1
|
Rao W, Sun Y, Guo Q, Zhang J, Zhang Z, Liang S. Anaerobic dynamic membrane bioreactor treating sulfamethoxazole wastewater: advantages of dynamic membrane and its fouling mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135832. [PMID: 39278033 DOI: 10.1016/j.jhazmat.2024.135832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Discharge of improperly treated sulfamethoxazole (SMX) wastewater seriously threats environmental security and public health. Anaerobic dynamic membrane bioreactors (AnDMBRs) technology would be cost-effective for SMX wastewater treatment, considering its low cost and satisfactory treatment efficiency. The performance of AnDMBR, though demonstrated to be excellent in treating many types of wastewaters, was for the first time investigated for treating SMX wastewater. Particular efforts were devoted to elucidating the advantages of dynamic membrane (DM) and the governing mechanism responsible for DM fouling with the presence of SMX. The threshold SMX concentration for AnDMBR was found to be 90 mg/L and the AnDMBR exhibited excellent removal efficiency of COD (90.91 %) and SMX (88.95 %) as well as satisfactory acute toxicity reduction rate (88.84 %). It was noteworthy that the DM made indispensable contributions to the removal of COD (14.26 %) and SMX (22.20 %) as well as the acute reduction of toxicity (25.81 %). The presence of SMX significantly accelerated DM fouling mainly by increasing its specific resistance, which was attributed to the increased content of small particles, high-valence metal ions and EPS content (mainly hydrophobic proteins), resulting in a denser DM structure with lower porosity. Besides, the biofouling-related bacteria (Firmicutes) was found to be enriched in the DM with the presence of SMX.
Collapse
Affiliation(s)
- Wenkai Rao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yuqi Sun
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qingyang Guo
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, 88 Wenhua East Road, Jinan, Shandong 250014, China
| | - Zhen Zhang
- Fiber and Biopolymer Research Institute, Department of Soil and Plant Science, Texas Tech University, Lubbock, TX, USA
| | - Shuang Liang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Buakaew T, Ratanatamskul C. Unveiling the influence of microaeration and sludge recirculation on enhancement of pharmaceutical removal and microbial community change of the novel anaerobic baffled biofilm - membrane bioreactor in treating building wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172420. [PMID: 38614333 DOI: 10.1016/j.scitotenv.2024.172420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
This research aims to conduct a comparative investigation of the role played by microaeration and sludge recirculation in the novel anaerobic baffled biofilm-membrane bioreactor (AnBB-MBR) for enhancing pharmaceutical removal from building wastewater. Three AnBB-MBRs - R1: AnBB-MBR, R2: AnBB-MBR with microaeration and R3: AnBB-MBR with microaeration and sludge recirculation - were operated simultaneously to remove Ciprofloxacin (CIP), Caffeine (CAF), Sulfamethoxazole (SMX) and Diclofenac (DCF) from real building wastewater at the hydraulic retention time (HRT) of 30 h for 115 days. From the removal profiles of the targeted pharmaceuticals in the AnBB-MBRs, it was found that the fixed-film compartment (C1) could significantly reduce the targeted pharmaceuticals. The remaining pharmaceuticals were further removed with the microaeration compartment. R2 exhibited the utmost removal efficiency for CIP (78.0 %) and DCF (40.8 %), while SMX was removed most successfully by R3 (microaeration with sludge recirculation) at 91.3 %, followed by microaeration in R2 (88.5 %). For CAF, it was easily removed by all AnBB-MBR systems (>90 %). The removal mechanisms indicate that the microaeration in R2 facilitated the adsorption of CIP onto microaerobic biomass, while the enhanced biodegradation of CAF, SMX and DCF was confirmed by batch biotransformation kinetics and the adsorption isotherms of the targeted pharmaceuticals. The microbial groups involved in biodegradation of the targeted compounds under microaeration were identified as nitrogen removal microbials (Nitrosomonas, Nitrospira, Thiobacillus, and Denitratisoma) and methanotrophs (Methylosarcina, Methylocaldum, and Methylocystis). Overall, explication of the integration of AnBB-MBR with microaeration (R2) confirmed it as a prospective technology for pharmaceutical removal from building wastewater due to its energy-efficient approach characterized by minimal aeration supply.
Collapse
Affiliation(s)
- Tanissorn Buakaew
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chavalit Ratanatamskul
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Innovative Waste Treatment and Water Reuse, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
3
|
Amin N, Foster T, Shimki NT, Willetts J. Hospital wastewater (HWW) treatment in low- and middle-income countries: A systematic review of microbial treatment efficacy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170994. [PMID: 38365018 DOI: 10.1016/j.scitotenv.2024.170994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Proper treatment of hospital wastewater (HWW) is crucial to minimize the long-term effects on human health and aquatic ecosystems. However, the majority of HWW generated in low and middle-income countries (LMICs), is discharged without adequate treatment. This systematic review aims to fill the knowledge gap in LMICs by examining the efficacy of HWW treatment and the types of technologies used. METHODS Studies included in the review offered valuable insights into the current state of HWW management in LMICs. Between 2000 and 2022, only 36 research studies focused on hospital-based wastewater treatment within LMICs. Data were extracted on wastewater treatment technologies in hospitals or healthcare settings in LMICs. Data on sampling techniques, effectiveness, microorganisms and risk of bias of included studies were recorded. RESULTS A total of 36 articles met the eligibility criteria: mentioned about 1) hospitals 2) wastewater treatment 3) LMICs and 4) treatment efficacy. Twenty-two studies were conducted in Asia (22/36), 17 were conducted in countries with high Human Development Index. Constructed wetland, and activated sludge process were the most common technologies used in LMICs. A few studies utilized membrane bioreactors and ozone/UV treatment. Fourteen studies reported the concentration reduction to assess the microbial efficacy of the treatment process, 29/36 studies did not meet the national standards for effluent discharge. Reporting on sampling methods, wastewater treatment processes and efficacy of HWW treatment were at high risk of bias. Extreme heterogeneity in study methods and outcomes reporting precluded meta-analysis. CONCLUSIONS The existing evidence indicates inadequate microbial treatment in low- and middle-income country hospitals, with this systematic review emphasizing the need for improvement in healthcare waste management. It underscores the importance of long-term studies using innovative treatment methods to better understand waste removal in LMIC hospitals and calls for further research to develop context-specific healthcare waste treatment approaches in these regions.
Collapse
Affiliation(s)
- Nuhu Amin
- Institute for Sustainable Futures, University of Technology Sydney, 235 Jones St, Ultimo, NSW 2007, Australia; Environmental Health and WASH, Health System and Population Studies Division, icddr,b, Dhaka, Bangladesh.
| | - Tim Foster
- Institute for Sustainable Futures, University of Technology Sydney, 235 Jones St, Ultimo, NSW 2007, Australia
| | - Nafeya Tabassum Shimki
- Environmental Health and WASH, Health System and Population Studies Division, icddr,b, Dhaka, Bangladesh
| | - Juliet Willetts
- Institute for Sustainable Futures, University of Technology Sydney, 235 Jones St, Ultimo, NSW 2007, Australia
| |
Collapse
|
4
|
Zou H, He J, Chu Y, Xu B, Li W, Huang S, Guan X, Liu F, Li H. Revealing discrepancies and drivers in the impact of lomefloxacin on groundwater denitrification throughout microbial community growth and succession. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133139. [PMID: 38056273 DOI: 10.1016/j.jhazmat.2023.133139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/31/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
The coexistence of antibiotics and nitrates has raised great concern about antibiotic's impact on denitrification. However, conflicting results in these studies are very puzzling, possibly due to differences in microbial succession stages. This study investigated the effects of the high-priority urgent antibiotic, lomefloxacin (LOM), on groundwater denitrification throughout microbial growth and succession. The results demonstrated that LOM's impact on denitrification varied significantly across three successional stages, with the most pronounced effects exhibited in the initial stage (53.8% promotion at 100 ng/L-LOM, 84.6% inhibition at 100 μg/L-LOM), followed by the decline stage (13.3-18.2% inhibition), while no effect in the stable stage. Hence, a distinct pattern encompassing susceptibility, insusceptibility, and sub-susceptibility in LOM's impact on denitrification was discovered. Microbial metabolism and environment variation drove the pattern, with bacterial numbers and antibiotic resistance as primary influencers (22.5% and 15.3%, p < 0.01), followed by carbon metabolism and microbial community (5.0% and 3.68%, p < 0.01). The structural equation model confirmed results reliability. Bacterial numbers and resistance influenced susceptibility by regulating compensation and bacteriostasis, while carbon metabolism and microbial community impacted energy, electron transfer, and gene composition. These findings provide valuable insights into the complex interplay between antibiotics and denitrification patterns in groundwater.
Collapse
Affiliation(s)
- Hua Zou
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Jiangtao He
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China.
| | - Yanjia Chu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Baoshi Xu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Wei Li
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Shiwen Huang
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Xiangyu Guan
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, China; School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Fei Liu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Haiyan Li
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
5
|
Wang R, Lou J, Cai J. Strategies to attenuate ciprofloxacin inhibition on enhanced biological phosphorus removal from wastewater and its recoverability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120456. [PMID: 38412731 DOI: 10.1016/j.jenvman.2024.120456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
The inhibiting effects of ciprofloxacin (CIP) on enhanced biological phosphorus removal (EBPR) were investigated with no change in reactor operation and with increased aeration rate and sludge retention time (SRT) to explore inhibition-alleviating solutions. Additionally, performance recoverability was evaluated. The results showed that the phosphorus removal efficiency in the presence of 0.002-0.092 mg/L CIP for 7 days was only 12.5%. Increasing the aeration rate relieved inhibition (33.5% phosphorus removal efficiency on Day 7), and increasing SRT slowed EBPR performance deterioration. The EBPR performance recovered from CIP inhibition and increases in the aeration rate and SRT resulted in different recovery phenomena. The maximum PO43--P release rate continued to decrease in the first 2 days of the recovery stage and then gradually increased. However, the maximum PO43--P uptake rate immediately increased at different rates among reactors, which might be attributed to variations in the microbial community structure, decreased poly-P content, and enhanced abundances of ABC transporters and quorum sensing. It was found that some microorganisms associated with phosphorus removal were more tolerant to CIP than glycogen accumulating organisms. Moreover, the increased relative abundance of the qepA gene indicated that the microorganisms in the EBPR system had strong antibiotic resistance capacity. The bacterial community structure was significantly affected by CIP and could not recover to the initial structure. The results help to provide technical support for the operation of the EBPR process in the presence of CIP and to increase the understanding of system recoverability.
Collapse
Affiliation(s)
- Ruyi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| | - Juqing Lou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| | - Jing Cai
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
6
|
Li X, Jiang Y, Liu T, Yuan M, Ma X. Effects of aging methods on the adsorption of antibiotics in wastewater by soybean straw biochar. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:468-478. [PMID: 37649238 DOI: 10.1002/jsfa.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/08/2023] [Accepted: 08/31/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND The environmental pollution and ecological risks caused by the widespread use of antibiotics have attracted attention in recent years. Biochar materials have a rich pore diameter and can effectively adsorb pollutants from wastewater. However, biochar will experience high temperatures, freezing and thawing in nature, affecting its physicochemical properties and adsorption capacity. Three types of aged biochar were prepared by artificial simulated aging using soybean straw as raw material. The aged biochar's elemental composition and functional group species were investigated by characterization analysis, and their adsorption kinetics and adsorption isotherms were studied. RESULTS The specific surface area and pore size of the three aged biochars were lower than those of fresh biochars. The increased number of oxygen-containing functional groups of the aged biochars formed a water cluster interaction with norfloxacin (NOR), which was unfavorable to the adsorption of NOR. The adsorption mechanism of biochar on NOR comprises pore filling, electrostatic interaction, ion exchange and complexation. CONCLUSION The adsorption of NOR on biochar before and after aging was spontaneous and was described by quasi-second kinetics and the Langmuir equation. Different aging methods influenced the physicochemical properties and adsorption performance of biochar, and the adsorption capacity of biochar was significantly reduced after aging. Therefore, the influence of climatic factors needs to be considered when using biochar to remove target pollutants. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinyue Li
- College of Resources and Environment, Jilin Agricultural University, Changchun, China
| | - Yanyan Jiang
- Songliao River Water and soil maintenance monitoring center station, Songliao Water Conservancy Commission, Changchun, China
| | - Tonglinxi Liu
- College of Resources and Environment, Jilin Agricultural University, Changchun, China
| | - Muzi Yuan
- College of Resources and Environment, Jilin Agricultural University, Changchun, China
| | - Xiulan Ma
- College of Resources and Environment, Jilin Agricultural University, Changchun, China
| |
Collapse
|
7
|
Buakaew T, Ratanatamskul C. Effects of microaeration and sludge recirculation on VFA and nitrogen removal, membrane fouling reduction and microbial community of the anaerobic baffled biofilm-membrane bioreactor in treating building wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166248. [PMID: 37582447 DOI: 10.1016/j.scitotenv.2023.166248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
A novel anaerobic baffled biofilm-membrane bioreactor (AnBB-MBR) with microaeration of 0.62 LO2/LFeed was developed to improve VFA and nitrogen removal from building wastewater. Three different membrane bioreactor systems - R1: AnBB-MBR (without microaeration); R2: AnBB-MBR with microaeration; and R3: AnBB-MBR with integrated microaeration and sludge recirculation - were operated in parallel at the same hydraulic retention time of 20 h and sludge retention time of 100 d. The microaeration promoted greater microbial richness and diversity, which could significantly enhance the removal of acetic acid and dissolved methane in the R2 and R3 systems. Moreover, the partial nitrification and the ability of anammox (Candidatus Brocadia) to thrive in R2 enabled NH4+-N removal to be enhanced by up to 57.8 %. The worst membrane fouling was found in R1 due to high amount of protein as well as fine particles (0.5-5.0 μm) acting as foulants that contributed to pore blocking. While the integration of sludge recirculation with microaeration in R3 was able to improve the membrane permeate flux slightly as compared to R2. Therefore, the AnBB-MBR integrated with a microaeration system (R2) can be considered as promising technology for building wastewater treatment when considering VFA and nutrient removal and an energy-saving approach with low aeration intensity.
Collapse
Affiliation(s)
- Tanissorn Buakaew
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chavalit Ratanatamskul
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Innovative Waste Treatment and Water Reuse, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
8
|
Li X, Jiang Y, Chen T, Zhao P, Niu S, Yuan M, Ma X. Adsorption of norfloxacin from wastewater by biochar with different substrates. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3331-3344. [PMID: 36287358 DOI: 10.1007/s10653-022-01414-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/10/2022] [Indexed: 06/01/2023]
Abstract
The type of feedstock and pyrolysis temperature are the main reasons affecting the properties of the resulting biochar. Therefore, this paper investigates the effects of different feedstocks (peanut shell, corn straw and soybean straw) and different pyrolysis temperatures (300, 450 and 600 ℃) on the structural morphology and elemental composition of the resulting biochar. The optimum pyrolysis temperature of 600 ℃ was selected based on the comparison of the adsorption of NFX (norfloxacin) by the biochar prepared at different temperatures. Characterization of biochar materials using x-ray diffractometer, fourier transform infrared spectrometer and scanning electron microscope to study the changes in the physicochemical and structural properties of biochar. The results showed that the pH, surface area and ash content of biochar are increased with increasing temperature. The results of isothermal adsorption and adsorption kinetics experiments showed that the adsorption processes of the three biochar species on NFX were consistent with the Langmuir model and Pseudo-second order kinetic model. The adsorption process occurred in the surface layer of the biochar and was dominated by chemisorption. The inhibition of the adsorption of NFX was more obvious with the higher valence state of cations and the higher ion concentration. The adsorption mechanism of biochar on NFX includes pore filling, hydrogen bonding and electrostatic interactions.
Collapse
Affiliation(s)
- Xinyue Li
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Yanyan Jiang
- Songliao Water Conservancy Commission, Songliao River Water and Soil Maintenance Monitoring Center Station, Changchun, 130021, China
| | - Tianya Chen
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Pan Zhao
- Stanley Fuyu Fertilizer Co., LTD, Fuyu, 131200, China
| | - Sen Niu
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Muzi Yuan
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Xiulan Ma
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
9
|
Fatimazahra S, Latifa M, Laila S, Monsif K. Review of hospital effluents: special emphasis on characterization, impact, and treatment of pollutants and antibiotic resistance. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:393. [PMID: 36780024 PMCID: PMC9923651 DOI: 10.1007/s10661-023-11002-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Health care institutions generate large volumes of liquid effluents from specific activities related to healthcare, analysis, and research. Their direct discharge into the environment has various negative effects on aquatic environments and human health, due to their high organic matter charges and the presence of various emerging contaminants such as disinfectants, drugs, bacteria, viruses, and parasites. Moreover, hospital effluents, by carrying antibiotics, contribute to the development of antibiotic-resistant microorganisms in the environment. This resistance has become a global issue that manifests itself variously in different countries, causing the transmission of different infections. In this respect, an effort is provided to protect water resources by current treatment methods that imply physical-chemical processes such as adsorption and advanced oxidation processes, biological processes such as activated sludge and membrane bioreactors and other hybrid techniques. The purpose of this review is to improve the knowledge on the composition and impact of hospital wastewater on man and the environment, highlighting the different treatment techniques appropriate to this type of disposal before discharge into the environment.
Collapse
Affiliation(s)
- Sayerh Fatimazahra
- Process Engineering and Environment Laboratory, Faculty of Science and Technology of Mohammedia, Hassan II University, Casablanca, Morocco
| | - Mouhir Latifa
- Process Engineering and Environment Laboratory, Faculty of Science and Technology of Mohammedia, Hassan II University, Casablanca, Morocco
| | - Saafadi Laila
- Process Engineering and Environment Laboratory, Faculty of Science and Technology of Mohammedia, Hassan II University, Casablanca, Morocco
| | - Khazraji Monsif
- Process Engineering and Environment Laboratory, Faculty of Science and Technology of Mohammedia, Hassan II University, Casablanca, Morocco
| |
Collapse
|
10
|
Liu A, Zhao Y, Cai Y, Kang P, Huang Y, Li M, Yang A. Towards Effective, Sustainable Solution for Hospital Wastewater Treatment to Cope with the Post-Pandemic Era. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2854. [PMID: 36833551 PMCID: PMC9957062 DOI: 10.3390/ijerph20042854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has spread across the globe since the end of 2019, posing significant challenges for global medical facilities and human health. Treatment of hospital wastewater is vitally important under this special circumstance. However, there is a shortage of studies on the sustainable wastewater treatment processes utilized by hospitals. Based on a review of the research trends regarding hospital wastewater treatment in the past three years of the COVID-19 outbreak, this review overviews the existing hospital wastewater treatment processes. It is clear that activated sludge processes (ASPs) and the use of membrane bioreactors (MBRs) are the major and effective treatment techniques applied to hospital wastewater. Advanced technology (such as Fenton oxidation, electrocoagulation, etc.) has also achieved good results, but the use of such technology remains small scale for the moment and poses some side effects, including increased cost. More interestingly, this review reveals the increased use of constructed wetlands (CWs) as an eco-solution for hospital wastewater treatment and then focuses in slightly more detail on examining the roles and mechanisms of CWs' components with respect to purifying hospital wastewater and compares their removal efficiency with other treatment processes. It is believed that a multi-stage CW system with various intensifications or CWs incorporated with other treatment processes constitute an effective, sustainable solution for hospital wastewater treatment in order to cope with the post-pandemic era.
Collapse
Affiliation(s)
- Ang Liu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Yamei Cai
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Peiying Kang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Yulong Huang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Min Li
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Anran Yang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| |
Collapse
|
11
|
Wang Y, Zhou P, Song X, Xu Z. Simultaneous nitrification and denitrification in a PCL-supported constructed wetland with limited aeration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22606-22616. [PMID: 36301391 DOI: 10.1007/s11356-022-23748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Considerable advances have been made in the substrate design and operation strategies of constructed wetlands to facilitate nitrogen elimination. However, few studies examined the complicated interaction between solid organic substrates and limited aeration on nitrogen removal. A vertical flow constructed wetlands in gradient distribution of inorganic and solid organic substrates (polycaprolactone/PCL) (P-VFCW) and a controlled vertical flow constructed wetland without PCL (C-VFCW) were developed for the tertiary treatment of municipal tailwater. Results indicated that ammonia was nearly converted to nitrate, while the total nitrogen removal efficiencies (TNREs) in C-VFCW were negligible. In P-VFCW, however, optimal TNREs approached 95% with an aeration rate of 0.06 mL·min-1 and hydraulic retention time (HRT) of 24 h, and simultaneous nitrification and denitrification process (SND) in aerobic conditions was confirmed. As for the spatial microbial community structure evolution, Comamonas, which is associated with heterotrophic nitrification and anoxic/aerobic denitrification, was enriched along the vertical profiles of P-VFCW. Autotrophic nitrifier (Nitrospira), aerobic denitrifier (Bradyrhizobium and Azospira), and anoxic denitrifier (Ignavibacterium and Methyloversatilis) were dominated in different depths of P-VFCW, respectively. Besides, Canna indica biomass in P-VFCW was significantly larger than that in C-VFCW, which was attributed to the plant adaption response to diverse nitrogen. The P-VFCW in gradient distribution of inorganic and solid carbon sources under limited aeration is a promising technology for advanced nitrogen removal.
Collapse
Affiliation(s)
- Yuhui Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201600, China
| | - Panpan Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201600, China
| | - Xinshan Song
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201600, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zhongshuo Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201600, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
12
|
Klatt M, Beyer F, Einfeldt J. Hospital wastewater treatment and the role of membrane filtration - removal of micropollutants and pathogens: A review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2213-2232. [PMID: 36378176 DOI: 10.2166/wst.2022.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dissemination of multiresistant bacteria and high concentrations of micropollutants by hospitals and other medical facilities can be significantly reduced by a wide variety of on-site treatment approaches. Membrane filtration technologies, ranging from microfiltration to reverse osmosis, have been adapted in many studies and offer multiple purposes in advanced wastewater treatment configurations. While the direct rejection of pharmaceutical compounds and pathogens can only be achieved with nanofiltration and reverse osmosis processes, porous membranes are known for their pathogen removal capabilities and can be used in combination with other advanced treatment approaches, such as oxidation and adsorption processes. This review was conducted to systematically assess studies with membrane filtration technologies that are used as either stand-alone or hybrid systems for the treatment of hospital wastewater. In this review, four different databases were screened with a pre-set of search strings to thoroughly investigate the application of membrane filtration technology in hospital wastewater treatment. Hybrid systems that combine multiple treatment technologies seem to be the most promising way of consistently removing micropollutants and pathogens from hospital wastewater, but additional economic assessments are needed for an extensive evaluation.
Collapse
Affiliation(s)
- Marten Klatt
- Department of Environmental Engineering, Hamburg University of Applied Sciences, Hamburg, Germany E-mail: ; ; Institute of Wastewater Management and Water Protection, Hamburg University of Technology, Hamburg, Germany
| | - Falk Beyer
- Department of Process Engineering, Hamburg University of Applied Sciences, Hamburg, Germany
| | - Jörn Einfeldt
- Department of Environmental Engineering, Hamburg University of Applied Sciences, Hamburg, Germany E-mail: ;
| |
Collapse
|
13
|
Sengar A, Vijayanandan A. Effects of pharmaceuticals on membrane bioreactor: Review on membrane fouling mechanisms and fouling control strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152132. [PMID: 34863739 DOI: 10.1016/j.scitotenv.2021.152132] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/21/2021] [Accepted: 11/28/2021] [Indexed: 05/27/2023]
Abstract
Pharmaceuticals have become contaminants of emerging concern due to their toxicity towards aquatic life and pseudo persistent nature in the environment. Membrane bioreactor (MBR) is one such technology that has the potential to act as a barrier against the release of pharmaceuticals into the environment. Fouling is the deposition of the constituents of the mixed liquor on the membrane surface and it limit the world-wide applicability of MBRs. To remove foulant layer, aggressive chemicals and extra cost consideration in terms of energy are required. Extracellular polymeric substances (EPS) and soluble microbial products (SMP) are recognized as principal foulants. Presence of pharmaceuticals has been found to increase the fouling in MBRs. Fouling aggravates in proportion to the concentration of pharmaceuticals. Pharmaceuticals exert chemical stress in microbes, hence forcing them to secrete more EPS/SMP. Pharmaceuticals alter the composition of the foulants and affect microbial metabolism, thereby inflicting direct/indirect effects on fouling. Pharmaceuticals have been found to increase or decrease the size of sludge flocs, however the exact mechanism that govern the floc size change is yet to be understood. Different techniques such as coupling advanced oxidation processes with MBR, adding activated carbon, bioaugmenting MBR with quorum quenching strains have shown to reduce fouling in MBRs treating pharmaceutical wastewater. These fouling mitigation techniques work on reducing the EPS/SMP concentration, thereby alleviating fouling. The present review provides a comprehensive understanding of the effects induced by pharmaceuticals in the activated sludge characteristics and identifying the fouling mechanism. Furthermore, significant knowledge gaps and recent advances in fouling mitigation strategies are discussed. This review has also made an effort to highlight the positive aspect of the foulant layer in retaining pharmaceuticals and antibiotic resistance genes, thereby suggesting a possible delicate trade-off between the flux decline and enhanced removal of pharmaceuticals.
Collapse
Affiliation(s)
- Ashish Sengar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
14
|
Deng L, Guo W, Ngo HH, Zhang X, Chen C, Chen Z, Cheng D, Ni SQ, Wang Q. Recent advances in attached growth membrane bioreactor systems for wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152123. [PMID: 34864031 DOI: 10.1016/j.scitotenv.2021.152123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
To tackle membrane fouling and limited removals of pollutants (nutrients and emerging pollutants) that hinder the wide applications of membrane bioreactor (MBR), attached growth MBR (AGMBR) combining MBR and attached growth process has been developed. This review comprehensively presents the up-to-date developments of media used in both aerobic and anaerobic AGMBRs for treating wastewaters containing conventional and emerging pollutants. It also elaborates the properties of different media, characteristics of attached biomass, and their contributions to AGMBR performance. Conventional media, such as biological activated carbon and polymeric carriers, induce formation of aerobic, anoxic and/or anaerobic microenvironment, increase specific surface area or porous space for biomass retention, improve microbial activities, and enrich diverse microorganisms, thereby enhancing pollutants removal. Meanwhile, new media (i.e. biochar, bioaugmented carriers with selected strain/mixed cultures) do not only eliminate conventional pollutants (i.e. high concentration of nitrogen, etc.), but also effectively remove emerging pollutants (i.e. micropollutants, nonylphenol, adsorbable organic halogens, etc.) by forming thick and dense biofilm, creating anoxic/anaerobic microenvironments inside the media, enriching special functional microorganisms and increasing activity of microorganisms. Additionally, media can improve sludge characteristics (i.e. less extracellular polymeric substances and soluble microbial products, larger floc size, better sludge settleability, etc.), alleviating membrane fouling. Future studies need to focus on the development and applications of more new functional media in removing wider spectrum of emerging pollutants and enhancing biogas generation, as well as scale-up of lab-scale AGMBRs to pilot or full-scale AGMBRs.
Collapse
Affiliation(s)
- Lijuan Deng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, University of Technology Sydney and Tianjin Chengjian University,.
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, University of Technology Sydney and Tianjin Chengjian University,.
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, University of Technology Sydney and Tianjin Chengjian University,; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Cheng Chen
- Infinite Water Holdings Pty Ltd., Unit 17/809 Botany Road, Rosebery, Sydney, NSW 2018, Australia
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Dongle Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Quan Wang
- Department of Environment Science & Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
15
|
Nguyen VT, Vo TDH, Nguyen TB, Dat ND, Huu BT, Nguyen XC, Tran T, Le TNC, Duong TGH, Bui MH, Dong CD, Bui XT. Adsorption of norfloxacin from aqueous solution on biochar derived from spent coffee ground: Master variables and response surface method optimized adsorption process. CHEMOSPHERE 2022; 288:132577. [PMID: 34662641 DOI: 10.1016/j.chemosphere.2021.132577] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
In this study, biochar derived from spent coffee grounds (SCGB) was used to adsorb norfloxacin (NOR) in water. The biochar properties were interpreted by analysis of the specific surface area, morphology, structure, thermal stability, and functional groups. The impacts of pH, NOR, and ion's present on SCGB performance were examined. The NOR adsorption mode of SCGB is best suited to the Langmuir model (R2 = 0.974) with maximum absorption capacity (69.8 mg g-1). By using a Response Surface Method (RSM), optimal adsorption was also found at pH of 6.26, NOR of 24.69 mg L-1, and SCGB of 1.32 g L-1. Compared with biochars derived from agriculture such as corn stalks, willow branches, potato stem, reed stalks, cauliflower roots, wheat straw, the NOR adsorption capacity of SCGB was 2-30 times higher, but less than 3-4 times for biochars made from Salix mongolica, luffa sponge and polydopamine microspheres. These findings reveal that spent coffee grounds biochar could effectively remove NOR from aqueous solutions. Approaching biochar derived from coffee grounds would be a promising eco-friendly solution because it utilizes solid waste, saves costs, and creates adsorbents to deal with emerging pollutants like antibiotics.
Collapse
Affiliation(s)
- Van-Truc Nguyen
- Department of Environmental Sciences, Saigon University, Ho Chi Minh City, 700000, Viet Nam.
| | - Thi-Dieu-Hien Vo
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Thanh-Binh Nguyen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
| | - Nguyen Duy Dat
- Faculty of Chemical & Food Technology, Ho Chi Minh City University of Technology and Education, Thu Duc, Ho Chi Minh City, Viet Nam.
| | - Bui Trung Huu
- Faculty of Chemical & Food Technology, Ho Chi Minh City University of Technology and Education, Thu Duc, Ho Chi Minh City, Viet Nam.
| | - Xuan-Cuong Nguyen
- Laboratory of Energy and Environmental Science, Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam.
| | - Thanh Tran
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, 70000, Viet Nam.
| | - Thi-Ngoc-Chau Le
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Thi-Giang-Huong Duong
- Department of Environmental Sciences, Saigon University, Ho Chi Minh City, 700000, Viet Nam.
| | - Manh-Ha Bui
- Department of Environmental Sciences, Saigon University, Ho Chi Minh City, 700000, Viet Nam.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc city, Ho Chi Minh City, 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet str., District 10, Ho Chi Minh City, 700000, Viet Nam.
| |
Collapse
|
16
|
Zheng X, He X, Peng H, Wen J, Lv S. Efficient adsorption of ciprofloxacin using Ga 2S 3/S-modified biochar via the high-temperature sulfurization. BIORESOURCE TECHNOLOGY 2021; 334:125238. [PMID: 33962160 DOI: 10.1016/j.biortech.2021.125238] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Ga2S3 and sulfur co-modified biochar (Ga/S-BC) composites were prepared for enhancing the adsorption of ciprofloxacin from sugarcane bagasse via the high-temperature sulfurization. In contrast with sulfur-modified biochar, Ga/S-BC exhibited the better adsorption capacity for ciprofloxacin removal. The increasing Ga content induced to the climbing and then declining adsorption activity of Ga/S-BC. Among these obtained Ga/S-BC composites, optimal 3-Ga/S-BC with a Ga content of 7.40% and surface area of 681.67 m2 g-1 exhibited the superior capacity of 330.21 mg g-1. The adsorption capacity of 3-Ga/S-BC declined to 301.66 mg g-1 after nine cycles. pH and inorganic salts also affected the adsorption capacity of 3-Ga/S-BC for ciprofloxacin removal. The adsorption isotherms of obtained Ga/S-BC composites were well described by Langmuir isotherm, and their adsorption kinetics were well estimated via second-order model. The adsorption performance of 3-Ga/S-BC in ciprofloxacin removal was a physisorption and spontaneous process.
Collapse
Affiliation(s)
- Xiaogang Zheng
- College of Chemistry and Chemical Engineering, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang Sichuan 641100, China; Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan Guangdong 523808, China
| | - Xinyue He
- College of Chemistry and Chemical Engineering, Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang Sichuan 641100, China
| | - Hao Peng
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China.
| | - Jing Wen
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Province Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining Qinghai 810008, China
| | - Sihao Lv
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan Guangdong 523808, China
| |
Collapse
|
17
|
Dang BT, Bui XT, Itayama T, Ngo HH, Jahng D, Lin C, Chen SS, Lin KYA, Nguyen TT, Nguyen DD, Saunders T. Microbial community response to ciprofloxacin toxicity in sponge membrane bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145041. [PMID: 33940712 DOI: 10.1016/j.scitotenv.2021.145041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
This study aims to offer insights into how ciprofloxacin (CIP) impact bacterial community structures in the Sponge-MBR process when CIP is spiked into hospital wastewater. We found that the CIP toxicity decreased richness critical phylotypes such as phylum class ẟ-, β-, ɣ-proteobacteria, and Flavobacteria that co-respond to suppress denitrification and cake fouling to 37% and 28% respectively. Cluster analysis shows that the different community structures were formed under the influence of CIP toxicity. CIP decreased attached growth biomass by 2.3 times while increasing the concentration of permeate nitrate by 3.8 times, greatly affecting TN removal by up to 26%. Ammonia removal was kept stable by inflating the ammonia removal rate (p < 0.003), with the wealthy Nitrospira genus guaranteeing the nitrification activity. In addition, we observed an increasing richness of Chloroflexi and Planctomycetes, which may play a role in fouling reduction in the Sponge-MBR. Therefore, if the amount of antibiotics in hospital wastewater continues to increase, it is so important to extend biomass retention for denitrification recovery.
Collapse
Affiliation(s)
- Bao-Trong Dang
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; Ho Chi Minh City University of Technology (HUTECH) 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Viet Nam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Thu Duc district, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam.
| | - Tomoaki Itayama
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Huu Hao Ngo
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Australia
| | - Deokjin Jahng
- Department of Environmental Engineering and Energy, Myongji University, Republic of Korea
| | - Chitsan Lin
- College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, No. 250 Kuo-Kuang Road, Taichung 402, Taiwan
| | - Thanh-Tin Nguyen
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Todd Saunders
- Graduate School of Biomedical Science, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
18
|
Zhang X, Zhang Z, Liu Y, Hao Ngo H, Guo W, Wang H, Zhang Y, Zhang D. Impacts of sulfadiazine on the performance and membrane fouling of a hybrid moving bed biofilm reactor-membrane bioreactor system at different C/N ratios. BIORESOURCE TECHNOLOGY 2020; 318:124180. [PMID: 33022530 DOI: 10.1016/j.biortech.2020.124180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
The performance and membrane fouling of a hybrid moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) system was evaluated when exposed to 0.5 mg/L of antibiotic sulfadiazine (SDZ). Results indicated that although SDZ reduced the removal efficiency of NH4+-N and TN (up to 12%) and TOC (up to 6%) at low C/N (2.5 and 4), it had no significant effect at high C/N (6 and 9). It was found that SDZ was removed 75% and 58% at high C/N of 9 and low C/N of 2.5, respectively. SDZ decreased the ratio of volatile biomass/total biomass and sludge particle size and increased the concentrations of extracellular polymeric substance (EPS) and soluble microbial product (SMP) in MBR. Consequently, this accelerated the membrane fouling rates, with an average increase of 6.85 kPa/d at low C/N (2.5) and 0.513-0.701 kPa/d at medium and high C/N (4, 6 and 9).
Collapse
Affiliation(s)
- Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Zumin Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Ying Liu
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Huu Hao Ngo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huizhong Wang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Yufeng Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Dan Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| |
Collapse
|
19
|
Shitu A, Zhu S, Qi W, Tadda MA, Liu D, Ye Z. Performance of novel sponge biocarrier in MBBR treating recirculating aquaculture systems wastewater: Microbial community and kinetic study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 275:111264. [PMID: 32854050 DOI: 10.1016/j.jenvman.2020.111264] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/30/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
In this study, a novel sponge biocarriers (SB) in moving bed bioreactor (MBBR) treating recirculating aquaculture systems wastewater was evaluated for the first time. Two lab-scale MBBRs were operated simultaneously for 116 days under various hydraulic retention times (HRTs). The reactors R1 and R2 were filled with K5 plastic carriers and SB, respectively. From the results, at an optimum HRT of 6 h, ammonia removal efficiency and nitrification rate were 86.67 ± 2.4% and 1.43 mg/L.h for the R1 and, 91.65 ± 1.3% and 1.52 mg/L.h for the R2, respectively. The microbial community analysis showed that the predominant genera in the nitrifying community were Nitrosomonas (AOB) and Nitrospira (NOB) in co-existence with heterotrophic genera Hyphomicrobium, Mesorhizobium, Zhizhongheella, and Klebsiella spp. Modified Stover-Kincannon model examined the ammonia removal kinetics, and the values of kinetic parameters obtained were Umax: 0.909 and 1.111 g/L.d and KB: 0.929 and, 1.108 g/L.d for the R1 and R2, respectively. The correlation coefficients (R2) of the MBBRs were higher than 0.98, indicating that the model adequately described the experimental data. Overall, MBBR, filled with the proposed novel SB operated at 6 h HRT, can achieve the highest nitrification performance and increase the diversity of the functional microbial communities.
Collapse
Affiliation(s)
- Abubakar Shitu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China; Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, Nigeria
| | - Songming Zhu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China.
| | - Wanhe Qi
- College of Bio-systems Engineering and Food Science, Zhejiang University, Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China
| | - Musa Abubakar Tadda
- College of Bio-systems Engineering and Food Science, Zhejiang University, Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China; Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, Nigeria
| | - Dezhao Liu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China
| | - Zhangying Ye
- College of Bio-systems Engineering and Food Science, Zhejiang University, Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China
| |
Collapse
|
20
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
21
|
Effect of the C/N Ratio on Biodegradation of Ciprofloxacin and Denitrification from Low C/N Wastewater as Assessed by a Novel 3D-BER System. SUSTAINABILITY 2020. [DOI: 10.3390/su12187611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Emerging pollutants in the form of pharmaceuticals have drawn international attention during the past few decades. Ciprofloxacin (CIP) is a common drug widely found in effluents from hospitals, industrial and different wastewater treatment plants, as well as rivers. In this work, the lab-scale 3D-BER system was established, and more than 90% of the antibiotic CIP was removed from Low C/N wastewater. The best results were obtained with the current intensity being taken into account, and a different C/N ratio significantly improved the removal of CIP and nitrates when the ideal conditions were C/N = 1.5–3.5, pH = 7.0–7.5 and I = 60 mA. The highest removal efficiency occurred when CIP = 94.2%, NO3−-N = 95.5% and total nitrogen (TN) = 84.3%, respectively. In this novel system, the autotrophic-heterotrophic denitrifying bacteria played a vital role in the removal of CIP and an enhanced denitrification process. Thus, autotrophic denitrifying bacteria uses CO2 and H2 as carbon sources to reduce nitrates to N2. This system has the assortment and prosperous community revealed at the current intensity of 60 mA, and the analysis of bacterial community structure in effluent samples fluctuates under different conditions of C/N ratios. Based on the results of LC-MS/MS analysis, the intermediate products were proposed after efficient biodegradation of CIP. The microbial community on biodegrading was mostly found at phylum, and the class level was dominantly responsible for the NO3−-N and biodegradation of CIP. This work can provide some new insights towards the biodegradation of CIP and the efficient removal of nitrates from low C/N wastewater treatment through the novel 3D-BER system.
Collapse
|
22
|
Lamarca RS, Faria RADD, Zanoni MVB, Nalin M, Lima Gomes PCFD, Messaddeq Y. Simple, fast and environmentally friendly method to determine ciprofloxacin in wastewater samples based on an impedimetric immunosensor. RSC Adv 2020; 10:1838-1847. [PMID: 35494561 PMCID: PMC9047983 DOI: 10.1039/c9ra09083e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
In this study an impedimetric immunosensor was developed in order to determine ciprofloxacin (CIP) in wastewater samples, an emergent contaminant widely found in wastewater. To achieve this, an anti-ciprofloxacin antibody was immobilized on the surface of a printed carbon electrode. Then, the developed immunosensor was applied in wastewater samples from Université Laval residences (Québec, Canada) through the load transfer resistance (Rct) using [Fe(CN)6]3−/4− as a redox probe, and the average CIP concentration was found to be 2.90 × 10−4 μg mL−1. The observed Rct changes presented a linear relationship from CIP concentrations of 10−5 to 1.0 μg mL−1, with detection and quantification limits of 2.50 × 10−6 and 7.90 × 10−6 μg mL−1, respectively. The immunosensor presented high selectivity and repeatability, as well as a good recovery rate in wastewater samples (97%). Significant interference with other compounds was not observed. The proposed method requires only 30 μL of sample without the use of organic solvents or preceding sample preparation and/or extraction techniques. Moreover, the method is fast: only 20 min of incubation followed by 2 min of analysis time was sufficient to obtain the CIP concentration. The method's estimated cost is U$ 2.00 per sample. In this study an impedimetric immunosensor was developed in order to determine ciprofloxacin (CIP) in wastewater samples, an emergent contaminant widely found in wastewater samples.![]()
Collapse
Affiliation(s)
| | | | - Maria Valnice Boldrin Zanoni
- UNESP
- National Institute for Alternative Technologies of Detection
- Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM)
- Institute of Chemistry
- São Paulo State University – UNESP
| | - Marcelo Nalin
- Institute of Chemistry
- São Paulo State University (UNESP)
- Araraquara
- Brazil
| | - Paulo Clairmont Feitosa de Lima Gomes
- UNESP
- National Institute for Alternative Technologies of Detection
- Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM)
- Institute of Chemistry
- São Paulo State University – UNESP
| | - Younès Messaddeq
- Center for Optics, Photonics and Laser (COPL)
- Université Laval
- Quebec
- Canada
- Institute of Chemistry
| |
Collapse
|
23
|
Zhang X, Song Z, Hao Ngo H, Guo W, Zhang Z, Liu Y, Zhang D, Long Z. Impacts of typical pharmaceuticals and personal care products on the performance and microbial community of a sponge-based moving bed biofilm reactor. BIORESOURCE TECHNOLOGY 2020; 295:122298. [PMID: 31675521 DOI: 10.1016/j.biortech.2019.122298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Four lab-scale moving bed biofilm reactors (MBBRs) were built to treat simulated wastewater containing typical pharmaceuticals and personal care products (PPCPs). The efficiency in removing different PPCPs at different concentrations (1, 2 and 5 mg/L) and their effects on the performance of MBBRs were investigated. Results showed that the average removal efficiencies of sulfadiazine, ibuprofen and carbamazepine were 61.1 ± 8.8%, 74.9 ± 8.8% and 28.3 ± 7.4%, respectively. Compared to the reactor without PPCPs, the total nitrogen (TN) removal efficiency of the reactors containing sulfadiazine, ibuprofen and carbamazepine declined by 21%, 30% and 42%, respectively. Based on the microbial community analysis, increasing the PPCPs concentration within a certain range (<2 mg/L) could stimulate microbial growth and increase microbial diversity yet the diversity reduced when the concentration (5 mg/L) exceeded the tolerance of microorganisms. Furthermore the presence and degradation of different PPCPs resulted in a different kind of microbial community structure in the MBBRs.
Collapse
Affiliation(s)
- Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Zi Song
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Zumin Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Yang Liu
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Dan Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Zhongliang Long
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| |
Collapse
|
24
|
Vo HNP, Koottatep T, Chapagain SK, Panuvatvanich A, Polprasert C, Nguyen TMH, Chaiwong C, Nguyen NL. Removal and monitoring acetaminophen-contaminated hospital wastewater by vertical flow constructed wetland and peroxidase enzymes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109526. [PMID: 31521036 DOI: 10.1016/j.jenvman.2019.109526] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/16/2019] [Accepted: 09/02/2019] [Indexed: 05/12/2023]
Abstract
Hospital wastewater contains acetaminophen (ACT) and nutrient, which need adequate removal and monitoring to prevent impact to environment and community. This study developed a pilot scale vertical flow constructed wetland (CW) to (1) remove high-dose ACT and pollutants in hospital wastewater and (2) identify the correlation of peroxidase enzyme extruded by Scirpus validus and pollutants removal efficiency. By that correlation, a low-cost method to monitor pollutants removal was drawn. Plants, such as Scirpus validus, generated peroxidase enzymes to alleviate pollutants' stress. Results showed that the CW removed 3.5 to 6 logs of initial concentration 10 mg ACT/L to a recommended level for drinking water. The CW eliminated COD, TKN and TP efficiently, meeting the wastewater discharged standards of Thailand and Vietnam. By various multivariable regression models, concentrations of ACT in CW effluent and enzymes in S. validus exhibited a significant correlation (p < 0.01, R2 = 68.3%). These findings suggested that (i) vertical flow CW could remove high-dose ACT and nutrient and (ii) peroxidase enzymes generated in S. validus, such as soluble and covalent ones, could track ACT removal efficiency. This would help to reduce facilities and analytical cost of micro-pollutants.
Collapse
Affiliation(s)
- Hoang Nhat Phong Vo
- Environmental Engineering and Management, Asian Institute of Technology (AIT), P.O.Box 4, Klong Luang, Pathumthani, 12120, Thailand; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Thammarat Koottatep
- Environmental Engineering and Management, Asian Institute of Technology (AIT), P.O.Box 4, Klong Luang, Pathumthani, 12120, Thailand
| | - Saroj Kumar Chapagain
- United Nations University, Institute for the Advanced Study of Sustainability (UNU-IAS), 5-53-70, Shibuya-Ku, Tokyo, 150-8925, Japan
| | - Atitaya Panuvatvanich
- Environmental Engineering and Management, Asian Institute of Technology (AIT), P.O.Box 4, Klong Luang, Pathumthani, 12120, Thailand
| | | | - Thi Minh Hong Nguyen
- Environmental Engineering and Management, Asian Institute of Technology (AIT), P.O.Box 4, Klong Luang, Pathumthani, 12120, Thailand
| | - Chawalit Chaiwong
- Environmental Engineering and Management, Asian Institute of Technology (AIT), P.O.Box 4, Klong Luang, Pathumthani, 12120, Thailand
| | - Ngoc Luong Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
25
|
Zhang H, Song S, Jia Y, Wu D, Lu H. Stress-responses of activated sludge and anaerobic sulfate-reducing bacteria sludge under long-term ciprofloxacin exposure. WATER RESEARCH 2019; 164:114964. [PMID: 31419666 DOI: 10.1016/j.watres.2019.114964] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/17/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
The activated sludge (AS) and sulfate-reducing bacteria (SRB) sludge systems were continuously operated for 200 days in laboratory to investigate the stress-responses of these two sludge systems under ciprofloxacin (CIP) exposure. It was found that CIP was effectively removed by SRB sludge via adsorption and biodegradation, but little biodegradation in AS system. The CIP biodegradation by SRB sludge made the SRB sludge system more sustainable and tolerant to long-term CIP exposure than AS system with significant (p < 0.05) CIP desorption and decrease of CIP removal. CIP shaped the microbial communities in AS and SRB sludge, and significantly (p < 0.05) inhibited the family Nitrosomonadaceae (ammonia-oxidizing bacteria (AOB)) and genus Nitrospira (nitrite-oxidizing bacteria (NOB)/complete ammonia oxidizer(comammox)) and the nitrogen removal in AS system. Moreover, CIP posed the increase of genus Zoogloea-like organisms and the non-filamentous bulking of AS, e.g. 313 ± 12 mL/g of sludge volume index (SVI) at phase V (influent CIP = 5000 μg/L). The genus Desulfobacter was enriched in SRB sludge system under long-term CIP exposure, and stimulated chemical oxygen demand (COD) removal and sulfate reduction. The increase of genera Zoogloea, Acinetobacter and Flavobacterium in AS, and Zoogloea and Acinetobacter in SRB sludge systems under CIP exposure promoted extracellular polymeric substances (EPS) production and CIP adsorption for self-protection of microbes against CIP toxicity. The functional groups of N-H, O-H, C-O-C and C=O in EPS of AS and SRB sludge provided adsorption sites for CIP and impeded CIP impact on microbial cells. The findings of this study provide an insight into the stress-responses of AS and SRB sludge under long-term CIP exposure, and exhibit the great potential of treating CIP-laden wastewater by SRB sludge system.
Collapse
Affiliation(s)
- Huiqun Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Shiliu Song
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Yanyan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China.
| |
Collapse
|
26
|
Zhao Y, Liu D, Huang W, Yang Y, Ji M, Nghiem LD, Trinh QT, Tran NH. Insights into biofilm carriers for biological wastewater treatment processes: Current state-of-the-art, challenges, and opportunities. BIORESOURCE TECHNOLOGY 2019; 288:121619. [PMID: 31202712 DOI: 10.1016/j.biortech.2019.121619] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Biofilm carriers play an important role in attached growth systems for wastewater treatment processes. This study systematically summarizes the traditional and novel biofilm carriers utilized in biofilm-based wastewater treatment technology. The advantages and disadvantages of traditional biofilm carriers are evaluated and discussed in light of basic property, biocompatibility and applicability. The characteristics, applications performance, and mechanism of novel carriers (including slow-release carriers, hydrophilic/electrophilic modified carriers, magnetic carriers and redox mediator carriers) in wastewater biological treatment were deeply analyzed. Slow release biofilm carriers are used to provide a solid substrate and electron donor for the growth of microorganisms and denitrification for anoxic and/or anaerobic bioreactors. Carriers with hydrophilic/electrophilic modified surface are applied for promoting biofilm formation. Magnetic materials-based carriers are employed to shorten the start-up time of bioreactor. Biofilm carriers acting as redox mediators are used to accelerate biotransformation of recalcitrant pollutants in industrial wastewater.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Duo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Wenli Huang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ying Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Long Duc Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Quang Thang Trinh
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Ngoc Han Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; NUS Environmental Research Institute, National University of Singapore, 1-Create Way, #15-02 Create Tower, Singapore 138602, Singapore.
| |
Collapse
|