1
|
Sobhi M, Elsamahy T, Zhang Y, Zakaria E, Ren S, Gaballah MS, Zhu F, Hu X, Cui Y, Huo S. Adaptation of Chlorella vulgaris immobilization on rice straw with liquid manure to create a sustainable feedstock for biogas production and potential feed applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123050. [PMID: 39447360 DOI: 10.1016/j.jenvman.2024.123050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Rice straw (RS) is a widely available agricultural residue with significant potential for biogas production and feed applications; however, its poor digestibility and nutritional value limit its utilization. This study explores an innovative approach to enhance the digestibility and nutritional value of RS by cultivating Chlorella vulgaris through immobilization technology on RS, using liquid manure (LM) as an alternative to the traditional BG11 medium. The results showed an increase in chlorophyll a (Chl a) after 12 days for both the BG11 medium and LM-based treatments, from 0.13 to 0.34 and 0.24 mg Chl a/g product (DM), respectively. Additionally, the immobilized microalgal biomass increased to 284.18 and 170.14 mg algal biomass/g product (DM), respectively. Soaking under microaerobic conditions during cultivation led to the partial degradation of RS. This, combined with the formed microalgal biofilm, contributed to an improved digestibility of the dry matter, reaching 69.1% and 65.9% for the final products based on the BG11 medium and LM mediums, respectively, compared to 52.1% for the raw RS. Furthermore, the crude protein and lipids contents were significantly improved with the potential for applications in feed, reaching 21.4% and 4.1% for the BG11 medium-based product, while they were observed to be 12.8% and 3.0%, respectively, for the LM-based product. Additionally, carbon-to-nitrogen ratio was significantly reduced compared to the raw RS. The higher digestibility and improved nutritional value contributed to increased biogas production, reaching 129.3 and 118.7 mL/g (TS) for the products based on the traditional medium and LM medium, respectively, compared to 86.7 mL/g (TS) for the raw RS. The immobilization mechanism and biofilm development could be attributed to the roughness of the RS and extracellular polymer substances. This study demonstrates that integrating C. vulgaris cultivation on RS with LM as a nutrient source not only enhances the digestibility and nutritional value of RS but also offers a sustainable waste management solution with potential applications in biogas production and animal feed.
Collapse
Affiliation(s)
- Mostafa Sobhi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Alexandria University, Alexandria, 21545, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yajie Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Eman Zakaria
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Siyuan Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mohamed S Gaballah
- School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI 48858, USA
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xinjuan Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
2
|
Zhu YM, Chen Y, Lu H, Jin K, Lin Y, Ren H, Xu K. Simultaneous efficient removal of tetracycline and mitigation of antibiotic resistance genes enrichment by a modified activated sludge process with static magnetic field. WATER RESEARCH 2024; 262:122107. [PMID: 39038424 DOI: 10.1016/j.watres.2024.122107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
To address the increasing issue of antibiotic wastewater, this study applied a static magnetic field (SMF) to the activated sludge process to increase the efficiency of tetracycline (TC) removal from swine wastewater and to reveal its enhanced mechanisms. The results demonstrated that the SMF-modified activated sludge process could achieve almost complete TC removal at sludge loading rates of 0.3 mg TC/g MLSS/d. Analysis of zeta potential and extracellular polymeric substances composition of the activated sludge revealed that SMF increased electrostatic interactions between TC and activated sludge and made activated sludge has much more binding sites, finally resulting in the increased TC biosorption. Metagenomic analysis showed that SMF promoted the enrichment of ammonia-oxidizing bacteria, TC-degrading bacteria, and aromatic compounds-degrading bacteria; it also enhanced ammonia monooxygenase- and cytochrome P450-mediated TC metabolism while upregulating functional genes associated with oxidase, reductase, and dehydrogenase - all contributing to increased TC biodegradation. Additionally, SMF mitigated the enrichment and spread of antibiotic resistance genes (ARGs) by decreasing the abundance of potential hosts of ARGs and inhibiting the upregulation of genes encoding ABC transporters and putative transposase. Based on these findings, this study demonstrates that magnetic field is an enhancement strategy with great potential to relieve the harmful impacts of the growing antibiotic wastewater problem on human health and the ecosystem.
Collapse
Affiliation(s)
- Yuan-Mo Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China; Nanjing University Yixing Environmental Protection Research Institute, Yixing, Jiangsu 214200, PR China
| | - Yongsheng Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China; Nanjing University Yixing Environmental Protection Research Institute, Yixing, Jiangsu 214200, PR China
| | - Hewei Lu
- Nanjing University Yixing Environmental Protection Research Institute, Yixing, Jiangsu 214200, PR China
| | - Kai Jin
- Nanjing University Yixing Environmental Protection Research Institute, Yixing, Jiangsu 214200, PR China
| | - Yuan Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China; Nanjing University Yixing Environmental Protection Research Institute, Yixing, Jiangsu 214200, PR China.
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China; Nanjing University Yixing Environmental Protection Research Institute, Yixing, Jiangsu 214200, PR China.
| |
Collapse
|
3
|
Mkpuma VO, Moheimani NR, Ennaceri H. Biofilm cultivation of chlorella species. MUR 269 to treat anaerobic digestate food effluent (ADFE): Total ammonia nitrogen (TAN) concentrations effect. CHEMOSPHERE 2024; 354:141688. [PMID: 38484996 DOI: 10.1016/j.chemosphere.2024.141688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/06/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Microalgal-based treatment of anaerobic digestate food effluent (ADFE) has been found to be efficient and effective. However, turbidity and high total ammonia nitrogen (TAN)) content of ADFE is a major setback, requiring significant dilution. Although the possibility of growing microalgae in a high-strength ADFE with minimal dilution has been demonstrated in suspension cultures, such effluents remain highly turbid and affect the light path in suspension cultures. Here, the feasibility of growing Chlorella sp.MUR 269 in biofilm to treat ADFE with high TAN concentrations was investigated. Six different TAN concentrations in ADFE were evaluated for their effects on biofilm growth and nutrient removal by Chlorella sp. MUR 269 using the perfused biofilm technique. Biomass yields and productivities of this alga at various TAN concentrations (mg N NH3 L-1) were 55a (108 g m-2 and 9.80 g m-2 d-1)>100b > 200c = 300c = 500c > 1000d. Growth was inhibited, resulting in a 28% reduction in yield of Chlorella biofilm when this alga was grown at 1000 mg N NH3 L-1. A survey of the photosynthetic parameters reveals evidence of stress occurring in the following sequence: 55 < 100<200 < 300<1000. A significant nutrient removal was observed across various TAN concentrations. The removal pattern also followed the concentration gradients except COD, where the highest removal occurred at 500 mg N NH3 L-1. Higher removal rates were seen at higher nutrient concentrations and declined gradually over time. In general, our results indicated that the perfused biofilm strategy is efficient, minimizes water consumption, offers easy biomass harvesting, and better exposure to light. Therefore, it can be suitable for treating turbid and concentrated effluent with minimal treatment to reduce the TAN concentration.
Collapse
Affiliation(s)
- Victor Okorie Mkpuma
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Navid Reza Moheimani
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth, 6150, Australia
| | - Houda Ennaceri
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth, 6150, Australia.
| |
Collapse
|
4
|
Marques F, Pereira F, Machado L, Martins JT, Pereira RN, Costa MM, Genisheva Z, Pereira H, Vicente AA, Teixeira JA, Geada P. Comparison of Different Pretreatment Processes Envisaging the Potential Use of Food Waste as Microalgae Substrate. Foods 2024; 13:1018. [PMID: 38611325 PMCID: PMC11011475 DOI: 10.3390/foods13071018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
A significant fraction of the food produced worldwide is currently lost or wasted throughout the supply chain, squandering natural and economic resources. Food waste valorization will be an important necessity in the coming years. This work investigates the ability of food waste to serve as a viable nutritional substrate for the heterotrophic growth of Chlorella vulgaris. The impact of different pretreatments on the elemental composition and microbial contamination of seven retail food waste mixtures was evaluated. Among the pretreatment methods applied to the food waste formulations, autoclaving was able to eliminate all microbial contamination and increase the availability of reducing sugars by 30%. Ohmic heating was also able to eliminate most of the contaminations in the food wastes in shorter time periods than autoclave. However, it has reduced the availability of reducing sugars, making it less preferable for microalgae heterotrophic cultivation. The direct utilization of food waste containing essential nutrients from fruits, vegetables, dairy and bakery products, and meat on the heterotrophic growth of microalgae allowed a biomass concentration of 2.2 × 108 cells·mL-1, being the culture able to consume more than 42% of the reducing sugars present in the substrate, thus demonstrating the economic and environmental potential of these wastes.
Collapse
Affiliation(s)
- Fabiana Marques
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
| | - Francisco Pereira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
| | - Luís Machado
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
| | - Joana T. Martins
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Ricardo N. Pereira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Monya M. Costa
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.C.); (H.P.)
| | | | - Hugo Pereira
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.C.); (H.P.)
| | - António A. Vicente
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Pedro Geada
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
5
|
Silva-Gálvez AL, López-Sánchez A, Camargo-Valero MA, Prosenc F, González-López ME, Gradilla-Hernández MS. Strategies for livestock wastewater treatment and optimised nutrient recovery using microalgal-based technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120258. [PMID: 38387343 DOI: 10.1016/j.jenvman.2024.120258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
Global sustainable development faces several challenges in addressing the needs of a growing population. Regarding food industries, the heightening pressure to meet these needs has resulted in increased waste generation. Thus, recognising these wastes as valuable resources is crucial to integrating sustainable models into current production systems. For instance, the current 24 billion tons of nutrient-rich livestock wastewater (LW) generated yearly could be recovered and valorised via biological uptake through microalgal biomass. Microalgae-based livestock wastewater treatment (MbLWT) has emerged as an effective technology for nutrient recovery, specifically targeting carbon, nitrogen, and phosphorus. However, the viability and efficacy of these systems rely on the characteristics of LW, including organic matter and ammonium concentration, content of suspended solids, and microbial load. Thus, this systematic literature review aims to provide guidance towards implementing an integral MbLWT system for nutrient control and recovery, discussing several pre-treatments used in literature to overcome the challenges regarding LW as a suitable media for microalgae cultivation.
Collapse
Affiliation(s)
- Ana Laura Silva-Gálvez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico; BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Anaid López-Sánchez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico
| | - Miller Alonso Camargo-Valero
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK; Departamento de Ingeniería Química, Universidad Nacional de Colombia, Campus La Nubia, Manizales, Colombia
| | - Franja Prosenc
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Martín Esteban González-López
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico.
| | - Misael Sebastián Gradilla-Hernández
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico.
| |
Collapse
|
6
|
Bedane DT, Asfaw SL. Microalgae and co-culture for polishing pollutants of anaerobically treated agro-processing industry wastewater: the case of slaughterhouse. BIORESOUR BIOPROCESS 2023; 10:81. [PMID: 38647578 PMCID: PMC10992203 DOI: 10.1186/s40643-023-00699-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/23/2023] [Indexed: 04/25/2024] Open
Abstract
Anaerobically treated slaughterhouse effluent is rich in nutrients, organic matter, and cause eutrophication if discharged to the environment without proper further treatment. Moreover, phosphorus and nitrogen in agro-processing industry wastewaters are mainly removed in the tertiary treatment phase. The objective of this study is to evaluate the pollutant removal efficiency of Chlorella and Scenedesmus species as well as their co-culture treating two-phase anaerobic digester effluent through microalgae biomass production. The dimensions of the rectangular photobioreactor used to conduct the experiment are 15 cm in height, 20 cm in width, and 30 cm in length. Removal efficiencies between 86.74-93.11%, 96.74-97.47%, 91.49-92.91%, 97.94-99.46%, 89.22-94.28%, and 91.08-95.31% were attained for chemical oxygen demand, total nitrogen, nitrate, ammonium, total phosphorous, and orthophosphate by Chlorella species, Scenedesmus species, and their co-culture, respectively. The average biomass productivity and biomass yield of Chlorella species, Scenedesmus species, and their co-culture were 1.4 ± 0.1, 1.17 ± 0.12, 1.5 ± 0.13 g/L, and 0.18, 0.21, and 0.23 g/L*day, respectively. The final effluent quality in terms of chemical oxygen demand, total nitrogen, and total phosphorous attained by Chlorella species and the co-culture were below the permissible discharge limit for slaughterhouse effluent standards in the country (Ethiopia). The results of the study showed that the use of microalgae as well as their co-culture for polishing the nutrients and residual organic matter in the anaerobically treated agro-processing industry effluent offers a promising result for wastewater remediation and biomass production. In general, Chlorella and Scenedesmus species microalgae and their co-culture can be applied as an alternative for nutrient removal from anaerobically treated slaughterhouse wastewater as well as biomass production that can be used for bioenergy.
Collapse
Affiliation(s)
- Dejene Tsegaye Bedane
- Center for Environmental Science, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
| | - Seyoum Leta Asfaw
- Center for Environmental Science, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Liang C, Zhang N, Pang Y, Li S, Shang J, Zhang Y, Kuang Z, Liu J, Fei H. Cultivation of Spirulina platensis for nutrient removal from piggery wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85733-85745. [PMID: 37392298 DOI: 10.1007/s11356-023-28334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/14/2023] [Indexed: 07/03/2023]
Abstract
The discharge of livestock wastewater without appropriate treatment causes severe harm to the environment and human health. In the pursuit of finding solutions to this problem, the cultivation of microalgae as feedstock for biodiesel and animal feed additive using livestock wastewater coupled with the removal of nutrients from wastewater has become a hot research topic. In this study, the cultivation of Spirulina platensis using piggery wastewater for the production of biomass and the removal of nutrients were studied. The results of single factor experiments confirmed that Cu2+ seriously inhibit the growth of Spirulina platensis, while the influences of nitrogen, phosphorous, and zinc on the growth of Spirulina platensis can all be described as "low promotes high inhibits." Spirulina platensis grew well in the 4-fold dilution of piggery wastewater supplemented with moderate sodium bicarbonate, which indicated that it is the limiting nutrients for Spirulina platensis growth in piggery wastewater. The biomass concentration of Spirulina platensis reached 0.56 g/L after 8 days of culture at the optimal conditions proposed by the response surface method, which were as follows: 4-fold dilution of piggery wastewater, 7 g/L sodium bicarbonate, pH of 10.5, initial OD560 of 0.63, light intensity of 3030 lx, and light time/dark time of 16 h/8 h. Spirulina platensis cultured in the diluted piggery wastewater contained 43.89% protein, 9.4% crude lipid, 6.41 mg/g chlorophyll a, 4.18% total sugar, 27.7 mg/kg Cu, and 246.2 mg/kg Zn. The removal efficiency for TN, TP, COD, Zn, and Cu from the wastewater by Spirulina platensis was 76%, 72%, 93.1%, 93.5%, and 82.5%, respectively. These results demonstrated the feasibility of piggery wastewater treatment by the cultivation of Spirulina platensis.
Collapse
Affiliation(s)
- Changli Liang
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, China.
| | - Nali Zhang
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, China
| | - Yu Pang
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, China
| | - Siyuan Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, China
| | - Jiafan Shang
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, China
| | - Yipeng Zhang
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, China
| | - Zhenzhong Kuang
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, China
| | - Junhe Liu
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, China
| | - Hua Fei
- Jiangxi University of Science and Technology, Ganzhou, 341000, China
| |
Collapse
|
8
|
Zhou T, Zhang Z, Liu H, Dong S, Nghiem LD, Gao L, Chaves AV, Zamyadi A, Li X, Wang Q. A review on microalgae-mediated biotechnology for removing pharmaceutical contaminants in aqueous environments: Occurrence, fate, and removal mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130213. [PMID: 36283219 DOI: 10.1016/j.jhazmat.2022.130213] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceutical compounds in aquatic environments have been considered as emerging contaminants due to their potential risks to living organisms. Microalgae-based technology showed the feasibility of removing pharmaceutical contaminants. This review summarizes the occurrence, classification, possible emission sources, and environmental risk of frequently detected pharmaceutical compounds in aqueous environments. The efficiency, mechanisms, and influencing factors for the removal of pharmaceutical compounds through microalgae-based technology are further discussed. Pharmaceutical compounds frequently detected in aqueous environments include antibiotics, hormones, analgesic and non-steroidal anti-inflammatory drugs (NSAIDs), cardiovascular agents, central nervous system drugs (CNS), antipsychotics, and antidepressants, with a concentration ranging from ng/L to μg/L. Microalgae-based technology majorly remove the pharmaceutical compounds through bioadsorption, bioaccumulation, biodegradation, photodegradation, and co-metabolism. This review identifies the opportunities and challenges for microalgae-based technology and proposed suggestions for future studies to tackle challenges. The findings of this review advance our understanding of the occurrence and fate of pharmaceutical contaminants in aqueous environments, highlighting the potential of microalgae-based technology for pharmaceutical contaminants removal.
Collapse
Affiliation(s)
- Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Zehao Zhang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Shiman Dong
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Li Gao
- South East Water, 101 Wells Street, Frankston, VIC 3199, Australia
| | - Alex V Chaves
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Arash Zamyadi
- Water Research Australia Limited, Adelaide, SA 5001, Australia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
9
|
Ziganshina EE, Bulynina SS, Yureva KA, Ziganshin AM. Growth Parameters of Various Green Microalgae Species in Effluent from Biogas Reactors: The Importance of Effluent Concentration. PLANTS (BASEL, SWITZERLAND) 2022; 11:3583. [PMID: 36559695 PMCID: PMC9786779 DOI: 10.3390/plants11243583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The use of liquid waste as a feedstock for cultivation of microalgae can reduce water and nutrient costs and can also be used to treat wastewater with simultaneous production of biomass and valuable products. This study applied strategies to treat diluted anaerobic digester effluent (ADE) as a residue of biogas reactors with moderate (87 ± 0.6 mg L-1; 10% ADE) and elevated NH4+-N levels (175 ± 1.1 mg L-1; 20% ADE). The effect of ADE dilution on the acclimatization of various microalgae was studied based on the analysis of the growth and productivity of the tested green algae. Two species of the genus Chlorella showed robust growth in the 10-20% ADE (with a maximum total weight of 3.26 ± 0.18 g L-1 for C. vulgaris and 2.81 ± 0.10 g L-1 for C. sorokiniana). The use of 10% ADE made it possible to cultivate the strains of the family Scenedesmaceae more effectively than the use of 20% ADE. The growth of Neochloris sp. in ADE was the lowest compared to other microalgal strains. The results of this study demonstrated the feasibility of introducing individual green microalgae into the processes of nutrient recovery from ADE to obtain biomass with a high protein content.
Collapse
|
10
|
Zhu S, Jiang R, Qin L, Huang D, Yao C, Xu J, Wang Z. Integrated strategies for robust growth of Chlorella vulgaris on undiluted dairy farm liquid digestate and pollutant removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158518. [PMID: 36063926 DOI: 10.1016/j.scitotenv.2022.158518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Undiluted dairy farm liquid digestate contains high levels of organic matters, chromaticity and total ammonia nitrogen (TAN), resulting in inhibition to microalgal growth. In this study, a novel cascade pretreatment with ozonation and ammonia stripping (O + S) was employed to remove these inhibitors, and was compared with single pretreatment approach. The optimum parameters for ozonation and ammonia stripping were obtained and the mechanisms of inhibition elimination were investigated. The results show that ozonation contributed to the degradation of non-fluorescent chromophoric organics through the direct molecular ozone attack, which mitigated the inhibition of chromaticity to microalgae, while ammonia stripping relieved the inhibition of high TAN to microalgae. After cascade pretreatment, TAN, total nitrogen (TN), COD and chromaticity were reduced by 80.2 %, 75.4 %, 20.6 % and 75.8 % respectively. When C. vulgaris was cultured on different pretreated digestate, it was found that cascade pretreatment was beneficial for retaining high PSII activity and synergistically improved microalgal growth. The highest biomass increment and productivity achieved 5.40 g L-1 and 900 mg L-1 d-1 respectively in the integration system of cascade pretreatment with microalgae cultivation (O + S + M). After O + S + M treatment, the removal efficiencies of TAN, TN, COD and total phosphorus (TP) were 100 %, 92.8 %, 46.7 % and 99.6 %, respectively. This work provided a promising strategy (O + S + M) for sustainable liquid digestate treatment, along with nutrient recovery and value-added biomass production.
Collapse
Affiliation(s)
- Shunni Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| | - Renyuan Jiang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Lei Qin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Dalong Huang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Chongzhi Yao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Jin Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| |
Collapse
|
11
|
Akao PK, Kaplan A, Avisar D, Dhir A, Avni A, Mamane H. Removal of carbamazepine, venlafaxine and iohexol from wastewater effluent using coupled microalgal-bacterial biofilm. CHEMOSPHERE 2022; 308:136399. [PMID: 36099989 DOI: 10.1016/j.chemosphere.2022.136399] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/08/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
We evaluated the removal capacity of a coupled microalgal-bacterial biofilm (CMBB) to eliminate three recalcitrant pharmaceuticals. The CMBB's efficiency, operating at different biofilm concentrations, with or without light, was compared and analyzed to correlate these parameters to pharmaceutical removal and their effect on the microorganism community. Removal rates changed with changing pharmaceutical and biofilm concentrations: higher biofilm concentrations presented higher removal. Removal of 82-94% venlafaxine and 18-51% carbamazepine was obtained with 5 days of CMBB treatment. No iohexol removal was observed. Light, microorganism composition, and dissolved oxygen concentration are essential parameters governing the removal of pharmaceuticals and ammonia. Chlorophyll concentration increased with time, even in the dark. Three bacterial phyla were dominant: Proteobacteria, Bacteroidetes and Firmicutes. The dominant eukaryotic supergroups were Archaeplastida, Excavata and SAR. A study of the microorganisms' community indicated that not only do the species in the biofilm play an important role; environment, concentration and interactions among them are also important. CMBB has the potential to provide low-cost and sustainable treatment for wastewater and recalcitrant pharmaceutical removal. The microenvironments on the biofilm created by the microalgae and bacteria improved treatment efficiency.
Collapse
Affiliation(s)
- Patricia K Akao
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel; The Water Research Center, Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Aviv Kaplan
- The Water Research Center, Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Dror Avisar
- The Water Research Center, Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Amit Dhir
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, 69978, India
| | - Adi Avni
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Hadas Mamane
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
12
|
Zheng M, Shao S, Chen Y, Chen B, Wang M. Metagenomics analysis of microbial community distribution in large-scale and step-by-step purification system of swine wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120137. [PMID: 36089141 DOI: 10.1016/j.envpol.2022.120137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Biological treatment is one of the most widely used methods to treat swine wastewater in wastewater treatment plants. The microbial community plays an important role in the swine slurry treatment system. However, limited information is available regarding the correlation between pollutant concentration and dominant microbial community in swine wastewater. This work aimed to study the profiling of microbial communities and their abundance in the 40 M3/day large-scale and step-by-step treatment pools of swine wastewater. Metagenome sequencing was applied to study the changes of microbial community structure in biochemical reaction pools. The results showed that in the heavily polluted pools, it was mainly Proteobacteria, Cyanobacteria, Chlorella and other strains that could tolerate high concentration of ammonia nitrogen to remove nitrogen and absorb chemical oxygen demand (COD). In the moderately polluted pools, Nitrospirae, Actinobacteria and other strains further cooperated to purify swine wastewater. In the later stage, the emergence of Brachionus indicated the reduction of water pollution. The dominant microbes and their abundance changed with the purification of swine wastewater in different stages. Moreover, the dominant microflora of swine wastewater treatment pools at all levels reflected little difference in phylum classification level, while in genus classification level, the dominant microflora manifested great difference. Findings demonstrated that the microorganisms maintained ecological balance and absorbed the nutrients in the swine wastewater treatment pools, so as to play the role of purifying sewage. Therefore, the stepwise purification of swine wastewater can be realized by adding bacteria and microalgae of different genera.
Collapse
Affiliation(s)
- Mingmin Zheng
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, 350117,China
| | - Shanshan Shao
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Yanzhen Chen
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, 350117,China
| | - Mingzi Wang
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou, 350117,China.
| |
Collapse
|
13
|
Shao Y, Fu Y, Chen Y, Abomohra A, He Q, Jin W, Liu J, Tan Z, Li X. Enhancement of black and odorous water treatment coupled with accelerated lipid production by microalgae exposed to 12C 6+ heavy-ion beam irradiation. CHEMOSPHERE 2022; 305:135452. [PMID: 35752308 DOI: 10.1016/j.chemosphere.2022.135452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/29/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
In this study, Auxenochlorella protothecoides (AP-CK) was selected due to its reported high growth potential in sterilized black and odorous water (SBOW). In order to improve the resource utilization level of microalgae for wastewater treatment, AP-CK was mutated using 12C6+ heavy-ion beam irradiation, and a high lipid-containing mutant (AP-34#) was isolated and further evaluated to treat original black and odorous water (OBOW). Compared with the wild type, the maximum removal rates of COD, NH4+-N and TP of the mutant increased by 8.12 ± 0.33%, 10.43 ± 0.54% and 11.97 ± 0.16%, respectively, while maximum dissolved oxygen content increased from 0 to 4.36 ± 0.25 mg/L. Besides, the mutant lipid yield increased by 115.87 ± 3.22% over the wild type in OBOW. The fatty acid profile of AP-34# grown in SBOW and OBOW showed higher proportion of saturated fatty acids (C16:0 and C18:0) and valuable polyunsaturated fatty acids (mainly C20:5n3 and C22:6n3) which are more suitable for biodiesel production and value-added products, respectively. This work provides a new perspective on improving the characteristics of microalgae and an innovative approach for resource-based microalgae wastewater treatment through bioremediation of black and odorous water.
Collapse
Affiliation(s)
- Yitong Shao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yongsheng Fu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yangwu Chen
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Abdelfatah Abomohra
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Qi He
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Wenjie Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jian Liu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhouliang Tan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Xin Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
14
|
Dang BT, Nguyen TT, Ngo HH, Pham MDT, Le LT, Nguyen NKQ, Vo TDH, Varjani S, You SJ, Lin KA, Huynh KPH, Bui XT. Influence of C/N ratios on treatment performance and biomass production during co-culture of microalgae and activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155832. [PMID: 35561924 DOI: 10.1016/j.scitotenv.2022.155832] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Novel phycosphere associated bacteria processes are being regarded as a potential and cost-effective strategy for controlling anthropogenic contaminants in wastewater treatment. However, the underlying concern with the process is its vulnerability to improper organic or nutrient intake. This study established a synergistic interaction between microalgae and activated sludge in a three-photobioreactor system (without external aeration) to understand how pollutants could be mitigated whilst simultaneously yielding biomass under different C/N ratios of 1:1, 5:1 and 10:1. The result showed that the superior biomass productivity was facilitated at a C/N ratio of 5:1 (106 mg L-1 d-1), and the high degradation rate constants (kCOD = 0.25 d-1, kTN = 0.29 d-1, kTP = 0.35 d-1) was approximated using a first-order kinetic model. The removal of pollutants was remarkably high, exceeding 90% (COD), 93% (TN), and 96% (TP). Nevertheless, the C/N ratio of 1:1 resulted in a threefold drop in biomass-specific growth rate (μ = 0.07 d-1). Microalgal assimilation, followed by bacterial denitrification, is the major pathway of removing total nitrogen when the C/N ratio exceeds 5:1. Activated sludge plays an important role in improving microalgae tolerance to high concentration of ammonia nitrogen and boosting nitrification (light phase) and denitrification (dark phase). The use of phycosphere associated bacteria could be a promising strategy for controlling nutrients pollution and other environmental considerations in wastewater.
Collapse
Affiliation(s)
- Bao-Trong Dang
- HUTECH University, 475A Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Viet Nam
| | - Thanh-Tin Nguyen
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Mai-Duy-Thong Pham
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam..
| | - Linh Thy Le
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), ward 11, district 5, Ho Chi Minh City, Viet Nam
| | - Ngoc-Kim-Qui Nguyen
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam
| | - Thi-Dieu-Hien Vo
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Sheng-Jie You
- Department of Environmental Engineering, Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Kunyi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, No. 250 Kuo-Kuang Road, Taichung 402, Taiwan
| | - Ky-Phuong-Ha Huynh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam..
| |
Collapse
|
15
|
Aththanayake AMKCB, Rathnayake IVN, Deeyamulla MP, Megharaj M. Potential use of Chlorella vulgaris KCBAL01 from a freshwater stream receiving treated textile effluent in hexavalent chromium [Cr(VI)] removal in extremely acidic conditions. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:780-788. [PMID: 36026594 DOI: 10.1080/10934529.2022.2113281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Remediation of hexavalent chromium with conventional chemical and physical methods is a costly process, while replacing some critical steps in physiochemical remediation with self-sustaining bioremediation agents are expected to be cost-effective and environmentally friendly implementation. In this study, a microalga isolated from a freshwater stream receiving treated textile wastewater was identified up to its molecular level and investigated its ability to tolerate and remove hexavalent chromium from extremely acidic conditions under different temperatures. The ability of microalgae to tolerate and remove Cr(VI) was investigated by growing it in BG11 media with different pH (1, 2, 3 & 7), amended with several concentrations of Cr(VI) and incubated under different temperatures for 96 hrs. Microalga was identified as Chlorella vulgaris and found that the isolated strain has a higher hexavalent chromium removal potential in extremely acidic conditions than in neutral pH conditions at 25 °C. In contrast, its Cr(VI) removal potential is significantly influenced by the pH and temperature of the growth medium. Furthermore, it exhibited a permanent viability loss at extreme acidic conditions (pH 1 - 3) and prolonged exposure to the higher chromium content. The microalga investigated will be a highly useful bioagent in hexavalent chromium remediation in high acidic conditions.
Collapse
Affiliation(s)
- A M K C B Aththanayake
- Department of Microbiology, Faculty of Science, University of Kelaniya, Kelaniya, GQ, Sri Lanka
| | - I V N Rathnayake
- Department of Microbiology, Faculty of Science, University of Kelaniya, Kelaniya, GQ, Sri Lanka
| | - M P Deeyamulla
- Department of Chemistry, Faculty of Science, University of Kelaniya, Kelaniya, GQ, Sri Lanka
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (G.C.E.R.), College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan, NSW, Australia
| |
Collapse
|
16
|
Evaluation of Microalgal Bacterial Dynamics in Pig-Farming Biogas Digestate under Impacts of Light Intensity and Nutrient Using Physicochemical Parameters. WATER 2022. [DOI: 10.3390/w14142275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Determination of the dynamics between microalgae and bacteria in pig farming biogas digestate is vital for a consistent and reliable application towards sustainable wastewater treatment and biofuel production. This study assesses the reliability of using physicochemical parameters as indicators for the rapid evaluation of microalgal bacterial dynamics in real digestate under impacts of light, nutrient loads, and N:P ratios. The relationship between variation profiles of nutrients, biomass and physicochemical properties in each experiment was analyzed. High light and high nutrient load enhanced biomass growth and nutrient removal rate. Ammonium addition (high N:P ratio) elevated NH3 level which inhibited the growth of microalgae, subsequently reducing the biomass growth and nutrient removal. Low N:P ratio triggered the accumulation of phosphorus and the growth of chlorophyll-a but exerted little influence on treatment. Variation profiles of dissolved oxygen, nutrient and biomass were highly consistent in every experiment allowing us to identify the shift from microalgal to bacterial predomination under unfavorable conditions including low light intensity and high N:P ratio. Strong linear correlation was also found between total nitrogen removal and electrical conductivity (R2 = 0.9754). The results show the great potential of rapid evaluation of microalgal bacterial dynamics for large scale system optimization and modelling.
Collapse
|
17
|
Mastropetros SG, Koutra E, Amouri M, Aziza M, Ali SS, Kornaros M. Comparative Assessment of Nitrogen Concentration Effect on Microalgal Growth and Biochemical Characteristics of Two Chlorella Strains Cultivated in Digestate. Mar Drugs 2022; 20:md20070415. [PMID: 35877708 PMCID: PMC9323968 DOI: 10.3390/md20070415] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Microalgae have been recently recognized as a promising alternative for the effective treatment of anaerobic digestion effluents. However, to date, a widely applied microalgae-based process is still absent, due to several constraints mainly attributed to high ammonia concentrations and turbidity, both hindering microalgal growth. Within this scope, the purpose of the present study was to investigate the performance of two Chlorella strains, SAG 211-11b and a local Algerian isolate, under different nitrogen levels, upon ammonia stripping. The experiments were performed on cylindrical photobioreactors under controlled pH (7.8 ± 0.2) and temperature (25 ± 2 °C). Cultures were monitored for biomass production and substrate consumption. After sampling at the beginning of the stationary phase of growth (12th day) and after the maturation of the cells (24th day), an analysis of the produced biomass was conducted, in terms of its biochemical components. The local isolate grew better than C. vulgaris 211-11b, resulting in 1.43 mg L−1 biomass compared to 1.02 mg L−1 under 25 mg NH4-N L−1, while organic carbon and nutrient consumption varied between the two strains and different conditions. Concerning biomass quality, a high initial NH4-N concentration led to high protein content, while low nitrogen levels favored fatty acid (FA) accumulation, though the production of pigments was inhibited. In particular, the protein content of the final biomass was determined close to 45% of the dry weight in all experimental scenarios with adequate nitrogen, while proteins decreased, and the fatty acids approached 20% in the case of the local isolate grown on the substrate with the lowest initial ammonium nitrogen (25 mg NH4-N L−1). The novelty of the present work lies in the comparison of a microalga with industrial applications against a local isolate of the same species, which may prove to be even more robust and profitable.
Collapse
Affiliation(s)
- Savvas Giannis Mastropetros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece; (S.G.M.); (E.K.)
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece; (S.G.M.); (E.K.)
| | - Mohammed Amouri
- Centre de Développement des Energies Renouvelables (CDER), BP. 62, Route de l’Observatoire, Algiers 16340, Algeria; (M.A.); (M.A.)
| | - Majda Aziza
- Centre de Développement des Energies Renouvelables (CDER), BP. 62, Route de l’Observatoire, Algiers 16340, Algeria; (M.A.); (M.A.)
| | - Sameh Samir Ali
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China;
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece; (S.G.M.); (E.K.)
- Correspondence:
| |
Collapse
|
18
|
Shi S, Tong B, Wang X, Luo W, Tan M, Wang H, Hou Y. Recovery of nitrogen and phosphorus from livestock slurry with treatment technologies: A meta-analysis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 144:313-323. [PMID: 35427903 DOI: 10.1016/j.wasman.2022.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/02/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
The livestock industry has developed rapidly in recent decades, but the improper treatment of livestock manure, especially slurry, causes environmental pollution. Treatment technologies are considered to be effective in alleviating nitrogen (N) and phosphorus (P) losses from livestock slurry. Here, we used published research data to conduct a meta-analysis of the recovery efficiencies of N and P of five mainstream treatment technologies, including ammonia stripping, air scrubbing, membrane filtration, microalgae cultivation and struvite crystallization. Additionally, the agronomic effects of the recovered products of these treatment technologies were evaluated. The results showed that all technologies exhibited clear recovery effects on N and P. The N recovery efficiencies ranged from 57% to 86%, and those of P ranged from 64% to 87%. Struvite crystallization was the most efficient treatment technology for both N and P recovery; moreover, the ammonia stripping and microalgae cultivation technologies were less efficient. The pH levels and temperatures are the main factors that influence ammonia stripping, struvite crystallization and microalgae cultivation, while membrane filtration and air scrubbing are mainly affected by the membrane types and properties. When the equal amount of N or P input to fields, the recovered products (ammonium sulfate and struvite crystals) may achieve a similar crop yield, relative to commercial N or P fertilizers. Our findings can provide deep suggestions and parameters for designing proper treatment technologies to reduce nutrient discharge from livestock slurry in regions with high livestock density and also for identifying the research gaps that should be paid more attention in the future.
Collapse
Affiliation(s)
- Shengli Shi
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Bingxin Tong
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Xinfeng Wang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China; Beijing Engineering Research Center for Animal Healthy Environment, Key Laboratory of Agriculture Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Wenhai Luo
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Meixiu Tan
- Wageningen University, Soil Biology Group, P.O. Box 47, 6700 AA, the Netherlands
| | - Hongliang Wang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Yong Hou
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
19
|
Ziganshina EE, Bulynina SS, Ziganshin AM. Growth Characteristics of Chlorella sorokiniana in a Photobioreactor during the Utilization of Different Forms of Nitrogen at Various Temperatures. PLANTS (BASEL, SWITZERLAND) 2022; 11:1086. [PMID: 35448814 PMCID: PMC9031775 DOI: 10.3390/plants11081086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
The cultivation of microalgae requires the selection of optimal parameters. In this work, the effect of various forms of nitrogen on the growth and productivity of Chlorella sorokiniana AM-02 when cultivated at different temperatures was evaluated. Regardless of the temperature conditions, the highest specific growth rate of 1.26 day-1 was observed in modified Bold's basal medium (BBM) with NH4+ as a nitrogen source, while the highest specific growth rate in BBM with NO3- as a nitrogen source achieved only 1.07 day-1. Moreover, C. sorokiniana grew well in medium based on anaerobic digester effluent (ADE; after anaerobic digestion of chicken/cow manure) with the highest growth rate being 0.92 day-1. The accumulation of proteins in algal cells was comparable in all experiments and reached a maximum of 42% of dry weight. The biomass productivity reached 0.41-0.50 g L-1 day-1 when cultivated in BBM, whereas biomass productivity of 0.32-0.35 g L-1 day-1 was obtained in ADE-based medium. The results, based on a bacterial 16S rRNA gene sequencing approach, revealed the growth of various bacterial species in ADE-based medium in the presence of algal cells (their abundance varied depending on the temperature regimen). The results indicate that biomass from C. sorokiniana AM-02 may be sustainable for animal feed production considering the high protein yields.
Collapse
|
20
|
López-Sánchez A, Silva-Gálvez AL, Aguilar-Juárez Ó, Senés-Guerrero C, Orozco-Nunnelly DA, Carrillo-Nieves D, Gradilla-Hernández MS. Microalgae-based livestock wastewater treatment (MbWT) as a circular bioeconomy approach: Enhancement of biomass productivity, pollutant removal and high-value compound production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114612. [PMID: 35149401 DOI: 10.1016/j.jenvman.2022.114612] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The intensive livestock activities that are carried out worldwide to feed the growing human population have led to significant environmental problems, such as soil degradation, surface and groundwater pollution. Livestock wastewater (LW) contains high loads of organic matter, nitrogen (N) and phosphorus (P). These compounds can promote cultural eutrophication of water bodies and pose environmental and human hazards. Therefore, humanity faces an enormous challenge to adequately treat LW and avoid the overexploitation of natural resources. This can be accomplished through circular bioeconomy approaches, which aim to achieve sustainable production using biological resources, such as LW, as feedstock. Circular bioeconomy uses innovative processes to produce biomaterials and bioenergy, while lowering the consumption of virgin resources. Microalgae-based wastewater treatment (MbWT) has recently received special attention due to its low energy demand, the robust capacity of microalgae to grow under different environmental conditions and the possibility to recover and transform wastewater nutrients into highly valuable bioactive compounds. Some of the high-value products that may be obtained through MbWT are biomass and pigments for human food and animal feed, nutraceuticals, biofuels, polyunsaturated fatty acids, carotenoids, phycobiliproteins and fertilizers. This article reviews recent advances in MbWT of LW (including swine, cattle and poultry wastewater). Additionally, the most significant factors affecting nutrient removal and biomass productivity in MbWT are addressed, including: (1) microbiological aspects, such as the microalgae strain used for MbWT and the interactions between microbial populations; (2) physical parameters, such as temperature, light intensity and photoperiods; and (3) chemical parameters, such as the C/N ratio, pH and the presence of inhibitory compounds. Finally, different strategies to enhance nutrient removal and biomass productivity, such as acclimation, UV mutagenesis and multiple microalgae culture stages (including monocultures and multicultures) are discussed.
Collapse
Affiliation(s)
- Anaid López-Sánchez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico
| | - Ana Laura Silva-Gálvez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico
| | - Óscar Aguilar-Juárez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Mexico
| | - Carolina Senés-Guerrero
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico
| | | | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico.
| | | |
Collapse
|
21
|
Assessment of Nutrients Recovery Capacity and Biomass Growth of Four Microalgae Species in Anaerobic Digestion Effluent. WATER 2022. [DOI: 10.3390/w14020221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Four microalgae species were evaluated for their bioremediation capacity of anaerobic digestion effluent (ADE) rich in ammonium nitrogen, derived from a biogas plant. Chlorella vulgaris, Chlorella sorokiniana, Desmodesmus communis and Stichococcus sp. were examined for their nutrient assimilation efficiency, biomass production and composition through their cultivation in 3.7% v/v ADE; their performance was compared with standard cultivation media which consisted in different nitrogen sources, i.e., BG-11NO3 and BG-11ΝH4 where N-NO3 was replaced by N-NH4. The results justified ammonium as the most preferable source of nitrogen for microalgae growth. Although Stichococcus sp. outperformed the other 3 species in N-NH4 removal efficiency both in BG-11NH4 and in 3.7% ADE (reaching up to 90.79% and 69.69% respectively), it exhibited a moderate biomass production when it was cultivated in diluted ADE corresponding to 0.59 g/L, compared to 0.89 g/L recorded by C. vulgaris and 0.7 g/L by C. sorokiniana and D. communis. Phosphorus contained in the effluent and in the control media was successfully consumed by all of the species, although its removal rate was found to be affected by the type of nitrogen source used and the particular microalgae species. The use of ADE as cultivation medium resulted in a significant increase in carbohydrates content in all investigated species.
Collapse
|
22
|
Vu MT, Nguyen LN, Mofijur M, Johir MAH, Ngo HH, Mahlia TMI, Nghiem LD. Simultaneous nutrient recovery and algal biomass production from anaerobically digested sludge centrate using a membrane photobioreactor. BIORESOURCE TECHNOLOGY 2022; 343:126069. [PMID: 34606926 DOI: 10.1016/j.biortech.2021.126069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
This study aims to evaluate the performance of C. vulgaris microalgae to simultaneously recover nutrients from sludge centrate and produce biomass in a membrane photobioreactor (MPR). Microalgae growth and nutrient removal were evaluated at two different nutrient loading rates (sludge centrate). The results show that C. vulgaris microalgae could thrive in sludge centrate. Nutrient loading has an indiscernible impact on biomass growth and a notable impact on nutrient removal efficiency. Nutrient removal increased as the nutrient loading rate decreased and hydraulic retention time increased. There was no membrane fouling observed in the MPR and the membrane water flux was fully restored by backwashing using only water. However, the membrane permeability varies with the hydraulic retention time (HRT) and biomass concentration in the reactor. Longer HRT offers higher permeability. Therefore, it is recommended to operate the MPR system in lower HRT to improve the membrane resistance and energy consumption.
Collapse
Affiliation(s)
- Minh T Vu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Md Abu Hasan Johir
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Hao H Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - T M I Mahlia
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia.
| |
Collapse
|
23
|
Zhou Y, He Y, Xiao X, Liang Z, Dai J, Wang M, Chen B. A novel and efficient strategy mediated with calcium carbonate-rich sources to remove ammonium sulfate from rare earth wastewater by heterotrophic Chlorella species. BIORESOURCE TECHNOLOGY 2022; 343:125994. [PMID: 34757283 DOI: 10.1016/j.biortech.2021.125994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
This work was the first time to establish the desired approach with two heterotrophic Chlorella species for ammonium sulfate (AS)-rich rare earth elements (REEs) wastewater treatment by heterotrophic cultivation. The results showed that these two Chlorella species treated by 6 g/L CaCO3 performed the best ability to remove NH4+-N and SO42- of REEs wastewater. Moreover, the established process performed similar features in REEs wastewater treatment by replacing CaCO3 with eggshell powder (ESP) and oyster shell powder (OSP) enriched in CaCO3. Furthermore, microalgae treated by ESP/OSP in a 10-L fermenter showed 837.39 mg/(L·d) NH4+-N and 1,820 mg/(L·d) SO42- removal rates. The developed kinetic models could be well fitted to the experimental data obtained by the 10-L fermenter. Taken together, the established process mediated with two Chlorella species and ESP/OSP by heterotrophic cultivation was the great potential for AS-rich REEs wastewater treatment in a cost-effective manner.
Collapse
Affiliation(s)
- Youcai Zhou
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, PR China
| | - Xuehua Xiao
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Zhibo Liang
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Jingxuan Dai
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Mingzi Wang
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, PR China.
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, PR China
| |
Collapse
|
24
|
Zheng M, Dai J, Ji X, Li D, He Y, Wang M, Huang J, Chen B. An integrated semi-continuous culture to treat original swine wastewater and fix carbon dioxide by an indigenous Chlorella vulgaris MBFJNU-1 in an outdoor photobioreactor. BIORESOURCE TECHNOLOGY 2021; 340:125703. [PMID: 34371337 DOI: 10.1016/j.biortech.2021.125703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
This work was the first time to evaluate the ability of an isolated Chlorella vulgaris MBFJNU-1 to remove nutrients of original swine wastewater (OSW) and fix carbon dioxide (CO2) under outdoor conditions in a simultaneous manner using column photobioreactors. The results showed that microalga cultivated at 3% CO2 in a batch mode achieved the highest biomass and CO2 fixation rate. Then, a semi-continuous process for OSW treatment and CO2 fixation simultaneously by microalga was established and the renewal rate of this process was deeply investigated. Microalga cultivated at 3% CO2 and 80% renewal rate gave the highest productivities of total biomass, CO2 fixation and the greatest average removal rates of total nitrogen, N-NH4+, total phosphorus and chemical oxygen demand. Taken together, C. vulgaris MBFJNU-1 was the promising microalga under outdoor conditions for swine wastewater treatment and CO2 fixation simultaneously for biofuels and biofertilizer production.
Collapse
Affiliation(s)
- Mingmin Zheng
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Jingxuan Dai
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Xiaowei Ji
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Daogui Li
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| | - Mingzi Wang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Jian Huang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
25
|
Silveira CF, Assis LRD, Oliveira APDS, Calijuri ML. Valorization of swine wastewater in a circular economy approach: Effects of hydraulic retention time on microalgae cultivation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147861. [PMID: 34049147 DOI: 10.1016/j.scitotenv.2021.147861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
To optimize the swine wastewater (SWW) treatment, this study investigated different hydraulic retention times (HRTs) for microalgae cultivation. For this purpose, five pilot-scale reactors operated in semi-continuous flow, with HRTs equal to 9, 12, 15, 18, 21 days were evaluated in terms of SWW polishing and biomass production. The effluent treatment was discussed accompanied by principal component analysis, which allowed identification of causes of variance in the data set, ideal for studies with real effluent and influenced by environmental conditions. All reactors show satisfactory removals of N-NH4+ (91.6-95.3%), COD (15.8-39.9%), DO increment (in average 7.5 mg O2/L) and, only the longest HRT (21 days) was able to remove Ps (21%). The results obtained indicated that a consortium of microalgae and bacteria was developed for all the tested HRTs. On the other hand, HRT = 12 days provided a healthier culture of photosynthesizing organisms (chl-a/VSS = 3.04%). Carbohydrates (20.8-31.3%) and proteins (2.7-16.2%) were the compounds of commercial interest in the highest proportion in the biomass of all reactors, with contents comparable to that of terrestrial crops. Thus, it was suggested a valorization route of these compounds of high added value to return to pig farming, where the nutrients were intended to supplement the swine feed and clarified water for cleaning the pig stalls. Thus, in the circular economy context, this research contributes to water footprint reduction and the sustainability of the pig farming production chain. The economic and environmental analysis of the route is suggested to enable its implementation on a large scale, as well as further technical feasibility research (reactor types, exposure to external environment, evaluation of pathogen removal and animal feed supplementation from SWW microalgae biomass).
Collapse
Affiliation(s)
| | | | | | - Maria Lúcia Calijuri
- Department of Civil Engineering, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
26
|
Wang Q, Yu Z, Wei D, Chen W, Xie J. Mixotrophic Chlorella pyrenoidosa as cell factory for ultrahigh-efficient removal of ammonium from catalyzer wastewater with valuable algal biomass coproduction through short-time acclimation. BIORESOURCE TECHNOLOGY 2021; 333:125151. [PMID: 33892430 DOI: 10.1016/j.biortech.2021.125151] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
To achieve ultrahigh-efficient ammonium removal and valuable biomass coproduction, Chlorella-mediated short-time acclimation was implemented in photo-fermentation. The results demonstrated short-time acclimation of mixotrophic Chlorella pyrenoidosa could significantly improve NH4+ removal and biomass production in shake flasks. After acclimation through two batch cultures in 5-L photo-fermenter, the maximum NH4+ removal rate (1,400 mg L-1 d-1) were achieved under high NH4+ level (4,750 mg L-1) in batch 3. In 50-L photo-fermenter, through one batch acclimated culture, the maximum NH4+ removal rate (2,212 mg L-1 d-1) and biomass concentration (58.4 g L-1) were achieved in batch 2, with the highest productivities of protein (5.56 g L-1 d-1) and total lipids (5.66 g L-1 d-1). The hypothetical pathway of nutrients assimilation in mixotrophic cells as cell factory was proposed with detailed discussion. This study provided a novel strategy for high-ammonium wastewater treatment without dilution, facilitating the algae-based "waste-to-treasure" bioconversion process for green manufacturing.
Collapse
Affiliation(s)
- Qingke Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zongyi Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dong Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou, China.
| | - Weining Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Chinese Academy of Fishery Sciences Pearl River Fisheries Research Institute, Guangzhou, China
| |
Collapse
|
27
|
Sun Z, Li J, Fan Y, Meng J, Deng K. Efficiency and mechanism of nitrogen removal from piggery wastewater in an improved microaerobic process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:144925. [PMID: 33610988 DOI: 10.1016/j.scitotenv.2020.144925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/12/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Characterized by high ammonium (NH4+ - N) and low ratio of chemical oxygen demand (COD) to total nitrogen (COD/TN), discharge of piggery wastewater has been identified as a primary pollution source resulting in water eutrophication. An improved microaerobic reactor, internal aerating microaerobic reactor (IAMR), was constructed to treat manure-free piggery wastewater without effluent recycle at dissolved oxygen of 0.3 mg/L and 32 °C. A removal rate of COD, NH4+ - N and TN averaged 77.9%, 94.6% and 82.6% was obtained in the reactor, with the concentration of 258.5, 235.5 and 335.2 mg/L in influent, respectively. 16S rDNA amplicon sequencing, carbon and nitrogen mass balance and stoichiometry indicated that heterotrophic nitrification-anammox was the dominant approach to nitrogen removal. Microbiome phenotypes showed that aerobic bacteria were the dominant microorganisms, and the microbiome oxidative stress tolerance was intensified along with the continuous operation of the IAMR, resulting in the survival of various facultative and anaerobic bacteria for nutrients removal. With the good nutrients removal, less energy consumption, and high tolerance to influent fluctuation, the improved IAMR was confirmed as a promising process for treating wastewater with high NH4+ - N and low COD/TN.
Collapse
Affiliation(s)
- Zhenju Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Yiyang Fan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Kaiwen Deng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| |
Collapse
|
28
|
Jiang R, Qin L, Feng S, Huang D, Wang Z, Zhu S. The joint effect of ammonium and pH on the growth of Chlorella vulgaris and ammonium removal in artificial liquid digestate. BIORESOURCE TECHNOLOGY 2021; 325:124690. [PMID: 33465643 DOI: 10.1016/j.biortech.2021.124690] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Although ammonium containing digestate is an ideal alternative medium for microalgae cultivation, high ammonium or unfavorable pH may inhibit microalgal growth. In this study, the joint effect of ammonium and pH on the growth of C. vulgaris and nutrient removal in artificial digestate was investigated. Our results show that ammonium and pH both affected algal growth, but free ammonia (FA) was the main actual inhibitory factor. Algal specific growth rate presented a negative correlation with FA and their relationship was well fitted by a linear regression model. Microalgal growth was little affected below 36.8 mg L-1 FA, while the obvious inhibition occurred at 184 mg L-1 FA (EC50), indicating a high tolerance to FA. Ammonium removal was well described by a first-order kinetics model. FA stress stimulated the production of extracellular organic matters (EOMs), which was good for microalgae adaptation but adverse to pollutant removal.
Collapse
Affiliation(s)
- Renyuan Jiang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Qin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Siran Feng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Dalong Huang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Shunni Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| |
Collapse
|
29
|
Cai Y, Liu Y, Liu T, Gao K, Zhang Q, Cao L, Wang Y, Wu X, Zheng H, Peng H, Ruan R. Heterotrophic cultivation of Chlorella vulgaris using broken rice hydrolysate as carbon source for biomass and pigment production. BIORESOURCE TECHNOLOGY 2021; 323:124607. [PMID: 33385629 DOI: 10.1016/j.biortech.2020.124607] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The high cost of carbon source limits the heterotrophic culture of Chlorella. In this study, broken rice was hydrolyzed into glucose. Then, the broken rice hydrolysate (BRH) was utilized for heterotrophic cultivation of C. vulgaris instead of glucose. Results showed that algal cells released H+ when they consumed NH4+, leading to a sharp decrease in pH. Growth inhibition by acid could be avoided by using a pH buffer. Adding alkaline reagents intermittently during culture could not only reduce the amount of pH stabilizer but also obtain increased biomass production. When using Tris as pH stabilizer, the biomass productivity of C. vulgaris in BRH was the largest (1.01 g/L/d), followed by NaOH (1.00 g/L/d), and Na2CO3 (0.95 g/L/d). Using BRH instead of glucose for heterotrophic cultivation of C. vulgaris could save 89.58% of the cost of culture medium. This study developed a novel strategy for cultivating C. vulgaris heterotrophically using BRH.
Collapse
Affiliation(s)
- Yihui Cai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Tongying Liu
- Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, China
| | - Kaili Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Leipeng Cao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xiaodan Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hongli Zheng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hong Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Roger Ruan
- Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China; Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| |
Collapse
|
30
|
Svierzoski NDS, Matheus MC, Bassin JP, Brito YD, Mahler CF, Webler AD. Treatment of a slaughterhouse wastewater by anoxic-aerobic biological reactors followed by UV-C disinfection and microalgae bioremediation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:409-420. [PMID: 32777158 DOI: 10.1002/wer.1435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/07/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
In this study, removal of organic matter and nitrogen from a cattle slaughterhouse wastewater was investigated in a two-stage anoxic-aerobic biological system, followed by UV-C disinfection. Ecotoxicity of the raw, biotreated, and disinfected wastewater against the microalgae Scenedesmus sp. was evaluated in short-term tests, while the potential of the microalgae as a nutrient removal step was addressed in long-term experiments. Throughout 5 operational phases, the biological system was subjected to gradual reduction of the hydraulic retention time (8-1.5 day), increasing the organic (0.21-1.11 kgCOD·m-3 ·day-1 ) and nitrogen (0.05-0.28 kgN·m-3 · day-1 ) loading rates. COD and total ammoniacal nitrogen (TAN) removal ranged within 83%-97% and 83%-99%, respectively. While providing alkalinity source, effluent TAN concentrations were below 5 mg·L-1 . Nitrate was the main nitrification product, while nitrite levels remained low (<1 mgN·L-1 ). Upon supplementation of external COD as ethanol, total nitrogen removal reached up to 90% at the highest load (0.28 kgN·m-3 ·day-1 ). After UV-C treatment, 3-log reduction of total coliforms was attained. The 96-hr ecotoxicity tests showed that all non-diluted samples tested (raw, biologically treated and UV-C irradiated wastewater) were toxic to microalgae. Nevertheless, these organisms were able to acclimate and grow under the imposed conditions, allowing to achieve nitrogen and phosphorous removal up to 99.1% and 43.0%, respectively. PRACTITIONER POINTS: The treatment of a slaughterhouse wastewater in an anoxic-aerobic biological system followed by a UV-C disinfection step was assessed. The pre-denitrification system showed efficient simultaneous removal of organic matter and nitrogen from the wastewater under increasing applied loads. UV-C disinfection worked effectively in reducing coliforms from the biotreated effluent, boosting the performance of microalgae on nutrients removal. Despite the toxicity to microalgae, they were capable to acclimate to the aqueous matrices tested, reducing efficiently the nutrients content. The combined stages of treatment presented great capacity for depleting up to 97% COD, 99% nitrogen, and 43% phosphorous.
Collapse
Affiliation(s)
| | | | - João Paulo Bassin
- COPPE, Chemical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yves Dias Brito
- Department of Environmental Engineering, Federal University of Rondônia, Rondônia, Brazil
| | - Claudio Fernando Mahler
- COPPE, Civil Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alberto Dresch Webler
- Department of Environmental Engineering, Federal University of Rondônia, Rondônia, Brazil
| |
Collapse
|
31
|
Abstract
Animal production inevitably causes the emission of greenhouse gases and the generation of large amounts of slurry, both representing a serious environmental problem. Photosynthetic microorganisms such as microalgae and cyanobacteria have been proposed as alternative strategies to bioremediate agricultural waste while consuming carbon dioxide and producing valuable biomass. The current study assessed the potential of the microalga Scenedesmus sp. to remove nutrients from piggery wastewater (PWW) and the influence of the microalga on the microbial consortia. Maximum N-NH4+ consumption was 55.3 ± 3.7 mg·L−1·day−1 while P-PO43− removal rates were in the range 0.1–1.9 mg·L−1·day−1. N-NH4+ removal was partially caused by the action of nitrifying bacteria, which led to the production of N-NO3−. N-NO3− production values where lower when microalgae were more active. This work demonstrated that the photosynthetic activity of microalgae allows us to increase nutrient removal rates from PWW and to reduce the coliform bacterial load of the effluent, minimising both their environmental impact and health risks. Microalgae assimilated part of the N-NH4+ present in the media to produce biomass and did not to convert it into N-NO3− as in traditional processes.
Collapse
|
32
|
Ammonium Utilization in Microalgae: A Sustainable Method for Wastewater Treatment. SUSTAINABILITY 2021. [DOI: 10.3390/su13020956] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In plant cells, ammonium is considered the most convenient nitrogen source for cell metabolism. However, despite ammonium being the preferred N form for microalgae, at higher concentrations, it can be toxic, and can cause growth inhibition. Microalgae’s tolerance to ammonium depends on the species, with various taxa showing different thresholds of tolerability and symptoms of toxicity. In the environment, ammonium at high concentrations represents a dangerous pollutant. It can affect water quality, causing numerous environmental problems, including eutrophication of downstream waters. For this reason, it is important to treat wastewater and remove nutrients before discharging it into rivers, lakes, or seas. A valid and sustainable alternative to conventional treatments could be provided by microalgae, coupling the nutrient removal from wastewater with the production of valuable biomass. This review is focused on ammonium and its importance in algal nutrition, but also on its problematic presence in aquatic systems such as wastewaters. The aim of this work is to provide recent information on the exploitation of microalgae in ammonium removal and the role of ammonium in microalgae metabolism.
Collapse
|
33
|
Amanollahi H, Moussavi G, Giannakis S. Enhanced vacuum UV-based process (VUV/H 2O 2/PMS) for the effective removal of ammonia from water: Engineering configuration and mechanistic considerations. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123789. [PMID: 33254798 DOI: 10.1016/j.jhazmat.2020.123789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 06/12/2023]
Abstract
In this work, the VUV, VUV/H2O2, VUV/PMS, and VUV/H2O2/PMS processes were compared with the corresponding UVC-based AOPs under identical experimental conditions for the ammonia removal. Among the examined AOPs, the VUV/H2O2/PMS demonstrated the highest performance in converting NH4+ to N2. A 82.7 % removal of 100 mg/L NH4+, with N2 selectivity over 99 % was obtained in the VUV/H2O2/PMS process within 60 min, operated under near neutral pH. Under these operation conditions, [NO3-] was around 0.5 mg-N/L with [NO2-] remaining below detection. The VUV-mediated generation of SO4•-and HO• with NH4+ had a relative contribution of 37.9 and 62.1 %, respectively. The VUV/H2O2/PMS process operated under a flow-through mode achieved efficient removal of 100 mg/L NH4+ (80.5 %) in a hydraulic retention time (HRT) of 40 min. The continuous-flow VUV/H2O2/PMS process efficiently treated a real ammonia-laden groundwater and the concentration of NH4+ decreased from 30 mg/L to around 1 mg/L within 60 min HRT. In summary, the VUV/H2O2/PMS process was effective from the technical and energetical point of view, hence is a viable and promising technique for treating effluent containing high concentrations of ammonia.
Collapse
Affiliation(s)
- Hawzhin Amanollahi
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Gholamreza Moussavi
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid, E.T.S. Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040 Madrid, Spain
| |
Collapse
|
34
|
Revisiting nitrogen utilization in algae: A review on the process of regulation and assimilation. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100584] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Pang N, Bergeron AD, Gu X, Fu X, Dong T, Yao Y, Chen S. Recycling of Nutrients from Dairy Wastewater by Extremophilic Microalgae with High Ammonia Tolerance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15366-15375. [PMID: 33190494 DOI: 10.1021/acs.est.0c02833] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study explored the possibility of incorporating extremophilic algal cultivation into dairy wastewater treatment by characterizing a unique algal strain. Results showed that extremophilic microalgae Chlorella vulgaris CA1 newly isolated from dairy wastewater tolerated a high level of ammonia nitrogen (2.7 g/L), which was over 20 times the ammonia nitrogen that regular Chlorella sp. could tolerate. The isolate was mixotrophically cultured in dairy effluent treated by anaerobic digestion (AD) for recycling nutrients and polishing the wastewater. The highest biomass content of 13.3 g/L and protein content of 43.4% were achieved in the culture in AD effluent. Up to 96% of the total nitrogen and 79% of the total phosphorus were removed from the dairy AD effluent. The ability of the algae to tolerate a high level of ammonia nitrogen suggests the potential for direct nutrient recycling from dairy wastewater while producing algal biomass and high value bioproducts.
Collapse
Affiliation(s)
- Na Pang
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Andre David Bergeron
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Xiangyu Gu
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Xiao Fu
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Tao Dong
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Yiqing Yao
- College of Mechanical and Electrical Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shulin Chen
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
36
|
Wang Q, Yu Z, Wei D. High-yield production of biomass, protein and pigments by mixotrophic Chlorella pyrenoidosa through the bioconversion of high ammonium in wastewater. BIORESOURCE TECHNOLOGY 2020; 313:123499. [PMID: 32554150 DOI: 10.1016/j.biortech.2020.123499] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
To achieve a high consumption rate of ammonium with biomass coproduction, the mixotroph Chlorella pyrenoidosa was cultivated in high ammonium-high salinity wastewater medium in this study. The initial cell density, glucose and ammonium concentrations, and light intensity were optimized in shake flasks. A 5-L fermenter with surrounding LED (Light Emitting Diode) and a 50-L fermenter with inlet LED were employed for batch and semicontinuous cultivation. The results demonstrated that the highest contents of protein (56.7% DW) and total pigments (4.48% DW) with productivities of 5.62 g L-1 d-1 and 0.55 mg L-1 d-1, respectively, were obtained in 5-L photofermenter, while the maximum NH4+ consumption rate (1,800 mg L-1 d-1) and biomass yield (23.6 g L-1) were achieved in 50-L photofermenter. This study developed a novel strategy to convert high ammonium in wastewater to high-protein algal biomass, facilitating wastewater bioremediation and nitrogen recycling utilization by the mixotroph C. pyrenoidosa in photofermentation.
Collapse
Affiliation(s)
- Qingke Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Zongyi Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Dong Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
37
|
Lu W, Asraful Alam M, Liu S, Xu J, Parra Saldivar R. Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO 2 from livestock farms: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:135247. [PMID: 31839294 DOI: 10.1016/j.scitotenv.2019.135247] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Development of renewable and clean energy as well as bio-based fine chemicals technologies are the keys to overcome the problems such as fossil depletion, global warming, and environment pollution. To date, cultivation of microalgae using wastewater is regarded as a promising approach for simultaneous nutrients bioremediation and biofuels production due to their high photosynthesis efficiency and environmental benefits. However, the efficiency of nutrients removal and biomass production strongly depends on wastewater properties and microalgae species. Moreover, the high production cost is still the largest limitation to the commercialization of microalgae biofuels. In this review paper, the state-of-the-art algae species employed in livestock farm wastes have been summarized. Further, microalgae cultivation systems and impact factors in livestock wastewater to microalgae growth have been thoroughly discussed. In addition, technologies reported for microalgal biomass harvesting and CO2 mass transfer enhancement in the coupling process were presented and discussed. Finally, this article discusses the potential benefits and challenges of coupling nutrient bioremediation, CO2 capture, and microalgal production. Possible engineering measures for cost-effective nutrients removal, carbon fixation, microalgal biofuels and bioproducts production are also proposed.
Collapse
Affiliation(s)
- Weidong Lu
- School of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, China; Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, United States
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Shijie Liu
- Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, United States
| | - Jinliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Roberto Parra Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL., Mexico
| |
Collapse
|
38
|
Cultivation of Chlorella vulgaris in a Light-Receiving-Plate (LRP)-Enhanced Raceway Pond for Ammonium and Phosphorus Removal from Pretreated Pig Urine. ENERGIES 2020. [DOI: 10.3390/en13071644] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fresh pig urine is unsuitable for microalgae cultivation due to its high concentrations of NH4+-N, high pH and insufficient magnesium. In this study, fresh pig urine was pretreated by dilution, pH adjustment, and magnesium addition in order to polish wastewater and produce microalgae biomass. Chlorella vulgaris was cultured in an in-house-designed light-receiving-plate (LRP)-enhanced raceway pond to treat the pretreated pig urine in both batch and continuous mode under outdoor conditions. NH4+-N and TP in wastewater were detected, and the growth of C. vulgaris was evaluated by chlorophyll fluorescence activity as well as biomass production. Results indicated that an 8-fold dilution, pH adjusted to 6.0 and MgSO4·7H2O dosage of 0.1 mg·L−1 would be optimal for the pig urine pretreatment. C. vulgaris could stably accumulate biomass in the LRP-enhanced raceway pond when cultured by both BG11 medium and the pretreated pig urine. About 1.72 g·m−2·day−1 of microalgal biomass could be produced and 98.20% of NH4+-N and 68.48% of TP could be removed during batch treatment. Hydraulic retention time of 7-9d would be optimal for both efficient nutrient removal and microalgal biomass production during continuous treatment.
Collapse
|
39
|
Nagarajan D, Lee DJ, Chen CY, Chang JS. Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective. BIORESOURCE TECHNOLOGY 2020; 302:122817. [PMID: 32007309 DOI: 10.1016/j.biortech.2020.122817] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 05/28/2023]
Abstract
The basic concepts of circular bioeconomy are reduce, reuse and recycle. Recovery of recyclable nutrients from secondary sources could play a key role in meeting the increased demands of the growing population. Wastewaters of different origin are rich in energy and nutrients sources that can be recovered and reused in a circular bioeconomy perspective. Microalgae can effectively utilize wastewater nutrients for growth and biomass production. Integration of wastewater treatment and microalgal cultivation improves the environmental impacts of the currently used wastewater treatment methods. This review provides comprehensive information on the potential of using microalgae for the recovery of carbon, nitrogen, phosphorus and other micronutrients from wastewaters. Major factors influencing large scale microalgal wastewater treatment are discussed and future research perspectives are proposed to foster the future development in this area.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan; Center for Nanotechnology, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
40
|
Campus Sewage Treatment by Golenkinia SDEC-16 and Biofuel Production under Monochromic Light. J CHEM-NY 2020. [DOI: 10.1155/2020/5029535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The integration of microalgal cultivation in wastewater can fulfill the dual roles of pollutant degradation and biomass output. Meanwhile, the LED lights with different wavelengths have a great effect on the growth and metabolism of microalgae. In this study, Golenkinia SDEC-16, a strain isolated for biofuel production, was evaluated to verify its potentials for campus sewage treatment and lipid accumulation under the red, green, and blue lights. The results indicated that the treated campus sewage met the first grade level in the Chinese pollutant discharge standards for municipal wastewater treatment plants within seven days under both red and blue light. The green light failed to exhibit excellent performance in nutrient removal, but facilitated the lipid synthesis as high as 42.99 ± 3.48%. The increased lipid content was achieved along with low biomass accumulation owing to low effective light utilization, indicating that the green light could be merely used as a stimulus strategy. The red light benefited the photosynthesis of Golenkinia SDEC-16, with the maximal biomass concentration of 0.80 ± 0.03 g/L and lipid content of 36.90 ± 3.62%, which can attain the optimal balance between biomass production and lipid synthesis.
Collapse
|
41
|
Leoncio L, de Almeida M, Silva M, Oliveira OMC, Moreira ÍTA, Lima DF. Evaluation of accelerated biodegradation of oil-SPM aggregates (OSAs). MARINE POLLUTION BULLETIN 2020; 152:110893. [PMID: 32479280 DOI: 10.1016/j.marpolbul.2020.110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 06/11/2023]
Abstract
The studies of the formation of oil-Suspended Particulate Matter (SPM) aggregates (OSAs) have advanced significantly in the scientific community, however there is a need to accelerate oil biodegradation that was dispersed by the formation of OSAs. The present research presents a pioneering character regarding the addition of nutrients as biostimulus for autochthonous hydrocarboclastic bacteria in the biodegradation of Total Petroleum Hydrocarbons (TPH) dispersed by the formation of OSAs. Water aliquots were taken over 60 days from eight bioreactors to perform ionic species analysis, pH, salinity and temperature monitoring, liquid/liquid extraction, serial dilution methodology and filter membrane. TPH quantification was performed on the gas chromatograph with a flame ionisation detector (GC-FID). The addition of nutrients contributed positively to the rate and extent of biodegradation of TPH in association with field-collected SPM. The best result found was with the lowest nutrient concentration (Bio 1) with an average of 98.65% of TPH reduction.
Collapse
Affiliation(s)
- Lua Leoncio
- Nucleo de Estudos Ambientais - NEA, Institute of Geosciences, Federal University of Bahia, Campus Ondina, R. Barão de Jeremoabo, s.n., 40170-290 Salvador, BA, Brazil.
| | - Marcos de Almeida
- Federal University of Pernambuco, Av. da Arquitetura, s.n., 50740-540 Recife, PE, Brazil
| | - Marcio Silva
- Nucleo de Estudos Ambientais - NEA, Institute of Geosciences, Federal University of Bahia, Campus Ondina, R. Barão de Jeremoabo, s.n., 40170-290 Salvador, BA, Brazil
| | - Olívia M C Oliveira
- Nucleo de Estudos Ambientais - NEA, Institute of Geosciences, Federal University of Bahia, Campus Ondina, R. Barão de Jeremoabo, s.n., 40170-290 Salvador, BA, Brazil.
| | - Ícaro T A Moreira
- Department of Environmental Engineering, Polytechnic School, Federal University of Bahia, R. Prof. Aristídes Novis, s.n., 40210-630 Salvador, BA, Brazil
| | - Danúsia Ferreira Lima
- LEPETRO, Institute of Geosciences, Federal University of Bahia, Campus Ondina, R. Barão de Jeremoabo, s.n., 40170-290 Salvador, BA, Brazil
| |
Collapse
|
42
|
Lu Y, Zhuo C, Li Y, Li H, Yang M, Xu D, He H. Evaluation of filamentous heterocystous cyanobacteria for integrated pig-farm biogas slurry treatment and bioenergy production. BIORESOURCE TECHNOLOGY 2020; 297:122418. [PMID: 31761632 DOI: 10.1016/j.biortech.2019.122418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
The study evaluates 36 filamentous heterocystous cyanobacteria for the treatment of biogas slurry from pig farm and the accumulation of biomass for bioenergy production. The results showed that only the strains B, J, and L were able to adapt to a 10% biogas slurry. The removal rates of ammonia nitrogen, total nitrogen, and total phosphorus for strains J and L were 92.46%-97.97%, 73.79%-79.90%, and 97.14%-98.46%, respectively, higher than that of strain B. Strain J had the highest biomass productivity and lipid productivity. Based on the biodiesel prediction results, it was concluded that strains J and L are more suitable for biodiesel production. The estimation of theoretical methane potential suggests that the algal biomass of strain J also have the desirable possibility of biogas generation. In summary, algal strain J (Nostoc sp.) offers great potential for biogas slurry treatment and for the production of bioenergy.
Collapse
Affiliation(s)
- Yuzhen Lu
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Chen Zhuo
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yongjun Li
- Qingyuan Polytechnic, Qingyuan 511510, China
| | - Huashou Li
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Mengying Yang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Danni Xu
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hongzhi He
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
43
|
Yu J, Hu H, Wu X, Zhou T, Liu Y, Ruan R, Zheng H. Coupling of biochar-mediated absorption and algal-bacterial system to enhance nutrients recovery from swine wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134935. [PMID: 31726415 DOI: 10.1016/j.scitotenv.2019.134935] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Algal-bacterial system (ABS) used in treatment of high-strength ammonium wastewaters receives more and more attentions. In this paper, biochar-mediated absorption (BMA) and ABS were applied to recover nutrients from swine wastewater (SW) with high-strength ammonium, respectively. The results showed that the BMA could recover ammonium from the SW, which mitigated ammonia toxicity to the ABS. The bacterial community diversity containing four phyla of bacteria was identified for the first time during nutrients recovery from the SW by the ABS. Proteobacteria and Firmicutes were the two most abundant phyla. A novel scheme for nutrients recovery from the SW by the coupled BMA-ABS method was proposed and evaluated. Nutrients recovery was obviously improved by the coupled BMA-ABS method with biomass concentration of 1.97 g L-1, and a NH4+-N recovery efficiency of 96%, a total nitrogen recovery efficiency of 95%, a total phosphorus recovery efficiency of 96%, and a chemical oxygen demand recovery efficiency of 99%. The coupled BMA-ABS method could enhance nutrients recovery from the SW.
Collapse
Affiliation(s)
- Jiajia Yu
- MOE Biomass Energy Research Center and College of Food Science and Technology and State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Hancui Hu
- MOE Biomass Energy Research Center and College of Food Science and Technology and State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Xiaodan Wu
- MOE Biomass Energy Research Center and College of Food Science and Technology and State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Ting Zhou
- MOE Biomass Energy Research Center and College of Food Science and Technology and State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Yuhuan Liu
- MOE Biomass Energy Research Center and College of Food Science and Technology and State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Roger Ruan
- MOE Biomass Energy Research Center and College of Food Science and Technology and State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, People's Republic of China; Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, United States
| | - Hongli Zheng
- MOE Biomass Energy Research Center and College of Food Science and Technology and State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, People's Republic of China.
| |
Collapse
|
44
|
Deng K, Tang L, Li J, Meng J, Li J. Practicing anammox in a novel hybrid anaerobic-aerobic baffled reactor for treating high-strength ammonium piggery wastewater with low COD/TN ratio. BIORESOURCE TECHNOLOGY 2019; 294:122193. [PMID: 31610495 DOI: 10.1016/j.biortech.2019.122193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
A novel hybrid anaerobic-aerobic baffled reactor (HAOBR) with four compartments was constructed to treat manure-free piggery wastewater with an average COD/TN ratio as low as 0.98, without any supplement of external carbon source. Inoculated with aerobic activated sludge and operated at hydraulic retention time 36 h, 32 °C and reflux ratio 2.0, the reactor could perform steadily within 24 days. The removal of COD, NH4+-N and TN within the 21-days steady phase averaged 87.0%, 100% and 91.3%, respectively. Analysis of stoichiometry and results of high-throughput pyrosequencing revealed that the excellent nitrogen removal in the HAOBR was achieved by the cooperation of heterotrophic and autotrophic denitrification with anammox as the dominant approach. Compared with the previously developed microaerobic treatment processes and the recently reported modified A/O process, the HAOBR was more cost-efficient in treating manure-free piggery wastewater because of the less energy consumption, rapid startup process and efficient nutrients removal.
Collapse
Affiliation(s)
- Kaiwen Deng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Lianggang Tang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jiuling Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| |
Collapse
|
45
|
Li H, Zhang Y, Liu J, Shen Z, Li A, Ma T, Feng Q, Sun Y. Treatment of high-nitrate wastewater mixtures from MnO 2 industry by Chlorella vulgaris. BIORESOURCE TECHNOLOGY 2019; 291:121836. [PMID: 31344632 DOI: 10.1016/j.biortech.2019.121836] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The aim of this work was to study the biotreatment of mixed wastewaters collected from two points of MnO2 industry by Chlorella vulgaris. Their growth rates in four mixed wastewaters with mass ratio of wastewater 1#:2# of 20:1, 50:1, 100:1, and 200:1 were characterized, and the lag phase was shortened with increase of nitrate concentrations. The N, P, and metal removal kinetics were quantified each other day to evaluate the bio-treatment efficiencies of high-nitrate wastewaters from MnO2 industry. 84.68% and 98% of N, P has been removed. The Ca, Zn, Mn, and Si in mixed wastewaters was removed with maximum removal efficiencies of 97.91%, 99.37%, 99.44%, and 81.68%, respectively. The compositions of Chlorella vulgaris cultured in mixed wastewaters, including proteins, lipids, ash contents, and carbohydrates, were investigated in detail. The optimum HHV of Chlorella vulgaris about 18 MJ/Kg presented a potential to decrease the cost of algal biofuel.
Collapse
Affiliation(s)
- Huan Li
- School of Chemistry & Chemical Engineering, Anhui University, Anhui 230039, China
| | - Yun Zhang
- School of Chemistry & Chemical Engineering, Anhui University, Anhui 230039, China
| | - Jiuyi Liu
- School of Chemistry & Chemical Engineering, Anhui University, Anhui 230039, China
| | - Zhensheng Shen
- School of Chemistry & Chemical Engineering, Anhui University, Anhui 230039, China
| | - An Li
- School of Resources and Environmental Engineering, Anhui University, Anhui 230039, China
| | - Tian Ma
- School of Chemistry & Chemical Engineering, Anhui University, Anhui 230039, China
| | - Qian Feng
- College of Environment, Hohai University, Jiangsu 210098, China
| | - Yingqiang Sun
- School of Chemistry & Chemical Engineering, Anhui University, Anhui 230039, China.
| |
Collapse
|
46
|
Song C, Liu J, Qiu Y, Xie M, Sun J, Qi Y, Li S, Kitamura Y. Bio-regeneration of different rich CO 2 absorption solvent via microalgae cultivation. BIORESOURCE TECHNOLOGY 2019; 290:121781. [PMID: 31319210 DOI: 10.1016/j.biortech.2019.121781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
As one of the most mature carbon capture technologies, thermal regeneration of rich CO2 absorption solvent is a crucial challenge due to its high energy consumption (typically in the range of 3-6 MJ/kg CO2). In this work, a concept of bio-regeneration was proposed using microalgae to convert bicarbonate (which is one of the dominant components in rich solution) into value-added biomass. To evaluate the performance of bio-regeneration, different rich solution (including NH4HCO3, KHCO3 and NaHCO3) were investigated. Experimental results indicated that NH4HCO3 could be a promising bicarbonate carrier for the proposed absorption-microalgae hybrid process, which had a higher biomass productivity (55.36 mg·L-1·d-1) compared to KHCO3 and NaHCO3 and carbon sequestration capacity could be up to 158.3 mg·L-1·d-1. Meanwhile, pH adjustment was an effective approach to further intensify the performance of hybrid process. As a result, bio-regeneration of solvents could be a promising alternative to the conventional thermal regeneration.
Collapse
Affiliation(s)
- Chunfeng Song
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China; Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), Ministry of Education, Tianjin 300072, China.
| | - Jie Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yiting Qiu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Meilian Xie
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jiasi Sun
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yun Qi
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Shuhong Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yutaka Kitamura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058572, Japan
| |
Collapse
|
47
|
Yu J, Hu H, Wu X, Wang C, Zhou T, Liu Y, Ruan R, Zheng H. Continuous cultivation of Arthrospira platensis for phycocyanin production in large-scale outdoor raceway ponds using microfiltered culture medium. BIORESOURCE TECHNOLOGY 2019; 287:121420. [PMID: 31096101 DOI: 10.1016/j.biortech.2019.121420] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
In the present study, the effect of filtrating algal culture medium for reuse by using microfiltration membranes on microalgal growth, microbiological contamination, and phycocyanin production of Arthrospira platensis was investigated. Results showed that microfiltered culture medium affected microalgal growth, microbiological contamination, and phycocyanin production of A. platensis significantly. Microfiltered culture medium could enhance biomass production, photosynthesis, and phycocyanin accumulation and decrease microbiological contamination during continuous cultivation of A. platensis compared to the control. The profile of microbial communities, which contained the 10 phyla of microorganisms including bacteria and microzooplanktons, was identified for the first time for industrial algae systems of A. platensis with extreme conditions (salt-alkaline stress conditions). The application of the established strategy can enhance phycocyanin production of A. platensis while mitigating microbiological contamination.
Collapse
Affiliation(s)
- Jiajia Yu
- MOE Biomass Energy Research Center and College of Food Science and Technology and State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Hancui Hu
- MOE Biomass Energy Research Center and College of Food Science and Technology and State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Xiaodan Wu
- MOE Biomass Energy Research Center and College of Food Science and Technology and State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Congchun Wang
- MOE Biomass Energy Research Center and College of Food Science and Technology and State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Ting Zhou
- MOE Biomass Energy Research Center and College of Food Science and Technology and State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Yuhuan Liu
- MOE Biomass Energy Research Center and College of Food Science and Technology and State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Roger Ruan
- MOE Biomass Energy Research Center and College of Food Science and Technology and State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, People's Republic of China; Center for Biorefining and Department of Bioproducts and Biosystems Engineering , University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, United States
| | - Hongli Zheng
- MOE Biomass Energy Research Center and College of Food Science and Technology and State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, People's Republic of China.
| |
Collapse
|
48
|
Zhang W, Li J, Zhang Z, Fan G, Ai Y, Gao Y, Pan G. Comprehensive evaluation of a cost-effective method of culturing Chlorella pyrenoidosa with unsterilized piggery wastewater for biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:69. [PMID: 30976319 PMCID: PMC6442423 DOI: 10.1186/s13068-019-1407-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 03/13/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND The utilization of Chlorella for the dual goals of biofuel production and wastewater nutrient removal is highly attractive. Moreover, this technology combined with flue gas (rich in CO2) cleaning is considered to be an effective way of improving biofuel production. However, the sterilization of wastewater is an energy-consuming step. This study aimed to comprehensively evaluate a cost-effective method of culturing Chlorella pyrenoidosa in unsterilized piggery wastewater for biofuel production by sparging air or simulated flue gas, including algal biomass production, lipid production, nutrient removal rate and the mutual effects between algae and other microbes. RESULTS The average biomass productivity of C. pyrenoidosa reached 0.11 g L-1 day-1/0.15 g L-1 day-1 and the average lipid productivity reached 19.3 mg L-1 day-1/30.0 mg L-1 day-1 when sparging air or simulated flue gas, respectively. This method achieved fairish nutrient removal efficiency with respect to chemical oxygen demand (43.9%/55.1% when sparging air and simulated flue gas, respectively), ammonia (98.7%/100% when sparging air and simulated flue gas, respectively), total nitrogen (38.6%/51.9% when sparging air or simulated flue gas, respectively) and total phosphorus (42.8%/60.5% when sparging air or simulated flue gas, respectively). Culturing C. pyrenoidosa strongly influenced the microbial community in piggery wastewater. In particular, culturing C. pyrenoidosa enriched the abundance of the obligate parasite Vampirovibrionales, which can result in the death of Chlorella. CONCLUSION The study provided a comprehensive evaluation of culturing C. pyrenoidosa in unsterilized piggery wastewater for biofuel production. The results indicated that this cost-effective method is feasible but has considerable room for improving. More importantly, this study elucidated the mutual effects between algae and other microbes. In particular, a detrimental effect of the obligate parasite Vampirovibrionales on algal biomass and lipid production was found.
Collapse
Affiliation(s)
- Weiguo Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjng, 210014 China
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, 50 Zhongling Street, Nanjing, 210014 China
| | - Jiangye Li
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjng, 210014 China
| | - Zhenhua Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjng, 210014 China
| | - Guangping Fan
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjng, 210014 China
| | - Yuchun Ai
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjng, 210014 China
| | - Yan Gao
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjng, 210014 China
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, 50 Zhongling Street, Nanjing, 210014 China
| | - Gang Pan
- School of Animal Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst, Southwell, Nottinghamshire NG25 0QF UK
| |
Collapse
|