1
|
Verma S, Awasthi MK, Liu T, Awasthi SK, Syed A, Bahkali AH, Verma M, Zhang Z. Influence of biochar on succession of fungal communities during food waste composting. BIORESOURCE TECHNOLOGY 2023; 385:129437. [PMID: 37399966 DOI: 10.1016/j.biortech.2023.129437] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
This study aims to examine the effects of biochar on fungal dynamics during food waste composting. The different dosage of wheat straw biochar from 0 to 15% (0%, 2.5%, 5%, 7.5%, 10%, and 15%) were used as an additive to composting and examined for 42 days. The results showed that Ascomycota (94.64%) and Basidiomycota (5.36%) were the most dominant phyla. The most common fungal genera were Kluyveromyces (3.76%), Candida (5.34%), Trichoderma (2.30%), Fusarium (0.46%), Mycothermus-thermophilus (5.67%), Trametes (0.46%), and Trichosporon (3.38%). The average number of operational taxonomic units were 469, with the greatest abundance seen in the 7.5% and 10% treatments. Redundancy analysis revealed that different concentrations of biochar applied treatments have significantly distinct fungal communities. Additionally, correlation analyses of fungal interactions with environmental elements, performed through a heatmap, also indicate a distinct difference among the treatments. The study clearly demonstrates that 15% of biochar has a positive impact on fungal diversity and improves the food waste composting.
Collapse
Affiliation(s)
- Shivpal Verma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Meenakshi Verma
- University Centre for Research & Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
2
|
Li X, Liu C, Xie H, Sun Y, Xu S, Liu G. Nitrogen removal of thermal hydrolysis-anaerobic digestion liquid: A review. CHEMOSPHERE 2023; 320:138097. [PMID: 36764619 DOI: 10.1016/j.chemosphere.2023.138097] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/07/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Thermal hydrolysis (TH) pretreatment, as an anaerobic digestion (AD) pretreatment, has not only been verified in the laboratory but also frequently employed in actual engineering. However, the properties of anaerobic digestion liquid (ADL), such as high organic matter concentration, high ammonia nitrogen (NH4+-N) concentration, and low carbon-nitrogen ratio (C/N), have posed some difficulties in the follow-up treatment. To address the above issues, the autotrophic nitrogen removal (ANR) process is developed to treat ADL. Due to the NH4+-N, organic materials, toxic and harmful substances in the ADL that might directly impact the activity of functional bacteria, the ADL should be treated before being fed into the ANR process. This paper provided a focused review of the thermal hydrolysis-anaerobic digestion process (TH-ADP) mechanism and the ANR mechanism, summarized the existing difficulties in the treatment of thermal hydrolysis-anaerobic digestion liquid (TH-ADL), assessed the research status thoroughly, and offered the potential solutions to the problems.
Collapse
Affiliation(s)
- Xiangkun Li
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Changkuo Liu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Hongwei Xie
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yujie Sun
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Shiwei Xu
- Beijing Capital Eco-environment Protection Group Co., Itd, China
| | - Gaige Liu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
3
|
Nordahl S, Preble CV, Kirchstetter TW, Scown CD. Greenhouse Gas and Air Pollutant Emissions from Composting. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2235-2247. [PMID: 36719708 PMCID: PMC9933540 DOI: 10.1021/acs.est.2c05846] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 05/25/2023]
Abstract
Composting can divert organic waste from landfills, reduce landfill methane emissions, and recycle nutrients back to soils. However, the composting process is also a source of greenhouse gas and air pollutant emissions. Researchers, regulators, and policy decision-makers all rely on emissions estimates to develop local emissions inventories and weigh competing waste diversion options, yet reported emission factors are difficult to interpret and highly variable. This review explores the impacts of waste characteristics, pretreatment processes, and composting conditions on CO2, CH4, N2O, NH3, and VOC emissions by critically reviewing and analyzing 388 emission factors from 46 studies. The values reported to date suggest that CH4 is the single largest contributor to 100-year global warming potential (GWP100) for yard waste composting, comprising approximately 80% of the total GWP100. For nitrogen-rich wastes including manure, mixed municipal organic waste, and wastewater treatment sludge, N2O is the largest contributor to GWP100, accounting for half to as much as 90% of the total GWP100. If waste is anaerobically digested prior to composting, N2O, NH3, and VOC emissions tend to decrease relative to composting the untreated waste. Effective pile management and aeration are key to minimizing CH4 emissions. However, forced aeration can increase NH3 emissions in some cases.
Collapse
Affiliation(s)
- Sarah
L. Nordahl
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Chelsea V. Preble
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Thomas W. Kirchstetter
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Corinne D. Scown
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Biosciences
Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Energy
& Biosciences Institute, University
of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Alba-Reyes Y, Barrera EL, Brito-Ibarra Y, Hermida-García FO. Life cycle environmental impacts of using food waste liquid fodder as an alternative for pig feeding in a conventional Cuban farm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159915. [PMID: 36343806 DOI: 10.1016/j.scitotenv.2022.159915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/13/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
This work aimed to compare cleaner production alternatives for pig production in the Cuban context through the Life Cycle Assessment (LCA) approach emphasizing the utilization of food waste (FW) as a substitute for traditional grain-based pig feeding. A conventional waste management method (lagooning) was assessed, including more environmentally friendly approaches (use of anaerobic digestion (AD) process); including the substitution of a fraction of solid fodder with food waste liquid fodder (LF), obtained from food waste. The analysis was based on one porcine equivalent livestock unit. The environmental impact categories assessed were global warming, terrestrial ecotoxicity, human carcinogenic toxicity, freshwater ecotoxicity, terrestrial acidification, and freshwater eutrophication. The major environmental benefits for pig production were observed when the maximum capacity of pigs was considered. In addition, favorable environmental performance was achieved by considering the substitution of solid fodder by LF, the AD as a waste management process, and the valorization of the solid and liquid effluents. The avoided products-related activities were the main contributor to freshwater ecotoxicity, human carcinogenic toxicity, and terrestrial ecotoxicity impact categories (up to 71 %). The sensitivity analysis showed that the variation in LF composition (protein concentration) could have a remarkable impact in all impact categories. Climate change performed as the more sensible impact category, suggesting that greenhouse gas (GHG) emissions, such as CO2 and N2O, are important drivers to change the environmental impact and need more attention. This research demonstrates that the environmental profile of the process can be improved by applying a cleaner production approach (AD as a waste management alternative and LF substituting solid fodder).
Collapse
Affiliation(s)
- Yasmani Alba-Reyes
- Centre for Energy and Industrial Processes Studies (CEEPI), University of Sancti Spiritus, Ave de Los Martires 360, 60100 Sancti Spiritus, Cuba.
| | - Ernesto L Barrera
- Centre for Energy and Industrial Processes Studies (CEEPI), University of Sancti Spiritus, Ave de Los Martires 360, 60100 Sancti Spiritus, Cuba
| | - Yaima Brito-Ibarra
- Centre for Energy and Industrial Processes Studies (CEEPI), University of Sancti Spiritus, Ave de Los Martires 360, 60100 Sancti Spiritus, Cuba
| | - Félix Orestes Hermida-García
- Centre for Energy and Industrial Processes Studies (CEEPI), University of Sancti Spiritus, Ave de Los Martires 360, 60100 Sancti Spiritus, Cuba
| |
Collapse
|
5
|
Patil P, Sharara M, Shah S, Kulesza S, Classen J. Impacts of utilizing swine lagoon sludge as a composting ingredient. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116840. [PMID: 36442448 DOI: 10.1016/j.jenvman.2022.116840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Lagoon sludge, a byproduct of swine operations in the Southeast United States, poses a management challenge due to its high mineral and metal content. Composting is a low-cost, scalable technology for manure management. However, limited information is available on composting swine lagoon sludge in terms of recipes, greenhouse gas emissions and end-product quality. Moreover, due to its high Zn and Cu content, high inclusion of sludge in composting recipes can potentially inhibit the process. To address these knowledge gaps, in-vessel aerated composting (0.4 m3each) was carried out to evaluate impacts of sludge inclusion, at 10% (Low Sludge, LS-Recipe) and 20% (High sludge, HS-Recipe) wet mass-basis, on composting process and end-product quality. Comparable maximum temperatures (74 ± 2.7 °C, 74.9 ± 2.9 °C), and organic matter loss were observed in both recipes. Similarly, sludge inclusion ratio had no significant impact on cumulative GHG emissions. The global warming potential (20-year GWP) for swine lagoon sludge composting using LS and HS recipes was observed to be 241.9 (±13.3) and 229.9 (±8.7) kg CO2-e/tDM respectively. Both recipes lost 24-28% of initial carbon (C) and 4-15% of nitrogen (N) respectively. Composting and curing did not change water-extractable (WE) phosphorus (P) concentrations while WE Zn and Cu concentrations decreased by 67-74% and 55-59% respectively in both recipes. End compost was stable (respiration rates <2 mgCO2-C/g OM/day) with germination index >93 for both recipes.
Collapse
Affiliation(s)
- Piyush Patil
- Biological and Agricultural Engineering, North Carolina State University, Raleigh, USA.
| | - Mahmoud Sharara
- Biological and Agricultural Engineering, North Carolina State University, Raleigh, USA.
| | - Sanjay Shah
- Biological and Agricultural Engineering, North Carolina State University, Raleigh, USA
| | - Stephanie Kulesza
- Crop and Soil Sciences, North Carolina State University, Raleigh, USA.
| | - John Classen
- Biological and Agricultural Engineering, North Carolina State University, Raleigh, USA.
| |
Collapse
|
6
|
Li D, Kumar R, Johnravindar D, Luo L, Zhao J, Manu MK. Effect of different-sized bulking agents on nitrification process during food waste digestate composting. ENVIRONMENTAL TECHNOLOGY 2023:1-11. [PMID: 36546563 DOI: 10.1080/09593330.2022.2161950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Food waste digestate (FWD) disposal is a serious bottleneck in anaerobic digestion plants to achieve a circular bioeconomy. FWD could be recycled into nitrogen-rich compost; however, the co-composting process optimisation along with bulking agents is required to reduce nitrogen loss and unwanted gaseous emissions. In the present study, two different-sized bulking agents, namely, wood shaving (WS) and fine sawdust (FS), were used to investigate their impact on FWD composting performance along with the nitrogen dynamics. The mixing of FWD with different bulking agents altered the physiochemical characteristics of composting matrix and the effective composting performance was observed through reduced ammonium nitrogen and increased seed germination index during 28 days of composting. The carbon loss of 19-22% through CO2 emission indicated similar carbon mineralisation with both types of sawdust; however, the nitrogen transformation pathways were different. Only WS treatment demonstrated the nitrification process, whereas the nitrogen loss was higher with FS. A total nitrogen loss of ∼15% was observed in treatments with FS, whereas WS treatments displayed a nitrogen loss of 12%. The outcome of the present study could significantly contribute to the practical aspect of the FWD composting operation with the promotion of the bio-recycling economy.
Collapse
Affiliation(s)
- Dongyi Li
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Rajat Kumar
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Davidraj Johnravindar
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Liwen Luo
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - M K Manu
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong
| |
Collapse
|
7
|
Bona D, Cristoforetti A, Zanzotti R, Bertoldi D, Dellai N, Silvestri S. Matured Manure and Compost from the Organic Fraction of Solid Waste Digestate Application in Intensive Apple Orchards. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15512. [PMID: 36497587 PMCID: PMC9739789 DOI: 10.3390/ijerph192315512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
In intensive fruit growing systems, the recovery and maintenance of soil fertility play a crucial role in both environmental protection and sustainable support to plant productivity. The circular economy approach adopted at the EU level strongly promotes the use of organic products instead of mineral fertilizers. This work focuses on two different soil improvers, compost from the organic fraction of municipal solid waste digestate (CO) and "matured" manure, produced after a fast and controlled aerobic treatment in an aerated pile (MM), which were applied in three apple orchards with different soil tillage. The soil improvers have been characterized for amendment and fertilizing properties. After the amendment, the soils were sampled twice a year (Spring and Autumn) for three years. Each sample has been characterized for texture, pH, cation exchange capacity, nutrients, soil organic matter, and micronutrients. The amendments obtained differed on C, N, P, and K contents, but had similar biological stability. The main effects on soils were the increasing of N and soil organic matter after compost application, while the use of matured manure mainly act on available P and exchangeable K. The treatments showed significant effects among fields with a linear increasing trend only for compost. Matured manure showed more effects in earlier times. The data collected aim to improve the knowledge about sustainable management of soil organic matter and organic nutrients in intensive fruit-growing agriculture by using local products.
Collapse
|
8
|
Assis TI, Gonçalves RF. Valorization of food waste by anaerobic digestion: A bibliometric and systematic review focusing on optimization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115763. [PMID: 35932740 DOI: 10.1016/j.jenvman.2022.115763] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/21/2022] [Accepted: 07/13/2022] [Indexed: 05/27/2023]
Abstract
As food waste gets acknowledged as a global potential source of biomass, its valorization through anaerobic digestion becomes an attractive strategy. This work describes the state-of-the-art on the valorization of food waste by anaerobic digestion and the optimization of the process. The methodology used was a bibliometric and systematic review of the optimization of the process from 66 articles selected. Bibliometric mapping allowed us to identify that, until now, most studies have been focused on the: i) anaerobic co-digestion strategy in order to stabilize the process, ii) interest in the generation of biofuels to replace non-renewable fuels, iii) study of metabolic processes for a better understanding of the system iv) reactor design optimization and others facilities to increase process efficiency. The systematic analysis showed that the operational parameters has been extensively studied to optimize the process. Therefore, co-digestion has been the main strategy to improve the process. In this sense, knowledge of the substrate and co-substrate is extremely important to operate the reactors. For methane production, the ideal operating conditions indicated were: pH of 7, solids content between 4.0 and 15%, C/N ratio of 25, hydraulic retention time from 25 to 40 days and alkalinity from 2850 to 2970.5mgCaCO3/L. In addition, the ideal OLR will vary mainly according to operating temperature, number of reactor stages, and raw material characteristics. This review indicates trends and knowledge gaps that are important to guide new research on the anaerobic digestion of food waste, pointing out the potential advantages, optimization strategies, by-products of interest and challenges of the process. The results were used for the development of references of ideal operating conditions for energy production, being able to guide the design and operation of reactors.
Collapse
Affiliation(s)
- Tatiana Izato Assis
- Department of Environmental Engineering, Federal University of Espírito Santo, Full Address: Avenida Fernando Ferrari, 514, Goiabeiras, CEP 29.075-910, Vitória, Espírito Santo, Brazil.
| | - Ricardo Franci Gonçalves
- Department of Environmental Engineering, Federal University of Espírito Santo, Full Address: Avenida Fernando Ferrari, 514, Goiabeiras, CEP 29.075-910, Vitória, Espírito Santo, Brazil.
| |
Collapse
|
9
|
Pas C, Brodeur D, Deschamps MH, Lebeuf Y, Adjalle K, Barnabé S, Eeckhout M, Vandenberg G, Vaneeckhaute C. Valorization of pretreated biogas digestate with black soldier fly (Hermetia illucens, L; Diptera: Stratiomyidae) larvae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115529. [PMID: 35816966 DOI: 10.1016/j.jenvman.2022.115529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Increasing concerns related to the negative environmental impacts of food waste havemotivated the development of new solutions to complete the waste cycle of organic residues. One particular "waste" product, the solid digestate from anaerobic digestion, has been identified for further bioprocessing. Black soldier fly (BSF, Hermetia illucens) larvae are known for their great potential in the processing of organic waste. In this study, this potential was investigated to further process the digestate waste stream. Digestate is considered a low potential source of nutrients for larvae due to the presence of different fiber fractions. However, the lignocellulosic matter in this residue could be enzymatically hydrolyzed to release residual carbohydrates. For this study, digestate from a full-scale anaerobic digestion plant in Quebec (Canada) which processes a range of feedstocks (fruits, vegetables, garden wastes, sludge derived from dairy processing and wastewater treatment) was sourced. Digestate was treated with Accelerase® DUET enzyme complex to hydrolyze lignocellulosic matter and compared to a standard diet. For each treatment, 600 four-day old larvae were fed daily with 160 g (70% relative humidity) of diets for 6 days and harvested 3 days later. Although their growth and total biomass were significantly lower than the standard diet, larvae fed on hydrolyzed digestate were almost two times larger than the larvae fed on crude digestate. Furthermore, the content of organic matter, lipids and minerals in the diets and frass were analyzed. Finally, the feasibility of applying BSF treatment for digestate valorization is discussed. According to this study, enzyme-treated digestate does not allow efficient larval growth compared to the standard diet. The development of a more effective method of pretreatment is required for BSF larvae to become an eco-friendly solution for digestate valorization.
Collapse
Affiliation(s)
- C Pas
- BioEngine Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, 1065 avenue de la Médecine, Québec, G1V 0A6, Canada; Département des sciences animales, Université Laval, 2425 rue de l'Agriculture, Québec, G1V 0A6, Canada; Ghent University, Valentin Vaerwyckweg 1, Schoonmeersen, Ghent, 9000, Belgium.
| | - D Brodeur
- Institut national de la recherche scientifique, 490 rue de la Couronne, Québec, G1K 9A9, Canada
| | - M-H Deschamps
- Département des sciences animales, Université Laval, 2425 rue de l'Agriculture, Québec, G1V 0A6, Canada
| | - Y Lebeuf
- Département des sciences animales, Université Laval, 2425 rue de l'Agriculture, Québec, G1V 0A6, Canada
| | - K Adjalle
- Institut national de la recherche scientifique, 490 rue de la Couronne, Québec, G1K 9A9, Canada
| | - S Barnabé
- Centre de recherche sur les matériaux lignocellulosiques, Université du Québec à Trois-Rivières, Canada
| | - M Eeckhout
- Ghent University, Valentin Vaerwyckweg 1, Schoonmeersen, Ghent, 9000, Belgium
| | - G Vandenberg
- Département des sciences animales, Université Laval, 2425 rue de l'Agriculture, Québec, G1V 0A6, Canada
| | - C Vaneeckhaute
- BioEngine Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, 1065 avenue de la Médecine, Québec, G1V 0A6, Canada.
| |
Collapse
|
10
|
Optimization of Bacillus subtilis-based fermentation of anaerobic digestate and biohazard-free application in endophyte-assisted hardening of micropropagated plantlets for increasing survivability. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
O'Connor J, Mickan BS, Rinklebe J, Song H, Siddique KHM, Wang H, Kirkham MB, Bolan NS. Environmental implications, potential value, and future of food-waste anaerobic digestate management: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115519. [PMID: 35716555 DOI: 10.1016/j.jenvman.2022.115519] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/04/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Globally, the valorisation of food waste into digestate through the process of anaerobic digestion is becoming increasingly popular. As a result, a large amount of food-waste digestate will need to be properly utilised. The utilisation of anaerobic digestion for fertiliser and alternative uses is essential to obtain a circular bioeconomy. The review aims to examine the environmental management of food-waste digestate, the value of digestate as a fertiliser and soil conditioner, and the emerging uses and improvements for post-anaerobic digestion reuse of digestate. Odour emissions, contaminants in food waste, emission and leaching of nutrients into the environment, and the regulations, policies, and voluntary initiatives of anaerobic digestion are evaluated in the review. Food-waste digestate can provide essential nutrients, carbon, and bio-stimulants to soils and increase yield. Recently, promising research has shown that digestates can be used in hydroponic systems and potentially replace the use of synthetic fertilisers. The integration of anaerobic digestion with emerging uses, such as extraction of value-added products, algae cultivation, biochar and hydrochar production, can further reduce inhibitory sources of digestate and provide additional economic opportunities for businesses. Moreover, the end-product digestate from these technologies can also be more suitable for use in soil application and hydroponic use.
Collapse
Affiliation(s)
- James O'Connor
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia
| | - Bede S Mickan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, 05006, Republic of Korea.
| | - Hocheol Song
- Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, 05006, Republic of Korea
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China; Key laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, 311300, China
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506-5501, USA
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia.
| |
Collapse
|
12
|
Bona D, Scrinzi D, Tonon G, Ventura M, Nardin T, Zottele F, Andreis D, Andreottola G, Fiori L, Silvestri S. Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 2. agro-environmental properties. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114894. [PMID: 35334400 DOI: 10.1016/j.jenvman.2022.114894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The work concerns the study of the hydrochar from digestate and hydrochar co-compost characterization as amendments. The processes for hydrochar and co-compost production were described in Part 1 of this work (Scrinzi et al., 2022). The amendment properties of hydrochar (produced at 180-200-220 °C for 3 h) and co-composts (25%, 50%, and 75% hydrochar percentage of digestate substitution) were assessed by phytotoxicity, plant growth bioassay, and soil effect. Different seeds species (Lepidium sativum, Cucumis sativus, and Sorghum bicolor sp.) were dosed at increased concentrations using both wet raw amendments and their water extracts. The chemical characterization showed phytotoxic compounds content depending on both the initial feedstock (digestate) and the HTC process; at the same time, the analysis highlighted the reduction of these compounds by composting (organic acid, polyphenols, salt concentration). The dose-response was analyzed by the Cedergreen-Streibig-Ritz model and the half-maximal effective concentration (EC50) was calculated based on this equation. The soil properties and GHG emissions measurements (CH4, CO2, N2O, and NH3) highlighted the effect on N dynamics and on soil respiration induced by substrates. The HC200 soil application determined a significant impact on CO2 and N2O emission and NH3 volatilization (10.82 mol CO2/m2; 51.45 mmol N2O/m2; 112 mol NH3/m2) and a significant reduction of total N and TOC (46% of TKN and 49% of TOC). The co-compost (75%) showed specific effects after soil application compared to other samples an increase of available P (48%), a greater content of nitrogen (1626 mg/kg dry basis), and a reduction of organic carbon (17%). Our results demonstrate the good quality of co-compost and at the same time the validity of this post-treatment for addressing many issues related to hydrochar use in the soil as an amendment, confirming the suitability of HTC process integration for digestate treatment in anaerobic digestion plants.
Collapse
Affiliation(s)
- Daniela Bona
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| | - Donato Scrinzi
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Giustino Tonon
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università, 5, 39100, Bozen-Bolzano, Italy
| | - Maurizio Ventura
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università, 5, 39100, Bozen-Bolzano, Italy
| | - Tiziana Nardin
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| | - Fabio Zottele
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| | - Daniele Andreis
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| | - Gianni Andreottola
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Luca Fiori
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy; Center Agriculture Food Environment (C3A), University of Trento, Trento, Italy.
| | - Silvia Silvestri
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| |
Collapse
|
13
|
Manu MK, Wang C, Li D, Varjani S, Xu Y, Ladumor N, Lui M, Zhou J, Wong JWC. Biodegradation kinetics of ammonium enriched food waste digestate compost with biochar amendment. BIORESOURCE TECHNOLOGY 2021; 341:125871. [PMID: 34523563 DOI: 10.1016/j.biortech.2021.125871] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
High concentration of NH4+-N in food waste digestate (FWD) produced from biological treatment of food waste is considered as a major threat on the composting process resulting in production of immature compost. Hence, a laboratory batch composting study was conducted to examine the feasibility of using biochar as a physical additive to ameliorate the inhibitory effect of NH4+-N and to mitigate the nitrogen loss during FWD composting. FWD was co-composted with tobacco biochar at a dosage of 0%, 2.5%, 5% or 10% (dw) in bench-scale composters with a controlled aeration system. The addition of 10% biochar enhanced the degradation rate resulting in 44% higher carbon decomposition than the control. Besides, 10% biochar amendment reduced NH3 and N loss by 58% and 5%, respectively and significantly reduced NH4+-N content to HKORC limit of < 700 mg/kg dw within 5 days showing the beneficiary impact of biochar addition.
Collapse
Affiliation(s)
- M K Manu
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Chen Wang
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong; College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Dongyi Li
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| | - Yunjie Xu
- School of Technology, Huzhou University, Huzhou 311800, PR China
| | | | - Michael Lui
- Environmental Protection Department, Hong Kong
| | - Jun Zhou
- Faculty of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong; School of Technology, Huzhou University, Huzhou 311800, PR China.
| |
Collapse
|
14
|
Bao Y, Fu Y, Wang C, Wang H. An effective integrated system used in separating for anaerobic digestate and concentrating for biogas slurry. ENVIRONMENTAL TECHNOLOGY 2021; 42:4434-4443. [PMID: 32338158 DOI: 10.1080/09593330.2020.1761457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
In this work, an integrated system was developed which achieves full-scale separation and valorization for anaerobic digestate of livestock manure, completes anaerobic digestate separation, biogas residue recovery, biogas slurry concentration and water recovery simultaneously. Compared with the centrifugal pretreatment, the particle size of the biogas slurry is reduced significantly via P/I pretreatment, the liquid recovery ratio is increased to 94.0%, this leads to the substantial increase of the entire system nutrients recovery ratio directly. What's even more valuable is the permeate flux of UF membrane is increased for 2.5 times via P/I pretreatment. The results showed that P/I pretreatment had much better effects in solid-liquid separation of biogas slurry, which reduced the load of the subsequent membrane separation unit and enhanced the UF membrane permeation flux greatly. That prolonged the cleaning cycle and service life of the UF membrane. The efficiency of system was validated according to the nutrients recovery ratios, the biogas slurry concentration efficiency, the recovery of water and the pollutants levels of discharged water. The results showed that the total nutrients recovery ratio was about 100%, the concentration ratios of biogas slurry were more than 3.7 (via UF) and 6.6 (via RO), total water recovery ratio was 46.9% (ratio of the discharged water volume to the digestate volume, the COD removal ratio of the discharged water was 99.9%, the contents of COD, TP and TN were 43.6 mg/L, 0.2 mg/L and 1.2 mg/L, which reached the nation integrated wastewater discharged standard class I.
Collapse
Affiliation(s)
- Yali Bao
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, People's Republic of China
| | - Yanyan Fu
- WoDe Biological Technology Co., Ltd., Hohhot, People's Republic of China
| | - Caixia Wang
- WoDe Biological Technology Co., Ltd., Hohhot, People's Republic of China
| | - Hong Wang
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, People's Republic of China
| |
Collapse
|
15
|
Song B, Manu MK, Li D, Wang C, Varjani S, Ladumor N, Michael L, Xu Y, Wong JWC. Food waste digestate composting: Feedstock optimization with sawdust and mature compost. BIORESOURCE TECHNOLOGY 2021; 341:125759. [PMID: 34461407 DOI: 10.1016/j.biortech.2021.125759] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Direct land application of food waste digestate (FWD) leads to 60-70% of nitrogen loss through NH3 volatilization due to its innate characteristics like high ammonium nitrogen (NH4+-N) (~6000 mg/kg dry matter) and high moisture content (~75%). Hence, bio stabilization of FWD through composting is a promising solution to curb the environmental and occupational hazards. Hence the aim of this study was to assess the feasibility of using sawdust and/or mature compost as a bulking agent to achieve effective composting. The results showed that mixing of FWD with sawdust alone or together with mature compost could produce quality compost with reduced NH4+-N (<700 mg/kg dry matter) and increased seed germination index (>80%) within 2 weeks of co-composting. Composting FWD with both sawdust and mature compost effectively reduced ~ 83% of NH3 volatilization demonstrating that this approach can effectively produce mature nitrogen enriched FWD compost.
Collapse
Affiliation(s)
- Bing Song
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong
| | - M K Manu
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Dongyi Li
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Chen Wang
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong; College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India
| | | | - Lui Michael
- Environmental Protection Department, Hong Kong
| | - Yunjie Xu
- School of Technology, Huzhou University, Huzhou 311800, China
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong; School of Technology, Huzhou University, Huzhou 311800, China.
| |
Collapse
|
16
|
Dutta S, He M, Xiong X, Tsang DCW. Sustainable management and recycling of food waste anaerobic digestate: A review. BIORESOURCE TECHNOLOGY 2021; 341:125915. [PMID: 34523582 DOI: 10.1016/j.biortech.2021.125915] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 05/28/2023]
Abstract
Anaerobic digestion (AD) is a widely used technology to valorise food waste for biogas production yet a considerable amount of digestate remains under-utilised. Sustainable management and recycling of the nutrient-rich food waste anaerobic digestate (FWD) is highly desirable for closing resource loop and actualising circular economy. This work reviews the distinct properties of FWD and the existing treatment technologies. FWD shows great prospects as a nutrient source for microalgal cultivation and biofuel production. Emerging technologies such as thermal conversion (e.g., pyrolysis and hydrothermal treatment) of FWD into value-added products such as functionalised biochar/hydrochar with diverse applications would be attractive and warrant further research investigation. Integrated AD with subsequent valorisation facilities is highly encouraged to achieve complete utilisation of resources and reduce carbon emissions.
Collapse
Affiliation(s)
- Shanta Dutta
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Mingjing He
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xinni Xiong
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
17
|
Tuszynska A, Wilinska A, Czerwionka K. Phosphorus and nitrogen forms in liquid fraction of digestates from agricultural biogas plants. ENVIRONMENTAL TECHNOLOGY 2021; 42:3942-3954. [PMID: 32552391 DOI: 10.1080/09593330.2020.1770339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
ABSTRACTThe novelty of the presented research is the determination of the nitrogen and phosphorus fraction in the liquid fraction of digestate from agricultural biogas plants. This information is important because it can help in proposing possible further liquid fraction management or developing of new technologies for their purification. The research covered digestates from agricultural biogas plants, obtained from the fermentation of three different groups of waste, i.e. agricultural lignocellulosic waste (where corn silage was a monosubstrate or a dominant co-substrate), food waste (where fruit and vegetable waste or distillery residue were monosubstrate or dominant co-substrate) and livestock manure (where cow manure was a monosubstrate or a dominant co-substrate). Concentrations of nutrients in the liquid fraction of digestates varied within a wide range (230.9-649.1 mg PO43-/L and 1363-3211 mg N/L), and their content was determined by the feedstock characteristic. The highest concentrations of organic phosphorus were found in the liquid fraction of digestates from the fermentation of distillery brew and livestock manure, and the lowest in the fermentation of fruit and vegetable waste. In the liquid fraction of digestates from agricultural biogas plants, regardless of the composition of the feedstock, the dominant nitrogen form was ammonium nitrogen (from 60% to 90% TN). Organic nitrogen was dominated by CON fraction, which was from 35% to 54% of ON. It was 1.3-1.6 times higher than the DON fraction.
Collapse
Affiliation(s)
- Agnieszka Tuszynska
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
| | - Anna Wilinska
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
| | - Krzysztof Czerwionka
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
18
|
Gaseous Emissions from the Composting Process: Controlling Parameters and Strategies of Mitigation. Processes (Basel) 2021. [DOI: 10.3390/pr9101844] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Organic waste generation, collection, and management have become a crucial problem in modern and developing societies. Among the technologies proposed in a circular economy and sustainability framework, composting has reached a strong relevance in terms of clean technology that permits reintroducing organic matter to the systems. However, composting has also negative environmental impacts, some of them of social concern. This is the case of composting atmospheric emissions, especially in the case of greenhouse gases (GHG) and certain families of volatile organic compounds (VOC). They should be taken into account in any environmental assessment of composting as organic waste management technology. This review presents the relationship between composting operation and composting gaseous emissions, in addition to typical emission values for the main organic wastes that are being composted. Some novel mitigation technologies to reduce gaseous emissions from composting are also presented (use of biochar), although it is evident that a unique solution does not exist, given the variability of exhaust gases from composting.
Collapse
|
19
|
Gurmessa B, Cocco S, Ashworth AJ, Foppa Pedretti E, Ilari A, Cardelli V, Fornasier F, Ruello ML, Corti G. Post-digestate composting benefits and the role of enzyme activity to predict trace element immobilization and compost maturity. BIORESOURCE TECHNOLOGY 2021; 338:125550. [PMID: 34274591 DOI: 10.1016/j.biortech.2021.125550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
The current study evaluated the quality of agricultural waste digestate by composting or co-composting with biogas feedstock (maize silage, food processing waste, or poultry litter). Temperature, phytotoxicity, C/N ratio, water extractable trace elements, and 14 enzyme activities were monitored. Temperature dropped earlier in digestate and maize silage co-composting pile, reducing time to maturity by 20 days. Composting and co-composting reduced phytotoxicity and C/N ratio, but increased immobilization of Al, Ba, Fe, Zn, and Mn at least by 40% in all piles. All the enzyme activities, except arylsulfatase and α-glucosidase, increased at the maturity phase and negatively correlated with organic matter content and most of trace elements. Post-digestate composting or co-composting with biogas feedstock is a promising strategy to improve digestate quality for fertilizer use, and selected enzyme activities can be indicators of compost maturity and immobilization of trace elements.
Collapse
Affiliation(s)
- Biyensa Gurmessa
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Stefania Cocco
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Amanda J Ashworth
- USDA-ARS, Poultry Production and Product Safety Research Unit, 1260 W. Maple St. Fayetteville, AR 72701, USA
| | - Ester Foppa Pedretti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Alessio Ilari
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Valeria Cardelli
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Flavio Fornasier
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per lo Studio delle Relazioni tra Pianta e Suolo (C.R.E.A.-R.P.S.), 34170 Gorizia, Italy
| | - Maria Letizia Ruello
- Department of Materials, Environmental Sciences and Urban Planning, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Giuseppe Corti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| |
Collapse
|
20
|
Cucina M, De Nisi P, Trombino L, Tambone F, Adani F. Degradation of bioplastics in organic waste by mesophilic anaerobic digestion, composting and soil incubation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 134:67-77. [PMID: 34416672 DOI: 10.1016/j.wasman.2021.08.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The aim of the study was to assess the effects of high concentrations (10 % w/w, data projected for 2030) of commercial bioplastics, i.e. starch based shopping bags (SBSB) and polylactic acid (PLA) tableware, in the organic fraction of municipal solid wastes (MSW) on compost quality obtained by pilot-scale dry mesophilic anaerobic digestion and subsequent composting of the digestate. After the biological processes, 48.1 % total solids (TS) of SBSB and 15 % TS of PLA degraded, resulting in a high bioplastics content (about 18 % TS) in compost. Subsequent compost incubation in soils indicated that bioplastics degraded by pseudo-zero order kinetics (0.014 and 0.010 mg C cm-2 d-1 for SBSB and PLA, respectively), i.e. complete degradation was expected in 1.6 years (SBSB) and 7.2 years (PLA), confirming the intrinsic biodegradability of bioplastics. Nevertheless, enhancing the rate and amount of bioplastics degradation during waste management represents a goal to decrease the amount of bioplastics reaching the environment.
Collapse
Affiliation(s)
- Mirko Cucina
- Gruppo Ricicla Lab. - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Patrizia De Nisi
- Gruppo Ricicla Lab. - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Luca Trombino
- Dipartimento di Scienze della Terra Ardito Desio - Università degli Studi di Milano, Via Mangiagalli 34, 20133 Milano, Italy
| | - Fulvia Tambone
- Gruppo Ricicla Lab. - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Fabrizio Adani
- Gruppo Ricicla Lab. - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
21
|
Díaz AI, Laca A, Díaz M. Fungal treatment of an effluent from sewage sludge digestion to remove recalcitrant organic matter. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Manu MK, Li D, Liwen L, Jun Z, Varjani S, Wong JWC. A review on nitrogen dynamics and mitigation strategies of food waste digestate composting. BIORESOURCE TECHNOLOGY 2021; 334:125032. [PMID: 33964812 DOI: 10.1016/j.biortech.2021.125032] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Food waste digestate is a by-product of the anaerobic digestion of food waste. Presence of high ammonium nitrogen content significantly increase the nitrogen loss upon direct application on soil or by conventional composting. In this review, a comprehensive discussion regarding the effective management of food waste digestate is outlined, in which global food waste digestate production, characteristics, and composting are discussed. The nitrogen dynamics cycle considering high ammonium nitrogen content in the digestate is also evaluated, including ammonification, nitrification, denitrification, and other possible mechanisms based on the current literature. Mitigation strategies for reducing nitrogen loss via C/N ratio adjustment and the addition of physical, chemical, and microbial amendments were evaluated and estimated for 15 countries based on the available data on food waste anaerobic digestion plants. Reduced nitrogen loss and high quality compost could be produced from food waste digestate by adapting mitigation strategies.
Collapse
Affiliation(s)
- M K Manu
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Dongyi Li
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Luo Liwen
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Zhao Jun
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010 Gujarat, India
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong; School of Technology, Huzhou University, Huzhou 311800, China.
| |
Collapse
|
23
|
Vučić V, Müller S. New developments in biological phosphorus accessibility and recovery approaches from soil and waste streams. Eng Life Sci 2021; 21:77-86. [PMID: 33716607 PMCID: PMC7923555 DOI: 10.1002/elsc.202000076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 01/18/2023] Open
Abstract
Phosphorus (P) is a non-renewable resource and is on the European Union's list of critical raw materials. It is predicted that the P consumption peak will occur in the next 10 to 20 years. Therefore, there is an urgent need to find accessible sources in the immediate environment, such as soil, and to use alternative resources of P such as waste streams. While enormous progress has been made in chemical P recovery technologies, most biological technologies for P recovery are still in the developmental stage and are not reaching industrial application. Nevertheless, biological P recovery could offer good solutions as these technologies can return P to the human P cycle in an environmentally friendly way. This mini-review provides an overview of the latest approaches to make P available in soil and to recover P from plant residues, animal and human waste streams by exploiting the universal trait of P accumulation and P turnover in microorganisms and plants.
Collapse
Affiliation(s)
- Vedran Vučić
- Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research ‐ UFZDepartment Environmental MicrobiologyLeipzigGermany
| | - Susann Müller
- Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research ‐ UFZDepartment Environmental MicrobiologyLeipzigGermany
| |
Collapse
|
24
|
Physico-Chemical Characterization and Biological Activities of a Digestate and a More Stabilized Digestate-Derived Compost from Agro-Waste. PLANTS 2021; 10:plants10020386. [PMID: 33670466 PMCID: PMC7922375 DOI: 10.3390/plants10020386] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 11/19/2022]
Abstract
The excessive use of agricultural soils and the reduction in their organic matter, following circular economy and environmental sustainability concepts, determined a strong attention in considering composting as a preferred method for municipalities and industries to recycle organic by-products. Microorganisms degrade organic matter for producing CO2, water and energy, originating stable humus named compost. The current study analyzed the chemical composition of a cow slurry on-farm digestate and a more stabilized digestate-derived compost (DdC), along with their phytotoxic, genotoxic and antifungal activities. The chemical analysis showed that digestate cannot be an ideal amendment due to some non-acceptable characteristics. Biological assays showed that the digestate had phytotoxicity on the tested plants, whereas DdC did not induce a phytotoxic effect in both plants at the lowest dilution; hence, the latter was considered in subsequent analyses. The digestate and DdC induced significant antifungal activity against some tested fungi. DdC did not show genotoxic effect on Vicia faba using a micronuclei test. Soil treated with DdC (5 and 10%) induced damping-off suppression caused by Fusarium solani in tomato plants. The eco-physiological data indicated that DdC at 5–10% could increase the growth of tomato plants. In conclusion, DdC is eligible as a soil amendment and to strengthen the natural soil suppressiveness against F. solani.
Collapse
|
25
|
Tsigkou K, Zagklis D, Tsafrakidou P, Zafiri C, Kornaros M. Composting of anaerobic sludge from the co-digestion of used disposable nappies and expired food products. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 118:655-666. [PMID: 33011543 DOI: 10.1016/j.wasman.2020.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic sludge originating from the co-digestion of used disposable nappies and expired food products treated in a pilot two-stage system was examined as feed material for a continuous pilot-scale composter (capacity: 300 L feed per week). The feed materials and final compost products were analyzed and evaluated for their suitability as compost materials. Ιn terms of stability, the compost products were identified as stable through static respiratory index measurement (0.11-0.24 g O2/(kg Volatile Solids h)), heavy metals concentrations were within acceptable limits (i.e. concentration of Cu, Cd, Zn, Pb, Cr, As lower than 1 mg/kg dry mass) as well as polycyclic aromatic hydrocarbons (0.06-0.34 mg/kg dry mass lower than 6 mg/kg dry mass). During composting, significant losses of nitrogen from the digestate and the urea added for C/N correction were observed (51-75%), indicating that the adjustment of C/N ratio through the addition of chemicals is not efficient in composting processes with forced aeration and the pre-existing nitrogen in digestate was susceptible to air-stripping. The continuous composting process implemented proved capable of producing mature compost with a retention time of 14 d. The final products were within acceptable limits for all the parameters examined, except for the presence of pathogens (Salmonella and Enterococcus) which were not eliminated, even though the composter reached 56 °C for 3-4 days at the thermophilic stage. The characteristics of the anaerobic sludge samples examined indicate that direct land application of the anaerobic effluent should be considered as an option.
Collapse
Affiliation(s)
- Konstantina Tsigkou
- Lab. of Biochemical Engineering & Environmental Technology (LBEET), Dept. of Chemical Engineering, University of Patras, 1 Karatheodori Str, 26504 Patras, Greece
| | - Dimitris Zagklis
- Green Technologies Ltd., 5 Ellinos Stratiotou Str., 26223 Patras, Greece
| | | | - Constantina Zafiri
- Green Technologies Ltd., 5 Ellinos Stratiotou Str., 26223 Patras, Greece
| | - Michael Kornaros
- Lab. of Biochemical Engineering & Environmental Technology (LBEET), Dept. of Chemical Engineering, University of Patras, 1 Karatheodori Str, 26504 Patras, Greece.
| |
Collapse
|
26
|
Díaz AI, Oulego P, González JM, Laca A, Díaz M. Physico-chemical pre-treatments of anaerobic digestion liquor for aerobic treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 274:111189. [PMID: 32801104 DOI: 10.1016/j.jenvman.2020.111189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/14/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Centrifugation of anaerobically digested sewage sludge gives rise to a solid phase, which could be employed as a fertilizer, and a liquid fraction (ADL), which should be treated before being spilled out. This is not an easy task because this liquor is characterized for presenting high COD (~16000 mg O2/L), high ammonium content (~4000 mg/L) and low biodegradability (BOD5/COD ~0.2). With the objective to pre-treat this aqueous waste before its treatment by means of more traditional aerobic processes, different physico-chemical methods (ultrasound, ozonation, hydrolysis and wet air oxidation) were assessed in this work. Ultrasound and thermal hydrolysis gave solubilizations around 47% and 68% respectively. The best results in terms of total COD removal were obtained when wet air oxidation (8 h, 160 C-200 °C and 6.0 MPa) and ozonation (8 h, 25 °C, 12 g/h O3) techniques were employed achieving COD degradations of 71% and 38%, respectively. The pre-treatment of ADL with the four assayed techniques improved considerably the biodegradability (BOD5/COD) of the effluent, with values around 0.3-0.4, depending on the treatment. The experimental data were successfully fitted by kinetic models and the kinetic constants for the solubilization and degradation steps were obtained. Application of the proposed models can be of interest for the optimization and selection of the most suitable techniques and operational conditions, in each particular case.
Collapse
Affiliation(s)
- Ana Isabel Díaz
- Department of Chemical and Environmental Engineering. University of Oviedo. C/Julián Clavería, s/n, E-33006, Oviedo, Asturias, Spain
| | - Paula Oulego
- Department of Chemical and Environmental Engineering. University of Oviedo. C/Julián Clavería, s/n, E-33006, Oviedo, Asturias, Spain
| | - J Manuel González
- R&D, COGERSA SAU. C/ La Zoreda, s/n, E-33697, Gijón, Asturias, Spain
| | - Adriana Laca
- Department of Chemical and Environmental Engineering. University of Oviedo. C/Julián Clavería, s/n, E-33006, Oviedo, Asturias, Spain.
| | - Mario Díaz
- Department of Chemical and Environmental Engineering. University of Oviedo. C/Julián Clavería, s/n, E-33006, Oviedo, Asturias, Spain
| |
Collapse
|
27
|
Crutchik D, Rodríguez-Valdecantos G, Bustos G, Bravo J, González B, Pabón-Pereira C. Vermiproductivity, maturation and microbiological changes derived from the use of liquid anaerobic digestate during the vermicomposting of market waste. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1781-1794. [PMID: 33201843 DOI: 10.2166/wst.2020.427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, it has been suggested that the liquid fraction of anaerobic digestate, derived from the treatment of wastewater and solid wastes, could be used in vermicomposting as a solution to its disposal, and even for its valorization. Nevertheless, the literature does not provide enough information about its impact on the process of vermicomposting itself and on the final quality of the end-product. In this study, the effect of different doses of digestate in the vermicomposting process treating market waste is assessed measuring earthworm population dynamics, the bacterial community succession present in the vermibeds, as well as maturation and the end-quality of the vermicompost. Our results show that the addition of liquid digestate to the vermibeds increased the earthworms biomass, i.e. 71%, 94% and 168% in control, and vermibeds with 30% and 60% digestate, respectively. Further, the increase in the amount of N in the vermicompost decreased as the digestate addition increased, i.e. 75%, 8%, 3%. The maturity achieved was high in all treatments as shown by the C/N ratio, 7.98, 7.40 and 10.20, and the high seed germination rate, above 90%. Finally, the succession of the microbial community was not disturbed and compositional stabilization was reached after 92 days.
Collapse
Affiliation(s)
- Dafne Crutchik
- Faculty of Engineering and Sciences, Universidad Adolfo Ibañez, Diagonal Las Torres 2700 Peñalolen, C.P. 7941169. Santiago de Chile, Chile; EcoParque Peñalolén - UAI, Avenida José Arrieta 7659, and UAI - Earth Center, Santiago, Chile
| | - Gustavo Rodríguez-Valdecantos
- Faculty of Engineering and Sciences, Universidad Adolfo Ibañez, Diagonal Las Torres 2700 Peñalolen, C.P. 7941169. Santiago de Chile, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Gabriela Bustos
- Faculty of Engineering and Sciences, Universidad Adolfo Ibañez, Diagonal Las Torres 2700 Peñalolen, C.P. 7941169. Santiago de Chile, Chile
| | - Javier Bravo
- Faculty of Engineering and Sciences, Universidad Adolfo Ibañez, Diagonal Las Torres 2700 Peñalolen, C.P. 7941169. Santiago de Chile, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Bernardo González
- Faculty of Engineering and Sciences, Universidad Adolfo Ibañez, Diagonal Las Torres 2700 Peñalolen, C.P. 7941169. Santiago de Chile, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Claudia Pabón-Pereira
- Sub-department of Environmental Technology, Agrotechnology & Food Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands E-mail: ; ; EcoParque Peñalolén - UAI, Avenida José Arrieta 7659, and UAI - Earth Center, Santiago, Chile
| |
Collapse
|
28
|
Composting Process and Gas Emissions during Food Waste Composting under the Effect of Different Additives. SUSTAINABILITY 2020. [DOI: 10.3390/su12187811] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study investigated the effects of adding mature compost (MC) and vermicompost (VC) on controlling gas emissions and compost quality during food waste (FW) composting. In addition to a control treatment (only food waste), four treatments were designed to mix the initial FW with varying rates of MC and VC (5.0% and 7.5%). The composting process was monitored for 84 days. Results indicate that the addition of MC and VC resulted in higher temperature, prolonged the thermophilic stage and reduced NH3 and greenhouse gas (GHG) emissions. Compared to the control, the loss of NH3-N was decreased by 29–69%, and the global warming impact was also mitigated by 49–61%. The largest reductions in NH3 and global warming potential (GWP) were found for 7.5% VC and 5% MC, respectively. The treatments with additives more rapidly achieved the required maturity value. This research suggests that the addition of 7.5% MC and VC is suitable for food waste composting.
Collapse
|
29
|
Li Y, Han Y, Zhang Y, Fang Y, Li S, Li G, Luo W. Factors affecting gaseous emissions, maturity, and energy efficiency in composting of livestock manure digestate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139157. [PMID: 32428753 DOI: 10.1016/j.scitotenv.2020.139157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/25/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the interplay effects of key operational factors on maturity, gaseous emissions, and energy efficiency during composting of livestock manure digestate. Orthogonal experiments were conducted with three factors: digestion duration (15, 30, 45 days), corn stalk addition (15%, 25%, 35%, wet weight based), and aeration rate (0.12, 0.24, 0.48 L kg-1 dry matter (DM) min-1). Results showed that digestion duration was the main factor influencing the compost germination index (GI), greenhouse gases (GHGs) emission, and net energy. Digestion duration of 30 days was favored for compost GI and GHG reduction, while digestion duration of 45 days exhibited 18% higher daily net energy. Increasing corn stalk addition and aeration rates improved compost GI, but increased energy consumption. Corn stalk addition of 25% and aeration rate of 0.24 L kg-1 DM min-1 could ensure desirable compost maturity and save energy consumption. Thus, digestion for 30 days, 25% corn stalk addition, and aeration rates of 0.24 L kg-1 DM min-1 can be potentially implemented in industry for environmental and cost efficient composting of digestate.
Collapse
Affiliation(s)
- Yangyang Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yiyu Han
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yiran Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yanru Fang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shuyan Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
30
|
Gurmessa B, Pedretti EF, Cocco S, Cardelli V, Corti G. Manure anaerobic digestion effects and the role of pre- and post-treatments on veterinary antibiotics and antibiotic resistance genes removal efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137532. [PMID: 32179343 DOI: 10.1016/j.scitotenv.2020.137532] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 05/23/2023]
Abstract
This review was aimed to summarize and critically evaluate studies on removal of veterinary antibiotics (VAs), antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) with anaerobic digestion (AD) of manure and demonstrate areas of focus for improved removal efficiency. The environmental risks associated to the release of the same were also critically evaluated. The potential of AD and advanced AD of manure on removal rate of VAs, ARGs and MGEs was thoroughly assessed. In addition, the role of post and pre-AD treatments and their potential to support VAs and ARGs removal efficiency were evaluated. The overall review results show disparity among the different groups of VAs in terms of removal rate with relatively higher efficiency for β-lactams and tetracyclines compared to the other groups. Some of sulfonamides, fluoroquinolones and macrolides were reported to be highly persistent with removal rates as low as zero. Within group differences were also reported in many literatures. Moreover, removal of ARGs and MGEs by AD was widely reported although complete removal was hardly possible. Even in rare scenarios, some AD conditions were reported to increase copies of specific groups of the genes. Temperature pretreatments and temperature phased advanced AD were also reported to improve removal efficiency of VAs while contributing to increased biogas production. Moreover, a few studies also showed the possibility of further removal by post-AD treatments such as liquid-solid separation, drying and composting. In conclusion, the various studies revealed that AD in its current technological level is not a guarantee for complete removal of VAs, ARGs and MGEs from manure. Consequently, their possible release to the soils with digestate could threaten the healthcare and disturb soil microbial ecology. Thus, intensive management strategies need to be designed to increase removal efficiency at the different manure management points along the anaerobic digestion process.
Collapse
Affiliation(s)
- Biyensa Gurmessa
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Ester Foppa Pedretti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Stefania Cocco
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Valeria Cardelli
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Giuseppe Corti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| |
Collapse
|
31
|
Duan N, Khoshnevisan B, Lin C, Liu Z, Liu H. Life cycle assessment of anaerobic digestion of pig manure coupled with different digestate treatment technologies. ENVIRONMENT INTERNATIONAL 2020; 137:105522. [PMID: 32007689 DOI: 10.1016/j.envint.2020.105522] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/07/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
The direct use of digestate on farmlands as soil amendment is becoming an uneconomic option for farmers. Moreover, there are serious environmental concerns about its oversupply in regions with intensive biogas plants. Downstream technologies, offering innovative upcycling methods to handle huge amounts of digestate, have absorbed great interest in this context. In this study, three digestate treatment technologies were compared from a life cycle assessment perspective to combine the environmental impacts from pig manure transportation to biogas plants, biogas production, different digestate treatment technologies, and the use of final products. The results showed that scenario including digestate fractionation into solid and liquid, and their use for compost production and microalgae cultivation, respectively, would be a suitable downstream strategy with lower impacts on human health, ecosystem quality, and climate change damage categories, however future improvements still required. The results showed that sealed storage system or fast-continuous downstream processes as well as shorter distances between biogas plants and farms can significantly enhance the environmental performance of coupled anaerobic digestion and microalgae production. The high energy payback also signified that co-digestion of pig manure and microalgae would be energetically favorable in this context. However, having compared the results with a baseline scenario demonstrated that the direct use of digestate on farmlands, under controlled conditions to avoid its over application, is still the most environmentally favorable option, despite being a costly option for farmers. The results achieved in the present study suffered some uncertainties because technologies under consideration are at their infancy stage, thus further research still is required to find the most sustainable solutions.
Collapse
Affiliation(s)
- Na Duan
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Benyamin Khoshnevisan
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cong Lin
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Hongbin Liu
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
32
|
Ramírez-Islas ME, Güereca LP, Sosa-Rodriguez FS, Cobos-Peralta MA. Environmental assessment of energy production from anaerobic digestion of pig manure at medium-scale using life cycle assessment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 102:85-96. [PMID: 31669678 DOI: 10.1016/j.wasman.2019.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/17/2019] [Accepted: 10/05/2019] [Indexed: 05/25/2023]
Abstract
This study assessed the potential environmental effects of energy production from pig manure treatment by anaerobic digestion at medium-scale based on the Life Cycle Assessment of a farm in Puebla, Mexico. It also compared the results from common practices of biogas flaring and conventional management. The analysis was based on one ton of pig manure in 4 systems: two with energy production, one with biogas flaring, and the last one conventional management. The use of biogas for electricity production combined with composting techniques generated the lowest net impacts on climate change of 272 kg CO2eq and photochemical oxidation of 0.056 kg ethylene eq, while the biogas flaring registered impacts of 344 kg CO2eq and 0.095 kg ethylene eq. The systems with energy production had environmental benefits on fossil resources depletion by avoiding the consumption of -863 MJ and -1608 MJ, but systems that burned biogas required fossil fuel consumption of 246 MJ from the grid. The conventional management generated the greatest environmental impacts, with eutrophication being the most important negative effect due to the manure discharge into water bodies (5.97 kg PO4eq). Sensitivity analysis shown that energy production could generate greater impacts on global warming compared to the case in which manure was used directly in crop fields, if emissions from unintentional releases and a poor digestate management are not avoided. Results are relevant for developing countries in which processes are carried out in rural and semi-industrial areas with lack of technical knowledge and economic resources.
Collapse
Affiliation(s)
- Martha E Ramírez-Islas
- Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina. Iztapalapa, Mexico City CP 09340, Mexico.
| | - Leonor Patricia Güereca
- Universidad Nacional Autónoma de México, Instituto de Ingeniería. Circuito Escolar s/n, Ciudad Universitaria, Coyoacán, Mexico City CP 04510, Mexico
| | - Fabiola S Sosa-Rodriguez
- Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180 Col. Reynosa-Tamaulipas, Azcapotzalco, Mexico City CP 02200, Mexico
| | - Mario A Cobos-Peralta
- Colegio de Postgraduados Campus Montecillo, Carretera México-Texcoco Km. 36.5, Montecillo, Texcoco, State of Mexico CP 56230, Mexico
| |
Collapse
|
33
|
Ghanimeh S, Abou Khalil C, Mosca Angelucci D, Tomei MC. Anaerobic-aerobic sequential treatment: Temperature optimization and cost implications. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:1170-1181. [PMID: 31184553 DOI: 10.1080/10962247.2019.1629361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Traditionally, aeration units, used as a polishing stage after anaerobic digestion (AD) of wastes, are operated at ambient temperature. Yet, when effluent quality is the main design criterion, raising the temperature of the aeration stage can be justified by improved removal efficiencies. In this study, an anaerobic-aerobic sequential system (AASS) was operated to co-digest raw wastewater and food waste. The aerobic compartment was tested under psychrophilic and mesophilic temperatures. At the design loading rate of 2 gVS L-1 d-1, the anaerobic digester achieved removal efficiencies of 85 ± 2% of volatile solids (VS), 84 ± 3% of total chemical oxygen demand (CODT) and a biogas yield of 1,035 ± 30 mL gVSfed-1 (50% methane). The aerobic reactor achieved additional removal of 8% CODT and 7 % VS. By raising the temperature of the aerobic reactor to the mesophilic range, COD and solids concentrations of the effluent dropped to approximately half their values. This was accompanied by an increase in nitrification (from 68% to 91%) and denitrification (from 10% to 16%). The energy analysis showed that total energy consumption slightly increases (from 0.45 to 0.49 kWh kgCODfed-1) by raising the temperature of the aerobic reactor to mesophilic range. A preliminary evaluation of the sludge disposal cost, revealed a saving increase of 5-6% under mesophilic operation with respect to psychrophilic conditions. Implications: In order to cope with the globally increasing constraints on the disposal of urban wastes, efficient post-processing of effluents becomes a crucial requirement for the anaerobic digestion industry. In this context, the submitted manuscript shows that the quality of the effluent, of an anaerobic digester, treating food waste with raw wastewater, can be substantially improved by optimizing the aerobic polishing stage. Raising the temperature of the aerobic reactor to the mesophilic range resulted in a drop of solids and COD concentrations to approximately half their values. Equally important, the implications on operational costs were found to be favorable, compared to traditional psychrophilic aerobic post-treatment, when taking into consideration indirect sludge treatment costs and energy selling revenues.
Collapse
Affiliation(s)
- Sophia Ghanimeh
- Department of Civil and Environmental Engineering, Notre Dame University-Louaize , Zouk Mosbeh , Lebanon
| | - Charbel Abou Khalil
- Department of Civil and Environmental Engineering, Notre Dame University-Louaize , Zouk Mosbeh , Lebanon
| | | | | |
Collapse
|
34
|
Akyol Ç, Ince O, Ince B. Crop-based composting of lignocellulosic digestates: Focus on bacterial and fungal diversity. BIORESOURCE TECHNOLOGY 2019; 288:121549. [PMID: 31152953 DOI: 10.1016/j.biortech.2019.121549] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
In this study, organic matter degradation and microbial diversity were assessed during the composting of lignocellulose-rich digestates. Digestates were collected based on each crop type during anaerobic co-digestion of cow manure and barley, triticale, wheat and rye. Bacterial and fungal diversity in digestate composting systems were determined by 16S and 18S rRNA gene amplicon sequencing, respectively. Crop-based composting of anaerobic digestates showed similar process trends in terms of pH, temperature, moisture content (MC) and C:N ratio. The properties of final compost products were in accordance with the national legislations regarding soil applications, except MC, which were therefore air-dried before being amended to soil. Most abundant bacterial genera were represented by Luteimonas, Bacillus, Ochrobactrum and Thermobifida. Meanwhile, Thermomyces, Aspergillus, Galactomyces and Neurospora were detected as the predominant fungal genera in all compost samples.
Collapse
Affiliation(s)
- Çağrı Akyol
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
| | - Orhan Ince
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey.
| | - Bahar Ince
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
| |
Collapse
|
35
|
Rincón CA, De Guardia A, Couvert A, Soutrel I, Guezel S, Le Serrec C. Odor generation patterns during different operational composting stages of anaerobically digested sewage sludge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 95:661-673. [PMID: 31351654 DOI: 10.1016/j.wasman.2019.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/28/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to evaluate the global patterns of odor generation and odorant composition for different operational stages of anaerobically digested sewage sludge (ADS) composting at pilot scale. To this end, gas emissions were sampled and analyzed during storage, forced aeration treatment (active phase), turning process and curing. For each operational stage, odors were monitored by measuring the odor emission rates (OER in OUE h-1 kg-1ADS) through dynamic olfactometry and computing the odor activity values (OAVs) of compounds quantified by analytical methods (i.e., GC/MS). Ammonia and volatile sulfur compounds (VSCs) were the most abundant air pollutants, representing 55.5% and 20.6% of the cumulative mass emitted, respectively. The first eight days of aerobic treatment and the first turning of the compostable mixture were the critical steps for odor generation with OER ranging from 30 to 317 OUE h-1 kg-1ADS. Particularly, the first turning process was responsible for strong odor episodes that were emitted in a short process time (295 OUE h-1 kg-1ADS). Based on the OAVs approach, dimethyl disulfide, dimethyl sulfide, and methanethiol were the predominant odorants along these early operational stages. Odor potential and composition shifted for the middle and later active phase, second turning, and curing stage where OER fluctuated from 0.18 to 12.6 OUE h-1 kg-1ADS, and hydrogen sulfide showed the most substantial odor contribution. A principal component analysis explaining 77% of the variability in odor concentration and OAVs datasets eased the recognition of these odor patterns.
Collapse
Affiliation(s)
| | - Amaury De Guardia
- Irstea, UR OPAALE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes, France.
| | - Annabelle Couvert
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France.
| | - Isabelle Soutrel
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France.
| | - Stevan Guezel
- Irstea, UR OPAALE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes, France.
| | - Camille Le Serrec
- Irstea, UR OPAALE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes, France.
| |
Collapse
|
36
|
Huang J, Han L, Huang G. Characterization of digestate composting stability using fluorescence EEM spectroscopy combining with PARAFAC. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2019; 37:486-494. [PMID: 30770032 DOI: 10.1177/0734242x19828181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A laboratory scale experiment of digestate composting was carried out using a reactor system. In this study, conventional physicochemical and biological analyses were carried out and fluorescence excitation-emission matrix (EEM) spectroscopy combined with parallel factor analysis (PARAFAC) was used to assess the maturity and stability during digestate composting. A four-component model was obtained and three components, i.e. fulvic-like (C1 and C3), protein-like (C2), and humic-like (C4) components, were identified. Furthermore, the ratios of each two components were calculated and the relationships with other parameters were established using Pearson correlation analysis. The results showed that the main humification process during digestate composting was the accumulation of fulvic-like substances and that secondary formation occurred at the late stage of digestate composting. Moreover, the EEM-PARAFAC technique could be used as a sensitive and efficient tool for assessing the dynamic changes of digestate composting. The ratio C4/(C1 + C3) is the most suitable indicator in evaluating the stability of digestate composting.
Collapse
Affiliation(s)
- Jing Huang
- 1 Laboratory of Biomass and Bioprocessing Engineering, China Agricultural University, Beijing, China
- 2 Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lujia Han
- 1 Laboratory of Biomass and Bioprocessing Engineering, China Agricultural University, Beijing, China
| | - Guangqun Huang
- 1 Laboratory of Biomass and Bioprocessing Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
37
|
Rincón CA, De Guardia A, Couvert A, Le Roux S, Soutrel I, Daumoin M, Benoist JC. Chemical and odor characterization of gas emissions released during composting of solid wastes and digestates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:39-53. [PMID: 30554023 DOI: 10.1016/j.jenvman.2018.12.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Hazardous and odorous gas emissions from composting and methanization plants are an issue of public concern. Odor and chemical monitoring are thus critical steps in providing suitable strategies for air pollution control at waste treatment units. In this study, 141 gas samples were extensively analyzed to characterize the odor and chemical emissions released upon the aerobic treatment of 10 raw substrates and five digestates. For this purpose, agricultural wastes, biowastes, green wastes, sewage sludge, and municipal solid waste (MSW) were composted in 300 L pilots under forced aeration. Gas exhausts were evaluated through dynamic olfactometry and analytical methods (i.e., GC/MS) to determine their odor concentration (OC in OUE m-3) and chemical composition. A total of 60 chemical compounds belonging to 9 chemical families were identified and quantified. Terpenes, oxygenated compounds, and ammonia exhibited the largest cumulative mass emission. Odor emission rates (OUE h-1) were computed based on OC measurements and related to the initial amount of organic matter composted and the process time to provide odor emission factors (OEFs in OUE g-1OM0). The composting process of solid wastes accounted for OEFs ranging from 65 to 3089 OUE g-1OM0, whereas digestates composting showed a lower odor emission potential with OEF fluctuating from 8.6 to 30.5 OUE g-1OM0. Moreover, chemical concentrations of single compounds were weighted with their corresponding odor detection thresholds (ODTs) to yield odor activities values (OAVs) and odor contribution (POi, %). Volatile sulfur compounds were the main odorants (POi = 54-99%) regardless of the operational composting conditions or substrate treated. Notably, methanethiol was the leading odorant for 73% of the composting experiments.
Collapse
Affiliation(s)
| | - Amaury De Guardia
- Irstea, UR OPAALE, 17 Avenue de Cucillé, CS 64427, F-35044, Rennes, France.
| | - Annabelle Couvert
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000, Rennes, France.
| | - Sophie Le Roux
- Irstea, UR OPAALE, 17 Avenue de Cucillé, CS 64427, F-35044, Rennes, France.
| | - Isabelle Soutrel
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000, Rennes, France.
| | - Mylène Daumoin
- Irstea, UR OPAALE, 17 Avenue de Cucillé, CS 64427, F-35044, Rennes, France.
| | | |
Collapse
|
38
|
Díaz AI, Oulego P, Collado S, Laca A, González JM, Díaz M. Impact of anaerobic digestion and centrifugation/decanting processes in bacterial communities fractions. J Biosci Bioeng 2018; 126:742-749. [DOI: 10.1016/j.jbiosc.2018.05.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022]
|
39
|
Li Y, Luo W, Lu J, Zhang X, Li S, Wu Y, Li G. Effects of digestion time in anaerobic digestion on subsequent digestate composting. BIORESOURCE TECHNOLOGY 2018; 267:117-125. [PMID: 30014990 DOI: 10.1016/j.biortech.2018.04.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
Digestion time (DT) in anaerobic digestion (AD) on performance of subsequent digestate composting regarding compost maturity and greenhouse gas (GHG) emission was investigated. Digestates for composting were obtained after anaerobically digested mixture of dairy manure, corn stalks, and tomato residues (48:32:20, volatile solids based) with DT of 15, 30, and 45 days, respectively. Digestates were composted with corn stalks (85:15, wet weight based). Results showed approximately 30% and 70% of biochemical methane potential (342.0 L/kg VSfeedstock) were obtained when DT of 15 and 30 days. Digestate co-composting with cornstalks could be initiated effectively and reduced GHG emissions by 18.9-29.0% compared to compost with raw materials. DT of 30 and 45 days digestate composting cause benefit on germination index. DT of 45 days had the highest net power production in combine AD and composting system. DT of 30 days digestate composting was optimum choice for compost maturity and GHG emissions.
Collapse
Affiliation(s)
- Yangyang Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaxin Lu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xuehua Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Shuyan Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yue Wu
- Department of Mechanical Engineering, Marquette University, 53233, USA
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
40
|
Magrí A. Research Trends on Nutrient Management From Digestates Assessed Using a Bibliometric Approach. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
41
|
Zhang L, Sun X. Evaluation of maifanite and silage as amendments for green waste composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 77:435-446. [PMID: 29699726 DOI: 10.1016/j.wasman.2018.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/20/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Composting is a popular method for recycling organic solid wastes including agricultural and forestry residues. However, traditional composting method is time consuming, generates foul smells, and produces an immature product. The effects of maifanite (MF; at 0%, 8.5%, and 13.5%) and/or silage (SG; at 0%, 25%, and 45%) as amendments on an innovative, two-stage method for composting green waste (GW) were investigated. The combined addition of MF and SG greatly improved composting conditions, reduced composting time, and enhanced compost quality in terms of composting temperature, bulk density, water-holding capacity, void ratio, pH, cation exchange capacity, ammonia nitrogen content, dissolved organic carbon content, crude fibre degradation, microbial numbers, enzyme activities, nutrient contents, and phytotoxicity. The two-stage composting of GW with 8.5% MF and 45% SG generated the highest quality and the most mature compost product and did so in only 21 days. With the optimized composting, the degradation rate of cellulose and hemicellulose reached 46.3 and 82.3%, respectively, and the germination index of Chinese cabbage and lucerne was 153 and 172%, respectively, which were all far higher than values obtained with the control. The combined effects of MF and SG on GW composting have not been previously explored, and this study therefore provided new and practical information. The comprehensive analyses of compost properties during and at the end of the process provided insight into underlying mechanisms. The optimized two-stage composting method may be a viable and sustainable alternative for GW management in that it converts the waste into a useful product.
Collapse
Affiliation(s)
- Lu Zhang
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| | - Xiangyang Sun
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
42
|
Arab G, McCartney D. Benefits to decomposition rates when using digestate as compost co-feedstock: Part I - Focus on physicochemical parameters. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 68:74-84. [PMID: 28751175 DOI: 10.1016/j.wasman.2017.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
Anaerobic digestion (AD) has gained a significant role in municipal solid waste management, but managing a high volume of digestate is one of the challenges with AD technology. One option is to mix digestate with fresh and/or stabilized organic waste and then feed to the composting process. In this study, the effect of co-composting anaerobic digestate (in different quantities) on a composting process was investigated. The digestate was prepared in a pilot-scale 500L high solids dry anaerobic digester and composting was completed in eight 25L reactors with different ratios of digestate to fresh feedstock from the organic fraction of municipal solid waste (OFMSW). The digestate constituted 0, 10, 20, 30, 40, 50, 75, or 100% (wet mass) of the feedstock. The co-composting experiment was conducted in two phases: active aeration and curing. Monitored parameters included: process temperature, aeration rate, oxygen concentration of the outlet gas, mass changes, total solids, organic matter, pH, and electrical conductivity. In addition, respirometry, C:N ratio, ammonium to nitrate ratio, and Solvita® tests were used to quantify stability and maturity end points. The results showed that the addition of digestate to the OFMSW increased composting reaction rates in all cases, with peak performance occurring within the ratio of 20-40% of digestate addition on a wet weight basis. Reactor performance may have been influenced by the high total ammonia nitrogen (TAN) levels in the digestate. Composting rates increased as TAN levels increased up to 5000 TAN mgkg-1DM; however, TAN may have become inhibitory at higher levels.
Collapse
Affiliation(s)
- Golnaz Arab
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Daryl McCartney
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; Edmonton Waste Management Centre of Excellence, Site 310, 250 Aurum Road NE, Edmonton, AB T6S 1G9, Canada.
| |
Collapse
|
43
|
Maynaud G, Druilhe C, Daumoin M, Jimenez J, Patureau D, Torrijos M, Pourcher AM, Wéry N. Characterisation of the biodegradability of post-treated digestates via the chemical accessibility and complexity of organic matter. BIORESOURCE TECHNOLOGY 2017; 231:65-74. [PMID: 28196781 DOI: 10.1016/j.biortech.2017.01.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 06/06/2023]
Abstract
The stability of digestate organic matter is a key parameter for its use in agriculture. Here, the organic matter stability was compared between 14 post-treated digestates and the relationship between organic matter complexity and biodegradability was highlighted. Respirometric activity and CH4 yields in batch tests showed a positive linear correlation between both types of biodegradability (R2=0.8). The accessibility and complexity of organic matter were assessed using chemical extractions combined with fluorescence spectroscopy, and biodegradability was mostly anti-correlated with complexity of organic matter. Post-treatments presented a significant effect on the biodegradability and complexity of organic matter. Biodegradability was low for composted digestates which comprised slowly accessible complex molecules. Inversely, solid fractions obtained after phase separation contained a substantial part of remaining biodegradable organic matter with a significant easily accessible fraction comprising simpler molecules. Understanding the effect of post-treatment on the biodegradability of digestates should help to optimize their valorization.
Collapse
Affiliation(s)
| | - Céline Druilhe
- Irstea, UR OPAALE, 17 avenue de Cucillé, CS64427, Rennes F-35044, France; Université Bretagne Loire, France
| | - Mylène Daumoin
- Irstea, UR OPAALE, 17 avenue de Cucillé, CS64427, Rennes F-35044, France; Université Bretagne Loire, France
| | - Julie Jimenez
- LBE, INRA, 102 Avenue des Etangs, Narbonne F-11100, France
| | | | | | - Anne-Marie Pourcher
- Irstea, UR OPAALE, 17 avenue de Cucillé, CS64427, Rennes F-35044, France; Université Bretagne Loire, France
| | - Nathalie Wéry
- LBE, INRA, 102 Avenue des Etangs, Narbonne F-11100, France.
| |
Collapse
|
44
|
Huang YL, Sun ZY, Zhong XZ, Wang TT, Tan L, Tang YQ, Kida K. Aerobic composting of digested residue eluted from dry methane fermentation to develop a zero-emission process. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 61:206-212. [PMID: 28089402 DOI: 10.1016/j.wasman.2017.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/06/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
Digested residue remained at the end of a process for the production of fuel ethanol and methane from kitchen garbage. To develop a zero-emission process, the compostability of the digested residue was assessed to obtain an added-value fertilizer. Composting of the digested residue by adding matured compost and a bulking agent was performed using a lab-scale composting reactor. The composting process showed that volatile total solid (VTS) degradation mainly occurred during the first 13days, and the highest VTS degradation efficiency was about 27% at the end. The raw material was not suitable as a fertilizer due to its high NH4+ and volatile fatty acids (VFAs) concentration. However, the composting process produced remarkable results; the physicochemical properties indicated that highly matured compost was obtained within 62days of the composting process, and the final N concentration, NO3- concentration, and the germination index (GI) at the end of the composting process was 16.4gkg-1-TS, 9.7gkg-1-TS, and 151%, respectively. Real-time quantitative PCR (qPCR) analysis of ammonia oxidizers indicated that the occurrence of nitrification during the composting of digested residue was attributed to the activity of ammonia-oxidizing bacteria (AOB).
Collapse
Affiliation(s)
- Yu-Lian Huang
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1, First Ring Road, Chengdu, Sichuan 610065, China.
| | - Xiao-Zhong Zhong
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Ting-Ting Wang
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Li Tan
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Kenji Kida
- College of Architecture and Environment, Sichuan University, No. 24 South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| |
Collapse
|
45
|
Akhiar A, Battimelli A, Torrijos M, Carrere H. Comprehensive characterization of the liquid fraction of digestates from full-scale anaerobic co-digestion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 59:118-128. [PMID: 27847231 DOI: 10.1016/j.wasman.2016.11.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/21/2016] [Accepted: 11/03/2016] [Indexed: 05/24/2023]
Abstract
Waste management by anaerobic digestion generates a final byproduct, the digestate, which is usually separated into solid and liquid fractions to reduce the volume for transportation. The composition of the solid fraction has been recently studied to allow its valorization. However, full composition of liquid fraction of digestate and its size fractionation are less considered in the literature for efficient post treatment and valorization purposes. Therefore, here we characterized in detail liquid fraction of digestate obtained after solid-liquid separation from 11 full-scale co-digestion plants. The liquid fraction has a high concentration in organic matter with Chemical Oxygen Demand (COD) from 9.2 to 78g/L with 60-96% of COD in suspended particles (>1.2μm), 2-27% in colloids (1.2μm to 1kDa) and 2-18% in dissolved matter (<1kDa). Besides, it contained from 1.5 to 6.5g/L total nitrogen and high ions concentrations (0.5-3.1g/L NH4+, 1.05-5.48g/L K+, 0-2.13g/L PO43-). In addition, liquid fraction of digestate has poor biodegradability due to presence of humic substances making aerobic treatment inefficient. Only physico-chemical post treatment can be proposed for organic matter removal.
Collapse
Affiliation(s)
- Afifi Akhiar
- LBE, INRA, 102 Avenue des Etangs, Narbonne F-11100, France
| | | | | | - Helene Carrere
- LBE, INRA, 102 Avenue des Etangs, Narbonne F-11100, France
| |
Collapse
|