1
|
Yu H, Huang Q, Men J, Wang J, Xiao J, Jin D, Deng Y. Chromium contamination affects the fungal community and increases the complexity and stability of the network in long-term contaminated soils. ENVIRONMENTAL RESEARCH 2024; 262:119946. [PMID: 39276837 DOI: 10.1016/j.envres.2024.119946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Chromium (Cr) contamination can adversely affect soil ecology, yet our knowledge of how fungi respond to Cr contamination at heavily contaminated field sites remains relatively limited. This study employed high-throughput sequencing technology to analyze fungal community characteristics in soils with varying Cr concentrations. The results showed that Cr contamination significantly influenced soil fungi's relative abundance and structure. Mantel test analysis identified hexavalent chromium (Cr(VI)) as the primary factor affecting the structure of the soil fungal community. In addition, FUNGuild functional prediction analysis exhibited that Cr contamination reduced the relative abundance of Pathotroph and Symbiotroph trophic types. High concentrations of Cr may lead to a drop in the relative abundance of Animal Pathogens. Molecular ecological network analysis showed that Cr contamination increased interactions among soil fungi, thereby enhancing the stability and complexity of the network. Within these networks, specific keystone taxa, such as the genus Phanerochaete, exhibited properties capable of removing or reducing the toxicity of heavy metals. Our studies suggest that Cr contamination can alter indigenous fungal communities in soil systems, potentially impacting soil ecosystem function.
Collapse
Affiliation(s)
- Hao Yu
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Qi Huang
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianan Men
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jian Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Juanjuan Xiao
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
2
|
Wang G, Gao X, Cai Y, Li G, Ma R, Yuan J. Dynamics of antibiotic resistance genes during manure composting: Reduction in herbivores manure and accumulation in carnivores. ENVIRONMENT INTERNATIONAL 2024; 190:108900. [PMID: 39053194 DOI: 10.1016/j.envint.2024.108900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/17/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The elevated levels of antibiotic resistance genes (ARGs) in livestock manure represent a significant threat to both the environment and human health. Composting has been recognized as an effective strategy to mitigate the abundance of ARGs in manure. However, notable rebounds in ARGs abundance have been observed during this process. This study explored the changes in ARGs abundance and the underlying influencing factors during the composting of carnivore (chicken and pig) and herbivore (sheep and cow) manures, along with mushroom residues. The findings revealed that the total relative abundance of ARGs increased by 6.96 and 10.94 folds in chicken and pig manure composts, respectively, whereas it decreased by a remarkable 91.72% and 98.37% in sheep and cow manure composts. Nitrogen content emerged as the primary physicochemical factors governing the abundance of ARGs in chicken and pig manure composts. Conversely, carbon content played a pivotal role in determining ARGs abundance in chicken and pig manure composts. Furthermore, the presence of dominant hosts, such as Corynebacterium, Bacillus, and Clostridium, along with emerging bacteria like Thermobifida, Saccharomonospora, and Actinomadura, contributed significantly to the enrichment of total ARGs, including tetG, tetO, tetX, and sul2, in chicken and pig manure composts. The coexistence of these genes with mobile genetic elements and a plethora of host bacteria, coupled with their high abundance, renders them particularly high-risk ARGs. On the other hand, the observed decrease in the abundance of total ARGs in sheep and cow manure composts can be attributed to the decline in the population of host bacteria, specifically Atopostipes, Psychrobacter, and Corynebacterium. Collectively, these results provide crucial insights into the management of ARGs risks and offer essential theoretical support for enhancing the safe utilization of organic fertilizer in agriculture.
Collapse
Affiliation(s)
- Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| | - Xia Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yu Cai
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Liu J, Sun P, Chen Y, Guo J, Liu L, Zhao X, Xin J, Liu X. The regulation pathways of biochar and microorganism in soil-plant system by multiple statistical methods: The forms of carbon participation in coastal wetlands. CHEMOSPHERE 2024; 362:142918. [PMID: 39043273 DOI: 10.1016/j.chemosphere.2024.142918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/25/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
Coastal wetlands possess significant carbon storage capabilities. However, in coastal soil-plant systems augmented with biochar and microorganisms, the mechanisms of these amendments and carbon participation remain unclear. This study utilized pot experiments to explore how Enteromorpha prolifera biochar and Arbuscular mycorrhizal fungi (AMF) affect soil organic carbon (SOC), carbon-related microbes, photosynthetic and osmotic system of Suaeda salsa. The results showed biochar reduced exchangeable sodium percentage by 6.9% through adsorption and ion exchange, and increased SOC content by 34.4%. The abundance of carbon-related microorganisms (Bacteroidota and Chloroflexi) was increased and carbon metabolizing enzyme (cellulase and sucrase) activity in the soil was enhanced. AMF significantly improved plant growth compared with CK, as evidenced by the enhanced dry weight by 2.34 times. A partial least squares pathway model (PLS-PM) and correlation analysis suggested that the combined effect of biochar and AMF could be outlined as two pathways: soil and plant. Biochar increased SOC, improved the growth of soil carbon metabolizing microorganisms, and further promoted the activity of carbon-related enzymes. Additionally, AMF facilitated nutrient absorption by plants through root symbiosis, with biochar further enhancing this process by acting as a nutrient adsorber. These combined effects of biochar and AMF at soil and plant level enhanced the photosynthetic process of Suaeda salsa. The transport of photosynthetic products to the roots can increase the carbon storage in the soil. This study provides quantitative evidence supporting the increase of carbon storage in coastal wetland soil-plant systems through a combined application of biochar and AMF.
Collapse
Affiliation(s)
- Jiaxin Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Ping Sun
- Key Laboratory of Geological Safety of Coastal Urban Underground Space (Qingdao Geo-Engineering Surveying Institute), Qingdao, 266101, China
| | - Youyuan Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Jiameng Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Lecheng Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xinyue Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jia Xin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaoli Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
4
|
Dubey P, Farooqui A, Patel A, Srivastava PK. Microbial innovations in chromium remediation: mechanistic insights and diverse applications. World J Microbiol Biotechnol 2024; 40:151. [PMID: 38553582 DOI: 10.1007/s11274-024-03936-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/21/2024] [Indexed: 04/02/2024]
Abstract
The ubiquity of hexavalent chromium (Cr(VI)) from industrial activities poses a critical environmental threat due to its persistence, toxicity and mutagenic potential. Traditional physico-chemical methods for its removal often entail significant environmental drawbacks. Recent advancements in remediation strategies have emphasized nano and bioremediation techniques as promising avenues for cost-effective and efficient Cr(VI) mitigation. Bioremediation harnesses the capabilities of biological agents like microorganisms, and algae to mitigate heavy metal contamination, while nano-remediation employs nanoparticles for adsorption purposes. Various microorganisms, including E. coli, Byssochlamys sp., Pannonibacter phragmitetus, Bacillus, Aspergillus, Trichoderma, Fusarium, and Chlorella utilize bioreduction, biotransformation, biosorption and bioaccumulation mechanisms to convert Cr(VI) to Cr(III). Their adaptability to different environments and integration with nanomaterials enhance microbial activity, offering eco-friendly solutions. The study provides a brief overview of metabolic pathways involved in Cr(VI) bioreduction facilitated by diverse microbial species. Nitroreductase and chromate reductase enzymes play key roles in nitrogen and chromium removal, with nitroreductase requiring nitrate and NADPH/NADH, while the chromium reductase pathway relies solely on NADPH/NADH. This review investigates the various anthropogenic activities contributing to Cr(VI) emissions and evaluates the efficacy of conventional, nano-remediation, and bioremediation approaches in curbing Cr(VI) concentrations. Additionally, it scrutinizes the mechanisms underlying nano-remediation techniques for a deeper understanding of the remediation process. It identifies research gaps and offers insights into future directions aimed at enhancing the real-time applicability of bioremediation methods for mitigating with Cr(VI) pollution and pave the way for sustainable remediation solutions.
Collapse
Affiliation(s)
- Priya Dubey
- Department of Biosciences, Integral University, Lucknow, India
- Environmental Technologies, CSIR-National Botanical Research Institute, Lucknow, India
| | - Alvina Farooqui
- Department of Biosciences, Integral University, Lucknow, India.
| | - Anju Patel
- Environmental Technologies, CSIR-National Botanical Research Institute, Lucknow, India.
| | | |
Collapse
|
5
|
Martín-García M, Aguilera-Correa JJ, Arenas MÁ, García-Diego IM, Conde A, de Damborenea JJ, Esteban J. Differences in In Vitro Bacterial Adherence between Ti6Al4V and CoCrMo Alloys. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1505. [PMID: 36837133 PMCID: PMC9959577 DOI: 10.3390/ma16041505] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Prosthetic joint infection is an uncommon entity, but it supposes high costs, both from the economic side to the health systems and from the emotional side of the patient. The evaluation of the bacterial adherence to different materials frequently involved in joint prostheses allows us to better understand the mechanisms underlying this and provide information for the future development of prevention strategies. This study evaluated the bacterial adherence of four different species (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa) on Ti6Al4V and CoCrMo. The topography, surface contact angles, and linear average roughness were measured in the samples from both alloys. The interaction with the surface of both alloys was significantly different, with the CoCrMo showing an aggregating effect on all the species, with additional anti-adherent activity in the case of Pseudomonas aeruginosa. The viability also changes, with a significant decrease (p < 0.05) in the CoCrMo alloy. In the case of S. epidermidis, the viability in the supernatant from the samples was different, too, with a decrease in the colony-forming units in the Ti6Al4V, which could be related to cation release from the surface. Beyond adhesion is a multifactorial and complex process, and considering that topography and wettability were similar, the chemical composition could play a main role in the different properties observed.
Collapse
Affiliation(s)
- Marta Martín-García
- Department of Clinical Microbiology, University Hospital Fundación Jiménez Díaz, IIS-FJD, 28040 Madrid, Spain
| | - John Jairo Aguilera-Correa
- Department of Clinical Microbiology, University Hospital Fundación Jiménez Díaz, IIS-FJD, 28040 Madrid, Spain
- CIBERINFEC—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Ángeles Arenas
- CIBERINFEC—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Surface Engineering Corrosion and Durability, National Centre for Metallurgical Research (CENIM-CSIC), 28040 Madrid, Spain
| | - Ignacio M. García-Diego
- Department of Surface Engineering Corrosion and Durability, National Centre for Metallurgical Research (CENIM-CSIC), 28040 Madrid, Spain
| | - Ana Conde
- CIBERINFEC—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Surface Engineering Corrosion and Durability, National Centre for Metallurgical Research (CENIM-CSIC), 28040 Madrid, Spain
| | - Juan José de Damborenea
- CIBERINFEC—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Surface Engineering Corrosion and Durability, National Centre for Metallurgical Research (CENIM-CSIC), 28040 Madrid, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, University Hospital Fundación Jiménez Díaz, IIS-FJD, 28040 Madrid, Spain
- CIBERINFEC—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
6
|
Cai R, Cui X, Zhang S, Xu C. Effects of Regular Water Replenishment on Enzyme Activities and Fungal Metabolic Function of Sheep Manure Composting on the Qinghai-Tibet Plateau. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12143. [PMID: 36231444 PMCID: PMC9566448 DOI: 10.3390/ijerph191912143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The dry climate characteristics of the Qinghai-Tibet Plateau will seriously affect microbial metabolism during composting. In this study, we aimed to investigate the effects of regular water supplementation on the fungal and enzymatic activities of sheep manure composting in the Qinghai-Tibet Plateau. The experiment set up the treatments of water replenishment once every 7 days(T2) and 3.5 days (T3) days, and no water supplementation was used as the control (T1). The results showed that regular water supplementation increased the activities of various enzymes during composting, and the activities of protease, cellulase, peroxidase and polyphenol oxidase in T3 were higher than those in T2. Regular water supplementation increased the relative abundance of Remersonia and Mycothermus, which were significantly positively correlated with the germination index, and degradation of organic components. Regular water supplementation could enrich fungi carbohydrate, protein, and nucleotide metabolisms, and T3 had a better effect. A redundancy analysis showed that environmental factors could significantly affect the fungal community; among them, moisture content (76.9%, p = 0.002) was the greatest contributor. In conclusion, regular water supplementation can improve the key enzyme activities and fungal metabolic function of sheep manure composting, and water replenishment once every 3.5 days had the best effect.
Collapse
|
7
|
Li S, Chen W, Liu D, Tao Y, Ma H, Feng Z, Li S, Zhou K, Wu J, Li J, Wei Y. Effect of superphosphate addition on heavy metals speciation and microbial communities during composting. BIORESOURCE TECHNOLOGY 2022; 359:127478. [PMID: 35714776 DOI: 10.1016/j.biortech.2022.127478] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Superphosphate fertilizer (SSP) as an additive can reduce the nitrogen loss and increase available phosphorus in composting but few studies investigated the effect of SSP addition on heavy metal and microbial communities. In this study, different ratios (10%, 18%, 26%) of SSP were added into pig manure composting to assess the changes of heavy metal (Cu, Mn, As, Zn, and Fe) fractions, bacterial and fungal communities as well as their interactions. SSP addition at 18% had lower ecological risk but still increased the bioavailability of Cu, Mn, and Fe in composts compared to control. Adding 18% SSP into compost decreased bacterial number and increased the fungal diversity compared to CK. Redundancy analysis indicated heavy metal fractions correlated significantly with bacterial and fungal community compositions in composting with 18% SSP. Network analysis showed adding 18% SSP increased microbial interaction and positive cooperation especially enhanced the proportion of Proteobacteria and Ascomycota.
Collapse
Affiliation(s)
- Shuxin Li
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Wenjie Chen
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Dun Liu
- Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Beihang University, Beijing 100191, China
| | - YueYue Tao
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences, Suzhou 215155, China
| | - Hongting Ma
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Ziwei Feng
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Songrong Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Kaiyun Zhou
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Juan Wu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
8
|
Yin Y, Yang C, Tang J, Gu J, Li H, Duan M, Wang X, Chen R. Bamboo charcoal enhances cellulase and urease activities during chicken manure composting: Roles of the bacterial community and metabolic functions. J Environ Sci (China) 2021; 108:84-95. [PMID: 34465440 DOI: 10.1016/j.jes.2021.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 05/22/2023]
Abstract
Microbial enzymes are crucial for material biotransformation during the composting process. In this study, we investigated the effects of adding bamboo charcoal (BC) (i.e., at 5%, 10%, and 20% corresponding to BC5, BC10, and BC20, respectively) on the enzyme activity levels during chicken manure composting. The results showed that BC10 could increase the cellulose and urease activities by 56% and 96%, respectively. The bacterial community structure in BC10 differed from those in the other treatments, and Luteivirga, Lactobacillus, Paenalcaligenes, Ulvibacter, Bacillus, Facklamia, Pelagibacterium, Sporosarcina, Cellvibrio, and Corynebacterium had the most important roles in composting. Compared with other treatments, BC10 significantly enhanced the average rates of degradation of carbohydrates (D-xylose (40%) and α-D-lactose (44%)) and amino acids (L-arginine (16%), L-asparagine (14%), and L-threonine (52%)). We also explored the associations among the bacterial community and their metabolic functions with the changes in the activities of enzymes. Network analysis demonstrated that BC10 altered the co-occurrence patterns of the bacterial communities, where Ulvibacter and class Bacilli were the keystone bacterial taxa with high capacities for degrading carbon source, and they were related to increases in the activities of cellulase and urease, respectively. The results obtained in this study may help to further enhance the efficiency of composting.
Collapse
Affiliation(s)
- Yanan Yin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chao Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jingrui Tang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jie Gu
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Haichao Li
- Department of Environment, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Manli Duan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Xiaochang Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Rong Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
9
|
Hu Y, Liu T, Chen N, Feng C. Iron oxide minerals promote simultaneous bio-reduction of Cr(VI) and nitrate: Implications for understanding natural attenuation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147396. [PMID: 33964780 DOI: 10.1016/j.scitotenv.2021.147396] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Nitrate and Cr(VI) coexist in aquifers, posing a potential threat to ecological environment and public health. Iron oxide minerals (hematite and magnetite) exist ubiquitously in groundwater, which are hot spots for biogeochemical transformation. However, there is still a knowledge gap anout the effect of iron oxide minerals on bioreduction of nitrate and Cr(VI). Here we observed that iron oxide minerals can significantly improve the ability of microorganisms to simultaneously reduce nitrate and Cr(VI), the reduction rates of nitrate and Cr(VI) increased by 7.3 and 8.5 times, respectively. The addition of minerals reinforced biofilm formation and shaped microbial communities with a new dominant strain of Azoarcus. The expression levels of functional genes were also upregulated, including napA, narG, nfsA, yieF, POD, and CAT. Furthermore, nitrate and chromate reductases' activities increased by 11 and 5 folds, respectively. These results demonstrated that iron oxide minerals participated in the bio-transformation of nitrate and Cr(VI) co-contamination, alleviating oxidative stress, shaping the microbial community, and ultimately accelerating bio-transformation. These findings offer a window into the biological transformation of co-contamination in the presence of iron oxide minerals, and insights to reveal strategies for microbial detoxification and to develop promising approaches for dealing with complex pollution conditions.
Collapse
Affiliation(s)
- Yutian Hu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Tong Liu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
10
|
Jahan A, Iqbal M, Shafiq F, Malik A, Javed MT. Influence of foliar glutathione and putrescine on metabolism and mineral status of genetically diverse rapeseed cultivars under hexavalent chromium stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45353-45363. [PMID: 33864214 DOI: 10.1007/s11356-021-13702-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
We studied the physio-biochemical involvement of exogenous signaling compounds, glutathione and putrescine (alone and in combination), on three contrasting genotypes (cvs. Shiralee, Rainbow, and Dunkled) of canola (Brassica napus L.) of plants exposed to chromium stress. Seeds were germinated in Cr-contaminated soil (0 and 50 μg/g Cr6+), and both signaling compounds were applied as a foliar spray to 20-day-old plants. Changes in root, stem, and leaf nitro-oxidative metabolism, endogenous GSH level, secondary metabolites, and mineral nutrients were investigated from 60-day-old plants. Exposure to Cr6+ increased stem GSH and NO concentrations in all cultivars. Maximum root Cr6+ bioaccumulation was recorded in cv. Rainbow and the least in cv. Shiralee. Also, Cr6+ stress decreased number and weight of seeds and pod length. Disturbances in root and shoot mineral profile were evident; however, its magnitude varied in all cultivars. The exogenous GSH improved root and shoot P, Fe, S, and Zn concentrations; however, the effect was cultivar specific. Leaf endogenous GSH was increased by exogenous GSH while NO levels remained unaffected. The GSH application also promoted shoot Cr6+ bioaccumulation while PUT application caused a recovery in seed number and seed weight. Both PUT and GSH differentially affected tissue-specific secondary metabolite profile. Overall, the exogenous GSH was much more effective in alleviating the Cr+6 toxicity in canola.
Collapse
Affiliation(s)
- Almas Jahan
- Department of Botany, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Muhammad Iqbal
- Department of Botany, Government College University Faisalabad, Faisalabad, Pakistan
| | - Fahad Shafiq
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Tariq Javed
- Department of Botany, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
11
|
Li D, Li G, Zhang D. Field-scale studies on the change of soil microbial community structure and functions after stabilization at a chromium-contaminated site. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125727. [PMID: 34088197 DOI: 10.1016/j.jhazmat.2021.125727] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 05/20/2023]
Abstract
Various remediation strategies have been developed to eliminate soil chromium (Cr) contamination which challenges the ecosystem and human health, and chemical stabilization is the most popular one. Limited work focuses on the change of soil microbial community and functions after chemical stabilization. The present study examined the diversity and structure of bacterial, fungal and archaeal communities in 20 soils from a Cr-contaminated site in China after chemical stabilization and ageing. Cr contamination significantly reduced microbial diversity and shaped microbial community structure. After chemical stabilization, bacterial and fungal communities had higher richness and evenness, whereas archaea behaved oppositely. Microbial community structure after stabilization were more similar to uncontaminated soils. Among all environmental variables, pH and Al explained 25.2% and 9.4% of the total variance of bacterial diversity, whereas the major variable affecting fungal community was pH (29.3%). Cr, organic matters, extractable-Al and moisture explained 25.8%, 22.4%, 9.9% and 9.9% of the total variance in archaeal community, respectively. This work for the first time unraveled the change of the whole soil microbial community structures and functions at Cr-contaminated sites after chemical stabilization on field scale and proved chemical stabilization as an effective approach to detoxicate Cr(VI) and recover microbial communities in soils.
Collapse
Affiliation(s)
- Danni Li
- School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China.
| |
Collapse
|
12
|
Allah Ditta HM, Aziz A, Hussain MK, Mehboob N, Hussain M, Farooq S, Azhar MF. Exogenous application of black cumin ( Nigella sativa) seed extract improves maize growth under chromium (Cr) stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1231-1243. [PMID: 33631090 DOI: 10.1080/15226514.2021.1889965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Accumulation of non-essential heavy metals like chromium (Cr) is among major abiotic stresses, which adversely affect crop growth. Hexavalent chromium [Cr(VI)] is the most dangerous form negatively affecting the growth and productivity of crops. This study evaluated the role of black cumin extracts (BCE) in improving growth and productivity of maize genotypes under different concentrations of Cr(VI). Two maize genotypes ("Neelum" and "P1543") were grown under 0, 4, 8 and 12 mg Cr(VI) kg-1 concentrations. The BCE was applied as foliar spray at three concentrations (0, 10 and 20%) at 25 and 45 days after sowing. Increasing Cr(VI) concentration significantly (p < 0.05) reduced seed germination, root and allometric traits, gas exchange attributes and relative water contents of tested genotypes. Hybrid maize genotype better tolerated tested Cr(VI) concentrations than synthetic genotype with lower Cr accumulation and better allometric and gas exchange traits. Exogenous application of 20% BCE proved effective in lowering the adverse effects of Cr(VI) toxicity on maize genotypes. It is concluded that 20% BCE could be used to improve maize performance through better allometric and gas exchange traits under different Cr(VI) concentrations. Nonetheless, actual mechanisms involved in improved Cr(VI)-tolerance of maize with BCE application must be explored. Novelty statement Black cumin has been widely used to reduce Cr toxicity in animals. However, the role of black cumin in reducing Cr toxicity in plants has never been studied. The present study was conducted to infer the role of different concentrations of black cumin extract in improving the growth of synthetic and hybrid maize genotypes under different levels of Cr stress. It is concluded that black cumin extract could be used to lower Cr toxicity in maize grown under Cr-contaminated soils.
Collapse
Affiliation(s)
| | - Abida Aziz
- Department of Botany, The Women University, Multan, Pakistan
| | | | - Noman Mehboob
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - Mubshar Hussain
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Shahid Farooq
- Department of Plant Protection, Faculty of Agriculture, Harran University, Şanlıurfa, Turkey
| | | |
Collapse
|
13
|
Gao J, Zhang X, Yu J, Lei Y, Zhao S, Jiang Y, Xu Z, Cheng J. Cr(VI) removal performance and the characteristics of microbial communities influenced by the core-shell maifanite/ZnAl-layered double hydroxides (LDHs) substrates for chromium-containing surface water. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Liu T, Awasthi SK, Duan Y, Zhang Z, Awasthi MK. Effect of fine coal gasification slag on improvement of bacterial diversity community during the pig manure composting. BIORESOURCE TECHNOLOGY 2020; 304:123024. [PMID: 32086035 DOI: 10.1016/j.biortech.2020.123024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
In present study, evaluate the effect of fine coal gasification slag (FCGS) as additive on abundance of bacterial diversity during pig manure composting. The six different dosages of FCGS 0% (T1), 2% (T2), 4% (T3), 6% (T4), 8% (T5) and 10% (T6) (dry weight basis) were mixed with original raw materials for 42 days an aerobic composting. The results indicated that FCGS adopted could affect the succession of bacterial diversity in different ways. Among all treatments, Firmicutes, Proteobacteria, Tenericutes, unidentified_Bacteria, and Actinobacteria were the highest abundance in weighted unifrac distance but Firmicutes; Proteobacteria, Actinobacteria, Bacteroidetes, and Spirochaetes were main bacteria in unweighted unifrac distance. The β-diversity and principal component analysis indicated a significant difference in bacterial diversity in all treatments which T4 obtained difference obviously. Therefore, the results showed that T4 was a potential candidate to enhance significantly abundance of bacterial community in PM compost.
Collapse
Affiliation(s)
- Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yumin Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
15
|
Liu H, Huang Y, Wang H, Shen Z, Qiao C, Li R, Shen Q. Enzymatic activities triggered by the succession of microbiota steered fiber degradation and humification during co-composting of chicken manure and rice husk. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 258:110014. [PMID: 31929056 DOI: 10.1016/j.jenvman.2019.110014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/29/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
The carbon to nitrogen ratio (C/N) is well known for its importance in the composting process, however the fiber degradation and humification associated with enzymatic activity and microbial variation derived from different C/N ratios are poorly studied. Here, we designed two treatments of chicken manure with 15% (initial C/N ratio 9.61) and 50% (initial C/N ratio 17.3) rice husk to adjust the moisture of mixtures for turning feasibly by towable fertilizer turner in industrial level. Compared to the C/N ratio 9.61, the suitable C/N ratio of 17.3 significantly enhanced the composting efficiency and the final germination index (23.7%). Moreover, the suitable C/N ratio increased the relative abundance of Bacilli, which played an important role during the mesophilic and thermophilic phases. Bacilli abundance was related to cellulose and β-glycosidase activities, thus improved fiber degradation and humification. This study not only seeks a swift method in industrial level to process chicken manure but also provides insight into the enzymatic activity of microbial community related to high-efficient composting.
Collapse
Affiliation(s)
- Hongjun Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yan Huang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Huan Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zongzhuan Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Cece Qiao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
16
|
Yang B, Li X, Lin Z, Hu D, Liu Y, Pan X. Evolution of enzyme activity, heavy metals bioavailability and microbial community in different temperature stages of the co-bioevaporation process. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 102:751-762. [PMID: 31805448 DOI: 10.1016/j.wasman.2019.11.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Laboratory investigations documented enzyme activity, heavy metals' bioavailability and the bacterial community during co-bioevaporation treatment of food waste and landfill leachate. The activities of dehydrogenase, protease, urease and phosphatase were sensitive to the changes in operating temperature inherent in co-bioevaporation. The maximum dehydrogenase activity was appeared at warming 30 °C. The maximum hydrolytic activity of the microorganisms on protein, urea and phosphorus-containing organic compounds appeared at warming 50 °C. The bacteria mainly gathered on the surface and in the pores of the sludge particles used as a bulking agent. Bacterial abundance reached its maximum at warming 50 °C. Firmicutes, Actinobacterica and Proteobacterica were the dominant bacterial phyla involved. Even though co-bioevaporation concentrated the heavy metals in the leachate, their bioavailability was substantially reduced during the process.
Collapse
Affiliation(s)
- Benqin Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xukun Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhiqiang Lin
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Die Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yanmei Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
17
|
Li J, Xing W, Bao H, Wang J, Tong X, Zhang H, Luo W, Wu F. Impact of pine leaf biochar amendment on bacterial dynamics and correlation of environmental factors during pig manure composting. BIORESOURCE TECHNOLOGY 2019; 293:122031. [PMID: 31476566 DOI: 10.1016/j.biortech.2019.122031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
The influence of pine leaf biochar (PLB) amendment on bacterial community succession and its correlation with physic-chemical parameters during pig manure (PM) composting was evaluated. The five different dosages of PLB [at 0% (T1), 2.5% (T2), 5% (T3), 10% (T4) and 15% (T5)] mixed with initial composting mass were conducted to composting for 50 days. The present study indicated that bacterial diversity was significantly (p < 0.05) higher in PLB amended treatments than the control, but T4 treatment showed the highest among the all PLB applied treatment. Firmicutes, Actinobacteria, Proteobacteria and Bacteroidete were four most abundant phyla of all the treatments. Furthermore, redundancy analysis showed that the bacterial community were significantly (p < 0.05) positively correlated with temperature, pH, TOC, CO2 and NH3 emissions, while they were negatively correlated with the N2O and CH4 emission. Overall, the results suggested that the addition of 10% PLB (T4 treatment) was a potential option to enhance the composting efficiency with significantly greater abundance of bacterial community and finally improved the compost quality.
Collapse
Affiliation(s)
- Jiao Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Wenjing Xing
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Huanyu Bao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Jinfeng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Xiaogang Tong
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - He Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Wanqing Luo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Fuyong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| |
Collapse
|
18
|
Liu X, Zhang M, Li Z, Zhang C, Wan C, Zhang Y, Lee DJ. Inhibition of urease activity by humic acid extracted from sludge fermentation liquid. BIORESOURCE TECHNOLOGY 2019; 290:121767. [PMID: 31302466 DOI: 10.1016/j.biortech.2019.121767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
This study achieved effective extraction of humic acid from sludge fermentation liquid, and the inhibition of urease activity by the extract were investigated in the urea decomposition. The addition of extract could remarkably inhibit urease activity and extend the releasing time of ammonia nitrogen. The interaction between the extract and urease took times, and the inhibition was irreversible. The results of fluorescence analysis revealed that the inhibition of urease activity was correlated to the amount of humic acid extracted. The mechanisms of inhibition were proposed that the functional groups of humic acid might interact with the thiol group of urease and formed a larger particle size of complex to inhibit the activity of urease. The extraction of humic acid from sludge fermentation liquid can not only recover the resource from the fermentation liquid, but also provide a potential urease inhibitor for the sustained-release effect of the soil organic nitrogen fertilizer.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Min Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zhengwen Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Chen Zhang
- Shanghai Municipal Engineering Design General Institute, Shanghai 200092, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
| | - Yi Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
19
|
Zhu Y, Li H, Wu Y, Yin XA, Zhang G. Effects of surface-modified biochars and activated carbon on the transformation of soil inorganic nitrogen and growth of maize under chromium stress. CHEMOSPHERE 2019; 227:124-132. [PMID: 30986594 DOI: 10.1016/j.chemosphere.2019.04.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/25/2019] [Accepted: 04/06/2019] [Indexed: 05/03/2023]
Abstract
Elevated chromium (Cr) level is challenging agricultural production and affecting soil biochemical process. This study evaluated the effect of amendments including surface-modified biochars (HBC: acid washing, Fe(III)-HBC: ferric iron loading, nZVI-HBC: nanoscale zero-valent iron loading) and activated carbon on hexavalent chromium (Cr(VI)) removal in soil and on N cycling enzyme activities, transformation of soil inorganic nitrogen, and growth of maize under Cr stress. The results showed that amendments increased Cr(VI) removal by 72.9%-96.34% at three levels of spiked Cr(VI) (low: 125 mg kg-1, moderate: 250 mg kg-1, high: 500 mg kg-1). Under low Cr stress, amendments generally significantly decreased urease and nitrite reductase activities but increased nitrate reductase activity (p < 0.05). The NH4+-N content had a significant positive correlation with urease activity (p < 0.01), while both NO2--N and NO3--N were absent correlations with N cycling enzyme studied. Amendments decreased NH4+-N/NO3--N ratio under low Cr stress but increased it under moderate Cr stress, although the difference was not significant. Under high Cr stress, only Fe(III)-HBC significantly increased NH4+-N/NO3--N ratio (p < 0.05). The decrease and increase of NH4+-N/NO3--N ratios indicate the enhancement of nitrification and denitrification, respectively. The increase in Cr(VI) removal by amendments contributed to the increase in the migration of NO3--N from roots to shoots. Amendments (except for nZVI-HBC in soil under low Cr stress) increased maize height by 20%-59%. Under low Cr stress, however, nZVI-HBC significantly decreased maize height by 65% (p < 0.05), indicating the toxic effect of nZVI on maize growth overwhelmed low Cr stress.
Collapse
Affiliation(s)
- Yuen Zhu
- School of Environment and Resources, Shanxi University, Taiyuan, 030006, China
| | - Hua Li
- School of Environment and Resources, Shanxi University, Taiyuan, 030006, China
| | - Yi Wu
- School of Environment and Resources, Shanxi University, Taiyuan, 030006, China
| | - Xin-An Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Guixiang Zhang
- College of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan, 030024, China.
| |
Collapse
|
20
|
Radziemska M, Wyszkowski M, Bęś A, Mazur Z, Jeznach J, Brtnický M. The applicability of compost, zeolite and calcium oxide in assisted remediation of acidic soil contaminated with Cr(III) and Cr(VI). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21351-21362. [PMID: 31124067 PMCID: PMC6647384 DOI: 10.1007/s11356-019-05221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/16/2019] [Indexed: 05/11/2023]
Abstract
The effect of soil amendments, i.e., compost, zeolite, and calcium oxide, on the chemical properties of soil contaminated with Cr(III) and Cr(VI) and the uptake of selected heavy metals by spring barley (Hordeum vulgare L.) and maize (Zea mays L.) was determined in a pot experiment. The content of all investigated heavy metals in the tested plants varied significantly in response to the tested soil amendments and increasing concentrations of Cr(III) and Cr(VI). Compost, zeolite, and calcium oxide contributed to an increase in the average yield of the aerial parts of maize plants only in treatments contaminated with Cr(III). The concentrations of Cr, Zn, and Ni in the aerial parts of spring barley and maize were higher in treatments contaminated with Cr(III) than in treatments contaminated with Cr(VI). Calcium oxide induced a significant increase in soil pH relative to the control treatment. In treatments without soil amendments, the average Cr content of soil was higher in pots contaminated with Cr(VI). The concentrations of Zn and Cu in non-amended treatments were negatively correlated with increasing doses of Cr(III) and Cr(VI). Calcium oxide decreased the average content of Cr, Cu, and Ni in all experimental variants. Compost increased the average content of Zn in treatments contaminated with Cr(III) and Cr(IV) relative to non-amended soil.
Collapse
Affiliation(s)
- Maja Radziemska
- Department of Environmental Improvement, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Mirosław Wyszkowski
- Department of Environmental Chemistry, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4, 10-727, Olsztyn, Poland
| | - Agnieszka Bęś
- Department of Chemistry, Research Group of Environmental Toxicology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720, Olsztyn, Poland
| | - Zbigniew Mazur
- Department of Environmental Chemistry, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4, 10-727, Olsztyn, Poland
| | - Jerzy Jeznach
- Department of Environmental Improvement, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Martin Brtnický
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1/1665, 613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| |
Collapse
|