1
|
Soudagar MEM, Kiong TS, Jathar L, Nik Ghazali NN, Ramesh S, Awasarmol U, Ong HC. Perspectives on cultivation and harvesting technologies of microalgae, towards environmental sustainability and life cycle analysis. CHEMOSPHERE 2024; 353:141540. [PMID: 38423144 DOI: 10.1016/j.chemosphere.2024.141540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/18/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
The development of algae is seen as a potential and ecologically sound approach to address the increasing demands in multiple sectors. However, successful implementation of processes is highly dependent on effective growing and harvesting methods. The present study provides a complete examination of contemporary techniques employed in the production and harvesting of algae, with a particular emphasis on their sustainability. The review begins by examining several culture strategies, encompassing open ponds, closed photobioreactors, and raceway ponds. The analysis of each method is conducted in a systematic manner, with a particular focus on highlighting their advantages, limitations, and potential for expansion. This approach ensures that the conversation is in line with the objectives of sustainability. Moreover, this study explores essential elements of algae harvesting, including the processes of cell separation, dewatering, and biomass extraction. Traditional methods such as centrifugation, filtration, and sedimentation are examined in conjunction with novel, environmentally concerned strategies including flocculation, electro-coagulation, and membrane filtration. It evaluates the impacts on the environment that are caused by the cultivation process, including the usage of water and land, the use of energy, the production of carbon dioxide, and the runoff of nutrients. Furthermore, this study presents a thorough examination of the current body of research pertaining to Life Cycle Analysis (LCA) studies, presenting a perspective that emphasizes sustainability in the context of algae harvesting systems. In conclusion, the analysis ends up with an examination ahead at potential areas for future study in the cultivation and harvesting of algae. This review is an essential guide for scientists, policymakers, and industry experts associated with the advancement and implementation of algae-based technologies.
Collapse
Affiliation(s)
- Manzoore Elahi M Soudagar
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia; Department of Mechanical Engineering, Graphic Era (Deemed to be University), Dehradun, Uttarakhand - 248002, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq.
| | - Tiong Sieh Kiong
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia.
| | - Laxmikant Jathar
- Department of Mechanical Engineering, Army Institute of Technology, Pune, 411015, India.
| | - Nik Nazri Nik Ghazali
- Department of Mechanical Engineering, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - S Ramesh
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia; Department of Mechanical Engineering, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Umesh Awasarmol
- Department of Mechanical Engineering, Army Institute of Technology, Pune, 411015, India.
| | - Hwai Chyuan Ong
- Department of Engineering, School of Engineering and Technology, Sunway University, Jalan Universiti, Bandar Sunway, 47500, Selangor, Malaysia.
| |
Collapse
|
2
|
Sartori RB, Deprá MC, Dias RR, Fagundes MB, Zepka LQ, Jacob-Lopes E. The Role of Light on the Microalgae Biotechnology: Fundamentals, Technological Approaches, and Sustainability Issues. Recent Pat Biotechnol 2024; 18:22-51. [PMID: 38205773 DOI: 10.2174/1872208317666230504104051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 01/12/2024]
Abstract
Light energy directly affects microalgae growth and productivity. Microalgae in natural environments receive light through solar fluxes, and their duration and distribution are highly variable over time. Consequently, microalgae must adjust their photosynthetic processes to avoid photo limitation and photoinhibition and maximize yield. Considering these circumstances, adjusting light capture through artificial lighting in the main culture systems benefits microalgae growth and induces the production of commercially important compounds. In this sense, this review provides a comprehensive study of the role of light in microalgae biotechnology. For this, we present the main fundamentals and reactions of metabolism and metabolic alternatives to regulate photosynthetic conversion in microalgae cells. Light conversions based on natural and artificial systems are compared, mainly demonstrating the impact of solar radiation on natural systems and lighting devices, spectral compositions, periodic modulations, and light fluxes when using artificial lighting systems. The most commonly used photobioreactor design and performance are shown herein, in addition to a more detailed discussion of light-dependent approaches in these photobioreactors. In addition, we present the principal advances in photobioreactor projects, focusing on lighting, through a patent-based analysis to map technological trends. Lastly, sustainability and economic issues in commercializing microalgae products were presented.
Collapse
Affiliation(s)
- Rafaela Basso Sartori
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Mariany Costa Deprá
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Rosangela Rodrigues Dias
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Mariane Bittencourt Fagundes
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Leila Queiroz Zepka
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Eduardo Jacob-Lopes
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| |
Collapse
|
3
|
Wang Y, Yang S, Liu J, Wang J, Xiao M, Liang Q, Ren X, Wang Y, Mou H, Sun H. Realization process of microalgal biorefinery: The optional approach toward carbon net-zero emission. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165546. [PMID: 37454852 DOI: 10.1016/j.scitotenv.2023.165546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Increasing carbon dioxide (CO2) emission has already become a dire threat to the human race and Earth's ecology. Microalgae are recommended to be engineered as CO2 fixers in biorefinery, which play crucial roles in responding climate change and accelerating the transition to a sustainable future. This review sorted through each segment of microalgal biorefinery to explore the potential for its practical implementation and commercialization, offering valuable insights into research trends and identifies challenges that needed to be addressed in the development process. Firstly, the known mechanisms of microalgal photosynthetic CO2 fixation and the approaches for strain improvement were summarized. The significance of process regulation for strengthening fixation efficiency and augmenting competitiveness was emphasized, with a specific focus on CO2 and light optimization strategies. Thereafter, the massive potential of microalgal refineries for various bioresource production was discussed in detail, and the integration with contaminant reclamation was mentioned for economic and ecological benefits. Subsequently, economic and environmental impacts of microalgal biorefinery were evaluated via life cycle assessment (LCA) and techno-economic analysis (TEA) to lit up commercial feasibility. Finally, the current obstacles and future perspectives were discussed objectively to offer an impartial reference for future researchers and investors.
Collapse
Affiliation(s)
- Yuxin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jin Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing 100871, China
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ying Wang
- Marine Science research Institute of Shandong Province, Qingdao 266003, China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
4
|
Caetano PA, do Nascimento TC, Fernandes AS, Nass PP, Vieira KR, Maróstica Junior MR, Jacob-Lopes E, Zepka LQ. Microalgae-based polysaccharides: Insights on production, applications, analysis, and future challenges. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Vendruscolo RG, Deprá MC, Pinheiro PN, Furlan VJM, Barin JS, Cichoski AJ, de Menezes CR, Zepka LQ, Jacob-Lopes E, Wagner R. Food potential of Scenedesmus obliquus biomasses obtained from photosynthetic cultivations associated with carbon dioxide mitigation. Food Res Int 2022; 160:111590. [DOI: 10.1016/j.foodres.2022.111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/04/2022]
|
6
|
Evaluation of Growth Rate and Biomass Productivity of Scenedesmus quadricauda and Chlorella vulgaris under Different LED Wavelengths and Photoperiods. SUSTAINABILITY 2022. [DOI: 10.3390/su14106108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cultivation has been identified as an essential stage for biofuel production. This research has examined two important parameters for the industrial production of microalgae, namely microalgae growth rate and biomass productivity. Chlorella vulgaris and Scenedesmusquadricauda were cultivated using a closed photobioreactor (PBR). A novel approach for cultivation and energy input reduction was developed by incorporating periods of darkness during cultivation, as would happen in nature. Three different LED light sources (white, red, and green) were used to determine the conditions that result in the highest growth rate and biomass productivity. C. vulgaris and S. quadricauda responded differently to lighting conditions. It was found that, depending on the LED source and light period, different growth rates and biomass productivities were obtained. Overall, experimental results obtained in this study indicated that a white LED is more effective than green or red LEDs in increasing microalgae growth rate and biomass productivity. A maximum growth rate of 3.41 d−1 and a biomass productivity of 2.369 g L−1d−1 were achieved for S.quadricauda under a 19 h period of white light alternating with 5 h of darkness. For C. vulgaris the maximum growth rate of 3.49 d−1 and maximum biomass productivity of 2.438 g L−1d−1 were achieved by continuous white light with no darkness period.
Collapse
|
7
|
Benner P, Meier L, Pfeffer A, Krüger K, Oropeza Vargas JE, Weuster-Botz D. Lab-scale photobioreactor systems: principles, applications, and scalability. Bioprocess Biosyst Eng 2022; 45:791-813. [PMID: 35303143 PMCID: PMC9033726 DOI: 10.1007/s00449-022-02711-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/14/2022] [Indexed: 12/20/2022]
Abstract
Phototrophic microorganisms that convert carbon dioxide are being explored for their capacity to solve different environmental issues and produce bioactive compounds for human therapeutics and as food additives. Full-scale phototrophic cultivation of microalgae and cyanobacteria can be done in open ponds or closed photobioreactor systems, which have a broad range of volumes. This review focuses on laboratory-scale photobioreactors and their different designs. Illuminated microtiter plates and microfluidic devices offer an option for automated high-throughput studies with microalgae. Illuminated shake flasks are used for simple uncontrolled batch studies. The application of illuminated bubble column reactors strongly emphasizes homogenous gas distribution, while illuminated flat plate bioreactors offer high and uniform light input. Illuminated stirred-tank bioreactors facilitate the application of very well-defined reaction conditions. Closed tubular photobioreactors as well as open photobioreactors like small-scale raceway ponds and thin-layer cascades are applied as scale-down models of the respective large-scale bioreactors. A few other less common designs such as illuminated plastic bags or aquarium tanks are also used mainly because of their relatively low cost, but up-scaling of these designs is challenging with additional light-driven issues. Finally, this review covers recommendations on the criteria for photobioreactor selection and operation while up-scaling of phototrophic bioprocesses with microalgae or cyanobacteria.
Collapse
Affiliation(s)
- Philipp Benner
- Department of Energy and Process Engineering, Chair of Biochemical Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Lisa Meier
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Annika Pfeffer
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Konstantin Krüger
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - José Enrique Oropeza Vargas
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Dirk Weuster-Botz
- Department of Energy and Process Engineering, Chair of Biochemical Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany.
- Technical University of Munich, TUM-AlgaeTec Center, 85521, Taufkirchen, Germany.
| |
Collapse
|
8
|
Bright as day and dark as night: light-dependant energy for lipid biosynthesis and production in microalgae. World J Microbiol Biotechnol 2022; 38:70. [PMID: 35257233 DOI: 10.1007/s11274-022-03245-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/08/2022] [Indexed: 10/18/2022]
Abstract
Microalgae are photosynthetic organisms functioning as the green bio-factories for various pharmaceutical and biofuel products. To date, numerous attempts have been carried out to manipulate culture conditions to maximize the production of the desired metabolites. Because light is the energy source of microalgae for their growth and metabolites biosynthesis, it has been one of the most investigated variables emphasized on the deep understanding of how microalgae respond towards light changes as an external stimulus. This review discusses the effects of different light sources, light intensities, light wavelengths and length of photoperiod on various microalgae species, especially in terms of biomass and lipid productivity. Additionally, the relationship between photoregulation processes and lipid productivity of microalgae are also deliberated. The current available approaches of microalgae mass cultivation, including different types of open and closed systems are recapitulated with the intention to highlight the significant insights for the design of future photoreactors.
Collapse
|
9
|
Chandra R, Pradhan S, Patel A, Ghosh UK. An approach for dairy wastewater remediation using mixture of microalgae and biodiesel production for sustainable transportation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113210. [PMID: 34375226 DOI: 10.1016/j.jenvman.2021.113210] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/15/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
The aim of this work is remediation of dairy wastewater (DWW) for biodiesel feedstock production using poly-microalgae cultures of four microalgae namely Chlorella minutissima (C. minutissima), Scenedesmus abundans (S. abundans), Nostoc muscorum (N. muscorum) and Spirulina sp. The poly-microalgae cultures were prepared as C. minutissima + N. muscorum (CN), C. minutissima + N. muscorum + Spirulina sp. (CNSS) and S. abundans + N. muscorum + Spirulina sp. (SNSS). Poly-microalgae culture CNSS cultivated on 70% DWW achieved 75.16, 61.37, 58.76, 84.48 and 84.58%, removals of biological oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), and suspended solids (SS), respectively, at 12:12 h photoperiod that resulted into total biomass and lipid yield of 3.47 ± 0.07 g/L and 496.32± 0.065 mg/L. However, maximum biomass and lipid yields of 5.76 ± 0.06 and 1152.37 ± 0.065 mg/L were achieved by poly-microalgae culture CNSS cultivated on 70% DWW + 10 g/L of glucose at 18:6 h photoperiod. Fatty acid methyl ester (FAME) analysis shown presence of C14:0 (myristic acid) C16:0 (palmitic acid), C16:1 (palmitoleic acid), C18:0 (stearic acid), C18:2 (linoleic acid) and C18:3 (linolenic acid), it indicates that the lipids produced from poly-microalgae cultures are suitable for biodiesel production. Thus, poly-microalgae cultures could be more efficient than mono-microalgae cultures in the remediation of DWW and for biodiesel feedstock production.
Collapse
Affiliation(s)
- Rajesh Chandra
- Bioenergy Research Laboratory, Polymer and Process Engineering Department, Indian Institute of Technology Roorkee (Saharanpur Campus), Saharanpur, 247001, Uttar Pradesh, India
| | - Snigdhendubala Pradhan
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187, Lulea, Sweden
| | - Uttam Kumar Ghosh
- Bioenergy Research Laboratory, Polymer and Process Engineering Department, Indian Institute of Technology Roorkee (Saharanpur Campus), Saharanpur, 247001, Uttar Pradesh, India.
| |
Collapse
|
10
|
Fernandes AS, Nascimento TC, Pinheiro PN, Vendruscolo RG, Wagner R, de Rosso VV, Jacob-Lopes E, Zepka LQ. Bioaccessibility of microalgae-based carotenoids and their association with the lipid matrix. Food Res Int 2021; 148:110596. [PMID: 34507741 DOI: 10.1016/j.foodres.2021.110596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 01/05/2023]
Abstract
The composition of microalgae can contribute to nutritious and functional diets. Among the functional compounds, carotenoids are in focus since positive effects on human health have been established, which are in turn related to their bioaccessibility. In addition to essential nutrients, our hypothesis was that microalgae biomasses could be used as sources of bioaccessible carotenoids. Thus, this study determined for the first time the bioaccessibility of carotenoids from biomass of Scenedesmus bijuga and Chlorella sorokiniana and their possible relationship with the lipid composition of the matrix. The samples were submitted to in vitro digestion protocol, and carotenoids were determined by HPLC-PDA-MS/MS. Individual bioaccessibility of carotenoids was ≥ 3.25%. In general, compounds in their cis conformation were more bioaccessible than trans; and total carotenes more than total xanthophylls. Twelve compounds were bioaccessible from the biomass of S. bijuga, and eight in C. sorokiniana. In S. bijuga, the bioaccessibility of total carotenoids was 7.30%, and the major bioaccessible carotenoids were 9-cis-β-carotene (43.78%), 9-cis-zeaxanthin (42.30%) followed by 9-cis-lutein (26.73%); while in C. sorokiniana, the total bioaccessibility was 8.03%, and 9-cis-β-carotene (26.18%), all-trans-β-carotene (13.56%), followed by 13-cis-lutein (10.71%) were the major compounds. Overall, the total content of lipids does not influence the bioaccessibility of total carotenoids. Still, the lipid composition, including structural characteristics such as degree of saturation and chain length of the fatty acid, impacts the promotion of individual bioaccessibility of carotenes and xanthophylls of microalgae. Finally, the results of this study can assist the development of microalgae-based functional food ingredients and products.
Collapse
Affiliation(s)
- Andrêssa S Fernandes
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Tatiele C Nascimento
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Pricila N Pinheiro
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Raquel G Vendruscolo
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Roger Wagner
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Veridiana V de Rosso
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Rua Silva Jardim 136, Santos 11015-020, Brazil
| | - Eduardo Jacob-Lopes
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Leila Q Zepka
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil.
| |
Collapse
|
11
|
do Nascimento TC, Pinheiro PN, Fernandes AS, Murador DC, Neves BV, de Menezes CR, de Rosso VV, Jacob-Lopes E, Zepka LQ. Bioaccessibility and intestinal uptake of carotenoids from microalgae Scenedesmus obliquus. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110780] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Fernandes AS, Nascimento TC, Pinheiro PN, de Rosso VV, de Menezes CR, Jacob-Lopes E, Zepka LQ. Insights on the intestinal absorption of chlorophyll series from microalgae. Food Res Int 2020; 140:110031. [PMID: 33648259 DOI: 10.1016/j.foodres.2020.110031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/10/2020] [Accepted: 12/13/2020] [Indexed: 12/22/2022]
Abstract
The bioaccessibility and subsequent uptake by Caco-2 human intestinal cells of chlorophyll pigments from Scenedesmus obliquus were determined for the first time. In order to evaluate the impact of different types of the matrix on bioaccessibility of chlorophyll from microalgae, three different products were evaluated: isolated chlorophyll extract (ICE); wet ultrasonicated biomass (WUB); and whole dried biomass (WDB). The samples were submitted to in vitro digestion model according to the INFOGEST protocol, and Caco-2 cells determined the intestinal uptake. Chlorophyll pigments were determined by HPLC-PDA-MS/MS. A total of ten chlorophyll pigments (8,318.48 µg g-1) were separated in S. obliquus biomass, with chlorophyll a (3,507.76 µg g-1) and pheophytin a' (1,598.09 µg g-1) the major ones. After in vitro digestion, all tested products showed bioaccessible chlorophylls. However, the total bioaccessibility results were as follows: ICE (33.45%), WUB (2.65%), WDB (0.33%). Five compounds were bioaccessible in ICE, three in WUB, and one in WDB. The hydroxypheophytin a showed the highest bioaccessibility (212%) in ICE, while pheophytin a' in WUB (11%) and WDB (2%). As a result, bioavailability estimates of ICE using the Caco-2 cell showed hydroxypheophytin a (102.53%), followed by pheophytin a' (64.69%) as the chlorophyll pigments most abundant in intestinal cells. In summary, from a nutritional perspective, these three types of the matrix (WDB, WUB, and ICE) influence the promotion of chlorophyll bioaccessibility. In this way, the data suggest that chlorophylls bioaccessibility from ICE is greater than that in WDB and WUB. Therefore, ICE should be considered a product that provides bioavailable chlorophyll and could be the best choice, such as ingredients in the development of functional foods chlorophyll-based.
Collapse
Affiliation(s)
- Andrêssa S Fernandes
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Tatiele C Nascimento
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Pricila N Pinheiro
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Veridiana V de Rosso
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Rua Silva Jardim 136, Santos 11015-020, Brazil
| | - Cristiano R de Menezes
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Eduardo Jacob-Lopes
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Leila Q Zepka
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil.
| |
Collapse
|
13
|
Deprá MC, Dias RR, Severo IA, de Menezes CR, Zepka LQ, Jacob-Lopes E. Carbon dioxide capture and use in photobioreactors: The role of the carbon dioxide loads in the carbon footprint. BIORESOURCE TECHNOLOGY 2020; 314:123745. [PMID: 32652446 DOI: 10.1016/j.biortech.2020.123745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
This research evaluated the carbon dioxide capture and use by Scenedesmus obliquus in a photobioreactor under different CO2 loads. Performance indicators, carbon and energy balances, sustainability indicators, and carbon credits on the photobioreactor were assessed. The results expressed that the CO2 loads of 384.9 kg/m3/d (15% CO2) provide the best trade-off for the process. For this condition, maximum biomass productivities of 0.36 kg/m3/d, carbon dioxide conversion rates of 0.44 kgCO2/m3/d, and oxygen release rates of 0.33 kgO2/m3/d were observed, reaching maximum CO2 removal efficiencies of 30.76%. Volatile organic compounds were the major products generated (>80%). However, only <3% was fixed in biomass. From the environmental and economic point of view, the net energy ratio was 3.44, while the potential carbon credit was of 0.04 USD per m3 of culture. Finally, the use of adequate CO2 loads was also proven to be determinant to improve the global performance of the system.
Collapse
Affiliation(s)
- Mariany C Deprá
- Bioprocess Intensification Group, Federal University of Santa Maria, UFSM, Roraima Avenue 1000, 97105-900 Santa Maria, RS, Brazil.
| | - Rosangela R Dias
- Bioprocess Intensification Group, Federal University of Santa Maria, UFSM, Roraima Avenue 1000, 97105-900 Santa Maria, RS, Brazil
| | - Ihana A Severo
- Bioprocess Intensification Group, Federal University of Santa Maria, UFSM, Roraima Avenue 1000, 97105-900 Santa Maria, RS, Brazil
| | - Cristiano R de Menezes
- Bioprocess Intensification Group, Federal University of Santa Maria, UFSM, Roraima Avenue 1000, 97105-900 Santa Maria, RS, Brazil
| | - Leila Q Zepka
- Bioprocess Intensification Group, Federal University of Santa Maria, UFSM, Roraima Avenue 1000, 97105-900 Santa Maria, RS, Brazil
| | - Eduardo Jacob-Lopes
- Bioprocess Intensification Group, Federal University of Santa Maria, UFSM, Roraima Avenue 1000, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
14
|
Estrada-Graf A, Hernández S, Morales M. Biomitigation of CO 2 from flue gas by Scenedesmus obtusiusculus AT-UAM using a hybrid photobioreactor coupled to a biomass recovery stage by electro-coagulation-flotation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28561-28574. [PMID: 32130637 DOI: 10.1007/s11356-020-08240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/25/2020] [Indexed: 05/05/2023]
Abstract
The microalga Scenedesmus obtusiusculus AT-UAM efficiently captured CO2 from two flue gas streams in a hybrid photobioreactor located in a greenhouse. Uptake rates of CO2, NO, and SO2 from a formulated gas stream were 160.7 mg L-1 day-1, 0.73 mg L-1 day-1, and 1.56 mg L-1 day-1, respectively, with removal efficiencies of 100% for all gases. Exhaust gases of a motor generator were also removed with uptake rates of 111.4 mg L-1 day-1, 0.42 mg L-1 day-1, and 0.98 mg L-1 day-1, obtaining removal efficiencies of 77%, 71%, and 53% for CO2, NOx, and SO2, respectively. On average, 61% of the CO2 from both flue gas streams was assimilated as microalgal biomass. The maximum CO2 uptake rate of 182 mg L-1 day-1 was achieved for formulated flue gas flow rate above 100 mL min-1. The biomass recovery of 88% was achieved using a 20-L electro-coagulation-flotation chamber coupled to a settler with a low specific power consumption of 0.27 kWh kg-1. The photobioreactor was operated for almost 7 months without contamination of invasive species or a decrease in the activity. It is a very encouraging result for long-term operation in flue gas treatment.
Collapse
Affiliation(s)
- Adrián Estrada-Graf
- Maestría en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana Cuajimalpa, Av. Vasco de Quiroga 4871, Colonia Santa Fe Cuajimalpa, 05300, Mexico City, Mexico
| | - Sergio Hernández
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana Cuajimalpa, Av. Vasco de Quiroga 4871, Colonia Santa Fe Cuajimalpa, 05300, Mexico City, Mexico
| | - Marcia Morales
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana Cuajimalpa, Av. Vasco de Quiroga 4871, Colonia Santa Fe Cuajimalpa, 05300, Mexico City, Mexico.
| |
Collapse
|
15
|
Abstract
Interest in pigment composition of microalgae species is growing as new natural pigments sources are being sought. However, we still have a limited number of species of microalgae exploited to obtain these compounds. Considering these facts, the detailed composition of carotenoids and chlorophylls of two species of green microalgae (Chlorella sorokiniana and Scenedesmus bijuga) were determined for the first time by high-performance liquid chromatography coupled to diode array and mass spectrometry detectors (HPLC-PDA-MS/MS). A total of 17 different carotenoids were separated in all the extracts. Most of the carotenoids present in the two microalgae species are xanthophylls. C. sorokiniana presented 11 carotenoids (1408.46 μg g−1), and S. bijuga showed 16 carotenoids (1195.75 μg g−1). The main carotenoids detected in the two microalgae were all-trans-lutein and all-trans-β-carotene. All-trans-lutein was substantially higher in C. sorokiniana (59.01%), whereas all-trans-β-carotene was detected in higher quantitative values in S. bijuga (13.88%). Seven chlorophyll compounds were identified in both strains with different proportions in each species. Concentrations of chlorophyll representing 7.6% and 10.2% of the composition of the compounds present in the biomass of C. sorokiniana and S. bijuga, respectively. Relevant chlorophyll compounds are reported for the first time in these strains. The data obtained provide significant insights for microalgae pigment composition databases. The carotenoids and chlorophylls profile by HPLC-PDA-MS of microalgae is reported. Microalgae showed species-specific pigments profiles. 17 carotenoids and 7 chlorophylls were identified and quantified in details. The quantitative profile presented a prevalence of chlorophylls over carotenoids. Green microalgae are proposed as an interesting natural source of food pigments.
Collapse
|
16
|
Light-Emitting Diode Power Conversion Capability and CO2 Fixation Rate of Microalgae Biofilm Cultured Under Different Light Spectra. ENERGIES 2020. [DOI: 10.3390/en13071536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microalgae biofilm-based culture has attracted much interest due to its high harvest efficiency and low energy requirements. Using light-emitting diodes (LEDs) as light source for microalgae culture has been considered as a promising choice to enhance the economic feasibility of microalgae-based commodities. In this work, the LED power conversion capability and CO2 fixation rate of microalgae biofilms (Chlorella ellipsoidea and Chlorella pyrenoidosa) cultured under different light spectra (white, blue, green and red) were studied. The results indicated that the power-to-biomass conversion capabilities of these two microalgae biofilms cultured under blue and white LEDs were much higher than those under green and red LEDs (C. ellipsoidea: 32%–33% higher, C. pyrenoidosa: 34%–46% higher), and their power-to-lipid conversion capabilities cultured under blue LEDs were 61%–66% higher than those under green LEDs. The CO2 fixation rates of these two biofilms cultured under blue LEDs were 13% and 31% higher, respectively, than those under green LEDs. The results of this study have important implications for selecting the optimal energy-efficient LEDs using in microalgae biofilm-based culture systems.
Collapse
|
17
|
Ren HY, Dai YQ, Kong F, Xing D, Zhao L, Ren NQ, Ma J, Liu BF. Enhanced microalgal growth and lipid accumulation by addition of different nanoparticles under xenon lamp illumination. BIORESOURCE TECHNOLOGY 2020; 297:122409. [PMID: 31740246 DOI: 10.1016/j.biortech.2019.122409] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
In this study, the growth and lipid accumulation of Scenedesmus sp. using different nanoparticles and light sources were investigated. Xenon lamp can produce a broad illumination spectrum, and exhibited better performance than light-emitting diode. SiC and g-C3N4 nanoparticles improved the biomass and lipid accumulation, whereas TiO2 and TiC nanoparticles had inhibitory influence on microalgae. Lipid production can be improved by oxidative stress produced by combination of nanoparticles and xenon lamp irradiation. At the optimal SiC nanoparticles concentration of 150 mg L-1 and photoperiod of 6:18 h, the maximum biomass concentration and total lipid content reached 3.18 g L-1 and 40.26%, respectively. The addition of SiC nanoparticles could promote the substrate utilization rate and induce stress condition, thereby enhancing the activity of acetyl-CoA carboxylase and lipid biosynthesis. This research shows that SiC nanoparticles addition combined with xenon lamp illumination is a promising strategy to promote microalgal growth and lipid accumulation.
Collapse
Affiliation(s)
- Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ying-Qi Dai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fanying Kong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
18
|
Maroneze MM, Zepka LQ, Lopes EJ, Pérez-Gálvez A, Roca M. Chlorophyll Oxidative Metabolism During the Phototrophic and Heterotrophic Growth of Scenedesmus obliquus. Antioxidants (Basel) 2019; 8:E600. [PMID: 31795375 PMCID: PMC6943719 DOI: 10.3390/antiox8120600] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 01/02/2023] Open
Abstract
Different cultivation strategies have been developed with the aim of increasing the production rate of microalgal pigments. Specifically, biotechnological approaches are designed to increase antioxidant metabolites as chlorophyll and carotenoids. However, although significant advances have been built up, available information regarding both the chlorophyll metabolism and their oxidative reactions in photobioreactors is scarce. To unravel such processes, the detailed chlorophyll and carotenoid fraction of Scenedesmus obliquus has been studied by HPLC-ESI/APCI-hrTOF-MS from phototrophic and heterotrophic cultures. Scenedesmus is provided with a controlled strategy of interconversion between chlorophyll a and b to avoid the formation of reactive oxygen species (ROS) at high irradiances in addition to the photoacclimation of carotenoids. Indeed, precise kinetics of 132-hydroxy- and 151-hydroxy-lactone chlorophyll metabolites shows the existence of a chlorophyll oxidative metabolism as a tool to manage the excess of energy at high light conditions. Unexpectedly, the oxidation under phototrophy favored chlorophyll b metabolites over the chlorophyll a series, while the heterotrophic conditions exclusively induced the formation of 132-hydroxy-chlorophyll a. In parallel, during the first 48 h of growth in the dark, the chlorophyll fraction maintained a promising steady state. Although future studies are required to resolve the biochemical reactions implied in the chlorophyll oxidative metabolism, the present results agree with phytoplankton metabolism.
Collapse
Affiliation(s)
- Mariana Manzoni Maroneze
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil; (M.M.M.); (L.Q.Z.); (E.J.L.)
| | - Leila Queiroz Zepka
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil; (M.M.M.); (L.Q.Z.); (E.J.L.)
| | - Eduardo Jacob Lopes
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, Brazil; (M.M.M.); (L.Q.Z.); (E.J.L.)
| | - Antonio Pérez-Gálvez
- Food Phytochemistry Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), University Campus, Building 46, Carretera de Utrera km. 1, 41013 Sevilla, Spain;
| | - María Roca
- Food Phytochemistry Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), University Campus, Building 46, Carretera de Utrera km. 1, 41013 Sevilla, Spain;
| |
Collapse
|
19
|
Maroneze MM, Deprá MC, Zepka LQ, Jacob-Lopes E. Artificial lighting strategies in photobioreactors for bioenergy production by Scenedesmus obliquus CPCC05. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1761-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
20
|
Influence of Photoperiods on Microalgae Biofilm: Photosynthetic Performance, Biomass Yield, and Cellular Composition. ENERGIES 2019. [DOI: 10.3390/en12193724] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microalgae have immense potential as biological sources to produce biofuels and high-value biomolecules. Biofilm-based microalgae cultivation has attracted much interest recently because of its high biomass productivity, reduced water use, and low cost of harvesting. This study aimed to understand the effect of photoperiod on three microalgae biofilms, including Nannochloris oculata, Chlorella sp., and Chlorella pyrenoidosa. The examined photoperiods were 3:3 s, 5:5 s, 30:30 min, 12:12 h (light-period-to-dark-period ratio), and continuous lighting. By determining the maximum quantum yield and relative electron transport rate of photosystem II, we found that photoperiods on the seconds scale improved photosynthetic performance of microalgae biofilm. Biomass yield and lipid content of these three microalgae cultured under the photoperiod with the seconds scale increased by 11%–24% and 7%–22%, respectively, compared with those cultured under continuous lighting. In addition, the photoperiods of 3:3 s, 5:5 s, 30:30 min, and 12:12 h were beneficial for protein synthesis. These results have important implications in establishing suitable light regimes for microalgae biofilm-based cultivation systems.
Collapse
|
21
|
do Nascimento TC, Cazarin CB, Roberto Maróstica M, Risso ÉM, Amaya-Farfan J, Grimaldi R, Mercadante AZ, Jacob-Lopes E, Zepka LQ. Microalgae biomass intake positively modulates serum lipid profile and antioxidant status. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
22
|
Deprá MC, Mérida LG, de Menezes CR, Zepka LQ, Jacob-Lopes E. A new hybrid photobioreactor design for microalgae culture. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Hosseini NS, Shang H, Scott JA. Increasing microalgal lipid productivity for conversion into biodiesel by using a non-energy consuming light guide. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Severo IA, Deprá MC, Barin JS, Wagner R, de Menezes CR, Zepka LQ, Jacob-Lopes E. Bio-combustion of petroleum coke: The process integration with photobioreactors. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2017.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Production of exopolysaccharide by Botryococcus braunii CCALA 778 under laboratory simulated Mediterranean climate conditions. ALGAL RES 2018. [DOI: 10.1016/j.algal.2017.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Microalgal Production Systems with Highlights of Bioenergy Production. ENERGY FROM MICROALGAE 2018. [DOI: 10.1007/978-3-319-69093-3_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
González-Camejo J, Serna-García R, Viruela A, Pachés M, Durán F, Robles A, Ruano MV, Barat R, Seco A. Short and long-term experiments on the effect of sulphide on microalgae cultivation in tertiary sewage treatment. BIORESOURCE TECHNOLOGY 2017; 244:15-22. [PMID: 28777986 DOI: 10.1016/j.biortech.2017.07.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Microalgae cultivation appears to be a promising technology for treating nutrient-rich effluents from anaerobic membrane bioreactors, as microalgae are able to consume nutrients from sewage without an organic carbon source, although the sulphide formed during the anaerobic treatment does have negative effects on microalgae growth. Short and long-term experiments were carried out on the effects of sulphide on a mixed microalgae culture. The short-term experiments showed that the oxygen production rate (OPR) dropped as sulphide concentration increased: a concentration of 5mgSL-1 reduced OPR by 43%, while a concentration of 50mgSL-1 came close to completely inhibiting microalgae growth. The long-term experiments revealed that the presence of sulphide in the influent had inhibitory effects at sulphide concentrations above 20mgSL-1 in the culture, but not at concentrations below 5mgSL-1. These conditions favoured Chlorella growth over that of Scenedesmus.
Collapse
Affiliation(s)
- J González-Camejo
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera s/n, 46022 Valencia, Spain
| | - R Serna-García
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - A Viruela
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera s/n, 46022 Valencia, Spain
| | - M Pachés
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera s/n, 46022 Valencia, Spain
| | - F Durán
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera s/n, 46022 Valencia, Spain
| | - A Robles
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - M V Ruano
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - R Barat
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera s/n, 46022 Valencia, Spain.
| | - A Seco
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
28
|
Patias LD, Fernandes AS, Petry FC, Mercadante AZ, Jacob-Lopes E, Zepka LQ. Carotenoid profile of three microalgae/cyanobacteria species with peroxyl radical scavenger capacity. Food Res Int 2017; 100:260-266. [PMID: 28873686 DOI: 10.1016/j.foodres.2017.06.069] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/22/2022]
Abstract
Carotenoids from cyanobacteria Aphanothece microscopica Nageli and green microalgae Chlorella vulgaris and Scenedesmus obliquus were identified. The total carotenoid content, based on dry weight of biomass, of A. microscopica Nägeli, C. vulgaris and S. obliquus were 1398.88μg/g, 1977.02μg/g and 2650.70μg/g, respectively. A total of 23 different carotenoids were separated in all the extracts, the major ones being all-trans-β-carotene (29.3%) and all-trans-lutein (28.1%) in Scenedesmus; all-trans-echinenone (22.8%) and all-trans-β-carotene (17.7%) in Chlorella; all-trans-echinenone (28.3%) and all-trans-β-carotene (26.2%) in Aphanothece. The carotenoid extracts were shown to be a potent scavenger of peroxyl radical, with values of 31.1 (Chlorella), 14.0 (Scenedesmus) and 7.3 (Aphanothece) times more potent than α-tocopherol.
Collapse
Affiliation(s)
- Luciana D Patias
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Andrêssa S Fernandes
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil
| | - Fabiane C Petry
- Department of Food Science, University of Campinas (UNICAMP), Monteiro Lobato, 70, Campinas 13083-862, Brazil
| | - Adriana Z Mercadante
- Department of Food Science, University of Campinas (UNICAMP), Monteiro Lobato, 70, Campinas 13083-862, Brazil
| | - Eduardo Jacob-Lopes
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil.
| | - Leila Q Zepka
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), P.O. Box 5021, Santa Maria 97105-900, Brazil.
| |
Collapse
|