1
|
Qiu R, Zhong W, Zhang H, Zhu Y, Yang Z, Han L. A novel micro-CT approach for in situ visualization of the spatial dynamics of mesovoids in aerobic composting piles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122329. [PMID: 39241595 DOI: 10.1016/j.jenvman.2024.122329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/29/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
The spatial configuration of mesovoids profoundly affects the aerobic composting microenvironment, which governs vital processes such as greenhouse gas production and emission, thermal conduction, and overall composting efficiency. Nondestructive in-situ characterization of the composting spatial structure is crucial to better understand its interaction mechanism with the microenvironment. In this study, a valuable contribution to the field of composting research was made by introducing micro-computed tomography (micro-CT) tool for in situ three-dimensional (3D) visual characterizing the void structure dynamics of straw and manure compost pile units at the mesoscale. Representative samples at different composting stages derived from wheat straw and cow manure were procured by pre-embedding samplers in laboratory-based aerobic composting reactor systems. Based on an advanced Skyscan 1275 micro-CT system, scanning conditions and image processing algorithms were determined, and the void structure and their dynamic changes in the pile unit during composting were in-situ 3D visualized for the first time. The micro-CT images effectively reveal well-developed void structures exhibiting spatiotemporal dynamics during composting, and they exhibit excellent consistency with conventional macrophysical effects and wet chemical analyses. Micro-CT quantification results of the void structure parameters changes in pile unit during composting were as follows: percentage of the total voidage and the connected voidage in pile unit were in the range of 52.34%-58.56%, indicating a very suitable composting spatial structural microenvironment. This new micro-CT method provides a valuable perspective for analyzing and understanding the complex aerobic composting process.
Collapse
Affiliation(s)
- Rongbin Qiu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing, 100083, China.
| | - Weizheng Zhong
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing, 100083, China.
| | - Hehu Zhang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing, 100083, China.
| | - Ying Zhu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing, 100083, China.
| | - Zengling Yang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing, 100083, China.
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing, 100083, China.
| |
Collapse
|
2
|
Zhou Z, Shi X, Bhople P, Jiang J, Chater CCC, Yang S, Perez-Moreno J, Yu F, Liu D. Enhancing C and N turnover, functional bacteria abundance, and the efficiency of biowaste conversion using Streptomyces-Bacillus inoculation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120895. [PMID: 38626487 DOI: 10.1016/j.jenvman.2024.120895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Microbial inoculation plays a significant role in promoting the efficiency of biowaste conversion. This study investigates the function of Streptomyces-Bacillus Inoculants (SBI) on carbon (C) and nitrogen (N) conversion, and microbial dynamics, during cow manure (10% and 20% addition) and corn straw co-composting. Compared to inoculant-free controls, inoculant application accelerated the compost's thermophilic stage (8 vs 15 days), and significantly increased compost total N contents (+47%) and N-reductase activities (nitrate reductase: +60%; nitrite reductase: +219%). Both bacterial and fungal community succession were significantly affected by DOC, urease, and NH4+-N, while the fungal community was also significantly affected by cellulase. The contribution rate of Cupriavidus to the physicochemical factors of compost was as high as 83.40%, but by contrast there were no significantly different contributions (∼60%) among the top 20 fungal genera. Application of SBI induced significant correlations between bacteria, compost C/N ratio, and catalase enzymes, indicative of compost maturation. We recommend SBI as a promising bio-composting additive to accelerate C and N turnover and high-quality biowaste maturation. SBI boosts organic cycling by transforming biowastes into bio-fertilizers efficiently. This highlights the potential for SBI application to improve plant growth and soil quality in multiple contexts.
Collapse
Affiliation(s)
- Ziyan Zhou
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Parag Bhople
- Crops, Environment, And Land Use Department, Environment Research Centre, Teagasc, Johnstown Castle, Wexford, Y35TC98, Ireland
| | - Jishao Jiang
- School of Environment, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Caspar C C Chater
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK; Plants, Photosynthesis, and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Shimei Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jesus Perez-Moreno
- Colegio de Postgraduados, Campus Montecillo, Edafologia, Texcoco, 56230, Mexico
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Dong Liu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
3
|
Somboon S, Rossopa B, Yodda S, Sukitprapanon TS, Chidthaisong A, Lawongsa P. Mitigating methane emissions and global warming potential while increasing rice yield using biochar derived from leftover rice straw in a tropical paddy soil. Sci Rep 2024; 14:8706. [PMID: 38622195 PMCID: PMC11018614 DOI: 10.1038/s41598-024-59352-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
The sustainable management of leftover rice straw through biochar production to mitigate CH4 emissions and enhance rice yield remains uncertain and undefined. Therefore, we evaluated the effects of using biochar derived from rice straw left on fields after harvest on greenhouse gas emissions, global warming potential (GWP), and rice yield in the paddy field. The experiment included three treatments: chemical fertilizer (CF), rice straw (RS, 10 t ha-1) + CF, and rice straw-derived biochar (BC, 3 t ha-1 based on the amount of product remaining after pyrolysis) + CF. Compared with CF, BC + CF significantly reduced cumulative CH4 and CO2 emissions, net GWP, and greenhouse gas emission intensity by 42.9%, 37.4%, 39.5%, and 67.8%, respectively. In contrast, RS + CF significantly increased cumulative CH4 emissions and net GWP by 119.3% and 13.8%, respectively. The reduced CH4 emissions were mainly caused by the addition of BC + CF, which did not increase the levels of dissolved organic carbon and microbial biomass carbon, consequently resulting in reduced archaeal abundance, unlike those observed in RS + CF. The BC + CF also enhanced soil total organic carbon content and rice grain yield. This study indicated that using biochar derived from leftover rice straw mitigates greenhouse gas emissions and improves rice productivity in tropical paddy soil.
Collapse
Affiliation(s)
- Saowalak Somboon
- Department of Soil Science and Environment, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
- Soil Organic Matter Management Research Group, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Benjamas Rossopa
- Prachin Buri Rice Research Center, Rice Department, Ministry of Agriculture and Cooperatives, Ban Sang, Prachin Buri, 25150, Thailand
| | - Sujitra Yodda
- Program on System Approaches in Agriculture for Sustainable Development, Department of Agricultural Extension and Agricultural Systems, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Tanabhat-Sakorn Sukitprapanon
- Department of Soil Science and Environment, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
- Soil Organic Matter Management Research Group, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Amnat Chidthaisong
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Phrueksa Lawongsa
- Department of Soil Science and Environment, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Soil Organic Matter Management Research Group, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
4
|
He X, Peng Z, Zhu Y, Chen Y, Huang Y, Xiong J, Fang C, Du S, Wang L, Zhou L, Huang G, Han L. Wheat straw biochar as an additive in swine manure Composting: An in-depth analysis of mixed material particle characteristics and interface interactions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 176:41-51. [PMID: 38262072 DOI: 10.1016/j.wasman.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
In recent research, biochar has been proven to reduce the greenhouse gases and promote organic matter during the composting. However, gas degradation may be related to the microstructure of compost. To investigate the mechanism of biochar additive, composting was performed using swine manure, wheat straw and biochar and representative solid compost samples were analyzed to characterize the mixed biochar and compost particles. We focused on the microscale, such as the particle size distributions, surface morphologies, aerobic layer thicknesses and the functional groups. The biochar and compost particle agglomerations gradually became weaker and the predominant particle size in the experiment group was < 200 μm. The aerobic layer thickness (Lp) was determined by infrared spectroscopy using the wavenumbers 2856 and 1568 cm-1, which was 0-50 μm increased as composting proceeded in both groups. The biochar increased Lp and facilitated oxygen penetrating the compost particle cores. Besides, in the biochar-swine manure particle interface, the aliphatic compound in the organic components degraded and the content of aromaticity increased with the composting process, which was indicated by the absorption intensity at 2856 cm-1 decreasing trend and the absorption intensity at 1568 cm-1 increasing trend. In summary, biochar performed well in the microscale of compost pile.
Collapse
Affiliation(s)
- Xueqin He
- China Agricultural University, China.
| | | | - Yuxiong Zhu
- Xinjiang Qianhai Farm Biotechnology Development Co., Ltd, China
| | | | | | | | - Chen Fang
- China Agricultural University, China
| | - Shurong Du
- Chinese Academy of Agricultural Mechanization Sciences Group Co., Ltd, China
| | | | | | | | - Lujia Han
- China Agricultural University, China
| |
Collapse
|
5
|
Wang B, Zhang P, Guo X, Bao X, Tian J, Li G, Zhang J. Contribution of zeolite to nitrogen retention in chicken manure and straw compost: Reduction of NH 3 and N 2O emissions and increase of nitrate. BIORESOURCE TECHNOLOGY 2024; 391:129981. [PMID: 37926358 DOI: 10.1016/j.biortech.2023.129981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Co-composting of chicken manure, straw and zeolite was investigated in a water bath heating system to estimate the effect of zeolite on physicochemical properties and metabolic functions related to nitrogen conversion. The results indicated that NH3 catches by zeolite was concentrated in the early stage and zeolite with 10 % addition reduced 28 % NH3 and 55 % N2O emissions as compost ended. The nitrate content in 10 % zeolite group was 17 % higher than that in control group. There was no significant increase of NO2- in zeolite group. More NO2- formed NH3, rather than being converted to NOx through denitrification. The abundance of nitrification genes amoA and hao increased except nxrA in zeolite groups. Denitrification was the most obvious at 20 d and zeolite decreased the abundance of denitrification genes narG, nirK and nosZ at this time.
Collapse
Affiliation(s)
- Bing Wang
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Peng Zhang
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Xu Guo
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Xu Bao
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Junjie Tian
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Guomin Li
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Jian Zhang
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| |
Collapse
|
6
|
Li Y, Kumar Awasthi M, Sindhu R, Binod P, Zhang Z, Taherzadeh MJ. Biochar preparation and evaluation of its effect in composting mechanism: A review. BIORESOURCE TECHNOLOGY 2023; 384:129329. [PMID: 37329992 DOI: 10.1016/j.biortech.2023.129329] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
This article provides an overview of biochar application for organic waste co-composting and its biochemical transformation mechanism. As a composting amendment, biochar work in the adsorption of nutrients, the retention of oxygen and water, and the promotion of electron transfer. These functions serve the micro-organisms (physical support of niche) and determine changes in community structure beyond the succession of composing primary microorganisms. Biochar mediates resistance genes, mobile gene elements, and biochemical metabolic activities of organic matter degrading. The participation of biochar enriched the α-diversity of microbial communities at all stages of composting, and ultimately reflects the high γ-diversity. Finally, easy and convincing biochar preparation methods and characteristic need to be explored, in turn, the mechanism of biochar on composting microbes at the microscopic level can be studied in depth.
Collapse
Affiliation(s)
- Yui Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | | |
Collapse
|
7
|
Time-dependent impact of co-matured manure with elemental sulfur and biochar on the soil agro-ecological properties and plant biomass. Sci Rep 2023; 13:4327. [PMID: 36922558 PMCID: PMC10017759 DOI: 10.1038/s41598-023-31348-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Farmyard manure is the most common type of organic fertilizer, and its properties depend mainly on the type of livestock, bedding material and the conditions of fermentation. Co-maturing of manure with other amendments to modify its final properties has been seen as a win-win strategy recently. This study aimed to evaluate the differences in the effect of unenriched manure and manures co-matured with biochar, elemental sulfur or both amendments on the soil physico-chemical and biological properties, and plant (barley, maize) biomass production. For this purpose a pot experiment was carried out in a time-dependent way. Samples were taken from 12 week-lasting (test crop barley) and 24 week-lasting (test crop maize) pot cultivation carried out in a growth chamber. Co-matured manure with biochar showed the highest rate of maturation expressed as humic to fulvic acid ratio, its amendment to soil significantly increased the dry aboveground biomass weight in the half-time (12 weeks) of experiment. However, the effect vanished after 24 weeks. We received for this variant highest long-term (24 weeks) contents of total carbon and nitrogen in soil. Contrarily, co-matured manure with biochar and elemental sulfur led to short-term carbon sequestration (the highest total carbon in 12 weeks) due to presumed retardation of microbial-mediated transformation of nutrients. We conclude that the prolonged pot experiment with biochar or elemental sulfur enriched manure led to the increased recalcitrancy of soil organic matter and retardation of soil nutrient transformation to the plant-available form.
Collapse
|
8
|
Ma S, Liu H. Effects of 3D-printed bulking agent on microbial community succession and carbohydrate-active enzymes genes during swine manure composting. CHEMOSPHERE 2022; 306:135513. [PMID: 35777538 DOI: 10.1016/j.chemosphere.2022.135513] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/30/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
The bulking agent plays an important role in aerobic composting, but their shape, porosity, and homogeneity need to be optimized. In the present work, a bulking agent with a uniform shape was prepared by 3D printing to explore its influence on physicochemical parameters, microbial community succession, and gene abundance of carbohydrate-active enzymes (CAZymes) in swine manure aerobic composting. The results showed that adding 3D-printed bulking agents can increase maximum temperature, prolong the thermophilic period, and improve the degradation rate of volatile solids, which was attributed to ameliorative air permeability by the porous 3D-printed bulking agent. The abundances of some pathogenic bacteria decreased and CAZymes genes increased respectively in response to the addition of the 3D-printed bulking agent, implying it has a certain positive effect on improving the safety of compost products and promoting the degradation of organic matter. In summary, the 3D-printed bulking agent has good application potential in laboratory-scale aerobic composting.
Collapse
Affiliation(s)
- Shuangshuang Ma
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; Engineering Laboratory for Yellow River Delta Modern Agriculture, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongtao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; Engineering Laboratory for Yellow River Delta Modern Agriculture, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
9
|
Wen X, Sun R, Cao Z, Huang Y, Li J, Zhou Y, Fu M, Ma L, Zhu P, Li Q. Synergistic metabolism of carbon and nitrogen: Cyanate drives nitrogen cycle to conserve nitrogen in composting system. BIORESOURCE TECHNOLOGY 2022; 361:127708. [PMID: 35907603 DOI: 10.1016/j.biortech.2022.127708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
In this study, HCO3- was used as a co-substrate for cyanate metabolism to investigate its effect on nitrogen cycle in composting. The results showed that the carbamate content in experimental group (T) with HCO3- added was higher than that in control group (CP) during cooling period. Actinobacteria and Proteobacteria were the dominant phyla for cyanate metabolism, and the process was mediated by cyanase gene (cynS). The cynS abundance was 16.6% higher in T than CP. In cooling period, the nitrification gene hao in T was 8.125% higher than CP. Denitrification genes narG, narH, nirK, norB, and nosZ were 25.64%, 35.33%, 45.93%, 36.62%, and 36.12% less than CP, respectively. The nitrogen fixation gene nifH in T was consistently higher than CP in the late composting period. Conclusively, cyanate metabolism drove the nitrogen cycle by promoting nitrification, nitrogen fixation, and inhibiting denitrification, which improved nitrogen retention and compost quality.
Collapse
Affiliation(s)
- Xiaoli Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ru Sun
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ziyi Cao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jixuan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yucheng Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Mengxin Fu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Liangcai Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Pengfei Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
10
|
Holatko J, Hammerschmiedt T, Kintl A, Mustafa A, Naveed M, Baltazar T, Latal O, Skarpa P, Ryant P, Brtnicky M. Co-composting of cattle manure with biochar and elemental sulphur and its effects on manure quality, plant biomass and microbiological characteristics of post-harvest soil. FRONTIERS IN PLANT SCIENCE 2022; 13:1004879. [PMID: 36247542 PMCID: PMC9557162 DOI: 10.3389/fpls.2022.1004879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Improvement of manure by co-composting with other materials is beneficial to the quality of the amended soil. Therefore, the manure was supplied with either biochar, elemental sulphur or both prior to fermentation in 50 L barrels for a period of eight weeks. The manure products were subsequently analyzed and used as fertilizers in a short-term pot experiment with barley fodder (Hordeum vulgare L.). The experiment was carried out under controlled conditions in a growth chamber for 12 weeks. The sulphur-enriched manure showed the lowest manure pH and highest ammonium content. The co-fermentation of biochar and sulphur led to the highest sulphur content and an abundance of ammonium-oxidizing bacteria in manure. The biochar+sulphur-enriched manure led to the highest dry aboveground plant biomass in the amended soil, whose value was 98% higher compared to the unamended control, 38% higher compared to the variant with biochar-enriched manure and 23% higher compared to the manure-amended variant. Amendment of the sulphur-enriched manure types led to the highest enzyme activities and soil respirations (basal, substrate-induced). This innovative approach to improve the quality of organic fertilizers utilizes treated agricultural waste (biochar) and a biotechnological residual product (elementary sulphur from biogas desulphurization) and hence contributes to the circular economy.
Collapse
Affiliation(s)
- Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Agrovyzkum Rapotin, Ltd., Rapotin, Czechia
| | - Tereza Hammerschmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Agricultural Research, Ltd., Troubsko, Czechia
| | - Adnan Mustafa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Praha, Czechia
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Tivadar Baltazar
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Oldrich Latal
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Agrovyzkum Rapotin, Ltd., Rapotin, Czechia
| | - Petr Skarpa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Pavel Ryant
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| |
Collapse
|
11
|
Huang D, Gao L, Cheng M, Yan M, Zhang G, Chen S, Du L, Wang G, Li R, Tao J, Zhou W, Yin L. Carbon and N conservation during composting: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156355. [PMID: 35654189 DOI: 10.1016/j.scitotenv.2022.156355] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Composting, as a conventional solid waste treatment method, plays an essential role in carbon and nitrogen conservation, thereby reducing the loss of nutrients and energy. However, some carbon- and nitrogen-containing gases are inevitably released during the process of composting due to the different operating conditions, resulting in carbon and nitrogen losses. To overcome this obstacle, many researchers have been trying to optimize the adjustment parameters and add some amendments (i.e., pHysical amendments, chemical amendments and microbial amendments) to reduce the losses and enhance carbon and nitrogen conservation. However, investigation regarding mechanisms for the conservation of carbon and nitrogen are limited. Therefore, this review summarizes the studies on physical amendments, chemical amendments and microbial amendments and proposes underlying mechanisms for the enhancement of carbon and nitrogen conservation: adsorption or conversion, and also evaluates their contribution to the mitigation of the greenhouse effect, providing a theoretical basis for subsequent composting-related researchers to better improve carbon and nitrogen conservation measures. This paper also suggests that: assessing the contribution of composting as a process to global greenhouse gas mitigation requires a complete life cycle evaluation of composting. The current lack of compost clinker impact on carbon and nitrogen sequestration capacity of the application site needs to be explored by more research workers.
Collapse
Affiliation(s)
- Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Lan Gao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Gaoxia Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jiaxi Tao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lingshi Yin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
12
|
Ma S, Liu H. Three-dimensional printed bulking agents reduce antibiotic resistance genes in swine manure aerobic composting by regulating oxygen concentration to alter host microorganisms and mobile genetic elements. BIORESOURCE TECHNOLOGY 2022; 359:127489. [PMID: 35724908 DOI: 10.1016/j.biortech.2022.127489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance genes (ARGs) in manure aerobic composting are a potential environmental pollutant. Therefore, reducing the abundance of ARGs is crucial. The effects of adding three-dimensional printed bulking agents (3DBAs) on ARGs in aerobic composting of swine manure were investigated in this study. Compared with the control group, 3DBAs with different addition dosages can greatest reduce the total ARGs by 5.98%, tetracycline resistance genes by 14.02%, macrolide resistance genes by 9.65%, and sulfonamide resistance genes by 20.59%. By further combining physicochemical parameters, host microorganisms, and mobile genetic elements (MGEs) for analysis, it was found that oxygen concentration was vital for ARGs reduction, and 3DBAs with regular porosity and uniform size indirectly regulate the activity of host microorganisms and MGEs abundance by changing the oxygen consumption, finally reducing vertical or horizontal ARGs transfer risks. Overall, 3DBAs addition is an effective strategy to reduce the abundance of ARGs in aerobic composting.
Collapse
Affiliation(s)
- Shuangshuang Ma
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Engineering Laboratory for Yellow River Delta Modern Agriculture, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongtao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Engineering Laboratory for Yellow River Delta Modern Agriculture, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
13
|
Wang N, Awasthi MK, Pan J, Jiang S, Wan F, Lin X, Yan B, Zhang J, Zhang L, Huang H, Li H. Effects of biochar and biogas residue amendments on N 2O emission, enzyme activities and functional genes related with nitrification and denitrification during rice straw composting. BIORESOURCE TECHNOLOGY 2022; 357:127359. [PMID: 35618192 DOI: 10.1016/j.biortech.2022.127359] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
This study was carried out to determine the response characteristics of N2O emission, enzyme activities, and functional gene abundances involved in nitrification/denitirification process with biochar and biogas residue amendments during rice straw composting. The results revealed that N2O release mainly occurred during the second fermentation phase. Biogas residue amendment promoted N2O emission, while biochar addition decreased its emission by 33.6%. The nirK gene was abundant through composting process. Biogas residues increased the abundance of denitrification genes, resulting in further release of N2O. Biochar enhanced nosZ gene abundance and accelerated the reduction of N2O. Nitrate reductase (NR), nitrite reductase (NiR), N2O reductase (N2OR), and ammonia monooxygenase (AMO) activities were greatly stimulated by biochar or biogas residue rather than their combined addition. Pearson regression analysis indicated that N2O emission negatively correlated with ammonium and positively correlated with nosZ, nirK, 18S rDNA, total nitrogen, and nitrate (P < 0.05).
Collapse
Affiliation(s)
- Nanyi Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shilin Jiang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410029, China
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xu Lin
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Lihua Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410029, China
| |
Collapse
|
14
|
Qin Y, Xi B, Sun X, Zhang H, Xue C, Wu B. Methane Emission Reduction and Biological Characteristics of Landfill Cover Soil Amended With Hydrophobic Biochar. Front Bioeng Biotechnol 2022; 10:905466. [PMID: 35757810 PMCID: PMC9213677 DOI: 10.3389/fbioe.2022.905466] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Biochar-amended landfill cover soil (BLCS) can promote CH4 and O2 diffusion, but it increases rainwater entry in the rainy season, which is not conducive to CH4 emission reduction. Hydrophobic biochar–amended landfill cover soil (HLCS) was prepared to investigate the changes in CH4 emission reduction and biological characteristics, and BLCS was prepared as control. Results showed that rainwater retention time in HLCS was reduced by half. HLCS had a higher CH4 reduction potential, achieving 100% CH4 removal at 25% CH4 content of landfill gas, and its main contributors to CH4 reduction were found to be at depths of 10–30 cm (upper layer) and 50–60 cm (lower layer). The relative abundances of methane-oxidizing bacteria (MOB) in the upper and lower layers of HLCS were 55.93% and 46.93%, respectively, higher than those of BLCS (50.80% and 31.40%, respectively). Hydrophobic biochar amended to the landfill cover soil can realize waterproofing, ventilation, MOB growth promotion, and efficient CH4 reduction.
Collapse
Affiliation(s)
- Yongli Qin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Beidou Xi
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Hongxia Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Chennan Xue
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Beibei Wu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.,Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| |
Collapse
|
15
|
Meng J, Zhang H, Cui Z, Guo H, Mašek O, Sarkar B, Wang H, Bolan N, Shan S. Comparative study on the characteristics and environmental risk of potentially toxic elements in biochar obtained via pyrolysis of swine manure at lab and pilot scales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153941. [PMID: 35189204 DOI: 10.1016/j.scitotenv.2022.153941] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Pyrolysis is considered as a promising method to immobilize potentially toxic elements (PTEs) in animal manures. However, comparative study on characteristics and environmental risk of PTEs in biochar obtained by pyrolysis of animal manure at different reactors are lacking. In this study, swine manure was pyrolyzed at 300-600 °C in a lab-scale or pilot-scale reactor with the aim to investigate their effects on characteristics and environmental risk of As, Cd, Cu, Ni, Pb, and Zn in swine manure biochar. Results showed that biochars produced from pilot scale had lower pH and carbon (C) content but higher oxygen (O) content than those from lab scale. Biochars from pilot scale had higher total PTEs (except Cd) concentrations and releasable PTEs (except Pb) but lower CaCl2-extractable PTEs and phytotoxicity germination index (GI) to radish seedings than those from lab scale. Chemical speciation analysis indicated that PTEs in biochar produced from pilot-scale fast pyrolysis at 400 °C had higher percentage of more stable fraction (F5 fraction) and lower potential ecological risk index (RI) than those from lab-scale slow pyrolysis. These findings demonstrated that bioavailability and potential ecological risk of PTE in swine manure biochar were greatly decrease in the pilot-scale pyrolysis reactor and the optimum temperature was 400 °C considering the lowest potential ecological risk index.
Collapse
Affiliation(s)
- Jun Meng
- Institute of Eco-environmental Research, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Henglei Zhang
- Institute of Eco-environmental Research, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Zhonghua Cui
- Institute of Eco-environmental Research, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Haipeng Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China.
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3FF, UK
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Shengdao Shan
- Institute of Eco-environmental Research, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China.
| |
Collapse
|
16
|
Effects of Pig Manure and Its Organic Fertilizer Application on Archaea and Methane Emission in Paddy Fields. LAND 2022. [DOI: 10.3390/land11040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Paddy fields account for 10% of global CH4 emissions, and the application of manure may increase CH4 emissions. In this study, high-throughput sequencing technology was used to investigate the effects of manure application on CH4 emissions and methanogens in paddy soil. Three treatments were studied: a controlled treatment (CK), pig manure (PM), and organic fertilizer (OF). The results showed that the contents of Zn, Cr and Ni in paddy soil increased with the application of manure, but the contents of heavy metals gradually decreased with the growth of rice. The Shannon index and Ace index showed that the application of pig manure and organic fertilizer less affected the diversity and richness of soil Archaea. The results of community composition analysis showed that Methanobacterium, Methanobrevibacter, Methanosphaera, Methanosarcina and Rice_Cluster_I were the main methanogens in paddy soil after manure and organic fertilizer application. Soil environmental factors were changed after applied manure, among which total potassium (TK) and total nitrogen (TN) were the main environmental factors affecting methanogens in paddy soil. The changes of soil environmental factors affected the community composition of methanogens, and the increase of the relative abundance of methanogens maybe the main reason for the increase of CH4 emission flux. The relative abundance of methanogens and CH4 emission flux in paddy soil were increased by both pig manure and organic fertilizer application, and pig manure had a bigger impact than organic manure.
Collapse
|
17
|
Romero CM, Redman AAPH, Owens J, Terry SA, Ribeiro GO, Gorzelak MA, Oldenburg TBP, Hazendonk P, Larney FJ, Hao X, Okine E, McAllister TA. Effects of feeding a pine-based biochar to beef cattle on subsequent manure nutrients, organic matter composition and greenhouse gas emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152267. [PMID: 34902397 DOI: 10.1016/j.scitotenv.2021.152267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Biochar in ruminant diets is being assessed as a method for simultaneously improving animal production and reducing enteric CH4 emissions, but little is known about subsequent biochar-manure interactions post-excretion. We examined chemical properties, greenhouse gas (GHG) emissions and organic matter (OM) composition during farm scale stockpiling (SP) or composting (CP) of manure from cattle that either received a pine-based biochar in their diet (BM) or did not (RM). Manure piles were monitored hourly for temperature and weekly for top surface CO2, N2O and CH4 fluxes over 90 d in a semiarid location near Lethbridge, AB, Canada. Results indicate that cumulative CO2, N2O and CH4 emissions were not affected by biochar, implying that BM was as labile as RM. The pH, total C (TC), NO3-N and Olsen P were also not influenced by biochar, although it was observed that NH4-N and OM extractability were both 13% lower in BM than RM. Solid-state 13C nuclear magnetic resonance (NMR) showed that biochar increased stockpile/compost aromaticity, yet it did not alter the bulk C speciation of manure OM. Further analysis by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) revealed that dissolved OM was enriched by strongly reduced chemical constituents, with BM providing more humic-like OM precursors than RM. Inclusion of a pine-based biochar in cattle diets to generate BM is consistent with current trends in the circular economy, "closing the loop" in agricultural supply chains by returning C-rich organic amendments to croplands. Stockpiling/composting the resulting BM, however, may not provide a clear advantage over directly mixing low levels of biochar with manure. Further research is required to validate BM as a tool to reduce the C footprint of livestock waste management.
Collapse
Affiliation(s)
- Carlos M Romero
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada.
| | - Abby-Ann P H Redman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| | - Jen Owens
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| | - Stephanie A Terry
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| | - Gabriel O Ribeiro
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Monika A Gorzelak
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| | - Thomas B P Oldenburg
- Petroleum Reservoir Group, Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Paul Hazendonk
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Francis J Larney
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| | - Xiying Hao
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| | - Erasmus Okine
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1st Ave. S., Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
18
|
Zhou S, Kong F, Lu L, Wang P, Jiang Z. Biochar - An effective additive for improving quality and reducing ecological risk of compost: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151439. [PMID: 34742793 DOI: 10.1016/j.scitotenv.2021.151439] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Biochar is considered as a promising additive with multi-benefits to compost production. However, how the biochar properties and composting conditions affect the composting process and quality and ecological risk of compost is still unclear. In the present study, we conducted a global meta-analysis based on 876 observations from 84 studies. Overall, regardless of biochar properties and composting conditions, biochar addition could significantly increase the pH (5.90%), germination index (26.6%), contents of nitrate nitrogen (56.6%), total nitrogen (9.50%), and total potassium (10.1%), and degree of polymerization (29.4%) while decrease the electrical conductivity (-5.70%), contents of ammonium nitrogen (-33.7%), bioavailable zinc (-22.9%), and bioavailable copper (-38.6%), and emissions of ammonia (-44.2%), nitrous oxide (-68.4%), and methane (-61.7%). Other compost indicators, including the carbon to nitrogen ratio and total phosphorus content, were found to be insignificantly affected by biochar addition. The responses of tested compost indicators affected by the biochar properties and composting conditions were further explored, based on which the addition of straw biochars at a rate of 10-15% was recommended due to its greater potential to improve quality of compost and reduce its ecological risk. Combining the results of linear regression analysis and structural equation model, the increase in compost pH caused by biochar addition was identified as the key mechanism for the increased nutrient content and decreased heavy metal bioavailability. These results could guide us to choose suitable kinds of biochar or develop engineered biochars with specific functionality to realize an optimal compost production mode.
Collapse
Affiliation(s)
- Shunxi Zhou
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ping Wang
- Business School, Qingdao University, Qingdao 266071, China.
| | - Zhixiang Jiang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
19
|
Ravindran B, Karmegam N, Awasthi MK, Chang SW, Selvi PK, Balachandar R, Chinnappan S, Azelee NIW, Munuswamy-Ramanujam G. Valorization of food waste and poultry manure through co-composting amending saw dust, biochar and mineral salts for value-added compost production. BIORESOURCE TECHNOLOGY 2022; 346:126442. [PMID: 34848334 DOI: 10.1016/j.biortech.2021.126442] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
The present study proposes a system for co-composting food waste and poultry manure amended with rice husk biochar at different doses (0, 3, 5, 10%, w/w), saw dust, and salts. The effect of rice husk biochar on the characteristics of final compost was evaluated through stabilization indices such as electrical conductivity, bulk density, total porosity, gaseous emissions and nitrogen conservation. Results indicated that when compared to control, the biochar amendment extended the thermophilic stage of the composting, accelerated the biodegradation and mineralization of substrate mixture and helped in the maturation of the end product. Carbon dioxide, methane and ammonia emissions were reduced and the nitrogen conservation was achieved at a greater level in the 10% (w/w) biochar amended treatments. This study implies that the biochar and salts addition for co-composting food waste and poultry manure is beneficial to enhance the property of the compost.
Collapse
Affiliation(s)
- Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea; Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong.
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, TaichengRoad3#, Yangling, Shaanxi 712100, PR China
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - P K Selvi
- Central Pollution Control Board, Nisarga Bhawan, Shivanagar, Bengaluru, India
| | - Ramalingam Balachandar
- Department of Biotechnology, Aarupadai Veedu Institute of Technology, Vinayaka Missions University (Deemed to Be University), Paiyanoor, Chennai, 603 104, Tamil Nadu, India
| | - Sasikala Chinnappan
- Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Nur Izyan Wan Azelee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor, Malaysia
| | - Ganesh Munuswamy-Ramanujam
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM-IST, Kattankulathur, Kanchipuram Dist, TN, India
| |
Collapse
|
20
|
Lin C, Cheruiyot NK, Bui XT, Ngo HH. Composting and its application in bioremediation of organic contaminants. Bioengineered 2022; 13:1073-1089. [PMID: 35001798 PMCID: PMC8805880 DOI: 10.1080/21655979.2021.2017624] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
This review investigates the findings of the most up-to-date literature on bioremediation via composting technology. Studies on bioremediation via composting began during the 1990s and have exponentially increased over the years. A total of 655 articles have been published since then, with 40% published in the last six years. The robustness, low cost, and easy operation of composting technology make it an attractive bioremediation strategy for organic contaminants prevalent in soils and sediment. Successful pilot-and large-scale bioremediation of organic contaminants, e.g., total petroleum hydrocarbons, plasticizers, and persistent organic pollutants (POPs) by composting, has been documented in the literature. For example, composting could remediate >90% diesel with concentrations as high as 26,315 mg kg−a of initial composting material after 24 days. Composting has unique advantages over traditional single- and multi-strain bioaugmentation approaches, including a diverse microbial community, ease of operation, and the ability to handle higher concentrations. Bioremediation via composting depends on the diverse microbial community; thus, key parameters, including nutrients (C/N ratio = 25–30), moisture (55–65%), and oxygen content (O2 > 10%) should be optimized for successful bioremediation. This review will provide bioremediation and composting researchers with the most recent finding in the field and stimulate new research ideas.
Collapse
Affiliation(s)
- Chitsan Lin
- Maritime Science and Technology, College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan (R.O.C.).,Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan (R.O.C.)
| | - Nicholas Kiprotich Cheruiyot
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan (R.O.C.)
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City, Vietnam.,Faculty of Environment & Natural Resources, Ho Chi Minh City University of Technology (Hcmut), Ho Chi Minh City, Vietnam
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
21
|
Wang K, Du M, Wang Z, Liu H, Zhao Y, Wu C, Tian Y. Effects of bulking agents on greenhouse gases and related genes in sludge composting. BIORESOURCE TECHNOLOGY 2022; 344:126270. [PMID: 34740796 DOI: 10.1016/j.biortech.2021.126270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
The effect of organic bulking agents on CO2, NH3, N2O and CH4 emission and related genes was evaluated in 40 days sludge composting with wood chip, wheat straw and rice husk, respectively. The results showed wood chip had the highest C/N of 111.3, total porosity of 93.13% and aeration porosity of 78.98% among three bulking agents. Wheat straw had the highest water-holding porosity of 25.62%, which could be critical factor increasing CH4 production and reducing NH3 emission. Moreover, there was no significant difference in N2O emission rates in three composting systems with three bulking agents. RDA analysis showed a negative correlation between mcrA and NH + 4-N. Nitrate content in raw feedstock was dominant factor limiting N2O yield due to low amoA. The continuous increase of oxidation-reduction potential was significantly positive correlated with pmoA and negative correlation with nirK and norB, which reduced N2O and CH4 production in the curing period.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mengfei Du
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huimin Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yan Zhao
- Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Harbin 150090, China; Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, China
| | - Chuandong Wu
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
22
|
Osman AI, Fawzy S, Farghali M, El-Azazy M, Elgarahy AM, Fahim RA, Maksoud MIAA, Ajlan AA, Yousry M, Saleem Y, Rooney DW. Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:2385-2485. [PMID: 35571983 PMCID: PMC9077033 DOI: 10.1007/s10311-022-01424-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/22/2022] [Indexed: 05/06/2023]
Abstract
In the context of climate change and the circular economy, biochar has recently found many applications in various sectors as a versatile and recycled material. Here, we review application of biochar-based for carbon sink, covering agronomy, animal farming, anaerobic digestion, composting, environmental remediation, construction, and energy storage. The ultimate storage reservoirs for biochar are soils, civil infrastructure, and landfills. Biochar-based fertilisers, which combine traditional fertilisers with biochar as a nutrient carrier, are promising in agronomy. The use of biochar as a feed additive for animals shows benefits in terms of animal growth, gut microbiota, reduced enteric methane production, egg yield, and endo-toxicant mitigation. Biochar enhances anaerobic digestion operations, primarily for biogas generation and upgrading, performance and sustainability, and the mitigation of inhibitory impurities. In composts, biochar controls the release of greenhouse gases and enhances microbial activity. Co-composted biochar improves soil properties and enhances crop productivity. Pristine and engineered biochar can also be employed for water and soil remediation to remove pollutants. In construction, biochar can be added to cement or asphalt, thus conferring structural and functional advantages. Incorporating biochar in biocomposites improves insulation, electromagnetic radiation protection and moisture control. Finally, synthesising biochar-based materials for energy storage applications requires additional functionalisation.
Collapse
Affiliation(s)
- Ahmed I. Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG Northern Ireland UK
| | - Samer Fawzy
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG Northern Ireland UK
| | - Mohamed Farghali
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
- Department of Animal and Poultry Hygiene and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Marwa El-Azazy
- Department of Chemistry, Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Ahmed M. Elgarahy
- Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
| | - Ramy Amer Fahim
- National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - M. I. A. Abdel Maksoud
- National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Abbas Abdullah Ajlan
- Department of Chemistry -Faculty of Applied Science, Taiz University, P.O.Box 6803, Taiz, Yemen
| | - Mahmoud Yousry
- Faculty of Engineering, Al-Azhar University, Cairo, 11651 Egypt
- Cemart for Building Materials and Insulation, postcode 11765, Cairo, Egypt
| | - Yasmeen Saleem
- Institute of Food and Agricultural Sciences, Soil and Water Science, The University of Florida, Gainesville, FL 32611 USA
| | - David W. Rooney
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG Northern Ireland UK
| |
Collapse
|
23
|
Yin Y, Yang C, Li M, Zheng Y, Ge C, Gu J, Li H, Duan M, Wang X, Chen R. Research progress and prospects for using biochar to mitigate greenhouse gas emissions during composting: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149294. [PMID: 34332388 DOI: 10.1016/j.scitotenv.2021.149294] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 05/22/2023]
Abstract
Biochar possesses a unique porous structure and abundant surface functional groups, which can potentially help mitigate greenhouse gas (GHG) emissions from compost. This review summarizes the properties and functions of biochar, and the effects of biochar on common GHGs (methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O)) and ammonia (NH3, an indirect GHG) during composting. Studies have shown that it is possible to improve the mitigation of GHG emissions during composting by adjusting the biochar amount, type of raw material, pyrolysis temperature, and particle size. Biochar produced from crop residues and woody biomass has a greater effect on mitigating CH4, N2O, and NH3 emissions during composting, and GHG emissions can be reduced significantly by adding about 10% (w/w) biochar. Biochar produced by high temperature pyrolysis (500-900 °C) has a greater effect on mitigating CH4 and N2O emissions, whereas biochar generated by low temperature pyrolysis (200-500 °C) is more effective at reducing NH3 emissions. Interestingly, adding granular biochar is more beneficial for mitigating CH4 emissions, whereas adding powdered biochar is better at reducing NH3 emissions. According to the current research status, developing new methods for producing and using biochar (e.g., modified or combined with other additives) should be the focus of future research into mitigating GHG emissions during composting. The findings summarized in this review may provide a reference to allow the establishment of standards for using biochar to mitigate GHG emissions from compost.
Collapse
Affiliation(s)
- Yanan Yin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Chao Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Mengtong Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Yucong Zheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Chengjun Ge
- School of Ecology and Environment, Hainan University, Haikou 570228, PR China
| | - Jie Gu
- College of Resources and Environmental Sciences, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Haichao Li
- Department of Environment, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Manli Duan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, PR China
| | - Xiaochang Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
24
|
Ma S, Xiong J, Wu X, Liu H, Han L, Huang G. Effects of the functional membrane covering on the gas emissions and bacterial community during aerobic composting. BIORESOURCE TECHNOLOGY 2021; 340:125660. [PMID: 34330007 DOI: 10.1016/j.biortech.2021.125660] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
The effects of the functional membrane covering on the gas emissions and bacterial community during dairy cow manure aerobic composting were investigated. A lab-scale aerobic composting experiment was conducted with the control group (CK), Gore group (Gore), and ZT group (ZT), namely, without and with two functional membranes. Covering the functional membrane retained heat and improved the seed germination index in Gore and ZT groups. Compared with the CK group, the Gore membrane decreased NH3 and N2O emissions by 11.77% and 26.40%, respectively. The ZT membrane decreased N2O and CO2 emissions by 68.44% and 1.56%, respectively. The Gore and ZT membranes decreased the global warming potential by 16.97% and 53.41%, respectively. Moreover, Covering the two functional membranes improved the Actinobacteria relative abundance and were conducive to the degradation of volatile solid. Altogether, membrane-covered aerobic composting is an important technology for the resource utilization of organic waste.
Collapse
Affiliation(s)
- Shuangshuang Ma
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China; Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinpeng Xiong
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyi Wu
- School of Technology, Beijing Forestry University, Beijing 100083, China
| | - Hongtao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
25
|
Wen P, Tang J, Wang Y, Liu X, Yu Z, Zhou S. Hyperthermophilic composting significantly decreases methane emissions: Insights into the microbial mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147179. [PMID: 33894609 DOI: 10.1016/j.scitotenv.2021.147179] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/28/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Methane (CH4) emissions from thermophilic composting (TC) are a substantial contributor to climate change. Hyperthermophilic composting (HTC) can influence CH4-related microbial communities at temperatures up to 80 °C, and thus impact the CH4 emissions during composting. This work investigated CH4 emissions in sludge-derived HTC, and explored microbial community succession with quantitative PCR and high-throughput sequencing. Results demonstrated that HTC decreased CH4 emissions by 52.5% compared with TC. In HTC, the CH4 production potential and CH4 oxidation potential were nearly 40% and 64.1% lower than that of TC, respectively. There was a reduction in the quantity of mcrA (3.7 × 108 to 0 g-1 TS) in HTC, which was more significant than the reduction in pmoA (2.0 × 105 to 2.1 × 104 g-1 TS), and thus lead to reduce CH4 emissions. It was found that the abundance of most methanogens and methanotrophs was inhibited in the hyperthermal environment, with a decline in Methanosarcina, Methanosaeta and Methanobrevibacter potentially being responsible for reducing the CH4 emissions in HTC. This work provides important insight into mitigating CH4 emissions in composting.
Collapse
Affiliation(s)
- Ping Wen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jia Tang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yueqiang Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaoming Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhen Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
26
|
Li X, Shi X, Feng Q, Lu M, Lian S, Zhang M, Peng H, Guo R. Gases emission during the continuous thermophilic composting of dairy manure amended with activated oil shale semicoke. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112519. [PMID: 33862318 DOI: 10.1016/j.jenvman.2021.112519] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
NH3 and greenhouse gases emission are big problems during composting, which can cause great nitrogen nutrient loss and environmental pollution. This study investigated effects of the porous bulking agent of oil shale semicoke and its activated material on the gases emission during the continuous thermophilic composting. Results showed addition of semicoke could significantly reduce the NH3 emission by 74.65% due to its great adsorption capacity to NH4+-N and NH3, further the effect could be enhanced to 85.92% when utilizing the activated semicoke with larger pore volume and specific surface area. In addition, the CH4 emission in the semicoke and activated semicoke group was also greatly mitigated, with a reduction of 67.23% and 87.62% respectively, while the N2O emission was significantly increased by 93.14% and 100.82%. Quantification analysis of the functional genes found the abundance of mcrA was high at the massive CH4-producing stage and the archaeal amoA was dominant at the N2O-producing stage in all the composting groups. Correlation and redundancy analysis suggested there was a positive correlation between the CH4 emission and mcrA. Addition of semicoke especially activated semicoke could reduce the CH4 production by inhibiting the methanogens. For the NH3 and N2O, it was closely related with the nitrification process conducted by archaeal amoA. Addition of semicoke especially activated semicoke was beneficial for the growth of ammonia-oxidizing archaea, causing the less NH4+-N transformation to NH3 but more N2O emission.
Collapse
Affiliation(s)
- Xu Li
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaoshuang Shi
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China.
| | - Quan Feng
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China
| | - Mingyi Lu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shujuan Lian
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China
| | - Mengdan Zhang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hui Peng
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Rongbo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China; Dalian National Laboratory for Clean Energy, Dalian, 116023, PR China.
| |
Collapse
|
27
|
Microbial lipid biosynthesis from lignocellulosic biomass pyrolysis products. Biotechnol Adv 2021; 54:107791. [PMID: 34192583 DOI: 10.1016/j.biotechadv.2021.107791] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/18/2021] [Accepted: 06/24/2021] [Indexed: 01/08/2023]
Abstract
Lipids are a biorefinery platform to prepare fuel, food and health products. They are traditionally obtained from plants, but those of microbial origin allow for a better use of land and C resources, among other benefits. Several (thermo)chemical and biochemical strategies are used for the conversion of C contained in lignocellulosic biomass into lipids. In particular, pyrolysis can process virtually any biomass and is easy to scale up. Products offer cost-effective, renewable C in the form of readily fermentable molecules and other upgradable intermediates. Although the production of microbial lipids has been studied for 30 years, their incorporation into biorefineries was only described a few years ago. As pyrolysis becomes a profitable technology to depolymerize lignocellulosic biomass into assimilable C, the number of investigations on it raises significantly. This article describes the challenges and opportunities resulting from the combination of lignocellulosic biomass pyrolysis and lipid biosynthesis with oleaginous microorganisms. First, this work presents the basics of the individual processes, and then it shows state-of-the-art processes for the preparation of microbial lipids from biomass pyrolysis products. Advanced knowledge on separation techniques, structure analysis, and fermentability is detailed for each biomass pyrolysis fraction. Finally, the microbial fatty acid platform comprising biofuel, human food and animal feed products, and others, is presented. Literature shows that the microbial lipid production from anhydrosugars, like levoglucosan, and short-chain organic acids, like acetic acid, is straightforward. Indeed, processes achieving nearly theoretical yields form the latter have been described. Some authors have shown that lipid biosynthesis from different lignin sources is biochemically feasible. However, it still imposes major challenges regarding strain performance. No report on the fermentation of pyrolytic lignin is yet available. Research on the microbial uptake of pyrolytic humins remains vacant. Microorganisms that make use of methane show promising results at the proof-of-concept level. Overall, despite some issues need to be tackled, it is now possible to conceive new versatile biorefinery models by combining lignocellulosic biomass pyrolysis products and robust oleaginous microbial cell factories.
Collapse
|
28
|
Liu M, Liu C, Liao W, Xie J, Zhang X, Gao Z. Impact of biochar application on gas emissions from liquid pig manure storage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145454. [PMID: 33736144 DOI: 10.1016/j.scitotenv.2021.145454] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Biochars have been used to reduce gas emissions from manure composting practices and to recover nutrients from wastewater because of their effective sorption capacity. However, relatively less is known about the impacts of different alkaline biochars on the gas emissions from liquid manure. Materials including two commercial biochars prepared from walnut shell (WA) and coconut shell (CC), respectively, and coal (CO) were applied (with manure/biochar ratio of 20:1 in weight) to examine their influence on NH3, CH4, and N2O emissions from liquid pig manure during a 68-d period in comparison with a control (CK, without biochars), and to investigate the evolution of the manure N mass balances and the changes in biochar properties during liquid manure storage to understand the characteristics of biochar. Compared with the CK, the application of WA, CC, and CO biochars increased the NH3 emissions by 4.00, 3.87, and 1.23 times, respectively, the absorbed N content of the biochars was markedly lower than the enhanced gaseous losses through NH3 emissions. Similarly, the total greenhouse gas (GHG) emissions from the manure with WA, CC, and CO biochar application were 6.28, 5.55, and 0.83 times greater than those observed with the CK, respectively, and were mainly attributed to the enhanced CH4 emissions. The significant contribution (5%-12%) of indirect GHG emissions from the enhanced NH3-N losses was also identified. The hypothesis for the enhanced gas emissions from liquid manure with biochar addition has been discussed in the present study; however, further investigation in the future is warranted.
Collapse
Affiliation(s)
- Meiling Liu
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, PR China
| | - Chunjing Liu
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, PR China
| | - Wenhua Liao
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, PR China
| | - Jianzhi Xie
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, PR China
| | - Xinxing Zhang
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, PR China
| | - Zhiling Gao
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding 071000, PR China.
| |
Collapse
|
29
|
Biochar reinforced the populations of cbbL-containing autotrophic microbes and humic substance formation via sequestrating CO 2 in composting process. J Biotechnol 2021; 333:39-48. [PMID: 33945823 DOI: 10.1016/j.jbiotec.2021.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/12/2021] [Accepted: 04/28/2021] [Indexed: 01/03/2023]
Abstract
The quality of compost is drastically reduced due to the loss of carbon, which negatively impacts the environment. Carbon emission reduction and carbon dioxide (CO2) fixation have attracted much attention in composting research. In this study, the relationship between CO2 emission, humic substances (HS) formation and cbbL-containing autotrophic microbes (CCAM) was analyzed by adding biochar during cow manure composting. The results showed that biochar can facilitate the degradation of organic matter (OM) and formation of HS, as well as reinforce the diversity and abundance of CCAM community, thereby promoting CO2 fixation and reducing carbon loss during composting. High-throughput sequencing analysis revealed significant increase in Actinobacteriota and Proteobacteria abundance by 30.97 % and 10.48 %, respectively, thus increasing carbon fixation by 32.07 %. Additionally, Alpha diversity index increased significantly during thermophilic phase, while Shannon index increased by 143.12 % and Sobs index increased by 51.62 %. Redundancy analysis (RDA) indicated that CO2 was positively correlated with C/N, temperature, HS and dissolved organic matter (DOM), while the abundance of Paeniclostridium, Corynebacterium, Bifidobacterium, Clostridium, Turicibacter and Romboutsia were positively correlated with temperature, CO2, C/N and E2/E4 (p < 0.01).
Collapse
|
30
|
Guo H, Gu J, Wang X, Song Z, Yu J, Lei L. Microbial mechanisms related to the effects of bamboo charcoal and bamboo vinegar on the degradation of organic matter and methane emissions during composting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116013. [PMID: 33190979 DOI: 10.1016/j.envpol.2020.116013] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/09/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
In this study, functional microbial sequencing, quantitative PCR, and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) were employed to understand the microbial mechanisms related to the effects of bamboo charcoal (BC) and bamboo vinegar (BV) on the degradation of organic matter (OM) and methane (CH4) emissions during composting. BC + BV resulted in the highest degradation of OM. BV was most effective treatment in controlling CH4 emissions and it significantly reduced the abundance of the mcrA gene. Methanobrevibacter, Methanosarcina, and Methanocorpusculum were closely related to CH4 emissions during the thermophilic composting period. PICRUSt analysis showed that BC and/or BV enhanced the metabolism associated with OM degradation and reduced CH4 metabolism. Structural equation modeling indicated that BC + BV strongly promoted the metabolic activity of microorganisms, which had a positive effect on CH4 emissions. Together these results suggest that BC + BV may be a suitable composting strategy if the aerobic conditions can be effectively improved during the thermophilic composting period.
Collapse
Affiliation(s)
- Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
31
|
Deng B, Yuan X, Siemann E, Wang S, Fang H, Wang B, Gao Y, Shad N, Liu X, Zhang W, Guo X, Zhang L. Feedstock particle size and pyrolysis temperature regulate effects of biochar on soil nitrous oxide and carbon dioxide emissions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 120:33-40. [PMID: 33279825 DOI: 10.1016/j.wasman.2020.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/27/2020] [Accepted: 11/18/2020] [Indexed: 05/22/2023]
Abstract
Atmospheric greenhouse gas (GHG) concentration increases are a serious problem impacting global climate. Mitigation of agricultural GHG production is crucial as fertilized soils contribute substantially to changes in GHG atmospheric composition. Biochar derived from agricultural or forestry biowaste has been widely used in agriculture and may help mitigate GHG emissions. While different kinds of biochar and their effects on GHG emissions have been studied, feedstock particle size may interact with pyrolysis temperature to impact biochar effects on GHG emissions, but this has not been investigated. Here, feedstock particle size effects on biochar characteristics and soil nitrous oxide (N2O) and carbon dioxide (CO2) emissions were studied using Camellia oleifera fruit shell feedstock with three particle size fractions (0.5-2, 2-5, and 5-10 mm) each pyrolyzed at 300, 450, and 600 °C. Results showed that dissolved organic carbon in biochar increased with particle size when pyrolyzed at 300 °C, but decreased with pyrolysis temperature. The 0.5-2 mm shell-derived biochar was associated with the lowest N2O and CO2 emission rates but the highest net nitrogen mineralization rates compared to 2-5 mm and 5-10 mm shell-derived biochar when pyrolyzed at 300 °C. Overall, shell particle size was more important for soil processes at lower pyrolysis temperatures with less variation among particle sizes at higher pyrolysis temperatures. The results indicated that feedstock particle size may interact with pyrolysis temperature and impact mitigation of soil N2O and CO2 emissions.
Collapse
Affiliation(s)
- Bangliang Deng
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, College of Water Conservancy and Ecological Engineering, Nanchang Institute of Technology, Nanchang 330099, China
| | - Xi Yuan
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Shuli Wang
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haifu Fang
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Baihui Wang
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yu Gao
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Nasir Shad
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaojun Liu
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenyuan Zhang
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaomin Guo
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ling Zhang
- Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
32
|
Wang G, Kong Y, Liu Y, Li D, Zhang X, Yuan J, Li G. Evolution of phytotoxicity during the active phase of co-composting of chicken manure, tobacco powder and mushroom substrate. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 114:25-32. [PMID: 32645612 DOI: 10.1016/j.wasman.2020.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/12/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
This study systematically investigated the phytotoxicity of chicken manure co-composted with tobacco powder and mushroom substrate on seed germination during active phase of composting. All compost products met the sanitation requirements specified in the Chinese national standard; however, only the mushroom substrate compost satisfied the maturity standard. From day 28, the composting entered the end of active phase and the concentrations of K+, Zn2+, Na+, Cu2+ and Fe3+ decreased gradually. Redundancy analysis indicated that the germination index, catalase and peroxidase activities was positively correlated with K+, Zn2+, Na+, Cu2+, Fe3+ and NO3--N, and negatively correlated with NH4+-N, Mg2+ and Ca2+, among which the most significant ions were Fe3+, Mg2+ and Zn2+ for all treatments. The malondialdehyde concentration of germinated seeds had adverse correlation with the above ions parameters.
Collapse
Affiliation(s)
- Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yan Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Danyang Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Xuehua Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
33
|
Chen H, Awasthi SK, Liu T, Duan Y, Ren X, Zhang Z, Pandey A, Awasthi MK. Effects of microbial culture and chicken manure biochar on compost maturity and greenhouse gas emissions during chicken manure composting. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121908. [PMID: 31879100 DOI: 10.1016/j.jhazmat.2019.121908] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/04/2019] [Accepted: 12/15/2019] [Indexed: 05/22/2023]
Abstract
The effects of chicken manure biochar (CMB) and chicken manure integrated microbial consortium (CMMC) as co-amendments were assessed on compost maturity and reduction of greenhouse gases and ammonia (NH3) emissions during chicken manure composting. Composting was conducted using six combinations of CMB and CMCC (0 % CMB + 0 % CMMC, 0 % CMB + 10 % CMMC, 2 % CMB + 10 % CMMC, 4 % CMB + 10 % CMMC, 6 % CMB + 10 % CMMC, 10 % CMB + 10 % CMMC added on a dry weight basis) in six polyvinyl chloride composting reactors for 42 days under an aerobic environment. Co-amendment of CMB and CMMC extended the thermophilic stage and promoted compost maturity. The release of greenhouse gases [nitrous oxide (N2O) and methane (CH4)] and NH3 from treatments co-amended by CMB and CMMC were reduced by 19.0-27.4 %, 9.3-55.9 % and 24.2-56.9 %, respectively, compared with the control. In addition, a redundancy analysis showed that the C/N ratio and temperature had a significant relationship with greenhouse gases and NH3 emissions among all physiochemical characteristics.
Collapse
Affiliation(s)
- Hongyu Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China; Institute of Biology, Freie Universität Berlin Altensteinstr. 6, 14195 Berlin, Germany
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Yumin Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology, Lucknow 226 001, India; Department of Civil and Environmental Sciences, Yonsei University, Seoul, South Korea.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China; Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| |
Collapse
|
34
|
Chen Z, Wu Y, Wen Q, Ni H, Chai C. Effects of multiple antibiotics on greenhouse gas and ammonia emissions during swine manure composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7289-7298. [PMID: 31884542 DOI: 10.1007/s11356-019-07269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Antibiotics are commonly used in intensive farming, leading to multiple antibiotic residue in livestock waste. However, the effects of multiple antibiotics on the emissions of greenhouse gas and ammonia remain indistinct. This paper selects sulfamethoxazole and norfloxacin to represent two different types of antibiotics to explore their effects on gaseous emissions. Four treatments including CK (control), SMZ (spiked with 5 mg kg-1 DW sulfamethoxazole), NOR (spiked with 5 mg kg-1 DW norfloxacin), and SN (spiked with 5 mg kg-1 DW sulfamethoxazole and 5 mg kg-1 DW norfloxacin) were composted for 65 days. Coexistence of sulfamethoxazole and norfloxacin facilitated the biodegradation of organic carbon, and significantly (p < 0.05) increased the cumulative CO2 emission by 31.9%. The cumulative CH4 emissions were decreased by 6.19%, 23.7%, and 27.6% for SMZ, NOR, and SN, respectively. The total NH3 volatilization in SMZ and NOR rose to 1020 and 1190 mg kg-1 DW, respectively. The individual existence of sulfamethoxazole significantly (p < 0.05) ascended the N2O emission rate in the first 7 days due to the increase of NO2--N content. In addition, coexistence of sulfamethoxazole and norfloxacin notably dropped the total greenhouse gas emission (subtracting CO2) by 15.5%.
Collapse
Affiliation(s)
- Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Yiqi Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China.
| | - Hongwei Ni
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin, 150040, Heilongjiang, China
| | - Chunrong Chai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin, 150040, Heilongjiang, China
| |
Collapse
|
35
|
Dai X, Hua Y, Dai L, Cai C. Particle size reduction of rice straw enhances methane production under anaerobic digestion. BIORESOURCE TECHNOLOGY 2019; 293:122043. [PMID: 31472406 DOI: 10.1016/j.biortech.2019.122043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
The objective of this study was to investigate the effects of particle size reduction (20, 1, 0.15, and 0.075 mm) on biogas production from rice straw waste through batch anaerobic digestion experiments. To clarify the digestion mechanisms, the microbial community and rice straw properties including fractal dimension, dissolution abilities and the bio-liquefaction degree were determined. Particle size reduction of rice straw improved methane yield from 107 mL g-1 VS to 197 mL g-1 VS. The elevated digestion efficiency was attributed to the cellulose degradation (degradation rate from 27% to 93%) rather than hemicellulose or lignin. The comminution pretreatment improved the basic morphology, dissolution abilities and bio-liquefaction degree, which associated with the shifts in the bacterial community and the decreased bacterial diversity. These results suggested that particle size reduction of the rice straw in conjunction with optimized microbial growth could improve the methane yield in anaerobic digestion processes.
Collapse
Affiliation(s)
- Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yu Hua
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Lingling Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
36
|
Duan Y, Awasthi SK, Liu T, Zhang Z, Awasthi MK. Evaluation of integrated biochar with bacterial consortium on gaseous emissions mitigation and nutrients sequestration during pig manure composting. BIORESOURCE TECHNOLOGY 2019; 291:121880. [PMID: 31374415 DOI: 10.1016/j.biortech.2019.121880] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
This study focused on evaluate the effectiveness of biochar alone compare integrated with bacterial consortium amendment on the gaseous emissions mitigation as well as carbon and nitrogen sequestration during pig manure composting. Six additive treatments were performed based on uniform mixing pig manure with wheat straw [bacterial consortium (T2), 12%wood biochar (T3), 12%wood biochar + bacterial consortium (T4), 12%wheat straw biochar (T5), 12%wheat straw biochar + bacterial consortium (T6), while T1 without any additive]. The results obviously indicated that integrated use of biochar and bacterial consortium could remarkably relieved gaseous emissions, improved carbon and nitrogen conservation as well as accelerated maturity of composting. Notably the optimum combination was existed in T6 owing to lowest nutrient losses (nitrogen and carbon losses were 9.91 g/kg and 189.54 g/kg) and gas emissions (30.16 g/kg) as well as supreme maturity (germination index > 100%); it's an economic-practical and environmental protection novel disposal approach for solid waste.
Collapse
Affiliation(s)
- Yumin Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| |
Collapse
|
37
|
Jiang J, Wang Y, Liu J, Yang X, Ren Y, Miao H, Pan Y, Lv J, Yan G, Ding L, Li Y. Exploring the mechanisms of organic matter degradation and methane emission during sewage sludge composting with added vesuvianite: Insights into the prediction of microbial metabolic function and enzymatic activity. BIORESOURCE TECHNOLOGY 2019; 286:121397. [PMID: 31059972 DOI: 10.1016/j.biortech.2019.121397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 05/23/2023]
Abstract
Effect mechanisms of organic matter (OM) degradation and methane (CH4) emission during sewage sludge (SS) composting with added vesuvianite (V) were studied by high-throughput sequencing (HTS) and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt). Results show that the addition of V accelerated the OM degradation and decreased the cumulative CH4 emissions by 33.6% relative to the control. In addition, V significantly decreased the mcrA gene abundance and the methanogen community richness at the genus level. PICRUSt also indicated that V strengthens the microbial metabolic function and enzymatic activity related to OM degradation, and reduced the enzymatic activity related to CH4 production. Methanogens community variation analysis proved the ratio of carbon and nitrogen and moisture content are the significant variables affecting CH4 emissions. Thus, optimizing the ratio of carbon and nitrogen and moisture content will decrease CH4 emission during SS composting.
Collapse
Affiliation(s)
- Jishao Jiang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Yang Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Juan Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xianli Yang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yuqing Ren
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Haohao Miao
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Youwei Pan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Jinghua Lv
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Guangxuan Yan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Linjie Ding
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yunbei Li
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| |
Collapse
|
38
|
Variation of Greenhouse Gases Fluxes and Soil Properties with Addition of Biochar from Farm-Wastes in Volcanic and Non-Volcanic Soils. SUSTAINABILITY 2019. [DOI: 10.3390/su11071831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The decomposition of organic wastes contributes to greenhouse gas (GHG) emissions and global warming. This study evaluated the effect of biochar (BC) produced from different farm wastes (chicken, pig and cow manures) on greenhouse gas emissions and soil chemical and biological properties in different grassland soils (volcanic and non-volcanic soils). A 288-day laboratory experiment was carried out, monitoring CO2, N2O and CH4 emissions and evaluating total C, soil pH, microbial biomass and enzymatic activity in three grassland soils. The results varied depending on the soil type and feedstock of BC produced. BC-cow decreased emissions of CO2 and CH4 fluxes for volcanic and non-volcanic soils, probably due to decreases in β-glucosidase activity. Biochars from cow and pig manures increased soil C content, favouring the persistence of C into the soil at 288-days of incubation. Soil pH increased with the application of BC in the soils.
Collapse
|
39
|
He X, Yin H, Han L, Cui R, Fang C, Huang G. Effects of biochar size and type on gaseous emissions during pig manure/wheat straw aerobic composting: Insights into multivariate-microscale characterization and microbial mechanism. BIORESOURCE TECHNOLOGY 2019; 271:375-382. [PMID: 30293033 DOI: 10.1016/j.biortech.2018.09.104] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 05/22/2023]
Abstract
Greenhouse gas and ammonia emissions during composting with different biochar types and particle sizes were investigated. Compared with powder-biochar, granular-biochar improved pore connectivity and was benefit to methanotrophs activities, like Methylococcaceae, reducing CH4 emissions. At the same particle size, bamboo biochar (BB) had a higher pore volume and more aerobic microenvironment within the compost than rice straw biochar (RSB), reducing GHG emissions. Bamboo biochar had high aromatic compound and NO3- concentrations and therefore surface π-π electron donor/acceptor interactions, causing low N2O emissions and inhibiting denitrifying bacteria (e.g., Bacteroidales). More CO and CO bonds in rice straw biochar than bamboo biochar caused lower NH3 emissions using rice straw than bamboo biochar. Powdered biochar had more exposed reactive functional groups and decreased NH3 production better than granular biochar. Powdered bamboo biochar controls gaseous emissions better than other biochars during aerobic pig manure/wheat straw composting.
Collapse
Affiliation(s)
- Xueqin He
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Hongjie Yin
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ruxiu Cui
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Chen Fang
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|