1
|
Guadalupe GA, Grandez-Yoplac DE, García L, Doménech E. A Comprehensive Bibliometric Study in the Context of Chemical Hazards in Coffee. TOXICS 2024; 12:526. [PMID: 39058178 PMCID: PMC11281111 DOI: 10.3390/toxics12070526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
The research aimed to carefully review the chemical hazards linked to the coffee production chain to analyse the risks and opportunities for consumers and the environment, as well as identify potential knowledge gaps. The Scopus database was consulted from 1949 to April 2024 to conduct a bibliometric analysis. As a result, 680 articles were analysed. Results indicated a significant increase in research activity since 2015. China, Brazil, and the USA were the leading countries in scientific production and collaborations. The most prolific journals in this field were Chemosphere, Science of the Total Environment, Food Chemistry, Journal of Agricultural and Food Chemistry, and Journal of Environmental Management, all of which are in the first quartile. The word analysis revealed two main themes: the first focuses on the chemical hazards of coffee and their impact on health, while the second explores the waste generated during coffee production and its potential for reuse. The topics covered in the research include the composition of coffee, associated chemical hazards, possible health risks, and ways to reuse waste for environmental protection. Future research should concentrate on optimising techniques and processes to ensure quality, safety, and sustainability.
Collapse
Affiliation(s)
- Grobert A. Guadalupe
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru;
- Instituto Universitario de Ingeniería de Alimentos Food-UPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Dorila E. Grandez-Yoplac
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru;
| | - Ligia García
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, 342 Higos Urco, Chachapoyas 01001, Peru;
| | - Eva Doménech
- Instituto Universitario de Ingeniería de Alimentos Food-UPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
2
|
Wang C, Jia Y, Luo J, Chen B, Pan C. Characterization of thermostable recombinant laccase F from Trametes hirsuta and its application in delignification of rice straw. BIORESOURCE TECHNOLOGY 2024; 395:130382. [PMID: 38281550 DOI: 10.1016/j.biortech.2024.130382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Affiliation(s)
- Chengpeng Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yitong Jia
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Jingyi Luo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; Jiande Forestry Bureau, Hangzhou 311699, China
| | - Bosheng Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Chengyuan Pan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
3
|
Rodrigues Reis CE, Milessi TS, Ramos MDN, Singh AK, Mohanakrishna G, Aminabhavi TM, Kumar PS, Chandel AK. Lignocellulosic biomass-based glycoconjugates for diverse biotechnological applications. Biotechnol Adv 2023; 68:108209. [PMID: 37467868 DOI: 10.1016/j.biotechadv.2023.108209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/05/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023]
Abstract
Glycoconjugates are the ubiquitous components of mammalian cells, mainly synthesized by covalent bonds of carbohydrates to other biomolecules such as proteins and lipids, with a wide range of potential applications in novel vaccines, therapeutic peptides and antibodies (Ab). Considering the emerging developments in glycoscience, renewable production of glycoconjugates is of importance and lignocellulosic biomass (LCB) is a potential source of carbohydrates to produce synthetic glycoconjugates in a sustainable pathway. In this review, recent advances in glycobiology aiming on glycoconjugates production is presented together with the recent and cutting-edge advances in the therapeutic properties and application of glycoconjugates, including therapeutic glycoproteins, glycosaminoglycans (GAGs), and nutraceuticals, emphasizing the integral role of glycosylation in their function and efficacy. Special emphasis is given towards the potential exploration of carbon neutral feedstocks, in which LCB has an emerging role. Techniques for extraction and recovery of mono- and oligosaccharides from LCB are critically discussed and influence of the heterogeneous nature of the feedstocks and different methods for recovery of these sugars in the development of the customized glycoconjugates is explored. Although reports on the use of LCB for the production of glycoconjugates are scarce, this review sets clear that the potential of LCB as a source for the production of valuable glycoconjugates cannot be underestimated and encourages that future research should focus on refining the existing methodologies and exploring new approaches to fully realize the potential of LCB in glycoconjugate production.
Collapse
Affiliation(s)
| | - Thais Suzane Milessi
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP, Brazil; Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP, Brazil
| | - Márcio Daniel Nicodemos Ramos
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP, Brazil
| | - Akhilesh Kumar Singh
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, Bihar, India
| | - Gunda Mohanakrishna
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo 12602-810, Brazil.
| |
Collapse
|
4
|
Bao C, Liu Y, Li F, Cao H, Dong B, Cao Y. Expression and Characterization of Laccase Lac1 from Coriolopsis trogii Strain Mafic-2001 in Pichia pastoris and Its Degradation of Lignin. Appl Biochem Biotechnol 2023; 195:6150-6167. [PMID: 36847985 DOI: 10.1007/s12010-023-04390-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
The laccase gene (Lac1) was cloned from Coriolopsis trogii strain Mafic-2001. Full-length sequence of Lac1 containing 11 exons and 10 introns is composed of 2140 nucleotides (nts). mRNA of Lac1 encoded for a protein of 517 aa. Nucleotide sequence of the laccase was optimized and expressed in Pichia pastoris X-33. SDS-PAGE analysis showed that the molecular weight of the purified recombinant laccase rLac1 was about 70 kDa. The optimum temperature and pH of rLac1 were 40 ℃ and 3.0, respectively. rLac1 showed high residual activity (90%) in the solutions after 1 h incubation at the pH ranging from 2.5 to 8.0. rLac1 maintained over 60% of laccase activity at the temperatures ranging from 20 to 60 °C, and kept higher than 50% of its activity at 40 °C for 2 h. The activity of rLac1 was promoted by Cu2+ and inhibited by Fe2+. Under optimal conditions, lignin degradation rates of rLac1 on the substrates of rice straw, corn stover, and palm kernel cake were 50.24%, 55.49%, and 24.43% (the lignin contents of substrates untreated with rLac1 were 100%), respectively. Treated with rLac1, the structures of agricultural residues (rice straw, corn stover, and palm kernel cake) were obviously loosened which was reflected by the analysis of scanning electron microscopy and Fourier transform infrared spectroscopy. Based on the specific activity of rLac1 on the degradation of lignin, rLac1 from Coriolopsis trogii strain Mafic-2001 has the potential for in-depth utilization of agricultural residues.
Collapse
Affiliation(s)
- Chengling Bao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yajing Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Feiyu Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Heng Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
5
|
Wang D, Tian J, Guan J, Ding Y, Wang ML, Tonnis B, Liu J, Huang Q. Valorization of sugarcane bagasse for sugar extraction and residue as an adsorbent for pollutant removal. Front Bioeng Biotechnol 2022; 10:893941. [PMID: 36091428 PMCID: PMC9449146 DOI: 10.3389/fbioe.2022.893941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/08/2022] [Indexed: 12/07/2022] Open
Abstract
Following juice crushing for sugar or bioethanol production from sugarcane, bagasse (SCB) is generated as the main lignocellulosic by-product. This study utilized SCB generated by a hydraulic press as feedstock to evaluate sugar extraction as well as adsorption potential. Total soluble sugar (sucrose, glucose, and fructose) of 0.4 g/g SCB was recovered with H2O extraction in this case. Insoluble sugar, that is, cellulose in SCB, was further hydrolyzed into glucose (2%–31%) with cellulase enzyme, generating a new bagasse residue (SCBE). Persulfate pretreatment of SCB slightly enhanced saccharification. Both SCB and SCBE showed great potential as adsorbents with 98% of methylene blue (MB) removed by SCB or SCBE and 75% of Cu2+ by SCBE and 80% by SCB in 60 min. The maximum adsorption amount (qm) was 85.8 mg/g (MB by SCB), 77.5 mg/g (MB by SCBE), 3.4 mg/g (Cu2+ by SCB), and 1.2 mg/g (Cu2+ by SCBE). The thermodynamics indicated that the adsorption process is spontaneous, endothermic, and more random in nature. The experimental results offer an alternative to better reutilize SCB.
Collapse
Affiliation(s)
- Duanhao Wang
- College of Biology and Food Engineering, Huanghuai University, Zhumadian, China
| | - Jiahua Tian
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Jian Guan
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Yiwen Ding
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Ming Li Wang
- USDA-ARS, Plant Genetic Resources Conservation Unit, Griffin, GA, United States
| | - Brandon Tonnis
- USDA-ARS, Plant Genetic Resources Conservation Unit, Griffin, GA, United States
| | - Jiayang Liu
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, China
- *Correspondence: Jiayang Liu, ; Qingguo Huang,
| | - Qingguo Huang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, United States
- *Correspondence: Jiayang Liu, ; Qingguo Huang,
| |
Collapse
|
6
|
Kumar VP, Sridhar M, Rao RG. Biological depolymerization of lignin using laccase harvested from the autochthonous fungus Schizophyllum commune employing various production methods and its efficacy in augmenting in vitro digestibility in ruminants. Sci Rep 2022; 12:11170. [PMID: 35778516 PMCID: PMC9249777 DOI: 10.1038/s41598-022-15211-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/20/2022] [Indexed: 11/08/2022] Open
Abstract
A laccase-producing hyper performer, Schizophyllum commune, a white-rot fungus, was evaluated for its ability to selectively degrade lignin of diverse crop residues in vitro. Relative analysis of crop residue treatment using laccase obtained from immobilized cells demonstrated degradation of 30-40% in finger millet straw and sorghum stover, 27-32% in paddy straw, 21% in wheat straw, and 26% in maize straw, while 20% lignin degradation was observed when purified and recombinant laccase was used. Further investigations into in vitro dry matter digestibility studies gave promising results recording digestibility of 54-59% in finger millet straw 33-36% in paddy straw and wheat straw, 16% in maize straw for laccase obtained from cell immobilization method, whereas 14% digestibility was observed when purified and recombinant laccase was used. Sorghum stover recorded digestibility of 13-15% across all straws treated with laccase. The results obtained elucidated the positive influence of laccase treatment on lignin degradation and in vitro dry matter digestibility. The present research gave encouraging figures confirming the production of laccase using the cell immobilization method to be an efficient production method commensurate with purified and recombinant laccase under conditions of submerged cultivation, proclaiming a cost-effective, environmentally safe green technology for effectual lignin depolymerization.
Collapse
Affiliation(s)
- Vidya Pradeep Kumar
- National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, Karnataka, 560 030, India
| | - Manpal Sridhar
- National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, Karnataka, 560 030, India.
| | - Ramya Gopala Rao
- National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, Karnataka, 560 030, India
| |
Collapse
|
7
|
Zhan J, Sun H, Dai Z, Zhang Y, Yang X. Loops constructing the substrate-binding site controlled the catalytic efficiency of Thermus thermophilus SG0.5JP17-16 laccase. Biochimie 2022; 200:60-67. [DOI: 10.1016/j.biochi.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/26/2022] [Accepted: 05/19/2022] [Indexed: 11/02/2022]
|
8
|
Tavares MP, Dutra TR, Morgan T, Ventorim RZ, de Souza Ladeira Ázar RI, Varela EM, Ferreira RC, de Oliveira Mendes TA, de Rezende ST, Guimarães VM. Multicopper oxidase enzymes from Chrysoporthe cubensis improve the saccharification yield of sugarcane bagasse. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Varriale S, Delorme AE, Andanson JM, Devemy J, Malfreyt P, Verney V, Pezzella C. Enhancing the Thermostability of Engineered Laccases in Aqueous Betaine-Based Natural Deep Eutectic Solvents. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:572-581. [PMID: 35036179 PMCID: PMC8753991 DOI: 10.1021/acssuschemeng.1c07104] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/16/2021] [Indexed: 06/02/2023]
Abstract
In recent years, natural deep eutectic solvents (NADESs) have gained increasing attention as promising nontoxic solvents for biotechnological applications, due to their compatibility with enzymes and ability to enhance their activity. Betaine-based NADESs at a concentration of 25 wt % in a buffered aqueous solution were used as media to inhibit thermal inactivation of POXA1b laccase and its five variants when incubated at 70 and 90 °C. All the tested laccases showed higher residual activity when incubated in NADES solutions, with a further enhancement achieved also for the most thermostable variant. Furthermore, the residual activity of laccases in the presence of NADESs showed a clear advantage over the use of NADESs' individual components. Molecular docking simulations were performed to understand the role of NADESs in the stabilization of laccases toward thermal inactivation, evaluating the interaction between each enzyme and NADESs' individual components. A correlation within the binding energies between laccases and NADES components and the stabilization of the enzymes was demonstrated. These findings establish the possibility of preincubating enzymes in NADESs as a facile and cost-effective solution to inhibit thermal inactivation of enzymes when exposed to high temperatures. This computer-aided approach can assist the tailoring of NADES composition for every enzyme of interest.
Collapse
Affiliation(s)
| | - Astrid E. Delorme
- CNRS,
SIGMA Clermont, ICCF, Université
Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Jean-Michel Andanson
- CNRS,
SIGMA Clermont, ICCF, Université
Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Julien Devemy
- CNRS,
SIGMA Clermont, ICCF, Université
Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Patrice Malfreyt
- CNRS,
SIGMA Clermont, ICCF, Université
Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Vincent Verney
- CNRS,
SIGMA Clermont, ICCF, Université
Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Cinzia Pezzella
- Biopox
srl, Viale Maria Bakunin
12, Naples 80125, Italy
- Department
of Agricultural Sciences, University of
Naples “Federico II”, Via Università, 100 Portici 80055, Italy
| |
Collapse
|
10
|
Brugnari T, Braga DM, Dos Santos CSA, Torres BHC, Modkovski TA, Haminiuk CWI, Maciel GM. Laccases as green and versatile biocatalysts: from lab to enzyme market-an overview. BIORESOUR BIOPROCESS 2021; 8:131. [PMID: 38650295 PMCID: PMC10991308 DOI: 10.1186/s40643-021-00484-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
Laccases are multi-copper oxidase enzymes that catalyze the oxidation of different compounds (phenolics and non-phenolics). The scientific literature on laccases is quite extensive, including many basic and applied research about the structure, functions, mechanism of action and a variety of biotechnological applications of these versatile enzymes. Laccases can be used in various industries/sectors, from the environmental field to the cosmetics industry, including food processing and the textile industry (dyes biodegradation and synthesis). Known as eco-friendly or green enzymes, the application of laccases in biocatalytic processes represents a promising sustainable alternative to conventional methods. Due to the advantages granted by enzyme immobilization, publications on immobilized laccases increased substantially in recent years. Many patents related to the use of laccases are available, however, the real industrial or environmental use of laccases is still challenged by cost-benefit, especially concerning the feasibility of producing this enzyme on a large scale. Although this is a compelling point and the enzyme market is heated, articles on the production and application of laccases usually neglect the economic assessment of the processes. In this review, we present a description of laccases structure and mechanisms of action including the different sources (fungi, bacteria, and plants) for laccases production and tools for laccases evolution and prediction of potential substrates. In addition, we both compare approaches for scaling-up processes with an emphasis on cost reduction and productivity and critically review several immobilization methods for laccases. Following the critical view on production and immobilization, we provide a set of applications for free and immobilized laccases based on articles published within the last five years and patents which may guide future strategies for laccase use and commercialization.
Collapse
Affiliation(s)
- Tatiane Brugnari
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil.
| | - Dayane Moreira Braga
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Camila Souza Almeida Dos Santos
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Bruno Henrique Czelusniak Torres
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Tatiani Andressa Modkovski
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Charles Windson Isidoro Haminiuk
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Giselle Maria Maciel
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| |
Collapse
|
11
|
Loi M, Glazunova O, Fedorova T, Logrieco AF, Mulè G. Fungal Laccases: The Forefront of Enzymes for Sustainability. J Fungi (Basel) 2021; 7:1048. [PMID: 34947030 PMCID: PMC8708107 DOI: 10.3390/jof7121048] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 01/22/2023] Open
Abstract
Enzymatic catalysis is one of the main pillars of sustainability for industrial production. Enzyme application allows minimization of the use of toxic solvents and to valorize the agro-industrial residues through reuse. In addition, they are safe and energy efficient. Nonetheless, their use in biotechnological processes is still hindered by the cost, stability, and low rate of recycling and reuse. Among the many industrial enzymes, fungal laccases (LCs) are perfect candidates to serve as a biotechnological tool as they are outstanding, versatile catalytic oxidants, only requiring molecular oxygen to function. LCs are able to degrade phenolic components of lignin, allowing them to efficiently reuse the lignocellulosic biomass for the production of enzymes, bioactive compounds, or clean energy, while minimizing the use of chemicals. Therefore, this review aims to give an overview of fungal LC, a promising green and sustainable enzyme, its mechanism of action, advantages, disadvantages, and solutions for its use as a tool to reduce the environmental and economic impact of industrial processes with a particular insight on the reuse of agro-wastes.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy; (M.L.); (A.F.L.)
| | - Olga Glazunova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.G.); (T.F.)
| | - Tatyana Fedorova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.G.); (T.F.)
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy; (M.L.); (A.F.L.)
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy; (M.L.); (A.F.L.)
| |
Collapse
|
12
|
Liu H, Kumar V, Jia L, Sarsaiya S, Kumar D, Juneja A, Zhang Z, Sindhu R, Binod P, Bhatia SK, Awasthi MK. Biopolymer poly-hydroxyalkanoates (PHA) production from apple industrial waste residues: A review. CHEMOSPHERE 2021; 284:131427. [PMID: 34323796 DOI: 10.1016/j.chemosphere.2021.131427] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Apple pomace, the residue which is left out after processing of apple serves as a potential carbon source for the production of biopolymer, PHA (poly-hydroxyalkanoates). It is rich in carbohydrates, fibers and polyphenols. Utilization of these waste resources has dual societal benefit-waste management and conversion of waste to an eco-friendly biopolymer. This will lower the overall economics of the process. A major limitation for the commercialization of biopolymer in comparison with petroleum derived polymer is the high cost. This article gives an overview of valorization of apple pomace for the production of biopolymer, various strategies adopted, limitations as well as future perspectives.
Collapse
Affiliation(s)
- Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology(IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Linjing Jia
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, 402 Walters Hall, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, 402 Walters Hall, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Ankita Juneja
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL, 61801, USA
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
13
|
Malhotra M, Suman SK. Laccase-mediated delignification and detoxification of lignocellulosic biomass: removing obstacles in energy generation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58929-58944. [PMID: 33712950 DOI: 10.1007/s11356-021-13283-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The rising global population and worldwide industrialization have led to unprecedented energy demand that is causing fast depletion of fossil reserves. This has led to search for alternative energy sources that are renewable and environment friendly. Use of lignocellulosic biomass for energy generation is considered a promising approach as it does not compete with food supply. However, the lignin component of the biomass acts as a natural barrier that prevents its efficient utilization. In order to remove the lignin and increase the amount of fermentable sugars, the lignocellulosic biomass is pretreated using physical and chemical methods which are costly and hazardous for environment. Moreover, during the traditional pretreatment process, numerous inhibitory compounds are generated that adversely affect the growth of fermentative microbes. Alternatively, biological methods that use microbes and their enzymes disrupt lignin polymers and increase the accessibility of the carbohydrates for the sugar generation. Microbial laccases have been considered as an efficient biocatalyst for delignification and detoxification offering a green initiative for energy generation process. The present review aims to bring together recent studies in bioenergy generation using laccase biocatalyst in the pretreatment processes. The work provides an overview of the sustainable and eco-friendly approach of biological delignification and detoxification through whole-cell and enzymatic methods, use of laccase-mediator system, and immobilized laccases for this purpose. It also summarizes the advantages, associated challenges, and potential prospects to overcome the limitations.
Collapse
Affiliation(s)
- Manisha Malhotra
- CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, 248005, India
| | - Sunil Kumar Suman
- CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, 248005, India.
| |
Collapse
|
14
|
Cheng CM, Patel AK, Singhania RR, Tsai CH, Chen SY, Chen CW, Dong CD. Heterologous expression of bacterial CotA-laccase, characterization and its application for biodegradation of malachite green. BIORESOURCE TECHNOLOGY 2021; 340:125708. [PMID: 34391187 DOI: 10.1016/j.biortech.2021.125708] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Malachite green (MG) is used as fungicide/parasiticide in aquaculture, its persistence is detrimental as it exhibits carcinogenic effects to aquatic organisms. Bacterial laccase evaluated as the best enzyme at extreme condition for aquatic MG removal. Study aims to increase laccase concentration, CotA-laccase from Bacillus subtilis was cloned and overexpressed in Escherichia coli. Optimal catalysis for purified CotA-laccase were at pH 5.0, 60 °C, and 1 mM of (2,2-azino-di-[3-ethylbenzothiazoline-sulphonate-(6)]) with Km and Kcat 0.087 mM and 37.64 S-1 respectively. MG biodegradation by CotA-laccase in clam and tilapia pond wastewaters and cytotoxic effect of biodegraded products in grouper fin-1 cells were determined. MG degradation by CotA-laccase was equally efficient, exhibiting upto 90-94% decolorization at freshwater and saline conditions and treated solution was non-toxic to GF-1 cells. Thus, recombinant-CotA-laccase could be an environmentally-friendly enzyme for aquaculture to remove MG, thereby effective to reduce its accumulation in aquatic organisms and ensuring safe aquaculture products.
Collapse
Affiliation(s)
- Chiu-Min Cheng
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Taiwan
| | - Cheng-Hsian Tsai
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Taiwan
| | - Shen-Yi Chen
- Department of Safety, Health, and Environmental Engineering, National Kaohsiung University of Science and Technology, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Taiwan
| | - Cheng Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Taiwan.
| |
Collapse
|
15
|
Edoamodu CE, Nwodo UU. Marine sediment derived bacteria Enterobacter asburiae ES1 and Enterobacter sp. Kamsi produce laccase with high dephenolisation potentials. Prep Biochem Biotechnol 2021; 52:748-761. [PMID: 34689726 DOI: 10.1080/10826068.2021.1992781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Purified laccases from bacterial species isolated from marine sediment were applied to degrade Bisphenol A (BPA). The Bacterial species were isolated from marine water sediments sampled from Cove Rock and Bonza Bay beach of the Eastern Cape Province, South Africa was tested for laccase activity on varied phenolic plates. The two most promising strains, Enterobacter asburiae ES1 and Enterobacter sp. Kamsi was subjected to extracellular laccase production and were identified using molecular methods. Both extracted bacterial laccases showed an affinity for ABTS and PFC substrates and were purified to homogeneity by ammonium sulfate precipitation, anion exchange, and size exclusion chromatography. A specific laccase activity of 231.67 and 218.15 U/mg of protein and a molecular weight of 50 and 55 kDa was obtained from the purified ES1 and Kamsi laccases. Laccase activity was optimum at pH8 and 5 and at 80 °C and 60 °C for ES1 and Kamsi laccases, and they manifested 71.7% and 65.8% BPA decolorizing effects. The optimized treatment condition applied showed maximum BPA removal effects of 85% and 86% at pH7 and 6, while 78% and 79% was degraded at 70 °C and 80 °C while at 250 µL enzyme volume, BPA was actively degraded to 85%, and 75% removal effect showed by ES1 and Kamsi laccases. The molecular identification of the pure colonies using 16S rRNA showed the isolate belonged to the class of gammaproteobacterial. Their nucleotide sequence has been deposited in NCBI with the accession number MN686602 and MN686603. Conclusively, marine habitat serves as a reservoir for active bacterial laccase producers suitable for bioprocess application.
Collapse
Affiliation(s)
- Chiedu E Edoamodu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
16
|
Backes E, Kato CG, Corrêa RCG, Peralta Muniz Moreira RDF, Peralta RA, Barros L, Ferreira IC, Zanin GM, Bracht A, Peralta RM. Laccases in food processing: Current status, bottlenecks and perspectives. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
de Freitas EN, Alnoch RC, Contato AG, Nogueira KMV, Crevelin EJ, de Moraes LAB, Silva RN, Martínez CA, Polizeli MDLTM. Enzymatic Pretreatment with Laccases from Lentinus sajor-caju Induces Structural Modification in Lignin and Enhances the Digestibility of Tropical Forage Grass ( Panicum maximum) Grown under Future Climate Conditions. Int J Mol Sci 2021; 22:ijms22179445. [PMID: 34502353 PMCID: PMC8431176 DOI: 10.3390/ijms22179445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/25/2023] Open
Abstract
Since laccase acts specifically in lignin, the major contributor to biomass recalcitrance, this biocatalyst represents an important alternative to the pretreatment of lignocellulosic biomass. Therefore, this study investigates the laccase pretreatment and climate change effects on the hydrolytic performance of Panicum maximum. Through a Trop-T-FACE system, P. maximum grew under current (Control (C)) and future climate conditions: elevated temperature (2 °C more than the ambient canopy temperature) combined with elevated atmospheric CO2 concentration(600 μmol mol−1), name as eT+eC. Pretreatment using a laccase-rich crude extract from Lentinus sajor caju was optimized through statistical strategies, resulting in an increase in the sugar yield of P. maximum biomass (up to 57%) comparing to non-treated biomass and enabling hydrolysis at higher solid loading, achieving up to 26 g L−1. These increments are related to lignin removal (up to 46%) and lignin hydrophilization catalyzed by laccase. Results from SEM, CLSM, FTIR, and GC-MS supported the laccase-catalyzed lignin removal. Moreover, laccase mitigates climate effects, and no significant differences in hydrolytic potential were found between C and eT+eC groups. This study shows that crude laccase pretreatment is a potential and sustainable method for biorefinery solutions and helped establish P. maximum as a promising energy crop.
Collapse
Affiliation(s)
- Emanuelle Neiverth de Freitas
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil; (E.N.d.F.); (A.G.C.); (K.M.V.N.); (R.N.S.)
| | - Robson Carlos Alnoch
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14050-901, Brazil; (R.C.A.); (C.A.M.)
| | - Alex Graça Contato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil; (E.N.d.F.); (A.G.C.); (K.M.V.N.); (R.N.S.)
| | - Karoline Maria V. Nogueira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil; (E.N.d.F.); (A.G.C.); (K.M.V.N.); (R.N.S.)
| | - Eduardo José Crevelin
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14050-901, Brazil; (E.J.C.); (L.A.B.d.M.)
| | - Luiz Alberto Beraldo de Moraes
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14050-901, Brazil; (E.J.C.); (L.A.B.d.M.)
| | - Roberto Nascimento Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil; (E.N.d.F.); (A.G.C.); (K.M.V.N.); (R.N.S.)
| | - Carlos Alberto Martínez
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14050-901, Brazil; (R.C.A.); (C.A.M.)
| | - Maria de Lourdes T. M. Polizeli
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil; (E.N.d.F.); (A.G.C.); (K.M.V.N.); (R.N.S.)
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14050-901, Brazil; (R.C.A.); (C.A.M.)
- Correspondence:
| |
Collapse
|
18
|
Pennacchio A, Pitocchi R, Varese GC, Giardina P, Piscitelli A. Trichoderma harzianum cerato-platanin enhances hydrolysis of lignocellulosic materials. Microb Biotechnol 2021; 14:1699-1706. [PMID: 34107174 PMCID: PMC8313248 DOI: 10.1111/1751-7915.13836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/03/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022] Open
Abstract
Considering its worldwide abundance, cellulose can be a suitable candidate to replace the fossil oil-based materials, even if its potential is still untapped, due to some scientific and technical gaps. This work offers new possibilities demonstrating for the first time the ability of a cerato-platanin, a small fungal protein, to valorize lignocellulosic Agri-food Wastes. Indeed, cerato-platanins can loosen cellulose rendering it more accessible to hydrolytic attack. The cerato-platanin ThCP from a marine strain of Trichoderma harzianum, characterized as an efficient biosurfactant protein, has proven able to efficiently pre-treat apple pomace, obtaining a sugar conversion yield of 65%. Moreover, when used in combination with a laccase enzyme, a notable increase in the sugar conversion yield was measured. Similar results were also obtained when other wastes, coffee silverskin and potato peel, were pre-treated. With respect to the widespread laccase pre-treatments, this new pre-treatment approach minimizes process time, increasing energy efficiency.
Collapse
Affiliation(s)
- Anna Pennacchio
- Department of Chemical SciencesUniversity of Naples Federico IIVia Cintia 4Naples80126Italy
| | - Rossana Pitocchi
- Department of Chemical SciencesUniversity of Naples Federico IIVia Cintia 4Naples80126Italy
| | - Giovanna Cristina Varese
- Department of Life Sciences and Systems BiologyUniversity of Turinviale P.A. Mattioli 25Turin10125Italy
| | - Paola Giardina
- Department of Chemical SciencesUniversity of Naples Federico IIVia Cintia 4Naples80126Italy
| | - Alessandra Piscitelli
- Department of Chemical SciencesUniversity of Naples Federico IIVia Cintia 4Naples80126Italy
| |
Collapse
|
19
|
Tišma M, Žnidaršič-Plazl P, Šelo G, Tolj I, Šperanda M, Bucić-Kojić A, Planinić M. Trametes versicolor in lignocellulose-based bioeconomy: State of the art, challenges and opportunities. BIORESOURCE TECHNOLOGY 2021; 330:124997. [PMID: 33752945 DOI: 10.1016/j.biortech.2021.124997] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Although Trametes versicolor is one of the most investigated white-rot fungi, the industrial application of this fungus and its metabolites is still far from reaching its full potential. This review aims to highlight the opportunities and challenges for the industrial use of T. versicolor according to the principles of circular bioeconomy. The use of this fungus can contribute significantly to the success of efforts to valorize lignocellulosic waste biomass and industrial lignocellulosic byproducts. Various techniques of T. versicolor cultivation for enzyme production, food and feed production, wastewater treatment, and biofuel production are listed and critically evaluated, highlighting bottlenecks and future perspectives. Applications of T. versicolor crude laccase extracts in wastewater treatment, removal of lignin from lignocellulose, and in various biotransformations are analyzed separately.
Collapse
Affiliation(s)
- Marina Tišma
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR-31000 Osijek, Croatia.
| | - Polona Žnidaršič-Plazl
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Gordana Šelo
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR-31000 Osijek, Croatia
| | - Ivana Tolj
- Josip Juraj Strossmayer University of Osijek, University Hospital Center of Osijek, Clinical of Internal Medicine, Department of Nephrology, Josipa Hutlera 4, HR-31000 Osijek, Croatia
| | - Marcela Šperanda
- Josip Juraj Strossmayer University of Osijek, Faculty of Agrobiotechnical Sciences Osijek, Vladimira Preloga 1, HR - 31000 Osijek, Croatia
| | - Ana Bucić-Kojić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR-31000 Osijek, Croatia
| | - Mirela Planinić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR-31000 Osijek, Croatia
| |
Collapse
|
20
|
Bioreactor and Bioprocess Design Issues in Enzymatic Hydrolysis of Lignocellulosic Biomass. Catalysts 2021. [DOI: 10.3390/catal11060680] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Saccharification of lignocellulosic biomass is a fundamental step in the biorefinery of second generation feedstock. The physicochemical and enzymatic processes for the depolymerization of biomass into simple sugars has been achieved through numerous studies in several disciplines. The present review discusses the development of technologies for enzymatic saccharification in industrial processes. The kinetics of cellulolytic enzymes involved in polysaccharide hydrolysis has been discussed as the starting point for the design of the most promising bioreactor configurations. The main process configurations—proposed so far—for biomass saccharification have been analyzed. Attention was paid to bioreactor configurations, operating modes and possible integrations of this operation within the biorefinery. The focus is on minimizing the effects of product inhibition on enzymes, maximizing yields and concentration of sugars in the hydrolysate, and reducing the impact of enzyme cost on the whole process. The last part of the review is focused on an emerging process based on the catalytic action of laccase applied to lignin depolymerization as an alternative to the consolidated physicochemical pretreatments. The laccases-based oxidative process has been discussed in terms of characteristics that can affect the development of a bioreactor unit where laccases or a laccase-mediator system can be used for biomass delignification.
Collapse
|
21
|
Qin S, Shekher Giri B, Kumar Patel A, Sar T, Liu H, Chen H, Juneja A, Kumar D, Zhang Z, Kumar Awasthi M, Taherzadeh MJ. Resource recovery and biorefinery potential of apple orchard waste in the circular bioeconomy. BIORESOURCE TECHNOLOGY 2021; 321:124496. [PMID: 33302013 DOI: 10.1016/j.biortech.2020.124496] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
In this review investigate the apple orchard waste (AOW) is potential organic resources to produce multi-product and there sustainable interventions with biorefineries approaches to assesses the apple farm industrial bioeconomy. The thermochemical and biological processes like anaerobic digestion, composting and , etc., that generate distinctive products like bio-chemicals, biofuels, biofertilizers, animal feed and biomaterial, etc can be employed for AOW valorization. Integrating these processes can enhanced the yield and resource recovery sustainably. Thus, employing biorefinery approaches with allied different methods can link to the progression of circular bioeconomy. This review article mainly focused on the different biological processes and thermochemical that can be occupied for the production of waste to-energy and multi-bio-product in a series of reaction based on sustainability. Therefore, the biorefinery for AOW move towards identification of the serious of the reaction with each individual thermochemical and biological processes for the conversion of one-dimensional providences to circular bioeconomy.
Collapse
Affiliation(s)
- Shiyi Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Balendu Shekher Giri
- Center for Excellence for Sustainable Polymer, Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India
| | - Anil Kumar Patel
- Centre for Energy and Environmental Sustainability, Lucknow 226029, Uttar Pradesh, India
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden; Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, 41400, Turkey
| | - Huimin Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Hongyu Chen
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195 Berlin, Germany
| | - Ankita Juneja
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, 402 Walters Hall, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden.
| | | |
Collapse
|
22
|
The “Zero Miles Product” Concept Applied to Biofuel Production: A Case Study. ENERGIES 2021. [DOI: 10.3390/en14030565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To make biofuel production feasible from an economic point of view, several studies have investigated the main associated bottlenecks of the whole production process through approaches such as the “cradle to grave” approach or the Life Cycle Assessment (LCA) analysis, being the main constrains the feedstock collection and transport. Whilst several feedstocks are interesting because of their high sugar content, very few of them are available all year around and moreover do not require high transportation’ costs. This work aims to investigate if the “zero miles” concept could bring advantages to biofuel production by decreasing all the associated transport costs on a locally established production platform. In particular, a specific case study applied to the Technical University of Denmark (DTU) campus is used as example to investigate the advantages and feasibility of using the spent coffee grounds generated at the main cafeteria for the production of bioethanol on site, which can be subsequently used to (partially) cover the campus’ energy demands.
Collapse
|
23
|
Zhang R, Lv C, Lu J. Studies on laccase mediated conversion of lignin from ginseng residues for the production of sugars. BIORESOURCE TECHNOLOGY 2020; 317:123945. [PMID: 32805484 DOI: 10.1016/j.biortech.2020.123945] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this study was to determine the production of sugars from ginseng residues treated with laccase. Laccase was used to degrade lignin from ginseng residues in order to increase the yield of sugars. Reaction conditions, including solid loading, pH, enzyme concentration, incubation temperature, and incubation time, were investigated and optimized. The results showed that the optimum conditions were 20% of solid loading (w/v), pH 7, 300 IU/ml, temperature of 40 °C and incubation time of 6 h. The minimum residual lignin obtained was 59.89%. The results also showed that 56.58% sugars including 12.04% water soluble polysaccharides (WSP), 16.24% water insoluble polysaccharides (WIP) and 5.08% reducing sugar were afforded from delignify substance. Chemical characters of these sugars were analyzed. Pretreat of laccase delignification for sugars production is expected to be applied to other herbal residues.
Collapse
Affiliation(s)
- Ruiqi Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110006, China
| | - Chongning Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110006, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang 110006, China
| | - Jincai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110006, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang 110006, China.
| |
Collapse
|
24
|
Vu HP, Nguyen LN, Vu MT, Johir MAH, McLaughlan R, Nghiem LD. A comprehensive review on the framework to valorise lignocellulosic biomass as biorefinery feedstocks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140630. [PMID: 32679491 DOI: 10.1016/j.scitotenv.2020.140630] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 05/26/2023]
Abstract
An effective pretreatment is the first step to enhance the digestibility of lignocellulosic biomass - a source of renewable, eco-friendly and energy-dense materials - for biofuel and biochemical productions. This review aims to provide a comprehensive assessment on the advantages and disadvantages of lignocellulosic pretreatment techniques, which have been studied at the lab-, pilot- and full-scale levels. Biological pretreatment is environmentally friendly but time consuming (i.e. 15-40 days). Chemical pretreatment is effective in breaking down lignocellulose and increasing sugar yield (e.g. 4 to 10-fold improvement) but entails chemical cost and expensive reactors. Whereas the combination of physical and chemical (i.e. physicochemical) pretreatment is energy intensive (e.g. energy production can only compensate 80% of the input energy) despite offering good process efficiency (i.e. > 100% increase in product yield). Demonstrations of pretreatment techniques (e.g. acid, alkaline, and hydrothermal) in pilot-scale have reported 50-80% hemicellulose solubilisation and enhanced sugar yields. The feasibility of these pilot and full-scale plants has been supported by government subsidies to encourage biofuel consumption (e.g. tax credits and mandates). Due to the variability in their mechanisms and characteristics, no superior pretreatment has been identified. The main challenge lies in the capability to achieve a positive energy balance and great economic viability with minimal environmental impacts i.e. the energy or product output significantly surpasses the energy and monetary input. Enhancement of the current pretreatment techno-economic efficiency (e.g. higher product yield, chemical recycling, and by-products conversion to increase environmental sustainability) and the integration of pretreatment methods to effectively treat a range of biomass will be the steppingstone for commercial lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Hang P Vu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia.
| | - Minh T Vu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Md Abu Hasan Johir
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Robert McLaughlan
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
25
|
Masran R, Bahrin EK, Ibrahim MF, Phang LY, Abd-Aziz S. Simultaneous pretreatment and saccharification of oil palm empty fruit bunch using laccase-cellulase cocktail. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Manzano-Nicolas J, Marin-Iniesta F, Taboada-Rodriguez A, Garcia-Canovas F, Tudela-Serrano J, Muñoz-Muñoz JL. Development of a method to measure laccase activity on methoxyphenolic food ingredients and isomers. Int J Biol Macromol 2020; 151:1099-1107. [DOI: 10.1016/j.ijbiomac.2019.10.152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
|
27
|
Mayolo-Deloisa K, González-González M, Rito-Palomares M. Laccases in Food Industry: Bioprocessing, Potential Industrial and Biotechnological Applications. Front Bioeng Biotechnol 2020; 8:222. [PMID: 32266246 PMCID: PMC7105568 DOI: 10.3389/fbioe.2020.00222] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/05/2020] [Indexed: 01/31/2023] Open
Abstract
Laccase is a multi-copper oxidase that catalyzes the oxidation of one electron of a wide range of phenolic compounds. The enzyme is considered eco-friendly because it requires molecular oxygen as co-substrate for the catalysis and it yields water as the sole by-product. Laccase is commonly produced by fungi but also by some bacteria, insects and plants. Due it is capable of using a wide variety of phenolic and non-phenolic substrates, laccase has potential applications in the food, pharmaceutical and environmental industries; in addition, it has been used since many years in the bleaching of paper pulp. Fungal laccases are mainly extracellular enzyme that can be recovered from the residual compost of industrial production of edible mushrooms as Agaricus bisporus and Pleurotus ostreatus. It has also been isolated from microorganisms present in wastewater. The great potential of laccase lies in its ability to oxidize lignin, one component of lignocellulosic materials, this feature can be widely exploited on the pretreatment for agro-food wastes valorization. Laccase is one of the enzymes that fits very well in the circular economy concept, this concept has more benefits over linear economy; based on "reduce-reuse-recycle" theory. Currently, biorefinery processes are booming due to the need to generate clean biofuels that do not come from oil. In that sense, laccase is capable of degrading lignocellulosic materials that serve as raw material in these processes, so the enzyme's potential is evident. This review will critically describe the production sources of laccase as by-product from food industry, bioprocessing of food industry by-products using laccase, and its application in food industry.
Collapse
Affiliation(s)
| | | | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| |
Collapse
|
28
|
Simić S, Jeremic S, Djokic L, Božić N, Vujčić Z, Lončar N, Senthamaraikannan R, Babu R, Opsenica IM, Nikodinovic-Runic J. Development of an efficient biocatalytic system based on bacterial laccase for the oxidation of selected 1,4-dihydropyridines. Enzyme Microb Technol 2020; 132:109411. [DOI: 10.1016/j.enzmictec.2019.109411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 01/17/2023]
|
29
|
Stanzione I, Pezzella C, Giardina P, Sannia G, Piscitelli A. Beyond natural laccases: extension of their potential applications by protein engineering. Appl Microbiol Biotechnol 2019; 104:915-924. [DOI: 10.1007/s00253-019-10147-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 11/28/2022]
|
30
|
Shankar K, Kulkarni NS, Jayalakshmi SK, Kuruba S. Comparative assessment of solvents and lignocellulolytic enzymes affiliated extraction of polyphenols from the various lignocellulosic agro-residues: identification and their antioxidant properties. Prep Biochem Biotechnol 2019; 50:164-171. [PMID: 31617786 DOI: 10.1080/10826068.2019.1676782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The present investigation was aimed to utilize lignocellulosic agro-residues and compare the extraction of polyphenols utilizing lignocellulolytic enzymes secreted by Sphingobacterium sp. ksn and with that of the solvents (ethanol, methanol) affiliated methods. The maximum amount of polyphenols, flavonoids and tannins were 94.29, 11.36, and 79.21 g 100 g-1 respectively, found in the extracts obtained by enzymes affiliated extraction of coffee cherry husk (CCH). The phenolics namely, gallic acid, caffeic acid, coumaric acid, 1-hydroxybenzoic acid, 2,5-dihydroxybenzoic acid, p-hydroxybenzaldehyde were commonly found whereas syringic acid, quercetin, kaempferol, and epicatechin were hardly found in the extracts of agro-residues. The extracts of CCH shown maximum antioxidant properties for DPPH, ABTS, and FRAP. The present study reports that the affiliation of enzymes for the extraction of polyphenols from agro-residues is more efficient than that of the solvents affiliation and CCH as the good source of polyphenols.
Collapse
Affiliation(s)
- Kumar Shankar
- Department of Biochemistry, Gulbarga University, Kalaburagi, India
| | | | - S K Jayalakshmi
- College of Agriculture, University of Agricultural Sciences-Raichur, Kalabuargi, India
| | | |
Collapse
|
31
|
Vastano M, Pellis A, Botelho Machado C, Simister R, McQueen‐Mason SJ, Farmer TJ, Gomez LD. Sustainable Galactarate‐Based Polymers: Multi‐Enzymatic Production of Pectin‐Derived Polyesters. Macromol Rapid Commun 2019; 40:e1900361. [DOI: 10.1002/marc.201900361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/30/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Marco Vastano
- Green Chemistry Centre of ExcellenceDepartment of ChemistryUniversity of York Heslington York YO10 5DD UK
| | - Alessandro Pellis
- Green Chemistry Centre of ExcellenceDepartment of ChemistryUniversity of York Heslington York YO10 5DD UK
| | - Carla Botelho Machado
- Centre for Novel Agricultural ProductsDepartment of BiologyUniversity of York Heslington York YO10 5DD UK
| | - Rachael Simister
- Centre for Novel Agricultural ProductsDepartment of BiologyUniversity of York Heslington York YO10 5DD UK
| | - Simon J. McQueen‐Mason
- Centre for Novel Agricultural ProductsDepartment of BiologyUniversity of York Heslington York YO10 5DD UK
| | - Thomas J. Farmer
- Green Chemistry Centre of ExcellenceDepartment of ChemistryUniversity of York Heslington York YO10 5DD UK
| | - Leonardo D. Gomez
- Centre for Novel Agricultural ProductsDepartment of BiologyUniversity of York Heslington York YO10 5DD UK
| |
Collapse
|
32
|
Iark D, Buzzo AJDR, Garcia JAA, Côrrea VG, Helm CV, Corrêa RCG, Peralta RA, Peralta Muniz Moreira RDF, Bracht A, Peralta RM. Enzymatic degradation and detoxification of azo dye Congo red by a new laccase from Oudemansiella canarii. BIORESOURCE TECHNOLOGY 2019; 289:121655. [PMID: 31247524 DOI: 10.1016/j.biortech.2019.121655] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
A single laccase with molecular weight of 41 kDa was produced by the white-rot fungus Oudemansiella canarii cultured on solid state fermentation using a mixture of sugarcane bagasse-wheat bran as substrate. The enzyme (5 U) was able to decolourize 80% of 50 mg/L Congo red within 24 h at 30 °C and pH 5.5. The relationship between the decolorization rate and dye concentration obeyed Michaelis-Menten kinetics, with KM and Vmax values of 46.180 ± 6.245 µM and 1.840 ± 0.101 µmol/min, respectively. Fourier transform infrared spectroscopy (FTIR) and mass spectrometry allowed to conclude that the laccase acts not only on the dye chromophore group, but also that it cleaves different covalent bonds, causing an effective fragmentation of the molecule. The action of the laccase caused a significant reduction in toxicity, as indicated by the Microtox test. In conclusion, O. canarii laccase could be useful in future biological strategies aiming at degrading azo dyes.
Collapse
Affiliation(s)
- Daiane Iark
- Graduate Program in Environmental Biotechnology, Universidade Estadual de Maringá, Brazil
| | | | | | | | | | | | - Rosely A Peralta
- Department of Chemistry, Universidade Federal de Santa Catarina, Brazil
| | | | - Adelar Bracht
- Department of Biochemistry, Universidade Estadual de Maringá, Brazil; Graduate Program in Food Science, Universidade Estadual de Maringá, Brazil
| | - Rosane Marina Peralta
- Graduate Program in Environmental Biotechnology, Universidade Estadual de Maringá, Brazil; Department of Biochemistry, Universidade Estadual de Maringá, Brazil; Graduate Program in Food Science, Universidade Estadual de Maringá, Brazil.
| |
Collapse
|
33
|
Integrated enzymatic pretreatment and hydrolysis of apple pomace in a bubble column bioreactor. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Process optimization, purification and characterization of alkaline stable white laccase from Myrothecium verrucaria ITCC-8447 and its application in delignification of agroresidues. Int J Biol Macromol 2019; 125:1042-1055. [DOI: 10.1016/j.ijbiomac.2018.12.108] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 11/20/2022]
|
35
|
Giacobbe S, Piscitelli A, Raganati F, Lettera V, Sannia G, Marzocchella A, Pezzella C. Butanol production from laccase-pretreated brewer's spent grain. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:47. [PMID: 30867680 PMCID: PMC6399911 DOI: 10.1186/s13068-019-1383-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/20/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Beer is the most popular alcoholic beverage worldwide. In the manufacture of beer, various by-products and residues are generated, and the most abundant (85% of total by-products) are spent grains. Thanks to its high (hemi)cellulose content (about 50% w/w dry weight), this secondary raw material is attractive for the production of second-generation biofuels as butanol through fermentation processes. RESULTS This study reports the ability of two laccase preparations from Pleurotus ostreatus to delignify and detoxify milled brewer's spent grains (BSG). Up to 94% of phenols reduction was achieved. Moreover, thanks to the mild conditions of enzymatic pretreatment, the formation of other inhibitory compounds was avoided allowing to apply the sequential enzymatic pretreatment and hydrolysis process (no filtration and washing steps between the two phases). As expected, the high detoxification and delignification yields achieved by laccase pretreatment resulted in great saccharification. As a fact, no loss of carbohydrates was observed thanks to the novel sequential strategy, and thus the totality of polysaccharides was hydrolysed into fermentable sugars. The enzymatic hydrolysate was fermented to acetone-butanol-ethanol (ABE) by Clostridium acetobutilycum obtaining about 12.6 g/L ABE and 7.83 g/L butanol within 190 h. CONCLUSIONS The applied sequential pretreatment and hydrolysis process resulted to be very effective for the milled BSG, allowing reduction of inhibitory compounds and lignin content with a consequent efficient saccharification. C. acetobutilycum was able to ferment the BSG hydrolysate with ABE yields similar to those obtained by using synthetic media. The proposed strategy reduces the amount of wastewater and the cost of the overall process. Based on the reported results, the potential production of butanol from the fermentation of BSG hydrolysate can be envisaged.
Collapse
Affiliation(s)
| | - Alessandra Piscitelli
- Biopox srl, Via Salita Arenella 9, Naples, Italy
- Dipartimento di Scienze chimiche, Università degli Studi di Napoli“Federico II”, Via Cintia 4, 80126 Naples, Italy
| | - Francesca Raganati
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli “Federico II”, P.le V. Tecchio 80, 80125 Naples, Italy
| | | | - Giovanni Sannia
- Biopox srl, Via Salita Arenella 9, Naples, Italy
- Dipartimento di Scienze chimiche, Università degli Studi di Napoli“Federico II”, Via Cintia 4, 80126 Naples, Italy
| | - Antonio Marzocchella
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli “Federico II”, P.le V. Tecchio 80, 80125 Naples, Italy
| | - Cinzia Pezzella
- Biopox srl, Via Salita Arenella 9, Naples, Italy
- Dipartimento di Scienze chimiche, Università degli Studi di Napoli“Federico II”, Via Cintia 4, 80126 Naples, Italy
| |
Collapse
|