1
|
Xu W, Wang W, Ma R, Guo D, Wang Y, Li X, Yuan J, Wang Y, Dong H. Dual mechanism of membrane covering on GHG and NH 3 mitigation during industrial-scale experiment on dairy manure composting: Inhibiting formation and blocking emissions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122585. [PMID: 39303595 DOI: 10.1016/j.jenvman.2024.122585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
An industrial-scale experiment on dairy manure composting with the control group (Ctrl) and the membrane covering group (CM) was conducted to explore the effects of functional membrane covering on gas emissions, the conversion of carbon and nitrogen, and revealing the underlying mechanisms. Results indicated that CM achieved the synergistic effects on gas mitigation and improved compost product quality. CO2, CH4, N2O, and NH3 emissions were reduced by 81.8%, 87.0%, 82.6%, and 82.2%, respectively. The micro-aerobic condition formed in membrane covering compost pile together with the covering inhibiting effect dominated the mitigation effect. CM significantly downregulated the mcrA gene copies and the value of mcrA/pmoA (p < 0.01), which reduced CH4 emission. CM decreased the nirS and nirK gene copies and increased the nosZ gene copies to reduce N2O emission. Functional Annotation of Prokaryotic Taxa showed that membrane covering effectively amended part of carbon and nitrogen cycles, which stimulated the degradation of organic matter, accelerated compost maturity and reduced the gaseous emissions.
Collapse
Affiliation(s)
- Wenqian Xu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenzan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruiqiang Ma
- Zhongnong Chuangda Environmental Protection Technology Co., Ltd., Beijing, 100081, China
| | - Dongpo Guo
- Beijing Green Tech Science and Technology Co., Ltd., Beijing, 100080, China
| | - Youxu Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Yue Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
2
|
Han Y, Bi R, Wang Y, Sun L, Liu X, Shi S, Chang N, Zhao L, Bao J, Xu Y, Liu W, Zhang J, Jiang N, Zhang Y, Xu X, Sun Y. Insight into N 2O emission and denitrifier communities under different aeration intensities in composting of cattle manure from perspective of multi-factor interaction analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172936. [PMID: 38701923 DOI: 10.1016/j.scitotenv.2024.172936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Nitrous oxide (N2O) emission from composting is a significant contributor to greenhouse effect and ozone depletion, which poses a threat to environment. To address the challenge of mitigating N2O emission during composting, this study investigated the response of N2O emission and denitrifier communities (detected by metagenome sequencing) to aeration intensities of 6 L/min (C6), 12 L/min (C12), and 18 L/min (C18) in cattle manure composting using multi-factor interaction analysis. Results showed that N2O emission occurred mainly at mesophilic phase. Cumulative N2O emission (QN2O, 9.79 mg·kg-1 DW) and total nitrogen loss (TN loss, 16.40 %) in C12 composting treatment were significantly lower than those in the other two treatments. The lower activity of denitrifying enzymes and the more complex and balanced network of denitrifiers and environmental factors might be responsible for the lower N2O emission. Denitrification was confirmed to be the major pathway for N2O production. Moisture content (MC) and Luteimonas were the key factors affecting N2O emission, and nosZ-carrying denitrifier played a significant role in reducing N2O emission. Although relative abundance of nirS was lower than that of nirK significantly (P < 0.05), nirS was the key gene influencing N2O emission. Community composition of denitrifier varied significantly with different aeration treatments (R2 = 0.931, P = 0.001), and Achromobacter was unique to C12 at mesophilic phase. Physicochemical factors had higher effect on QN2O, whereas denitrifying genes, enzymes and NOX- had lower effect on QN2O in C12. The complex relationship between N2O emission and the related factors could be explained by multi-factor interaction analysis more comprehensively. This study provided a novel understanding of mechanism of N2O emission regulated by aeration intensity in composting.
Collapse
Affiliation(s)
- Yue Han
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Ruixin Bi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yuanhang Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xinda Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuai Shi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Nuo Chang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Liyan Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxin Bao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Yonghui Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Wanying Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jining Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Nana Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Brťková H, Růžičková J, Slamová K, Raclavská H, Kucbel M, Šafář M, Gikas P, Juchelková D, Švédová B, Flodrová Š. Plastic particles in urban compost and their grain size distribution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124025. [PMID: 38670428 DOI: 10.1016/j.envpol.2024.124025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/14/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Gathering information on plastic particles in composts and the processes they undergo is important in terms of potentially limiting their further entry into the environment, for example, in improving the fertilising properties of soils. Microplastics (MPs) were determined in composts produced from urban greenery. They are present in decreasing order: polyethylene terephthalate, polystyrene, polyethylene, and polypropylene. The determination of polymers and additives used to improve their properties was performed by pyrolysis and gas chromatography with mass spectrometric detection (Py-GC/MS). Additives and microplastics are most concentrated in composts in the 0.315-0.63 and 0.63-1.25 mm grain size class, together with the carbon contained in the compost dry matter. Additives form 0.11-0.13% of MPs in dry matter of compost. The average concentration of microplastics in the particle size class from 0.63 to 1.25 mm is 2434 ± 224 mg/kg; in the total sample of composts, it is 1368 ± 286 mg/kg of P-MPs. For composts with particle size <2.5 mm, a relationship between the C/N ratio and the plastic particle concentration was statistically significant. It documents a similar behaviour of lignocellulose and plastic particles during the degradation processes. A relationship between the concentration of polymer markers and additives in the compost dry matter and their concentrations in the leachate has been demonstrated. The leachability from compost is higher for additives than for chemical compounds originating from the decomposition of the main components of MPs. The suitability of the use of the compost for agricultural purposes was monitored by the germination index (GI) for watercress. The lowest value of the GI was determined in the particle size class from 0.63 to 1.25 mm. The leachability of polymer markers and additives alone cannot explain the low GI value in this grain size class. The GI value is also influenced by the leachability of chemical compounds characterised by the value of dissolved organic carbon (DOC) and water-leachable nitrogen (Nw). A statistically significant dependence between DOC/Nw and the germination index value was found.
Collapse
Affiliation(s)
- Hana Brťková
- Centre CEET/ENET, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic
| | - Jana Růžičková
- Centre CEET/ENET, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic
| | - Karolina Slamová
- Institute of Foreign Languages, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic
| | - Helena Raclavská
- Centre CEET/ENET, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic
| | - Marek Kucbel
- Centre CEET/ENET, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic.
| | - Michal Šafář
- Centre CEET/ENET, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic
| | - Petros Gikas
- School of Chemical and Environmental Engineering, Technical University of Crete, Kounoupidiana, Akrotiri, 731 00 Chania, Greece
| | - Dagmar Juchelková
- Department of Electronics, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic
| | - Barbora Švédová
- Centre CEET/ENET, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic
| | - Šárka Flodrová
- Department of Power Engineering, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic
| |
Collapse
|
4
|
Xu J, Zhang Z, Wu Y, Liu B, Xia X, Chen Y. Effects of C/N ratio on N 2O emissions and nitrogen functional genes during vegetable waste composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32538-32552. [PMID: 38656720 DOI: 10.1007/s11356-024-33427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Nitrous oxide (N2O) generation during composting not only leads to losses of nitrogen (N) but also reduces the agronomic values and environmental benefits of composting. This study aimed to investigate the effect of the C/N ratio on N2O emissions and its underlying mechanisms at the genetic level during the composting of vegetable waste. The experiment was set up with three treatments, including low C/N treatment (LT, C/N = 18), middle C/N treatment (MT, C/N = 30), and high C/N treatment (HT, C/N = 50). The results showed that N2O emission was mainly concentrated in the cooling and maturation periods, and the cumulative N2O emissions decreased as the C/N ratio increased. Specifically, the cumulative N2O emission was 57,401 mg in LT, significantly higher than 2155 mg in MT and 1353 mg in HT. Lowering the C/N ratio led to increasing TN, NH4+-N, and NO3--N contents throughout the composting process. All detected nitrification-related gene abundances in LT continued to increase during composting, significantly surpassing those in MT during the cooling period. By contrast, in HT, there was a slight increase in the abundance of detected nitrification-related genes but a significant decrease in the abundance of narG, napA, and norB genes in the thermophilic and cooling periods. The structural equation model revealed that hao and nosZ genes were vital in N2O emissions. In conclusion, increasing the C/N ratio effectively contributed to N2O reduction during vegetable waste composting.
Collapse
Affiliation(s)
- Jingang Xu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Zhi Zhang
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Yupeng Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bo Liu
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Xiange Xia
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Yunfeng Chen
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China.
| |
Collapse
|
5
|
Shi S, Bao J, Guo Z, Han Y, Xu Y, Egbeagu UU, Zhao L, Jiang N, Sun L, Liu X, Liu W, Chang N, Zhang J, Sun Y, Xu X, Fu S. Improving prediction of N 2O emissions during composting using model-agnostic meta-learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171357. [PMID: 38431167 DOI: 10.1016/j.scitotenv.2024.171357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Nitrous oxide (N2O) represents a significant environmental challenge as a harmful, long-lived greenhouse gas that contributes to the depletion of stratospheric ozone and exacerbates global anthropogenic greenhouse warming. Composting is considered a promising and economically feasible strategy for the treatment of organic waste. However, recent research indicates that composting is a source of N2O, contributing to atmospheric pollution and greenhouse effect. Consequently, there is a need for the development of effective, cost-efficient methodologies to quantify N2O emissions accurately. In this study, we employed the model-agnostic meta-learning (MAML) method to improve the performance of N2O emissions prediction during manure composting. The highest R2 and lowest root mean squared error (RMSE) values achieved were 0.939 and 18.42 mg d-1, respectively. Five machine learning methods including the backpropagation neural network, extreme learning machine, integrated machine learning method based on ELM and random forest, gradient boosting decision tree, and extreme gradient boosting were adopted for comparison to further demonstrate the effectiveness of the MAML prediction model. Feature analysis showed that moisture content of structure material and ammonium concentration during composting process were the two most significant features affecting N2O emissions. This study serves as proof of the application of MAML during N2O emissions prediction, further giving new insights into the effects of manure material properties and composting process data on N2O emissions. This approach helps determining the strategies for mitigating N2O emissions.
Collapse
Affiliation(s)
- Shuai Shi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxin Bao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhiheng Guo
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Han
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yonghui Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ugochi Uzoamaka Egbeagu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Liyan Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Nana Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xinda Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wanying Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Nuo Chang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jining Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Song Fu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150030, China.
| |
Collapse
|
6
|
Sun R, Zhu X, Wang C, Yue J, Pan L, Song C, Zhao Y. Effect of NH 4+ and NO 3- cooperatively regulated carbon to nitrogen ratio on organic nitrogen fractions during rice straw composting. BIORESOURCE TECHNOLOGY 2024; 395:130316. [PMID: 38218410 DOI: 10.1016/j.biortech.2024.130316] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
The purpose of this study was to examine the effects of replacing urea with inorganic nitrogen on the organic nitrogen sequestration process and the mitigation of nitrogen loss during rice straw composting. These groups include a control group with urea addition (CK), a group with (NH4)2SO4 addition (NH), a group with KNO3 addition (NO), and a group with (NH4)2SO4 + KNO3 addition (NN). The results demonstrated that adding NH, NO, and NN significantly increased the content of bioavailable organic nitrogen in the composting. Furthermore, compared to the CK, the NH treatment reduced nitrogen loss by 8.41 %. Structural equation modeling revealed the correlation between bacterial communities and organic nitrogen fractions in different treatment groups. Comparisons of nitrogen efficacy and nitrogen loss indicated that adding (NH4)2SO4 was more effective during composting, which provided a meaningful research basis for rice straw composting.
Collapse
Affiliation(s)
- Rui Sun
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xide Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chao Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jieyu Yue
- College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Lina Pan
- College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Caihong Song
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
7
|
Yin Y, Gu M, Zhang W, Yang C, Li H, Wang X, Chen R. Relationships between different types of biochar and N 2O emissions during composting based on roles of nosZ-carrying denitrifying bacterial communities enriched on compost and biochar particles. BIORESOURCE TECHNOLOGY 2024; 394:130214. [PMID: 38122996 DOI: 10.1016/j.biortech.2023.130214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Biochar has demonstrated the potential in mitigating N2O emissions during composting. However, little is known about how microbial communities on biochar particles interact with N2O emissions. This study selected three types of biochar (corn stalk biochar (CSB), rape straw biochar (RSB), and bamboo charcoal (BC)) to investigate the relationship between N2O emissions and denitrifying bacterial communities on compost and biochar particles. The results showed that N2O emissions rate were higher in the thermophilic phase, and the average emissions rate of BC treatment were lower 40% and 26% than CSB and RSB, respectively. The nosZ-carrying denitrifying bacterial community played a key role in reducing N2O emissions, and the network indicated that Rhizobium and Paracoccus on compost particles may have played major roles in reducing N2O emissions, but only Paracoccus on biochar particles. Notably, BC enhanced the efficiency of N2O emission reduction by enhancing the abundance of these key genera.
Collapse
Affiliation(s)
- Yanan Yin
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China.
| | - Mengjin Gu
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Wenrong Zhang
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Chao Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Haichao Li
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Lennart Hjelms Väg 9, 750 07 Uppsala, Sweden
| | - Xiaochang Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| |
Collapse
|
8
|
Lin X, Al-Dhabi NA, Li F, Wang N, Peng H, Chen A, Wu G, Zhang J, Zhang L, Huang H, Yan B, Luo L, Tang W. Relative contribution of ammonia-oxidizing bacteria and denitrifying fungi to N 2O production during rice straw composting with biochar and biogas residue amendments. BIORESOURCE TECHNOLOGY 2023; 390:129891. [PMID: 37863336 DOI: 10.1016/j.biortech.2023.129891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Nitrous oxide (N2O) production is associated with ammonia-oxidizing bacteria (amoA-AOB) and denitrifying fungi (nirK-fungi) during the incorporation of biochar and biogas residue composting. This research examined the relative contribution of alterations in the abundance, diversity and structure of amoA-AOB and nirK-fungi communities on N2O emission by real-time PCR and sequence processing. Results showed that N2O emissions showed an extreme relation with the abundance of amoA-AOB (rs = 0.584) while giving credit to nirK-fungi (rs = 0.500). Nitrosomonas and Nitrosospira emerged as the dominant genera driving ammoxidation process. Biogas residue changed the community structure of AOB by altering Nitrosomonadaceae proportion and physiological capacity. The denitrification process, primarily governed by nirK-fungi, served as a crucial pathway for N2O production, unveiling the pivotal mechanism of biochar to suppress N2O emissions. C/N and NH4+-N were identified as significant parameters influencing the distribution of nirK-fungi, especially Micromonospora, Halomonas and Mesorhizobium.
Collapse
Affiliation(s)
- Xu Lin
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha 410000, Hunan, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Fanghong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Nanyi Wang
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha 410000, Hunan, China
| | - Hua Peng
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha 410000, Hunan, China
| | - Genyi Wu
- College of Environment and Ecology, Hunan Agricultural University, 410128, China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha 410000, Hunan, China.
| | - Lihua Zhang
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha 410000, Hunan, China
| | - Hongli Huang
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha 410000, Hunan, China
| | - Binghua Yan
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha 410000, Hunan, China
| | - Lin Luo
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha 410000, Hunan, China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
9
|
Verma S, Kumar Awasthi M, Liu T, Kumar Awasthi S, Yadav V, Ravindran B, Syed A, Eswaramoorthy R, Zhang Z. Biochar as smart organic catalyst to regulate bacterial dynamics during food waste composting. BIORESOURCE TECHNOLOGY 2023; 373:128745. [PMID: 36796733 DOI: 10.1016/j.biortech.2023.128745] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The impact of wheat straw biochar (WSB) on bacterial dynamics succession during food waste (FW) composting was analyzed. Six treatments [0(T1), 2.5(T2), 5 (T3), 7.5 (T4), 10 (T5), and 15 %(T6)] dry weight WSB were used with FW and saw dust for composting. At the highest thermal peak at 59 ℃ in T6, the pH varied from 4.5 to 7.3, and electrical conductivity among the treatments varied from 1.2 to 2.0 mScm1. Firmicutes (25-97 %), Proteobacteria (8-45 %), and Bacteroidota (5-50 %) were among the dominate phyla of the treatments. Whereas, Bacillus (5-85 %), Limoslactobacillus (2-40 %), and Sphingobacterium (2-32 %) were highest among the identified genus in treatments but surprisingly Bacteroides was in greater abundance in the control treatments. Moreover, heatmap constructed with 35 various genera in all the treatments showed that Gammaproteobacterial genera contributed in large proportion after 42 days in T6. Additionally, a dynamic shift from Lactobacillus fermentum to higher abundance of Bacillus thermoamylovorans was reported on 42 days of FW composting. Biochar 15 % amendment can improve FW composting by influencing bacterial dynamics.
Collapse
Affiliation(s)
- Shivpal Verma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Rajalakshmanan Eswaramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
10
|
Wang P, Ma J, Wang L, Li L, Yan X, Zhang R, Cernava T, Jin D. Di-n-butyl phthalate stress induces changes in the core bacterial community associated with nitrogen conversion during agricultural waste composting. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130695. [PMID: 36587593 DOI: 10.1016/j.jhazmat.2022.130695] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Nitrogen (N) loss during composting reduces the quality of compost products and causes secondary environmental pollution. Phthalate esters (PAEs) are common pollutants in agricultural wastes. However, little information is currently available on how PAEs affect N conversion during agricultural waste composting. This research systematically analyzed the impact of di-n-butyl phthalate (DBP) pollution on the N conversion and its related microbial community during composting. Our results indicated that DBP stress results in a shorter thermophilic phase, and then slower compost maturation during composting. Notably, DBP stress inhibited the conversion of ammonia to nitrate, but increased the release of NH3 and N2O leading to an increased N loss and an elevated greenhouse effect. Furthermore, DBP exposure led to a reduction of bacteria related to NH4+ and NO3- conversion and altered the network complexity of the bacterial community involved in N conversion. It also reduced the abundance of a major nitrification gene (amoA) (P < 0.01) and increased the abundance of denitrification genes (nirK and norB) (P < 0.05). Moreover, DBP affected the overall microbial community composition at all tested concentrations. These findings provide theoretical and methodological basis for improving the quality of PAE-contaminated agricultural waste compost products and reducing secondary environmental pollution.
Collapse
Affiliation(s)
- Ping Wang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Jing Ma
- Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China; Key Laboratory of Yellow River Sediment Research, MWR, Zhengzhou 450003, China
| | - Lixin Wang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Linfan Li
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Xinyu Yan
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Ruyi Zhang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz 8010, Austria
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
11
|
Nordahl S, Preble CV, Kirchstetter TW, Scown CD. Greenhouse Gas and Air Pollutant Emissions from Composting. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2235-2247. [PMID: 36719708 PMCID: PMC9933540 DOI: 10.1021/acs.est.2c05846] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 05/25/2023]
Abstract
Composting can divert organic waste from landfills, reduce landfill methane emissions, and recycle nutrients back to soils. However, the composting process is also a source of greenhouse gas and air pollutant emissions. Researchers, regulators, and policy decision-makers all rely on emissions estimates to develop local emissions inventories and weigh competing waste diversion options, yet reported emission factors are difficult to interpret and highly variable. This review explores the impacts of waste characteristics, pretreatment processes, and composting conditions on CO2, CH4, N2O, NH3, and VOC emissions by critically reviewing and analyzing 388 emission factors from 46 studies. The values reported to date suggest that CH4 is the single largest contributor to 100-year global warming potential (GWP100) for yard waste composting, comprising approximately 80% of the total GWP100. For nitrogen-rich wastes including manure, mixed municipal organic waste, and wastewater treatment sludge, N2O is the largest contributor to GWP100, accounting for half to as much as 90% of the total GWP100. If waste is anaerobically digested prior to composting, N2O, NH3, and VOC emissions tend to decrease relative to composting the untreated waste. Effective pile management and aeration are key to minimizing CH4 emissions. However, forced aeration can increase NH3 emissions in some cases.
Collapse
Affiliation(s)
- Sarah
L. Nordahl
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Chelsea V. Preble
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Thomas W. Kirchstetter
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Corinne D. Scown
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Biosciences
Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Energy
& Biosciences Institute, University
of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Zhang Q, Zhu T, Wang Y, Ma F, Yao S, An N, Xiao Q. Effects of recycling hyper-thermal inoculum by repeated batch cultivation into co-composting of sludge and livestock-poultry manure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:58-68. [PMID: 36708149 DOI: 10.1080/03601234.2023.2169528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The enrichment and adaptation of hyper-thermal compost-derived thermophilic inoculum by repeated batch cultivation (RBC) was conducted by investigating bacterial community. The effects of recycling hyper-thermal inoculum by RBC into co-composting were investigated through evaluating the influences of temperature, pH, moisture, C/N ratio, transformation of nitrogen, composting maturity, humification levels and scanning electron microscopy (SEM). The results showed that RBC enriched the thermophilic bacterial community and nitrogen fixation bacteria of the compost-derived thermophilic inoculum. Simultaneously, recycling the inoculum into co-composting increased the temperature, nitrate nitrogen (NO3--N) and Germination index (GI), and improved the transformation of nitrogen and humification levels. Conclusively, recycling hyper-thermal inoculum by RBC into co-composting can improve the degradation process.
Collapse
Affiliation(s)
- Qingjun Zhang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
- Liaoning Urban Construction Design Institute Co. Ltd, Fushun, China
| | - Tong Zhu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Youzhao Wang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Feng Ma
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Sai Yao
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Ning An
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Qingxiang Xiao
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| |
Collapse
|
13
|
Li D, Kumar R, Johnravindar D, Luo L, Zhao J, Manu MK. Effect of different-sized bulking agents on nitrification process during food waste digestate composting. ENVIRONMENTAL TECHNOLOGY 2023:1-11. [PMID: 36546563 DOI: 10.1080/09593330.2022.2161950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Food waste digestate (FWD) disposal is a serious bottleneck in anaerobic digestion plants to achieve a circular bioeconomy. FWD could be recycled into nitrogen-rich compost; however, the co-composting process optimisation along with bulking agents is required to reduce nitrogen loss and unwanted gaseous emissions. In the present study, two different-sized bulking agents, namely, wood shaving (WS) and fine sawdust (FS), were used to investigate their impact on FWD composting performance along with the nitrogen dynamics. The mixing of FWD with different bulking agents altered the physiochemical characteristics of composting matrix and the effective composting performance was observed through reduced ammonium nitrogen and increased seed germination index during 28 days of composting. The carbon loss of 19-22% through CO2 emission indicated similar carbon mineralisation with both types of sawdust; however, the nitrogen transformation pathways were different. Only WS treatment demonstrated the nitrification process, whereas the nitrogen loss was higher with FS. A total nitrogen loss of ∼15% was observed in treatments with FS, whereas WS treatments displayed a nitrogen loss of 12%. The outcome of the present study could significantly contribute to the practical aspect of the FWD composting operation with the promotion of the bio-recycling economy.
Collapse
Affiliation(s)
- Dongyi Li
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Rajat Kumar
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Davidraj Johnravindar
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Liwen Luo
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - M K Manu
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong
| |
Collapse
|
14
|
Zhao Y, Li W, Chen L, Meng L, Zhang S. Impacts of adding thermotolerant nitrifying bacteria on nitrogenous gas emissions and bacterial community structure during sewage sludge composting. BIORESOURCE TECHNOLOGY 2023; 368:128359. [PMID: 36423768 DOI: 10.1016/j.biortech.2022.128359] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to evaluate the impacts of inoculation with bacterial inoculum containing three thermotolerant nitrifying bacteria strains on nitrogenous gas (mainly NH3 and N2O) emissions and bacterial structure during the sludge composting. The results of physicochemical parameters indicated that inoculation could prolong the thermophilic phase, accelerate degradation of organic substances and improve compost quality. Compared with the non-inoculated treatment, the addition of bacterial agents not only increased the total nitrogen content by 8.7% but also reduced the cumulative NH3 and N2O emissions by 32.2% and 34.6%, respectively. The bacterial inoculation changed the structure and diversity of the microbial community in composting. Additionally, the relative abundances (RA) of bacteria and correlation analyses revealed that inoculation increased the RA of bacteria involved in nitrogen fixation. These results suggested that inoculation of thermotolerant nitrifying bacteria was beneficial for reducing nitrogen loss, nitrogenous gas emissions and regulating the bacterial community during the composting.
Collapse
Affiliation(s)
- Yi Zhao
- School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Weiguang Li
- School of Environmental, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Li Chen
- School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Liqiang Meng
- Institute of Microbiology, Heilongjiang Academy of Science, Harbin 150010, China
| | - Shumei Zhang
- Institute of Microbiology, Heilongjiang Academy of Science, Harbin 150010, China
| |
Collapse
|
15
|
Gong X, Zou L, Wang L, Zhang B, Jiang J. Biochar improves compost humification, maturity and mitigates nitrogen loss during the vermicomposting of cattle manure-maize straw. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116432. [PMID: 36274337 DOI: 10.1016/j.jenvman.2022.116432] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/22/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Maintaining humidification and inhibiting nitrogen losses during vermicomposting process have emerged to be key factors for high-quality productions. Previous data have showed outstanding functions of biochar addition in improving vermicomposting quality. In this study, the influence of bamboo biochar (BB) and rice husk biochar (RHB) addition on compost maturity, humification and nitrogen loss was evaluated in the vermicomposting of cattle manure and maize straw. Results revealed that BB or RHB amendment improved organic matter decomposition, enhanced humification and maturity of compost, particularly in the 10% BB treatment, which exerted the highest humic acids content and GI value. Furthermore, BB or RHB addition significantly reduced nitrogen losses, in which the volatilization of NH3 and N2O were reduced by 24.93%-66.23% and 14.91%-55.12%. The fewest nitrogen loss was detected in the treatment of 10% BB. Biochar inhibited nirK, nirS but promoted AOB-amoA, nosZ expression; fewer N2O producing bacteria (Pseudomonas, Devosia, Luteimonas genus) were observed in the biochar treatment, and thereby decreased the N2O emission. Therefore, 10% BB addition for co-vermicomposting cattle manure and maize straw is an efficient way to increase humification, maturity, and reduce nitrogen loss, and future applications following this strategy is believed to generate better productions.
Collapse
Affiliation(s)
- Xiaoqiang Gong
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Lan Zou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Li Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Bo Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Junxian Jiang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
16
|
Changes of bacterial and fungal communities and relationship between keystone taxon and physicochemical factors during dairy manure ectopic fermentation. PLoS One 2022; 17:e0276920. [PMID: 36534655 PMCID: PMC9762577 DOI: 10.1371/journal.pone.0276920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/17/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Due to interactions with variety of environmental and physicochemical factors, the composition and diversity of bacteria and fungi in manure ectopic fermentation are constantly changing. The purpose of this study was to investigated bacterial and fungal changes in dairy manure ectopic fermentation, as well as the relationships between keystone species and physicochemical characteristics. METHODS Ectopic fermentation was carried out for 93 days using mattress materials, which was combined with rice husk and rice chaff (6:4, v/v), and dairy waste mixed with manure and sewage. Physicochemical characteristics (moisture content, pH, NH4+-N (NN), total organic carbon (TO), total nitrogen (TN) and the C/N ratio) of ectopic fermentation samples were measured, as well as enzymatic activity (cellulose, urease, dehydrogenase and alkaline phosphatase). Furthermore, the bacterial and fungal communities were studied using 16S rRNA and 18S rRNA gene sequencing, as well as network properties and keystone species were analyzed. RESULTS During the ectopic fermentation, the main pathogenic bacteria reduced while fecal coliform increased. The C/N ratio gradually decreased, whereas cellulase and dehydrogenase remained at lower levels beyond day 65, indicating fermentation maturity and stability. During fermentation, the dominant phyla were Chloroflexi, Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria of bacteria, and Ascomycota of fungi, while bacterial and fungal community diversity changed dramatically and inversely. The association between physicochemical characteristics and community keystone taxon was examined, and C/N ratio was negative associated to keystone genus. CONCLUSION These data indicated that microbial composition and diversity interacted with fermentation environment and parameters, while regulation of keystone species management of physicochemical factors might lead to improved maturation rate and quality during dairy manure ectopic fermentation. These findings provide a reference to enhance the quality and efficiency of waste management on dairy farm.
Collapse
|
17
|
Li D, Yuan J, Ding J, Wang H, Shen Y, Li G. Effects of carbon/nitrogen ratio and aeration rate on the sheep manure composting process and associated gaseous emissions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116093. [PMID: 36095985 DOI: 10.1016/j.jenvman.2022.116093] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
There are several issues such as low maturity degree of compost product and severe pollution gas emissions during the composting process. Carbon/Nitrogen (C/N) ratio and aeration rate (AR) are the most important factors affecting the composting performance. According to the results of previous studies, the proper C/N ratio and AR were 20-30:1 and 0.1-0.4 L kg-1 DM·min-1, respectively. Therefore, a lab-scale experiment was conducted to investigate the effects of C/N ratio and AR on sheep manure composting process and associated gaseous emissions. The initial C/N ratio in this experiment were set at 23, 26 and 29 to simulate the C/N ratio at low, medium and high levels. The AR were decided at 0.12, 0.24 and 0.36 L kg-1 DM·min-1 to simulate the aeration at low, middle and high levels. The results showed that as the C/N ratio or AR increased, the methane (CH4) and hydrogen sulfide (H2S) emissions decreased. The nitrous oxide (N2O) emission peaked at the low C/N ratio or AR treatments. The total greenhouse gas (GHG) emissions decreased with the increase of C/N ratio or AR, and the maximum value occurred in the treatment with C/N ratio 23 and AR 0.24 L kg-1 DM·min-1. In the treatment with C/N ratio 26 and AR 0.36 L kg-1 DM·min-1, the GI value of compost product was the highest (about 250%), and the total greenhouse effect was the lowest (2.36 kg CO2-eq·t-1 DM). Therefore, considering reduction of pollution gas emissions and improvement of the quality of compost products comprehensively, the optimum conditions were initial C/N ratio 26 and AR 0.36 L kg-1 DM·min-1 during the co-composting of sheep manure and cornstalks. In addition, the key physicochemical factors and eight key bacterial communities were determined to regulate compost maturity and pollution gas emissions during the sheep manure composting, which could provide scientific support and theoretical reference for controlling pollution gas emissions and obtaining high quality sheep manure compost products.
Collapse
Affiliation(s)
- Danyang Li
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Jingtao Ding
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Huihui Wang
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Yujun Shen
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China.
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
18
|
Zhao Y, Li W, Chen L, Zhou Y, Meng L, Zhang S. Isolation and application of a thermotolerant nitrifying bacterium Gordonia paraffinivorans N52 in sewage sludge composting for reducing nitrogen loss. BIORESOURCE TECHNOLOGY 2022; 363:127959. [PMID: 36113817 DOI: 10.1016/j.biortech.2022.127959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
A thermotolerant strain with heterotrophic nitrification capability obtained from sludge composting was identified as Gordonia paraffinivorans N52. Strain N52 utilized 51.8% of ammonium nitrogen (NH4+-N) at 60℃, and the nitrogen balance results indicated that 25.5% of the consumed NH4+-N was changed into nitrification intermediates, 53.0% to intracellular nitrogen, and only 5.2% was lost. The successful detection of enzymes related to nitrification and PCR amplification of functional genes further demonstrated nitrification ability of the isolated strain. Moreover, orthogonal test indicated that conditions for the optimal nitrification performance were C/N 15, 50℃, 150 rpm and pH 8. Compared with the control group, the addition of Gordonia paraffinivorans N52 to sewage sludge composting reduced 27.6% of ammonia emissions, accelerated the conversion from NH4+-N to nitrate nitrogen and decreased the total nitrogen loss. These results suggested that inoculation of Gordonia paraffinivorans N52 effectively controlled ammonia emissions and reduced nitrogen loss in composting.
Collapse
Affiliation(s)
- Yi Zhao
- School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Weiguang Li
- School of Environmental, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Li Chen
- School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Yujie Zhou
- School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Liqiang Meng
- Institute of Microbiology, Heilongjiang Academy of Science, Harbin 150010, China
| | - Shumei Zhang
- Institute of Microbiology, Heilongjiang Academy of Science, Harbin 150010, China
| |
Collapse
|
19
|
Zhao Y, Li W, Chen L, Zhou Y. Characterization of heterotrophic nitrification by a thermotolerant Brevibacillus Agri N2 isolated from sewage sludge composting. ENVIRONMENTAL RESEARCH 2022; 214:113903. [PMID: 35863446 DOI: 10.1016/j.envres.2022.113903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/25/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
A thermotolerant strain isolated from sewage sludge (SS) composting was identified as Brevibacillus Agri N2, which showed the efficient capability for heterotrophic nitrification under high-temperature conditions. Incubation at 60 °C, strain N2 could utilize 45.47% of ammonium nitrogen (99.64 mg/L), 68.89% of hydroxylamine nitrogen (51.14 mg/L) and 76.77% of nitrite nitrogen (55.20 mg/L), with a minor part of nitrogen loss for 1.64%, 2.82% and 5.01%, respectively. The successful detection of ammonia monooxygenase, hydroxylamine oxidase, and nitrate oxidoreductase and PCR amplification of amoA, hao and nxrA genes provided evidence of nitrification ability by strain N2. Furthermore, single-factor experiments indicated that the optimal conditions for efficient nitrification performance by strain N2 were succinate as carbon source, 50 °C, C/N 12, pH 8 and 200 r/min. Strain N2 could perform the complete nitrification process, with minimal nitrogen loss at high temperature conditions, which indicated it had the potential for practical application for reducing nitrogen loss of SS composting.
Collapse
Affiliation(s)
- Yi Zhao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weiguang Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Li Chen
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yujie Zhou
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
20
|
Sun P, Liu B, Ahmed I, Yang J, Zhang B. Composting effect and antibiotic removal under a new temperature control strategy. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 153:89-98. [PMID: 36063581 DOI: 10.1016/j.wasman.2022.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/29/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The main objective of this study was to investigate the feasibility of a new temperature control strategy in the co-composting process to accelerate operation cycle and remove antibiotics from mixed organic wastes. The evaluation of the composting process showed that composting with temperature control (TC) was completed within 14 days. The final compost of TC exhibited a 10% higher degradation of organic matters, more humus formation and 11.25% lower heavy metals concentration than conventional composting (CC), which fully met the Chinese National Agricultural Organic Fertilizer Standard requirements. The degradation extent and kinetic of macrolides, tetracyclines, sulfonamides and fluoroquinolones showed that the removal efficiency of total antibiotics in TC was 23.58% higher than CC, with less half-life, which was significantly correlated with higher temperature. Particularly, the highest removal was observed for sulfonamides (87.45%) in TC, the half-life of which was reduced by 75.95% compared with CC. The higher degradation rate was attributed to enhanced decomposition of unstable antibiotics and degrading activity of microbes at high temperature. The microbiological analysis showed that the external heating led to a distinct composition and succession of bacterial community in TC. Firmicutes, Proteobacteria, Actinobacteriota and Bacteroidota were dominant and the emergence of Patescibacteria and Chloroflexi at cooling period in TC proved that the later composting environment was in an oligotrophic state. Current research provided a promising rapid composting approach for high-quality fertilizer production and antibiotic management in organic waste disposal.
Collapse
Affiliation(s)
- Pengyu Sun
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Botao Liu
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Imtiaz Ahmed
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jun Yang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Bo Zhang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200240, China.
| |
Collapse
|
21
|
Gaspar SS, Assis LLR, Carvalho CA, Buttrós VH, Ferreira GMDR, Schwan RF, Pasqual M, Rodrigues FA, Rigobelo EC, Castro RP, Dória J. Dynamics of microbiota and physicochemical characterization of food waste in a new type of composter. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.960196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Organic wastes are considered the most significant components of urban solid waste, negatively affecting the environment. It is essential to use renewable resources to minimize environmental risks. Composting is one of the most sustainable methods for managing organic waste and involves transforming organic matter into a stable and nutrient-enriched biofertilizer, through the succession of microbial populations into a stabilized product. This work aimed to evaluate the efficiency of the new type of composter and the microbial and physiochemical dynamics during composting aiming to accelerate the degradation of organic waste and produce high-quality compost. Two inoculants were evaluated: (1) efficient microorganisms (EM); (2) commercial inoculum (CI), which were compared to a control treatment, without inoculation. Composting was performed by mixing organic waste from gardening with residues from the University's Restaurant (C/N ratio 30:1). The composting process was carried out in a 1 m3 composter with controlled temperature and aeration. The thermophilic phase for all treatments was reached on the second day. Mature compost was obtained after an average of 120 days, and composting in all treatments showed an increase in the availability of P and micronutrients. The new composter helped to accelerate the decomposition of residues, through the maintenance of adequate oxygen content and temperature control inside the cells, providing high metabolic activity of microorganisms, contributing to an increase in physicochemical characteristics, also reducing the composting time in both treatments. During composting, the bacteria and actinobacteria populations were higher than yeasts and filamentous fungi. The inoculated treatments presented advantages showing more significant mineralization of P-available and micronutrients such as Mn and Zn in terms of the quality of the final product in comparison to the control treatment. Finally, the new composter and the addition of inoculants contributed significantly to the efficiency of the process of composting organic waste.
Collapse
|
22
|
Wang L, Wang X, Song Y, Sun L, Chen X, Wu J, Song C, Zhao Y. Slowed down nitrogen mineralization under bacterial community-driven conditions by adding inhibitors during rice straw composting. BIORESOURCE TECHNOLOGY 2022; 362:127778. [PMID: 35973568 DOI: 10.1016/j.biortech.2022.127778] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The aim of this paper was to confirm the role of inhibitors addition, namely adenosine triphosphate (ATP) and malonic acid (MA), on nitrogen availability during rice straw (RS) composting. The results showed that inhibitors addition slowed down the mineralization of ammonium nitrogen and nitrate nitrogen compared to CK. Meanwhile, amino sugar nitrogen and hydrolysable unknown nitrogen contents in ATP and MA treatments were higher, indicating that their addition improved the retention of organic nitrogen components. Furthermore, inhibitors additions attenuated the responsive relationship between bacterial communities and nitrogen components. The main reason was that the addition changed the bacterial community structure of RS compost. The final structural equation verified that inhibitors addition enhanced conversion between nitrogen components, that was, to complex nitrogen components to improve the quality of compost, and the remodeling of bacterial community played an important role. Therefore, adding inhibitors had a driving effect on promoting nitrogen sequestration.
Collapse
Affiliation(s)
- Liqin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xue Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yangyang Song
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lihua Sun
- Dongchangfu Bureau of Agricultural and Rural Affairs, Liaocheng 252000, China
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
23
|
Wang K, Yin D, Sun Z, Wang Z, You S. Distribution, horizontal transfer and influencing factors of antibiotic resistance genes and antimicrobial mechanism of compost tea. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129395. [PMID: 35803190 DOI: 10.1016/j.jhazmat.2022.129395] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Compost tea was alternatives of chemical pesticide for green agriculture, but there were no reports about antibiotic resistance genes (ARGs) in compost tea. This study investigated the effect of livestock manures, sewage sludge, their composting products and liquid fermentation on ARGs, mobile genetic elements (MGEs), metal resistance genes (MRGs) and antimicrobial properties of various compost tea. The results showed aerobic liquid fermentation reduced ARGs by 65.93 % and 45.20 % in the compost tea of chicken manure and sludge, enriched ARGs by 8.57 % and 37.41 % in the compost tea of pig manure and bovine manure, and increased MGEs and MRGs by 1.25 × 10-5-5.53 × 10-3 and 2.03 × 10-5-2.03 × 10-3 in the four compost tea. The correlation coefficient of tetracycline and sulfonamide resistance genes between compost product and compost tea were 0.98 and 0.91. aadA2-02, sul2 and tetX abundant in the compost tea were positively correlated with MGEs and MRGs. Furthermore, liquid fermentation enriched the potential host of tetracycline and vancomycin resistance genes. Tetracycline resistance genes occupied 62.7 % of total ARGs in the compost tea. Alcaligenes and Bacillus enriched by 0.78-39.31 % in the four compost tea, which metabolites had high antimicrobial activity. The potential host of ARGs accounted for 42.1 % bacteria abundance in the four compost tea.
Collapse
Affiliation(s)
- Ke Wang
- National Engineering Research Center for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin 150090, China.
| | - Dan Yin
- National Engineering Research Center for Bioenergy, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhen Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
24
|
Zhao M, Liu D, Zhou J, Wei Z, Wang Y, Zhang X. Ammonium stress promotes the conversion to organic nitrogen and reduces nitrogen loss based on restructuring of bacterial communities during sludge composting. BIORESOURCE TECHNOLOGY 2022; 360:127547. [PMID: 35777648 DOI: 10.1016/j.biortech.2022.127547] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to clarify the conversion relationship between organic and inorganic nitrogen. The NH4Cl was used to enhance the inorganic nitrogen content. The key role of bacterial conversion of ammonium to organic nitrogen under ammonium stress was explored. Studies had shown that ammonium stress increased the amide nitrogen and bioavailable nitrogen content by 36.95% and 32.25%, respectively. Network and regression analyses showed that the microbial community structure was restructured by high ammonium and more bacteria were involved in the conversion of inorganic nitrogen to organic nitrogen(i.e., amide nitrogen, unknown nitrogen). Variation partition analysis and structural equation model showed that the bacterial community was the main contributor to organic nitrogen production(up to 67.4%), which reduced the nitrogen loss by 6.03%. These findings shed light on the poorly understood interaction between inorganic and organic nitrogen by clarifying the role of core bacterial communities in nitrogen conversion.
Collapse
Affiliation(s)
- Meiyang Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Dan Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jin Zhou
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yumeng Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinlin Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
25
|
Hoang HG, Thuy BTP, Lin C, Vo DVN, Tran HT, Bahari MB, Le VG, Vu CT. The nitrogen cycle and mitigation strategies for nitrogen loss during organic waste composting: A review. CHEMOSPHERE 2022; 300:134514. [PMID: 35398076 DOI: 10.1016/j.chemosphere.2022.134514] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Composting is a promising technology to decompose organic waste into humus-like high-quality compost, which can be used as organic fertilizer. However, greenhouse gases (N2O, CO2, CH4) and odorous emissions (H2S, NH3) are major concerns as secondary pollutants, which may pose adverse environmental and health effects. During the composting process, nitrogen cycle plays an important role to the compost quality. This review aimed to (1) summarizes the nitrogen cycle of the composting, (2) examine the operational parameters, microbial activities, functions of enzymes and genes affecting the nitrogen cycle, and (3) discuss mitigation strategies for nitrogen loss. Operational parameters such as moisture, oxygen content, temperature, C/N ratio and pH play an essential role in the nitrogen cycle, and adjusting them is the most straightforward method to reduce nitrogen loss. Also, nitrification and denitrification are the most crucial processes of the nitrogen cycle, which strongly affect microbial community dynamics. The ammonia-oxidizing bacteria or archaea (AOB/AOA) and the nitrite-oxidizing bacteria (NOB), and heterotrophic and autotrophic denitrifiers play a vital role in nitrification and denitrification with the involvement of ammonia monooxygenase (amoA) gene, nitrate reductase genes (narG), and nitrous oxide reductase (nosZ). Furthermore, adding additives such as struvite salts (MgNH4PO4·6H2O), biochar, and zeolites (clinoptilolite), and microbial inoculation, namely Bacillus cereus (ammonium strain), Pseudomonas donghuensis (nitrite strain), and Bacillus licheniformis (nitrogen fixer) can help control nitrogen loss. This review summarized critical issues of the nitrogen cycle and nitrogen loss in order to help future composting research with regard to compost quality and air pollution/odor control.
Collapse
Affiliation(s)
- Hong Giang Hoang
- Faculty of Health Sciences and Finance - Accounting, Dong Nai Technology University, Bien Hoa, Dong Nai, 76100, Viet Nam
| | - Bui Thi Phuong Thuy
- Faculty of Basic Sciences, Van Lang University, 68/69 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, 700000, Viet Nam
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, 81157, Taiwan
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam; School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia
| | - Huu Tuan Tran
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, 81157, Taiwan.
| | - Mahadi B Bahari
- Faculty of Science, Universiti Technoloki Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - Van Giang Le
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chi Thanh Vu
- Civil and Environmental Engineering Department, University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
| |
Collapse
|
26
|
Wang Y, Tang Y, Yuan Z. Improving food waste composting efficiency with mature compost addition. BIORESOURCE TECHNOLOGY 2022; 349:126830. [PMID: 35143985 DOI: 10.1016/j.biortech.2022.126830] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the impact of mature compost addition on food waste composting physicochemical properties, bacterial community succession and corresponding metabolic function. Analytical results from two pilot-scale composting treatments with (C20) or without (C0) mature compost demonstrated that mature compost amendment increased the reduction rate of volatile solids by 71.4% and shortened the composting period by 7 days. Microbial dynamics analysis revealed that mature compost addition increased the bacteria abundance related to maturity during the initial stage, and these bacteria (mainly SBR1031 and Actinomarinales) were easier to grow again during cooling stage, thus promoted the maturity of compost. Mature compost addition increased the abundance of Ureibacillus, Lysinibacillus, Limochordaceae and Tepidimicrobium by providing an appropriate temperature environment, which enhanced the amino acid and carbohydrate metabolism function and promoted the degradation of organic matter. Together, these findings revealed the underlying mechanisms of bacterial community succession with mature compost addition.
Collapse
Affiliation(s)
- Yumei Wang
- Department of Environment, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ya Tang
- Department of Environment, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zengwei Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
27
|
Zhang X, Ma D, Lv J, Feng Q, Liang Z, Chen H, Feng J. Food waste composting based on patented compost bins: Carbon dioxide and nitrous oxide emissions and the denitrifying community analysis. BIORESOURCE TECHNOLOGY 2022; 346:126643. [PMID: 34974104 DOI: 10.1016/j.biortech.2021.126643] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Mature compost and rice bran were used as bulking agents to perform Food Waste Rapid Composting (FWRC) in a patented composting bin. The characteristics of CO2 and N2O emission and the denitrifying community were investigated. The release of CO2 and N2O concentrated in the early composting stage and reduced greatly after 28 h, and the N2O emission peak of the treatment with mature compost was 8.5 times higher than that of rice bran. The high N2O generation resulted from massive denitrifying bacteria and NOx--N in the composting material. The relative abundances of denitrifiers, correspondingly genes of narG and nirK were much higher in the treatment with mature compost, which contributed to the N2O emission. Moreover, the correlation matrices revealed that N2O fluxes correlated well with moisture, pH, temperature, and the abundances of nirK and nosZ genes during FWRC.
Collapse
Affiliation(s)
- Xuan Zhang
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
| | - Dachao Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jiahao Lv
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Qingge Feng
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Zhengwu Liang
- Guangxi Liyuanbao Science and Technology Co., LTD, Nanning 530000, China
| | - Hongcheng Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jinghang Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
28
|
Ma Q, Li Y, Xue J, Cheng D, Li Z. Effects of Turning Frequency on Ammonia Emission during the Composting of Chicken Manure and Soybean Straw. Molecules 2022; 27:472. [PMID: 35056787 PMCID: PMC8777752 DOI: 10.3390/molecules27020472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 01/04/2023] Open
Abstract
Here, we investigated the impact of different turning frequency (TF) on dynamic changes of N fractions, NH3 emission and bacterial/archaeal community during chicken manure composting. Compared to higher TF (i.e., turning every 1 or 3 days in CMS1 or CMS3 treatments, respectively), lower TF (i.e., turning every 5 or 7 days in CMS5 or CMS7 treatments, respectively) decreased NH3 emission by 11.42-18.95%. Compared with CMS1, CMS3 and CMS7 treatments, the total nitrogen loss of CMS5 decreased by 38.03%, 17.06% and 24.76%, respectively. Ammonia oxidizing bacterial/archaeal (AOB/AOA) communities analysis revealed that the relative abundance of Nitrosospira and Nitrososphaera was higher in lower TF treatment during the thermophilic and cooling stages, which could contribute to the reduction of NH3 emission. Thus, different TF had a great influence on NH3 emission and microbial community during composting. It is practically feasible to increase the abundance of AOB/AOA through adjusting TF and reduce NH3 emission the loss of nitrogen during chicken manure composting.
Collapse
Affiliation(s)
- Qianqian Ma
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.M.); (Y.L.)
- China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanli Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.M.); (Y.L.)
- China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianming Xue
- SCION, Private Bag 29237, Christchurch 8440, New Zealand;
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China;
| | - Zhaojun Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.M.); (Y.L.)
- China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
29
|
Wang K, Du M, Wang Z, Liu H, Zhao Y, Wu C, Tian Y. Effects of bulking agents on greenhouse gases and related genes in sludge composting. BIORESOURCE TECHNOLOGY 2022; 344:126270. [PMID: 34740796 DOI: 10.1016/j.biortech.2021.126270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
The effect of organic bulking agents on CO2, NH3, N2O and CH4 emission and related genes was evaluated in 40 days sludge composting with wood chip, wheat straw and rice husk, respectively. The results showed wood chip had the highest C/N of 111.3, total porosity of 93.13% and aeration porosity of 78.98% among three bulking agents. Wheat straw had the highest water-holding porosity of 25.62%, which could be critical factor increasing CH4 production and reducing NH3 emission. Moreover, there was no significant difference in N2O emission rates in three composting systems with three bulking agents. RDA analysis showed a negative correlation between mcrA and NH + 4-N. Nitrate content in raw feedstock was dominant factor limiting N2O yield due to low amoA. The continuous increase of oxidation-reduction potential was significantly positive correlated with pmoA and negative correlation with nirK and norB, which reduced N2O and CH4 production in the curing period.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mengfei Du
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huimin Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yan Zhao
- Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Harbin 150090, China; Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, China
| | - Chuandong Wu
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
30
|
Liu C, Yan J, Huang Q, Liu H, Qiao C, Li R, Shen B, Shen Q. The addition of sawdust reduced the emission of nitrous oxide in pig manure composting by altering the bacterial community structure and functions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3733-3742. [PMID: 34392479 DOI: 10.1007/s11356-021-15786-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Although composting, a measure to dispose agricultural waste, is widely accepted and applied, specific knowledge of microbially driven effects on nitrous oxide (N2O) emissions during composting remains limited. Here, we monitored the impact of sawdust on N2O emissions during pig manure composting. The results suggested that adding sawdust to the compost improved the compost temperature and reduced N2O emissions. The addition of sawdust significantly altered the bacterial community structure and enhanced community turnover during the composting process. The addition of sawdust significantly reduced the relative abundance of denitrification and ureolysis, while increasing the relative abundance of nitrogen fixation. Specifically, adding sawdust may reduce N2O emissions by reducing the relative abundance of Salinithrix, Truepera, Azomonas, Iamia, Silanimonas, Phycisphaera, and Gp21 during the thermophilic and mature phases of the composting period.
Collapse
Affiliation(s)
- Chao Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jiao Yan
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Qian Huang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Hongjun Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Cece Qiao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Biao Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| |
Collapse
|
31
|
Bacterial Community Structure and Metabolic Function Succession During the Composting of Distilled Grain Waste. Appl Biochem Biotechnol 2021; 194:1479-1495. [PMID: 34748150 DOI: 10.1007/s12010-021-03731-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Distilled grain waste (DGW) can be converted to organic fertilizer via aerobic composting process without inoculating exogenous microorganisms. To illustrate the material conversion mechanism, this study investigated the dynamic changes of bacterial community structure and metabolic function involved in DGW composting. Results showed that a significant increase in microbial community alpha diversity was observed during DGW composting. Moreover, unique community structures occurred at each composting stage. The dominant phyla were Firmicutes, Proteobacteria, Actinobacteriota, Bacteroidota, Myxococcota, and Chloroflexi, whose abundance varied according to different composting stages. Keystone microbes can be selected as biomarkers for each stage, and Microbispora, Chryseolinea, Steroidobacter, Truepera, and Luteimonas indicating compost maturity. Co-occurrence network analysis revealed a significant relationship between keystone microbes and environmental factors. The carbohydrate and amino acid metabolism were confirmed as the primary metabolic pathways by metabolic function profiles. Furthermore, nitrogen metabolism pathway analysis indicated that denitrification and NH3 volatilization induced higher nitrogen loss during DGW composting. This study can provide new understanding of the microbiota for organic matter and nitrogen conversion in the composting process of DGW.
Collapse
|
32
|
Lee YY, Seo Y, Ha M, Lee J, Yang H, Cho KS. Dynamics of bacterial functional genes and community structures during rhizoremediation of diesel-contaminated compost-amended soil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:1107-1120. [PMID: 34554047 DOI: 10.1080/10934529.2021.1965817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study was to characterize the effects of organic soil amendment (compost) on bacterial populations associated with petroleum hydrocarbon (PH) degradation and nitrous oxide (N2O) dynamics via pot experiments. Soil was artificially contaminated with diesel oil at total petroleum hydrocarbon (TPH) concentration of 30,000 mg·kg-soil-1 and compost was mixed with the contaminated soil at a 1:9 ratio (w/w). Maize seedlings were planted in each pot and a total of ten pots with two treatments (compost-amended and unamended) were prepared. The pot experiment was conducted for 85 days. The compost-amended soil had a significantly higher TPH removal efficiency (51.1%) than unamended soil (21.4%). Additionally, the relative abundance of the alkB gene, which is associated with PH degradation, was higher in the compost-amended soil than in the unamended soil. Similarly, cnorB and nosZ (which are associated with nitric oxide (NO) and N2O reduction, respectively) were also highly upregulated in the compost-amended soil. Moreover, the compost-amended soil exhibited higher richness and evenness indices, indicating that bacterial diversity was higher in the amended soil than in the unamended soil. Therefore, our findings may contribute to the development of strategies to enhance remediation efficiency and greenhouse gas mitigation during the rhizoremediation of diesel-contaminated soils.
Collapse
Affiliation(s)
- Yun-Yeong Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Yoonjoo Seo
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Minyoung Ha
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jiho Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Hyoju Yang
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
33
|
Li X, Shi X, Feng Q, Lu M, Lian S, Zhang M, Peng H, Guo R. Gases emission during the continuous thermophilic composting of dairy manure amended with activated oil shale semicoke. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112519. [PMID: 33862318 DOI: 10.1016/j.jenvman.2021.112519] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
NH3 and greenhouse gases emission are big problems during composting, which can cause great nitrogen nutrient loss and environmental pollution. This study investigated effects of the porous bulking agent of oil shale semicoke and its activated material on the gases emission during the continuous thermophilic composting. Results showed addition of semicoke could significantly reduce the NH3 emission by 74.65% due to its great adsorption capacity to NH4+-N and NH3, further the effect could be enhanced to 85.92% when utilizing the activated semicoke with larger pore volume and specific surface area. In addition, the CH4 emission in the semicoke and activated semicoke group was also greatly mitigated, with a reduction of 67.23% and 87.62% respectively, while the N2O emission was significantly increased by 93.14% and 100.82%. Quantification analysis of the functional genes found the abundance of mcrA was high at the massive CH4-producing stage and the archaeal amoA was dominant at the N2O-producing stage in all the composting groups. Correlation and redundancy analysis suggested there was a positive correlation between the CH4 emission and mcrA. Addition of semicoke especially activated semicoke could reduce the CH4 production by inhibiting the methanogens. For the NH3 and N2O, it was closely related with the nitrification process conducted by archaeal amoA. Addition of semicoke especially activated semicoke was beneficial for the growth of ammonia-oxidizing archaea, causing the less NH4+-N transformation to NH3 but more N2O emission.
Collapse
Affiliation(s)
- Xu Li
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaoshuang Shi
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China.
| | - Quan Feng
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China
| | - Mingyi Lu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shujuan Lian
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China
| | - Mengdan Zhang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hui Peng
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Rongbo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China; Dalian National Laboratory for Clean Energy, Dalian, 116023, PR China.
| |
Collapse
|
34
|
Abe Y, Tamura KI, Seike N. Change of clopyralid concentration in recycled beef cattle compost. Anim Sci J 2021; 92:e13568. [PMID: 34151481 DOI: 10.1111/asj.13568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 12/01/2022]
Abstract
Composting of beef cattle manure using sawdust or recycled compost as a bulking agent was investigated for the management of clopyralid risk, such as changes in the clopyralid concentration and the mechanism of clopyralid accumulation caused by recycled compost. These raw materials were composted with laboratory equipment, which was controlled at 60℃ after the temperature peak by autothermal composting. Clopyralid concentration did not changed during composting in the thermophilic phase; on the contrary, it increased because clopyralid accumulated in compost when recycled compost was used repeatedly as a bulking agent. The clopyralid accumulation ratio (ratio of clopyralid concentration to that in the first compost) could be explained by a model using a recurrence formula, and a correlation existed between the calculated (model) accumulation ratios and measured accumulation ratios (R2 = 0.78). Using this model, the excessive accumulation of clopyralid could be controlled when using recycled compost as a bulking agent with lower moisture content or when part of the recycled compost was replaced by another bulking agent, even if recycled compost had high moisture content. In future work, the model and its considerations should be verified in a field test.
Collapse
Affiliation(s)
- Yoshiyuki Abe
- Central Region Agricultural Research Center, NARO, Nasushiobara, Japan.,From April 1, 2021-Institute of Livestock and Grassland Science, NARO, Nasushiobara, Japan
| | - Ken-Ichi Tamura
- Institute of Livestock and Grassland Science, NARO, Nasushiobara, Japan
| | - Nobuyasu Seike
- Institute for Agro-Environmental Sciences, NARO, Tsukuba, Japan
| |
Collapse
|
35
|
Zhou S, Geng B, Li M, Li Z, Liu X, Guo H. Comprehensive analysis of environmental factors mediated microbial community succession in nitrogen conversion and utilization of ex situ fermentation system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145219. [PMID: 33486184 DOI: 10.1016/j.scitotenv.2021.145219] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/22/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
An ex situ fermentation system (EFS) can efficiently transform and utilize nitrogen in swine wastewater and reduce environmental pollution. High-throughput sequencing was used to study the relationship between the succession of total bacteria, fungi, and functional bacteria in a swine wastewater EFS, as well as nitrogen metabolism and environmental factors. During the fermentation process, inorganic nitrogen gradually accumulated and the pH changed rapidly from weakly acidic to alkaline. The dominant genera of bacteria, fungi and functional bacteria carrying amoA, nirK, and nosZ genes changed gradually, and Clostridium sensu stricto 1, Thermomyces, Nitrosomonas, Mesorhizobium, and Pseudomonas genera became the most abundant, which showed positive correlations with temperature, pH, and nitrogen levels. Other changed populations showed different correlations with environmental factors, and physical-chemical factors explained more variation of microorganisms than nitrogen resources. These findings contribute to a comprehensive understanding of nitrogen metabolism in EFSs from a molecular micro-ecology perspective.
Collapse
Affiliation(s)
- Sihan Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Bing Geng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengjie Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhanbiao Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xue Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
36
|
Cai L, Cao MK, Chen TB, Guo HT, Zheng GD. Microbial degradation in the co-composting of pig manure and biogas residue using a recyclable cement-based synthetic amendment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 126:30-40. [PMID: 33740711 DOI: 10.1016/j.wasman.2021.02.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
This research investigated a synthetic amendment to improve composting and resource recycling of pig manure and biogas residue. We further examined whether adding a synthetic amendment impacts the microbial ecosystem in the composted materials. Three mixing ratios were used to investigate composting performance: no synthetic amendment (T0), 5% synthetic amendment (T1), and 10% synthetic amendment (T2) (T1 and T2 were measured as a wet weight ratio). There were no significant differences in the fundamental characteristics between composting products in T0 and T1. The moisture content of composting material in T0, T1, and T2 significantly decreased from a baseline of approximately 65% to 35.5%, 37.3%, and 55.9%, respectively. Meanwhile, the germination index significantly increased to 111.6%, 155.6%, and 62.3%, respectively. When an optimal proportion of synthetic amendment was added, T1 showed high degree of humification, lignocellulase activities, and effective biodegradation. Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes were the dominant bacteria, while Ascomycota and Basidiomycota were the dominant fungi in all treatment groups. Amino sugar and nucleotide sugar metabolism, glycolysis, starch, and sucrose metabolism were among the primary pathways in predicted functions. The synthetic amendment can generate a mature composting product and can be reused or recycled to conserve resources.
Collapse
Affiliation(s)
- Lu Cai
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Meng-Ke Cao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Tong-Bin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Han-Tong Guo
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Guo-Di Zheng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
37
|
Zhu P, Shen Y, Pan X, Dong B, Zhou J, Zhang W, Li X. Reducing odor emissions from feces aerobic composting: additives. RSC Adv 2021; 11:15977-15988. [PMID: 35481176 PMCID: PMC9031696 DOI: 10.1039/d1ra00355k] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/05/2021] [Indexed: 01/10/2023] Open
Abstract
Aerobic composting is a reliable technology for treating human and animal feces, and converting them into resources. Odor emissions in compost (mainly NH3 and VSCs) not only cause serious environmental problems, but also cause element loss and reduce compost quality. This review introduces recent progresses on odor mitigation in feces composting. The mechanism of odor generation, and the path of element transfer and transformation are clarified. Several strategies, mainly additives for reducing odors proven effective in the literature are proposed. The characteristics of these methods are compared, and their respective limitations are analyzed. The mechanism and characteristics of different additives are different, and the composting plant needs to be chosen according to the actual situation. The application of adsorbent and biological additives has a broad prospect in feces composting, but the existing research is not enough. In the end, some future research topics are highlighted, and further research is needed to improve odor mitigation and element retention in feces compost. Aerobic composting is a reliable technology for treating human and animal feces, and converting them into resources. The addition of additives can reduce the production of odor during the composting process.![]()
Collapse
Affiliation(s)
- Ping Zhu
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Yilin Shen
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Xusheng Pan
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University 1239 Siping Road Shanghai 200092 PR China +86-021-66137747
| | - John Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney 15 Broadway Sydney NSW 2007 Australia
| | - Weidong Zhang
- School of Petroleum and Chemical Engineering, Shenyang University of Technology 30 Guanghua Street, Hongwei District Liaoyang City Liaoning Province 111003 People's Republic of China
| | - Xiaowei Li
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 People's Republic of China
| |
Collapse
|
38
|
Pei F, Ding H, Yin Z, Ye Z, Ping W, Ge J. Evaluation of nitrogen conversion pathway during composting under amoxicillin stress: Mainly driven by core microbial community. BIORESOURCE TECHNOLOGY 2021; 325:124701. [PMID: 33493751 DOI: 10.1016/j.biortech.2021.124701] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was to explore the effects of different concentrations of amoxicillin (AMX) on nitrogen (N) conversion and bacterial community structure during aerobic composting. The results revealed that AMX led to a lower temperature and increased pH during the thermophilic phase of composting. AMX inhibited the relative abundance (RA) of Firmicutes at the initial phase but increased the RA of Actinobacteria and Bacteroidetes compared with the control treatment. The core bacterial community linked to N conversion was determined by network analysis. AMX decreased the RA of amoA, a gene related to nitrification, and increased the RAs of nirK and nosZ, which are related to denitrification. Meanwhile, AMX inhibited the activity of ammonia-oxidizing bacteria but promoted the activity of denitrifying bacteria. Therefore, the main adverse effect of AMX on compost quality is to change the microbial community structure and affect the physical and chemical properties of composting.
Collapse
Affiliation(s)
- Fangyi Pei
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Hao Ding
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Ziliang Yin
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zeming Ye
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Wenxiang Ping
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
| | - Jingping Ge
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China.
| |
Collapse
|
39
|
Wu J, Shangguan H, Fu T, Chen J, Tang J, Zeng RJ, Ye W, Zhou S. Alternating magnetic field mitigates N 2O emission during the aerobic composting of chicken manure. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124329. [PMID: 33158658 DOI: 10.1016/j.jhazmat.2020.124329] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/23/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Nitrous oxide (N2O) emission is an environmental problem related to composting. Recently, the electric field-assisted aerobic composting process has been found to be effective for enhancing compost maturity and mitigating N2O emission. However, the insertion of electrodes into the compost pile causes electrode erosion and inconvenience in practical operation. In this study, a novel alternating magnetic field-assisted aerobic composting (AMFAC) process was tested by applying an alternating magnetic field (AMF) to a conventional aerobic composting (CAC) process. The total N2O emission of the AMFAC process was reduced by 39.8% as compared with that of the CAC process. Furthermore, the results demonstrate that the AMF weakened the expressions of the amoA, narG, and nirS functional genes (the maximum reductions were 96%, 83.7%, and 95.5%, respectively), whereas it enhanced the expression of the nosZ functional gene by a maximum factor of 36.5 as compared with that in CAC. A correlation analysis revealed that the nitrification and denitrification processes for N2O emission were suppressed in AMFAC, the main source of N2O emission of which was denitrification. The findings imply that AMFAC is an effective strategy for the reduction of N2O emission during aerobic composting.
Collapse
Affiliation(s)
- Jiaxiong Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huayuan Shangguan
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tao Fu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinjie Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenyuan Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
40
|
Guo H, Gu J, Wang X, Song Z, Yu J, Lei L. Microbial mechanisms related to the effects of bamboo charcoal and bamboo vinegar on the degradation of organic matter and methane emissions during composting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116013. [PMID: 33190979 DOI: 10.1016/j.envpol.2020.116013] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/09/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
In this study, functional microbial sequencing, quantitative PCR, and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) were employed to understand the microbial mechanisms related to the effects of bamboo charcoal (BC) and bamboo vinegar (BV) on the degradation of organic matter (OM) and methane (CH4) emissions during composting. BC + BV resulted in the highest degradation of OM. BV was most effective treatment in controlling CH4 emissions and it significantly reduced the abundance of the mcrA gene. Methanobrevibacter, Methanosarcina, and Methanocorpusculum were closely related to CH4 emissions during the thermophilic composting period. PICRUSt analysis showed that BC and/or BV enhanced the metabolism associated with OM degradation and reduced CH4 metabolism. Structural equation modeling indicated that BC + BV strongly promoted the metabolic activity of microorganisms, which had a positive effect on CH4 emissions. Together these results suggest that BC + BV may be a suitable composting strategy if the aerobic conditions can be effectively improved during the thermophilic composting period.
Collapse
Affiliation(s)
- Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
41
|
Yang Y, Kumar Awasthi M, Wu L, Yan Y, Lv J. Microbial driving mechanism of biochar and bean dregs on NH 3 and N 2O emissions during composting. BIORESOURCE TECHNOLOGY 2020; 315:123829. [PMID: 32682258 DOI: 10.1016/j.biortech.2020.123829] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
In this study, the effect of biochar (BC) and bean dregs (BD) on nitrifiers and denitrifiers as well as the contributions to the NH3 and N2O emissions were investigated. Compared with the BD treatment, the maximum value of NH3 and N2O emission was decreased by 32.92% and 46.61% in the BD + BC treatment, respectively. The production of NH3 and N2O was closely associated with the abundance and structure of nitrogen functional genes. BD + BC increased the abundance of AOB amoA gene to decrease the NH3 emission. The abundance of nirS was more closely associated with N2O. The abundance of nirS in the BD + BC was lowered by 18.93% compared with the BD treatment, thereby decreasing the N2O emission after composting. Besides, the nosZ-type gene was the more functional denitrification bacterial communities to effect the N2O emissions.
Collapse
Affiliation(s)
- Yajun Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Lulu Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China
| | - Ying Yan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China.
| |
Collapse
|
42
|
Zhao Y, Li W, Chen L, Meng L, Zheng Z. Effect of enriched thermotolerant nitrifying bacteria inoculation on reducing nitrogen loss during sewage sludge composting. BIORESOURCE TECHNOLOGY 2020; 311:123461. [PMID: 32417656 DOI: 10.1016/j.biortech.2020.123461] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
In the study, enriched thermotolerant nitrifying bacteria (TNB) was acquired from compost samples by domesticated cultivation under high temperature, and was inoculated into sewage sludge composting. The effect of inoculation on physical-chemical parameters, nitrogen loss and bacterial population involved in nitrogen transformation were determined. The results revealed that inoculation with enriched TNB improved the compost quality in terms of temperature, pH, organic matter degradation, C/N ratio and germination index. Compared to the control treatment, inoculation also decreased 29.7% of ammonia emission and reduced nitrogen loss by converting more NH4+-N into NO3--N in composting. In addition, inoculation increased the population of nitrifying bacteria and was not capable of inhibiting the growth of indigenous ammonifying bacteria as well. The results suggested that inoculation with enriched TNB was a feasible way to reduce nitrogen loss and promote maturity in sewage sludge composting.
Collapse
Affiliation(s)
- Yi Zhao
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weiguang Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Li Chen
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liqiang Meng
- Institute of Microbiology, Heilongjiang Academy of Science, Harbin 150010, China
| | - Zejia Zheng
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
43
|
Wu J, Wei Z, Zhu Z, Zhao Y, Jia L, Lv P. Humus formation driven by ammonia-oxidizing bacteria during mixed materials composting. BIORESOURCE TECHNOLOGY 2020; 311:123500. [PMID: 32422555 DOI: 10.1016/j.biortech.2020.123500] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to identify the effects of ammonia-oxidizing bacteria (AOB) inoculation on humus formation. Both nitrogen conversion and humus formation were considered as the main processes, because NH4+-N-like compounds not only substrates of nitrification, but also precursors of humus. During composting, the inoculation of AOB indeed increased humus concentration by fixing NH3 emission as NH4+-N, but it has also promoted nitrogen transformation. While the main reason was the changed bacteria community structure caused by inoculating AOB. Moreover, the relationship between bacteria and nitrogen transformation and humus formation has become closer. And bacteria were more likely to synthesize humus. Therefore, it is conjectured that AOB inoculation could not only provide NH4+-N for humus formation, but also enhance the anabolism of microorganisms. This suppose has been confirmed by structural equation model in this study. Therefore, AOB inoculation has a driving effect on promoting humus formation.
Collapse
Affiliation(s)
- Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zechen Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Liming Jia
- Heilongjiang Province Environmental Monitoring Centre, Harbin 150056, China
| | - Pin Lv
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150030, China
| |
Collapse
|
44
|
Wang X, Chen T, Zheng G. Perlite as the partial substitute for organic bulking agent during sewage sludge composting. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1517-1529. [PMID: 31214844 DOI: 10.1007/s10653-019-00353-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/05/2019] [Indexed: 05/09/2023]
Abstract
Composting is an efficient and cost-effective technology for sewage sludge treatment, and bulking agents are essential in sewage sludge composting. In this study, perlite was chosen as inorganic bulking agent to partially substitute for the organic bulking agent. Variations in the temperature, bulk density, moisture content, pH, electrical conductivity, organic carbon, nitrogen, phosphorus and potassium were detected during sewage sludge composting. The treatment with a mass ratio of spent mushroom substrate to perlite at 3:1 exhibited the highest pile temperature and the best effect on reducing bulk density and moisture content. In addition, Fourier transform infrared spectra showed that perlite promotes the degradation of organic matter during the composting process, and the germination index showed that the compost from all treatments was safe for agricultural application. When the mass ratios of spent mushroom substrate and perlite at 3:1 and 2:2 were chosen as bulking agents, the sewage sludge compost product could be used to produce plant cultivation substrate, and economic benefits could be obtained from sewage sludge composting according to comprehensive cost analysis.
Collapse
Affiliation(s)
- Xiankai Wang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
45
|
Awasthi MK, Duan Y, Awasthi SK, Liu T, Zhang Z, Kim SH, Pandey A. Effect of biochar on emission, maturity and bacterial dynamics during sheep manure compositing. RENEWABLE ENERGY 2020; 152:421-429. [DOI: 10.1016/j.renene.2020.01.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
46
|
Guo H, Gu J, Wang X, Yu J, Nasir M, Zhang K, Sun W. Microbial driven reduction of N 2O and NH 3 emissions during composting: Effects of bamboo charcoal and bamboo vinegar. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:121292. [PMID: 31810805 DOI: 10.1016/j.jhazmat.2019.121292] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/31/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
In this study, we systematically analyzed the microbial-driven effects of bamboo charcoal (BC) and bamboo vinegar (BV) on reducing NH3 and N2O emissions during aerobic composting. The results showed that BC and BV improved the nitrogen conversion and compost quality, but the combined BC + BV treatment obtained the best improvements. The BC, BV, and BC + BV treatments reduced the NH3 emissions by 14.35%, 17.90%, and 29.83%, respectively, and the N2O emissions by 44.83%, 55.96%, and 74.53%. BC and BV reduced the NH3 and N2O emissions during composting by controlling ammonia oxidation, where napA, nirK, and nosZ served as useful indicators of the N2O emissions from compost, especially the nirK gene. The dominant nitrifying and denitrifying bacteria belonged to Proteobacteria, and the changes in environmental factors during composting significantly affected the succession of the nitrifying and denitrifying bacterial communities. Nitrosomonas was a key nitrifying bacterial genus in the mesophilic composting period, and BC and BV may have reduced the NH3 emissions by enhancing its conversion to NH4+-N by Nitrosomonas. In addition, norank_p__environmental_samples, unclassified_k__norank_d__Bacteria, and unclassified_p__Proteobacteria were jointly responsible for driving the production of N2O during the compost maturity stage.
Collapse
Affiliation(s)
- Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mubasher Nasir
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaiyu Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
47
|
Chen Z, Wu Y, Wen Q, Ni H, Chai C. Effects of multiple antibiotics on greenhouse gas and ammonia emissions during swine manure composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7289-7298. [PMID: 31884542 DOI: 10.1007/s11356-019-07269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Antibiotics are commonly used in intensive farming, leading to multiple antibiotic residue in livestock waste. However, the effects of multiple antibiotics on the emissions of greenhouse gas and ammonia remain indistinct. This paper selects sulfamethoxazole and norfloxacin to represent two different types of antibiotics to explore their effects on gaseous emissions. Four treatments including CK (control), SMZ (spiked with 5 mg kg-1 DW sulfamethoxazole), NOR (spiked with 5 mg kg-1 DW norfloxacin), and SN (spiked with 5 mg kg-1 DW sulfamethoxazole and 5 mg kg-1 DW norfloxacin) were composted for 65 days. Coexistence of sulfamethoxazole and norfloxacin facilitated the biodegradation of organic carbon, and significantly (p < 0.05) increased the cumulative CO2 emission by 31.9%. The cumulative CH4 emissions were decreased by 6.19%, 23.7%, and 27.6% for SMZ, NOR, and SN, respectively. The total NH3 volatilization in SMZ and NOR rose to 1020 and 1190 mg kg-1 DW, respectively. The individual existence of sulfamethoxazole significantly (p < 0.05) ascended the N2O emission rate in the first 7 days due to the increase of NO2--N content. In addition, coexistence of sulfamethoxazole and norfloxacin notably dropped the total greenhouse gas emission (subtracting CO2) by 15.5%.
Collapse
Affiliation(s)
- Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Yiqi Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China.
| | - Hongwei Ni
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin, 150040, Heilongjiang, China
| | - Chunrong Chai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin, 150040, Heilongjiang, China
| |
Collapse
|
48
|
Characterization of the Gaseous and Odour Emissions from the Composting of Conventional Sewage Sludge. ATMOSPHERE 2020. [DOI: 10.3390/atmos11020211] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Many different alternatives exist to manage and treat sewage sludge, all with the common drawback of causing environmental and odour impacts. The main objective of this work is to present a full inventory of the gaseous and odorous emissions generated during the bench-scale composting of conventional sewage sludge, aiming at assessing the process performance and providing global valuable information of the different gaseous emission patterns and emission factors found for greenhouse gases (GHG) and odorant pollutants during the conventional sewage sludge composting process. The main process parameters evaluated were the temperature of the material, specific airflow, average oxygen uptake rate (OUR), and final dynamic respiration index (DRI), resulting in a proper performance of the sewage sludge composting process and obtaining the expected final product. The obtained material was properly stabilized, presenting a final DRI of 1.2 ± 0.2 g O2·h−1·kg−1 Volatile Solids (VS). GHGs emission factor, in terms of kg CO2eq·Mg−1 dry matter of sewage sludge (DM–SS), was found to be 2.30 × 102. On the other hand, the sewage sludge composting odour emission factor (OEF) was 2.68 × 107ou·Mg−1 DM–SS. Finally, the most abundant volatile organic compounds (VOC) species found in the composting gaseous emissions were terpenes, sulphur compounds, ketones, and aromatic hydrocarbons, whereas the major odour contributors identified were dimethyldisulphide, eucalyptol, and α-pinene.
Collapse
|
49
|
Yin Y, Yang C, Gu J, Wang X, Zheng W, Wang R, Wang X, Chen R. Roles of nxrA-like oxidizers and nirS-like reducers in nitrite conversion during swine manure composting. BIORESOURCE TECHNOLOGY 2020; 297:122426. [PMID: 31776106 DOI: 10.1016/j.biortech.2019.122426] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 05/22/2023]
Abstract
Nitrite has a key role in nitrogen conversion during composting. In this study, the dynamic changes in the NO2- contents, abundances of nirS and nxrA, and the bacteria that harbored these genes were determined during composting. NO2- accumulated during the initial composting stage. The nirS gene was abundant throughout composting, whereas the nxrA gene was only abundant in the late composting phases. Ralstonia sp. and Thauera sp. were the dominant denitrifiers that harbored nirS, and Nitrobacter winogradskyi Nb-255 was the dominant nitrifier that harbored nxrA. Structural equation modeling showed that NO2- was mainly reduced by nirS in the early phases, and oxidized by nxrA in the late phases, but especially in the maturity phase. Network analysis showed that the dominant bacteria harboring nirS and nxrA were hubs in the modules related to the reduction and oxidation of NO2-, and they had competitive relationships during the cooling and maturity phases.
Collapse
Affiliation(s)
- Yanan Yin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Chao Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Jie Gu
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Xiaojuan Wang
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Wei Zheng
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Ru Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Xiaochang Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
50
|
Tang J, Li X, Cui P, Lin J, Jianxiong Zeng R, Lin H, Zhou S. Nitrification plays a key role in N 2O emission in electric-field assisted aerobic composting. BIORESOURCE TECHNOLOGY 2020; 297:122470. [PMID: 31791916 DOI: 10.1016/j.biortech.2019.122470] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Nitrous oxide (N2O) emission is a serious environmental problem in composting. Previous studies have indicated that electric field assistance results in lower N2O emissions in aerobic composting; however, the exact mechanisms involved in electric-field assisted aerobic composting (EAAC) are not clear. In this study, the biological N transformation processes and the N-associated genes were investigated. The results demonstrated that electric field application inhibited nitrification, weakened the nitrifying functional genes (the hao and nxrA genes declined maximally by 86% and 86.8%, respectively), and increased the N2O consumption-related gene (nosZ) by a maximum factor of 2.76 compared with that in CAC. The correlation analysis demonstrated that nitrification was the main source of N2O emission in EAAC. The findings imply that EAAC is a promising process for mitigating N2O emission at the source during aerobic composting.
Collapse
Affiliation(s)
- Jiahuan Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiang Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Cui
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayang Lin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hao Lin
- School of Ecology and Resource Engineering, Wuyi University, Wuyishan City, Fujian 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|