to operate the process (temperature, pressure or energy constraints), the physical and chemical structure of the feedstock after pre-treatment (decomposition/degradation, removal of inorganic components or organic solubilization) or the ability to scale up the pre-treating process must be considered so that the true value in the use of bio-renewable waste can be revealed.
Collapse
|
31
|
Cantero D, Jara R, Navarrete A, Pelaz L, Queiroz J, Rodríguez-Rojo S, Cocero MJ. Pretreatment Processes of Biomass for Biorefineries: Current Status and Prospects. Annu Rev Chem Biomol Eng 2019; 10:289-310. [PMID: 30892926 DOI: 10.1146/annurev-chembioeng-060718-030354] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
This article seeks to be a handy document for the academy and the industry to get quickly up to speed on the current status and prospects of biomass pretreatment for biorefineries. It is divided into two biomass sources: vegetal and animal. Vegetal biomass is the material produced by plants on land or in water (algae), consuming sunlight, CO2, water, and soil nutrients. This includes residues or main products from, for example, intensive grass crops, forestry, and industrial and agricultural activities. Animal biomass is the residual biomass generated from the production of food from animals (e.g., manure and whey). This review does not mean to include every technology in the area, but it does evaluate physical pretreatments, microwave-assisted extraction, and water treatments for vegetal biomass. A general review is given for animal biomass based in physical, chemical, and biological pretreatments.
Collapse
Affiliation(s)
- D Cantero
- BioEcoUVa, Research Institute on Bioeconomy, Group of High-Pressure Technology, Department of Chemical Engineering and Environmental Technology, University of Valladolid, Vallodolid 47011, Spain;
| | - R Jara
- Department of Forestry, University of West Virginia, Morgantown, West Virginia 26506, USA
| | - A Navarrete
- Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - L Pelaz
- BETA Technological Center, University of Vic-Central University of Catalonia, Vic, Barcelona 08500, Spain
| | - J Queiroz
- Federal University of São Carlos, São Carlos 13565-905, Brazil
| | - S Rodríguez-Rojo
- BioEcoUVa, Research Institute on Bioeconomy, Group of High-Pressure Technology, Department of Chemical Engineering and Environmental Technology, University of Valladolid, Vallodolid 47011, Spain;
| | - M J Cocero
- BioEcoUVa, Research Institute on Bioeconomy, Group of High-Pressure Technology, Department of Chemical Engineering and Environmental Technology, University of Valladolid, Vallodolid 47011, Spain;
| |
Collapse
|
32
|
Optimization of pretreatment condition for ethanol production from Cyperus difformis by response surface methodology. 3 Biotech 2019; 9:218. [PMID: 31114742 DOI: 10.1007/s13205-019-1754-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022] Open
Abstract
This study investigated the potential of a new material, so-called small-flowered nutsedge, for bioethanol production. This plant causes the huge loss of rice yield as it competes nutrients, sunlight and other necessary elements with rice plant to grow. The project plans to transform its biomass into valuable product and bring profitable for famers. The powered raw sample was treated with sodium hydroxide (NaOH) and hydrogen peroxide (H2O2) as followed the design experiment. The use of response surface method is helping researcher to save time and effort but still gain meaningful predicted value that closed to the actual value. The highest total sugar was given when the pretreatment condition is solid to liquid ratio of 0.05, 1% NaOH, 1% H2O2 for 72 h. The efficiency of hydrolysis can reach 47% after 24 h with cellulase enzyme at 50 °C, 150 rpm and highest ethanol concentration was obtained on the fifth day of fermentation.
Collapse
|
33
|
Arun J, Gopinath KP, SundarRajan P, JoselynMonica M, Felix V. Co-liquefaction of Prosopis juliflora with polyolefin waste for production of high grade liquid hydrocarbons. BIORESOURCE TECHNOLOGY 2019; 274:296-301. [PMID: 30529335 DOI: 10.1016/j.biortech.2018.11.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 05/18/2023]
Abstract
In this study, co-liquefaction (HTL) of Prosopis juliflora (PJ) biomass with polyolefin waste (PO) was performed to produce bio-oil. HTL on bio-oil yield was studied at varying PJ to PO ratios (0:1, 1:0, 1:1, 2:1, 3:1, 4:1 and 5:1) and temperatures from 340 to 440 °C. Bio-oil and HTL by-products were characterized by Mass Spectroscopy (GC-MS) and Fourier Transform Infrared Spectroscopy (FTIR) analysis. Bio-oil yield was around 61.23%wt at 420 °C for 3:1 blends with 3 wt% of HCl activated bentonite catalyst at 60 min holding time. HHV value was 46 MJ/Kg with 88.23% purity (petro-diesel). Additionally gas possessed 26.28% of Hydrogen gas, 45.59% of Carbon dioxide gas, 7.1% of Carbon monoxide gas, 8.12% of Methane gas and other elements. The energy recovery (78%) and carbon recovery (94%) was higher for 3:1 blends bio-oil than PO and PJ processed bio-oils. HTL wastewater possessed higher degree of reusability nature as HTL medium.
Collapse
Affiliation(s)
- Jayaseelan Arun
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam -603110, Tamil Nadu, India
| | | | - PanneerSelvam SundarRajan
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam -603110, Tamil Nadu, India
| | - Marudai JoselynMonica
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam -603110, Tamil Nadu, India
| | - Vargees Felix
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam -603110, Tamil Nadu, India
| |
Collapse
|
34
|
Zhuo S, Peng B, Yan X, Zhang K, Si M, Liu M, Shi Y. Conquering lignin recalcitrance by Pandoraea sp. B-6 to improve co-solvent pretreatment of corn stover. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Rempel A, Machado T, Treichel H, Colla E, Margarites AC, Colla LM. Saccharification of Spirulina platensis biomass using free and immobilized amylolytic enzymes. BIORESOURCE TECHNOLOGY 2018; 263:163-171. [PMID: 29738979 DOI: 10.1016/j.biortech.2018.04.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
We aimed to use physical methods of microalgal biomass rupture to study saccharification strategies using free and immobilized amylolytic enzymes. The biomass of Spirulina platensis, which consists of 50-60% carbohydrates, was exposed to physical cell rupture treatments, with better results obtained using freeze/thaw cycles following by gelatinization. In saccharification tests, it was possible to hydrolyze Spirulina biomass with hydrolysis efficiencies above 99% and 83%, respectively, using 1% (v/v) of free enzymes or 1% (m/v) of amylolytic enzymes immobilized together. The use of free and immobilized enzymes yielded high levels of conversion of polysaccharides to simple sugars in Spirulina biomass, showing that these processes are promising for the advancement of bioethanol production using microalgal biomass.
Collapse
Affiliation(s)
- Alan Rempel
- Graduation in Civil and Environmental Engineering, University of Passo Fundo (UPF), Campus I, km 171, BR 285, P.O. Box 611, 99001-970 Passo Fundo, Rio Grande do Sul, Brazil
| | - Tainara Machado
- Food Engineering Course, University of Passo Fundo (UPF), Campus I, km 171, BR 285, P.O. Box 611, 99001-970 Passo Fundo, Rio Grande do Sul, Brazil
| | - Helen Treichel
- Graduation in Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, RS 135, Km 72, 99700-000 Erechim, RS, Brazil
| | - Eliane Colla
- Graduation in Food Technology, Federal Technological University of Paraná (UTFPR), Av. Brasil, 4232, 85884-000, P.O. Box 271, Medianeira, Paraná, Brazil
| | - Ana Cláudia Margarites
- Graduation in Civil and Environmental Engineering, University of Passo Fundo (UPF), Campus I, km 171, BR 285, P.O. Box 611, 99001-970 Passo Fundo, Rio Grande do Sul, Brazil
| | - Luciane Maria Colla
- Graduation in Civil and Environmental Engineering, University of Passo Fundo (UPF), Campus I, km 171, BR 285, P.O. Box 611, 99001-970 Passo Fundo, Rio Grande do Sul, Brazil.
| |
Collapse
|
36
|
Arun J, Varshini P, Prithvinath PK, Priyadarshini V, Gopinath KP. Enrichment of bio-oil after hydrothermal liquefaction (HTL) of microalgae C. vulgaris grown in wastewater: Bio-char and post HTL wastewater utilization studies. BIORESOURCE TECHNOLOGY 2018; 261:182-187. [PMID: 29660659 DOI: 10.1016/j.biortech.2018.04.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 06/08/2023]
Abstract
In this study, bio-oil was produced through hydrothermal liquefaction (HTL) of C. vulgaris biomass cultivated in wastewater and was enriched into transportation fuels. Bio-oil yield was 29.37% wt at 300 °C, 60 min, at 15 g/200 mL biomass loading rate with 3% wt nano ZnO catalyst loading. Applying catalyst reduced oxygen and nitrogen content in bio-oil and increased its calorific value (19.6 ± 0.8 MJ/Kg). Bio-oil was enriched through liquid-liquid extraction (LLE) and higher yield was obtained at 30 °C for dichloromethane solvent (18.2% wt). Compounds of enriched oil were within the petro-diesel range (C8-C21). Bio-char after HTL process was activated and used as adsorbent in wastewater treatment process to remove organic pollutants (COD, NO3, NH3 and PO4). Treated wastewater can be supplied as growth medium for microalgae cultivation in further experiments. Nearly 3-4 times the nanocatalyst can be reused in the HTL process.
Collapse
Affiliation(s)
- Jayaseelan Arun
- Department of Chemical Engineering, SSN College OF Engineering, Kalavakkam 603110, Tamil Nadu, India
| | - Padmanabhan Varshini
- Department of Chemical Engineering, SSN College OF Engineering, Kalavakkam 603110, Tamil Nadu, India
| | - P Kamath Prithvinath
- Department of Chemical Engineering, SSN College OF Engineering, Kalavakkam 603110, Tamil Nadu, India
| | | | | |
Collapse
|
37
|
Hassan SS, Williams GA, Jaiswal AK. Emerging technologies for the pretreatment of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2018; 262:310-318. [PMID: 29729930 DOI: 10.1016/j.biortech.2018.04.099] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 05/08/2023]
Abstract
Pretreatment of lignocellulosic biomass to overcome its intrinsic recalcitrant nature prior to the production of valuable chemicals has been studied for nearly 200 years. Research has targeted eco-friendly, economical and time-effective solutions, together with a simplified large-scale operational approach. Commonly used pretreatment methods, such as chemical, physico-chemical and biological techniques are still insufficient to meet optimal industrial production requirements in a sustainable way. Recently, advances in applied chemistry approaches conducted under extreme and non-classical conditions has led to possible commercial solutions in the marketplace (e.g. High hydrostatic pressure, High pressure homogenizer, Microwave, Ultrasound technologies). These new industrial technologies are promising candidates as sustainable green pretreatment solutions for lignocellulosic biomass utilization in a large scale biorefinery. This article reviews the application of selected emerging technologies such as ionizing and non-ionizing radiation, pulsed electrical field, ultrasound and high pressure as promising technologies in the valorization of lignocellulosic biomass.
Collapse
Affiliation(s)
- Shady S Hassan
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Ireland; School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - Gwilym A Williams
- School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Ireland.
| |
Collapse
|
38
|
Yu H, Xu Y, Ni Y, Wu Q, Liu S, Li L, Yu S, Ji Z. Enhanced enzymatic hydrolysis of cellulose from waste paper fibers by cationic polymers addition. Carbohydr Polym 2018; 200:248-254. [PMID: 30177163 DOI: 10.1016/j.carbpol.2018.07.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/21/2018] [Accepted: 07/25/2018] [Indexed: 12/24/2022]
Abstract
Cationic polymers (cationic polyacrylamide (CPAM), polyethyleneimine (PEI) or cationic starch (CS)) were used to enhance the enzymatic hydrolysis of waste paper fibers (WPFs) at 15% (w/w) solids concentration. Results showed that 0.05 g/L PEI, CPAM and CS resulted in 72.5%, 65.9% and 59.7% conversion of WPFs, increased by 15.4%, 8.8% and 2.6%, respectively, compared with control (57.1%). PEI was shown to have a larger effect than CPAM and CS, and generate a total sugar concentration of 73.9 g/L. Improvement in hydrolysis with cationic polymer addition is attributed to increased cellulase adsorption on cellulose through electrostatic attraction, rather than enhancement of cellulase activity. A patching/ bridging mechanism of cationic polymer enhancement of cellulose adsorption in cellulose is hypothesized. PEI exhibited maximum cellulose binding for polymers examined and appears to promote binding through a patching mechanism. CPAM and CS adsorbed a relatively low cellulase through bridging mechanism. In addition, enzyme loading could be reduced by addition of cationic polymers to obtain the same glucose yield, especially when PEI was used.
Collapse
Affiliation(s)
- Hailong Yu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yuqin Xu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yonghao Ni
- Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Qiong Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shiwei Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lu Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shitao Yu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Zhe Ji
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
39
|
Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development. SUSTAINABILITY 2018. [DOI: 10.3390/su10072323] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Calcio Gaudino E, Tabasso S, Grillo G, Cravotto G, Dreyer T, Schories G, Altenberg S, Jashina L, Telysheva G. Wheat straw lignin extraction with bio-based solvents using enabling technologies. CR CHIM 2018. [DOI: 10.1016/j.crci.2018.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Wang Z, Hou X, Sun J, Li M, Chen Z, Gao Z. Comparison of ultrasound-assisted ionic liquid and alkaline pretreatment of Eucalyptus for enhancing enzymatic saccharification. BIORESOURCE TECHNOLOGY 2018; 254:145-150. [PMID: 29413915 DOI: 10.1016/j.biortech.2018.01.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 05/14/2023]
Abstract
Two ultrasound-assisted pretreatment technologies, ultrasound-assisted alkaline and ultrasound-assisted aqueous ionic liquid tetrabutylammonium hydroxide ([TBA][OH]), are compared systematically in regard to enzymatic saccharification. Pretreated Eucalyptus samples were characterized by powder X-ray diffraction, 13C cross polarization/magic-angle spinning solid state NMR spectroscopy, Fourier transform infrared spectroscopy, Scanning electron microscope (SEM) and chemistry composition analysis. These results not only explain the enzymatic saccharification difference between samples from the microstructure level, but also provide helpful information for relevant pretreatment research. Ultrasound-assisted [TBA][OH] pretreatment acquired a significant enhancement in the initial enzymatic rate of cellulose (79.39 mg/g/h), and a reducing sugar yield of 426.6 mg/g at 48 h. The pretreatment combining inexpensive aqueous ionic liquid and ultrasound may provide a promising strategy in the field of bio-refinery because of its unique advantages.
Collapse
Affiliation(s)
- Zhinan Wang
- College of Materials & Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xianfeng Hou
- College of Materials & Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jin Sun
- College of Materials & Energy, South China Agricultural University, Guangzhou 510642, China
| | - Meng Li
- College of Materials & Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhiyong Chen
- Zhongshan Collaborative Innovation Center of National Analytical Center of China, Zhongshan 528476, China
| | - Zhenzhong Gao
- College of Materials & Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
42
|
Rigual V, Santos TM, Domínguez JC, Alonso MV, Oliet M, Rodriguez F. Combining autohydrolysis and ionic liquid microwave treatment to enhance enzymatic hydrolysis of Eucalyptus globulus wood. BIORESOURCE TECHNOLOGY 2018; 251:197-203. [PMID: 29277050 DOI: 10.1016/j.biortech.2017.12.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
The combination of autohydrolysis and ionic liquid microwave treatments of eucalyptus wood have been studied to facilitate sugar production in a subsequent enzymatic hydrolysis step. Three autohydrolysis conditions (150 °C, 175 °C and 200 °C) in combination with two ionic liquid temperatures (80 °C and 120 °C) were compared in terms of chemical composition, enzymatic digestibility and sugar production. Morphology was measured (using SEM) and the biomass surface was visualized with confocal fluorescence microscopy. The synergistic cooperation of both treatments was demonstrated, enhancing cellulose accessibility. At intermediate autohydrolysis conditions (175 °C) and low ionic liquid temperature (80 °C), a glucan digestibility of 84.4% was obtained. Using SEM micrographs, fractal dimension (as a measure of biomass complexity) and lacunarity (as a measure of homogeneity) were calculated before and after pretreatment. High fractals dimensions and low lacunarities correspond to morphologically complex and homogeneous samples, that are better digested by enzyme cocktails.
Collapse
Affiliation(s)
- Victoria Rigual
- Department of Chemical Engineering, Faculty of Chemistry, Complutense University of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain.
| | - Tamara M Santos
- Department of Chemical Engineering, Faculty of Chemistry, Complutense University of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Juan Carlos Domínguez
- Department of Chemical Engineering, Faculty of Chemistry, Complutense University of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - M Virginia Alonso
- Department of Chemical Engineering, Faculty of Chemistry, Complutense University of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Mercedes Oliet
- Department of Chemical Engineering, Faculty of Chemistry, Complutense University of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Francisco Rodriguez
- Department of Chemical Engineering, Faculty of Chemistry, Complutense University of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| |
Collapse
|
43
|
Paudel SR, Banjara SP, Choi OK, Park KY, Kim YM, Lee JW. Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges. BIORESOURCE TECHNOLOGY 2017; 245:1194-1205. [PMID: 28899674 DOI: 10.1016/j.biortech.2017.08.182] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 05/25/2023]
Abstract
The anaerobic digestion (AD) of agricultural biomass is an attractive second generation biofuel with potential environmental and economic benefits. Most agricultural biomass contains lignocellulose which requires pretreatment prior to AD. For optimization, the pretreatment methods need to be specific to the characteristics of the biomass feedstock. In this review, cereal residue, fruit and vegetable wastes, grasses and animal manure were selected as the agricultural biomass candidates, and the fundamentals and current state of various pretreatment methods used for AD of these feedstocks were investigated. Several nonconventional methods (electrical, ionic liquid-based chemicals, ruminant biological pretreatment) offer potential as targeted pretreatments of lignocellulosic biomass, but each comes with its own challenges. Pursuing an energy-intensive route, a combined bioethanol-biogas production could be a promising a second biofuel refinery option, further emphasizing the importance of pretreatment when lignocellulosic feedstock is used.
Collapse
Affiliation(s)
- Shukra Raj Paudel
- Department of Civil Engineering, Pulchowk Campus, Institute of Engineering, Tribhuvan University, Pulchowk, Lalitpur, Nepal
| | - Sushant Prasad Banjara
- School of Forestry and Environmental Studies, Yale University, 195 Prospect St, New Haven, CT 06511, USA
| | - Oh Kyung Choi
- Department of Environmental Engineering, College of Science and Technology, Korea University, Sejong 30019, Republic of Korea
| | - Ki Young Park
- Department of Civil and Environmental Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Young Mo Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jae Woo Lee
- Department of Environmental Engineering, College of Science and Technology, Korea University, Sejong 30019, Republic of Korea.
| |
Collapse
|
44
|
Wang J, Qian W, He Y, Xiong Y, Song P, Wang RM. Reutilization of discarded biomass for preparing functional polymer materials. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 65:11-21. [PMID: 28431803 DOI: 10.1016/j.wasman.2017.04.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/06/2017] [Accepted: 04/09/2017] [Indexed: 06/07/2023]
Abstract
Biomass is abundant and recyclable on the earth, which has been assigned numerous roles to human beings. However, over the past decades, accompanying with the rapid expansion of man-made materials, such as alloy, plastic, synthetic rubber and fiber, a great number of natural materials had been neglected and abandoned, such as straw, which cause a waste of resource and environmental pollution. In this review, based on introducing sources of discarded biomass, the main composition and polymer chains in discarded biomass materials, the traditional treatment and novel approach for reutilization of discarded biomass were summarized. The discarded biomass mainly come from plant wastes generated in the process of agriculture and forestry production and manufacturing processes, animal wastes generated in the process of animal husbandry and fishery production as well as the residual wastes produced in the process of food processing and rural living garbage. Compared with the traditional treatment including burning, landfill, feeding and fertilizer, the novel approach for reutilization of discarded biomass principally allotted to energy, ecology and polymer materials. The prepared functional materials covered in composite materials, biopolymer based adsorbent and flocculant, carrier materials, energy materials, smart polymer materials for medical and other intelligent polymer materials, which can effectively serve the environmental management and human life, such as wastewater treatment, catalyst, new energy, tissue engineering, drug controlled release, and coating. To sum up, the renewable and biodegradable discarded biomass resources play a vital role in the sustainable development of human society, as well as will be put more emphases in the future.
Collapse
Affiliation(s)
- Jianfeng Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Wenzhen Qian
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yufeng He
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Yubing Xiong
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Pengfei Song
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Rong-Min Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
45
|
Cai C, Liu H, Wang B. Performance of microwave treatment for disintegration of cephalosporin mycelial dreg (CMD) and degradation of residual cephalosporin antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2017; 331:265-272. [PMID: 28273576 DOI: 10.1016/j.jhazmat.2017.02.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 06/06/2023]
Abstract
Significant amounts of cephalosporin mycelial dreg (CMD) are still being generated from biopharmaceutical processes, representing both an economic and environmental burden for pharmaceutical factories. This study investigates the microwave (MW) treatment of CMD at a relatively mild temperature (100°C) within 15min. The results reveal that the MW treatment disintegrates the CMD efficiently and that the residual cephalosporin C (CPC) is almost degraded after sufficient irradiation. MW heating temperature strongly influences the polymer's release. SCOD (soluble chemical oxygen demand), soluble proteins and carbohydrates have significant positive correlations to the temperature (r=0.993, 0.983 and 0.992, respectively; p<0.01). 3D-EEM fluorescence spectra indicate that the key organic matters relate to temperature as well as microwave energies. Furthermore, more than 99.9% of the residual antibiotics in CMD are degraded by MW irradiation without antibacterial activities that are proven by the possible degradation pathway we elucidate. These results suggest that microwave irradiation treatment not only disintegrates CMD and destroys mycelial cells but also degrades the residual cephalosporin antibiotics, which implies the possibility for practical applications.
Collapse
Affiliation(s)
- Chen Cai
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Huiling Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Bing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
46
|
Cai C, Liu H, Wang M. Characterization of antibiotic mycelial residue (AMR) dewatering performance with microwave treatment. CHEMOSPHERE 2017; 174:20-27. [PMID: 28157605 DOI: 10.1016/j.chemosphere.2017.01.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 12/30/2016] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
This study characterizes antibiotic mycelial residue (AMR) dewaterability with microwave (MW) treatment. Capillary suction time (CST) and the water content (WC) of AMR cake were used to evaluate AMR dewaterability. A thermogravimetric analysis and investigation of changes in AMR physical characteristics (e.g., extracellular polymeric substances (EPS) and particle size) were conducted to interpret AMR dewaterability variations. The results indicate that MW irradiation heavily influences the release of polymers and AMR particle size, which are significantly related to AMR dewaterability, e.g., the correlations between CST and EPS/dp90 are 0.95 and 0.99, respectively. Additionally, bound water in matrix was not destroyed after MW irradiation, which also affected the dewaterability. CST measurements initially decreased and later increased, while WC values substantially decreased following MW treatment. The different patterns indicate that one measurement index cannot provide an overall explanation for AMR dewaterability.
Collapse
Affiliation(s)
- Chen Cai
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huiling Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Mengmeng Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
47
|
Aspen Plus® Simulation Studies of Steam Gasification in Fluidized Bed Reactor for Hydrogen Production Using Palm Kernel Shell. COMMUNICATIONS IN COMPUTER AND INFORMATION SCIENCE 2017. [DOI: 10.1007/978-981-10-6463-0_54] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
48
|
Junne S, Kabisch J. Fueling the future with biomass: Processes and pathways for a sustainable supply of hydrocarbon fuels and biogas. Eng Life Sci 2016; 17:14-26. [PMID: 32624725 DOI: 10.1002/elsc.201600112] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/08/2016] [Accepted: 08/23/2016] [Indexed: 12/11/2022] Open
Abstract
Global economic growth, wealth and security rely upon the availability of cheap, mostly fossil-derived energy and chemical compounds. The replacement by sustainable resources is widely discussed. However, the current state of biotechnological processes usually restricts them to be used as a true alternative in terms of economic feasibility and even sustainability. Among the rare examples of bioprocesses applied for the energetic use of biomass are biogas and bioethanol production. Usually, these processes lack in efficiency and they cannot be operated without the support of legislation. Although they represent a first step towards a greater share of bio-based processes for energy provision, there is no doubt that tremendous improvements in strain and process development, feedstock and process flexibility as well as in the integration of these processes into broader supply and production networks, in this review called smart bioproduction grids, are required to make them economically attractive, robust enough, and wider acceptance by society. All this requires an interdisciplinary approach, which includes the use of residues in closed carbon cycles and issues concerning the process safety. This short review aims to depict some of the promising strategies to achieve an improved process performance as a basis for future application.
Collapse
Affiliation(s)
- Stefan Junne
- Department of Biotechnology Chair of Bioprocess Engineering Technische Universität Berlin Berlin Germany
| | - Johannes Kabisch
- Institute of Biochemistry Ernst-Moritz-Arndt University Greifswald Greifswald Germany
| |
Collapse
|
49
|
Alfenore S, Molina-Jouve C. Current status and future prospects of conversion of lignocellulosic resources to biofuels using yeasts and bacteria. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.07.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Sadhukhan J, Ng KS, Martinez-Hernandez E. Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of municipal solid waste: A comprehensive techno-economic analysis. BIORESOURCE TECHNOLOGY 2016; 215:131-143. [PMID: 27085988 DOI: 10.1016/j.biortech.2016.04.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 05/12/2023]
Abstract
This paper, for the first time, reports integrated conceptual MBCT/biorefinery systems for unlocking the value of organics in municipal solid waste (MSW) through the production of levulinic acid (LA by 5wt%) that increases the economic margin by 110-150%. After mechanical separation recovering recyclables, metals (iron, aluminium, copper) and refuse derived fuel (RDF), lignocelluloses from remaining MSW are extracted by supercritical-water for chemical valorisation, comprising hydrolysis in 2wt% dilute H2SO4 catalyst producing LA, furfural, formic acid (FA), via C5/C6 sugar extraction, in plug flow (210-230°C, 25bar, 12s) and continuous stirred tank (195-215°C, 14bar, 20min) reactors; char separation and LA extraction/purification by methyl isobutyl ketone solvent; acid/solvent and by-product recovery. The by-product and pulping effluents are anaerobically digested into biogas and fertiliser. Produced biogas (6.4MWh/t), RDF (5.4MWh/t), char (4.5MWh/t) are combusted, heat recovered into steam generation in boiler (efficiency: 80%); on-site heat/steam demand is met; balance of steam is expanded into electricity in steam turbines (efficiency: 35%).
Collapse
Affiliation(s)
- Jhuma Sadhukhan
- Centre for Environmental Strategy, University of Surrey, GU2 7XH, UK.
| | - Kok Siew Ng
- Centre for Environmental Strategy, University of Surrey, GU2 7XH, UK
| | | |
Collapse
|